COLOR PICTURES: MODELING AND SIMULATION OF MICROSTRUCTURE EVOLUTION IN SOLIDIFYING ALLOYS

CHAPTER 1

Figure 1-1. Length scales for modeling the solidification structures.
Figure 4-2. Warren’s phase field results for Cu-Ni alloys [22]: (a) a single dendrite; (b) multiple dendrites.
Reprinted from [22] with permission from Elsevier.
Figure 4-6. Comparison of simulated equiaxed morphologies in various alloy systems: (a) to (c) Pb-10 wt.% Sn alloy ($A = 52$); (d) to (e) IN718-5 wt.% Nb alloy ($A = 57$); (g) to (i) Fe-0.6 wt.% C alloy ($A = 93$); (j) to (l) Al-7 wt.% Si alloy ($A = 280$) [27].

Reprinted from [27] with permission from Elsevier.
Figure 4-7. Simulated columnar dendritic growth and Nb segregation patterns in unidirectional solidification of IN718-5 wt.% Nb alloy [27].
Reprinted from [27] with permission from Elsevier.

Figure 4-8. Effect of increase in Γ on dendritic growth and Nb segregation patterns in IN718-5 wt.% Nb alloy (assumed one nucleus/dendrite): (a) and (c) Γ from Table 1; (b) and (d) Γ is 10 times higher than Γ in Table 4-1 [27].
Reprinted from [27] with permission from Elsevier.
Figure 4-9. Simulated columnar dendritic growth and Nb segregation patterns in unidirectional solidification of IN718-5 wt. % Nb alloy [27].
Reprinted from [27] with permission from Elsevier.

Figure 4-10. Simulated microstructure (dendritic morphologies and CET formation) and Nb segregation patterns in multidirectional solidification of IN718-5 wt.% Nb alloy (initial melt temperature is 1400 °C, 4x4 mm-domain, Δ = 10 µm) [27].
Reprinted from [27] with permission from Elsevier.
Figure 4-11. Simulated microstructure (columnar cellular/equiaxed dendritic morphologies and CET formation) in unidirectional solidification of IN718-5 wt.% Nb alloy (initial melt temperature is 1400 °C, 10x20 mm-domain, $a = 20 \mu m$, $h = 10^3$ W m$^{-2}$ K$^{-1}$). CI is the color index [27].
Reprinted from [27] with permission from Elsevier.

Figure 4-13. Simulated equiaxed morphologies and Nb segregation patterns during the solidification of IN718-5 wt.% Nb alloy [29].
Figure 4-14. Simulated solidification microstructure ((a) and (b)) and Sn segregation patterns ((c) and (d)) in Pb-10 wt.% Sn alloy. Legend shows either Sn composition or dendrite color indexes. Initial melt temperature is 334 °C, 10 mm x 20 mm domain, $a=10 \mu m$, $h=10^4$ W/m2/K [28].
Figure 4-15. (a) Effect of convection ($V_y = 0.1$ mm/s) on the evolution of growth morphologies and segregation patterns in IN718 (left-side wall cooling ($h = 10^4$ W m$^{-2}$ K$^{-1}$), 4 mm x 1 mm domain, $a = 5$ µm) and (b) Effect of growth morphologies on Nb segregation during unidirectional solidification of IN718 alloy. CI is the color index [29].
Figure 4-16. Simulated equiaxed solidification of Al-4wt%Cu alloy. Grid size is 0.2 µm and the initial melt temperature is 648 °C [32].
Figure 5-10. (a) Calculated local liquid thermal gradients (K mm$^{-1}$); (b) Calculated liquidus isochrones (sec); and (c) Simulated solidification macrostructure for a gravity level of 1 g for Pb-10 wt.% Sn alloy: solid and dotted lines are for 1 g and 0.01 g, respectively [43, 44].

