substance: Fe₃O₄
property: electrical conductivity

electrical conductivity: Figs. 1...3, 5. The Verwey transition is observed as a discontinuity in σ at 120(2) K [50D, 68S] and σ also shows a maximum at \approx 300 K [57M], 360K [50D], and a further minimum at \approx 780K [70G], 800 K [76P, 57M]. For the low-temperature phase some anisotropy in the conductivity is found, with the properties showing further strong dependence on magnetic field direction.

The conductivity minimum at high temperatures is correlated with the Curie temperature; it apparently represents a maximum in the spin-disorder scattering. The conductivity maximum at 300 K is associated with the onset of strong, dynamic electron-lattice interactions that correlate the mobile electrons [81S].

The Verwey transition decreases with increasing iron deficit, Fig. 2, a result supported by Moessbauer measurements [71W]. Below T_V, Fe₃O₄ behaves as a semiconductor, with an activation energy that decreases continuously with decreasing T. Alternatively, [71D] suggests that $\ln \sigma$ is linear with $T^{-1/4}$ from the Verwey temperature down to \approx 10 K. Below this, the conductivity reaches a minimum of 10^{-15} Ω^{-1} cm$^{-1}$ at 5.3 K and then increases [71D].

activation energy for conductivity

\begin{align*}
E_A & \quad T = 78...90 \text{ K} & 54C \\
0.10(1) \text{ eV} & \quad T = 100...T_V & 68S \\
0.10 \text{ eV} & \quad T = 110 \text{ K} & 57M \\
0.09 \text{ eV} & \quad T = 56...77 \text{ K} & 54C \\
0.06 \text{ eV} & \quad T = 40...52 \text{ K} & 54C \\
0.03 \text{ eV} & \quad T = 40 \text{ K} & 57M
\end{align*}

stress and pressure dependence of transport parameters

stress dependence of conductivity: Fig. 4

\begin{align*}
\frac{d \ln T_V}{dp} & \quad -4.0(2) \cdot 10^{-3} \text{ kbar}^{-1} & 68S \\
\frac{d \ln E_A}{dp} & \quad -3.0(1.0) \quad T \leq T_V & 68S \\
\frac{d \ln \rho}{dp} & \quad -4.9(2) \cdot 10^{-2} \text{ kbar}^{-1} \quad T = 77 \text{ K} & 68S
\end{align*}
References:

Fig. 1.
Fe$_3$O$_4$. Conductivity vs. reciprocal temperature (in the inset: vs. temperature) for stoichiometric single crystal material [57M].
Fig. 2.
Fe$_3$O$_4$. Resistivity vs. (reciprocal) temperature for polycrystalline sample. The curves I to VI represent increasing Fe-deficit [41V].
Fig. 3.

Fe$_3$O$_4$. Conductivity vs. (reciprocal) temperature. (a) anisotropy in the direction of the 1 [1 1 0], 2 [1 1 0], 3 [0 0 1] axes, (b) conductivity parallel to the [001] axis, while the direction of the magnetic field cooling is parallel to 1 [1 1 0] and 2 [0 0 1] + 40° [77M].
Fig. 4.

Fe$_3$O$_4$. Conductivity vs. (reciprocal) temperature in the $\{\bar{1}11\}$ direction for a squeezed and unsqueezed crystal (a), compared to the $\{111\}$ direction for an unsqueezed crystal (b); field cooled in (a) $\{001\}$ direction, (b) $\{001\} + 40^\circ$ direction [77M].
Fig. 5.
Fe$_3$O$_4$. Resistivity (full circles [70G], triangles [52S]) and Seebeck coefficient (open circles) vs. temperature at high temperatures ($T > T_V$) [70G].