Reprinted from [44] with permission from Taylor & Francis.
Figure 5-11. Simulated fluid flow and macrosegregation patterns in ESR alloy 718 ingots with $C_0 = 5.34$ wt.% Nb and ingot diameter = 432 mm [31].
Figure 6-3. Calculated cooling curves (a), temperature-solid fraction relationship (b), Nb liquid concentration evolution as a function of solid fraction (c), and solid fraction evolution as a function of time (d), during solidification of an IN718 alloy [2].
CHAPTER 7

Figure 7-1. Probabilistic modeling of ESR processed alloy 718 ingots: (a) temperature and pool profiles; (b) grain-growth pattern and grain size; and (c) experimental structure [7].
Figure 8-1. Comparison between experimental [1] and simulated grain structures in a square mold (65mm x 65 mm) cast from stainless steel: (a) equiaxed grains (very low melt superheat, $\Delta T = 36$ K), (b) columnar and equiaxed grains as well as CET (low melt superheat,
Figure 8-9: Experimental and simulated GWT in a gray cast iron step casting: (a) geometry (dimensions in mm) and map of experimental GWT (initial Si content is 1.78 wt.%c) on the step casting; (b) initial Si content is 1.78 wt.% (without Si macrosegregation); (c) initial Si content is 2.5 wt.% (with Si macrosegregation); (d) Si macrosegregation map for an initial concentration of 2.5 wt.% Si. In Fig. 8-9d, colors change from dark blue (showing minimum concentration of 2.3 wt.% Si) to red (showing initial concentration of 2.5 wt.% Si) to white (showing maximum concentration of 2.7 wt.% Si).
Figure 8-10: Experiments on GWT [7]: (a) The effect of Si on GWT in gray cast iron (table shows the size of white, mottled, and gray zones, in mm); (b) and (c) Micrographs taken 10 mm from the chill area for 1.8 % Si showing also the area in Fig. 8-10d; and (d) Maps of Si, Fe, and C distribution across a secondary dendrite arm (20 µm x 20 µm).
Figure 8-11. Simulated evolution of equiaxed dendritic growth and microsegregation patterns in solidifying Al-Si alloys [9]. Colors in the legend show the nondimensional Si concentration.

Figure 8-12. Experimental (a) and simulated (b) microstructures in 1-inch investment-cast plate D357 alloy. CI is the color index [9].
Figure 8-13. Experimental (a) and simulated (b) microstructures in 1-inch sand-cast plate D357 alloy. CI is the color index [9].

Figure 8-14. Experimental (a) and simulated (b) microstructures in 0.080-inch sand-cast plate D357 alloy [9].
Figure 8-15. Simulated solidification structures of thin wall (1 mm x 2 mm) RS5 castings: (a) $G_E = 5 \times 10^6$ nuclei/m2; (b) $G_E = 1 \times 10^7$ nuclei/m2; (c) $G_E = 2 \times 10^7$ nuclei/m2; (d) $G_E = 5 \times 10^8$ nuclei/m2. The colors in the legend show the dendrite crystallographic orientation [10].

Figure 8-16. Evolution of Nb concentration in a thin wall (1 mm x 2 mm) RS5 casting ($G_E = 5 \times 10^6$ nuclei/m2). Colors in the legend show the nondimensional Nb concentration [10].

Figure 8-17. STL geometry of a bar casting: (a) initial design; (b) final design [10].
Figure 8-18. Comparison of computed local solidification time maps in an IN718 bar casting (a) without withdrawal and (b) with a withdrawal rate of 1.4×10^{-4} m/s. The legends show the local solidification time, which varies for (a) from 0 to 525 sec and for (b) from 0 to 1200 sec [10].

Figure 8-19. Comparison of computed local solidification velocity maps in an IN718 bar casting (a) without withdrawal and (b) with withdrawal (withdrawal rate of 1.4×10^{-4} m/s). Legends show the values of solidification velocities that vary from 0 to 0.15 m/s [10].
Figure 8-29. Simulated solidification microstructure of A356 / 7 µm diameter SiC (initial particle concentration is 4.8 vol. % SiC) centrifugally-cast MMCs (centrifugal force of 100 g) [13]. Experiments from [16, 30].

Reprinted from [13] with permission from TMS.
Figure 9-3. Simulated ingot structures: a) Case A in Table 3-1; b) Case B in Table 9-2; c) Case C in Table 9-2; d) Case E in Table 9-2 [34].
Figure 9-4. Simulated grain structures of VAR ingots processed at 172 kg/hr ($D = 508$ mm, Case A in Table 9-2) [34].

Figure 9-5. Experimental validation of VAR model without hot topping (Case A in Table 9-2) [34]: a) simulated top ingot structure before stopping the power input; b) simulated top ingot structure after stopping the power input and on complete solidification; c) experimental structure [42].

Figure 9-6. Experimental validation of VAR model without hot topping (Case B in Table 9-2) [34]: a) simulated top ingot structure before stopping the power input; b) simulated top ingot structure after stopping the power input and on complete solidification; c) experimental structure [42].
Figure 9-7. Simulated structures of ESR ingots: a) Case C in Table 9-2, $H = R$; b) Case C in Table 9-2, $H = 3R$; c) Case C in Table 9-2, $H = 6R$; d) Case D in Table 9-2, $H = 6R$ [34].
Figure 9-8. Comparison between calculated and experimental ESR ingot structures [34]: (a), (b), and (c) are for Case C in Table 9-2; (d), (e), and (f) are for Case D in Table 9-2; (g) and (h) are for steady-state regime of Case C in Table 9-2. The macrostructures of ESR ingots were scanned from [42].
Figure 9-9. Experimental validation of ESR structure model for the entire ingot ($D = 0.432$ m, $H = 2.1$ m, 16 million µVEs, CPU-time = 10 hours) [34]. The experimental macrostructure is from [42].

Figure 9-10. Influence of fluid flow on the ESR IN718 ingot structure [48]: (a) experimental macrograph; (b) without fluid flow; (c) with fluid flow.
Figure 9-11. Comparison of simulated and experimental PAM ingot for high melting rate (550 kg/hr) ((a) to (d)) and low melting rate (365 kg/hr) ((e) to (h)): (a) and (e) experiment; (b) and (f) simulation (equiaxed grains); (c) and (g) simulation (columnar grains); (d) and (h) simulation (CET) [40].
Figure 9-15. Simulated structures of 17-inch diameter Ti-17 PAM ingots (H = 0.864 m): a) Case E in Table 9-2; b) Case F in Table 9-2 [34].

Figure 9-16. A procedure for the optimization of the VAR process - IN718 alloy (Case A in Table 9-2): a) a schematic diagram showing the optimum variation of melting rate versus time; b) simulated VAR ingot structure solidified without hot topping; c) simulated VAR ingot structure solidified with optimized hot topping [34].
Figure 9-17. Equiaxed nucleation rate effects on the columnar grain size of VAR-processed alloy 718 ingots: (a) low equiaxed nucleation rate; (b) high equiaxed nucleation rate [61].
Figure 9-24. Comparison of the simulated PDAS and SDAS values for Ti-17 PAM ingots for two melt rates (where \(y \) is the ingot height in [m], \(x \) is the ingot radius in [m], and the values of PDAS and SDAS shown in the legends are in [µm]): a) SDAS-800 lbs/hr; b) SDAS-1200 lbs/hr; c) PDAS-800 lbs/hr; (d) PDAS-1200 lbs/hr [40, 58].

Figure 9-26. Predicted primary (a) and secondary (b) arm spacings in VAR IN718 ingots (172 kg/hr, \(D = 508\) mm) [62].

Figure 9-34. Simulated results showing the distribution of NbC and Laves phases in a VAR processed alloy 718 ingot.
Figure 9-38. Micrographs showing the Nb microsegregation and Laves phases in ESR processed alloy 718 ingots (368 kg/hr, $D = 432$ mm, $C_{\text{Nb}} = 5.34$ wt.% Nb, average SDAS is $100 \, \mu m$, $D_S = 1 \times 10^{-18} \, m^2 \, s^{-1}$): (a) experimental [49]; (b) calculated Nb microsegregation; and (c) calculated globular Laves phases distribution [48, 61, 62].

Figure 9-39. Influence of the solid mass diffusivity on Nb microsegregation and Laves phase formation in as-cast-alloy 718: a) $D_S = 1 \times 10^{-18} \, m^2 \, s^{-1}$; b) $D_S = 1 \times 10^{-12} \, m^2 \, s^{-1}$ [61, 62].
Figure A9-1. Effects of melt rate and mesh size on columnar macrostructure in a Ti-17 ingot:
(a) high melt rate, mesh 5x5; (b) high melt rate, mesh 10x10; (c) high melt rate, mesh 20x20;
(d) base melt rate, mesh 5x5; (e) base melt rate, mesh 10x10; (f) base melt rate, mesh 20x20.
Figure A9-2. Effects of melt rate and mesh size on equiaxed macrostructure in a Ti-17 ingot: (a) high melt rate, mesh 5x5; (b) high melt rate, mesh 10x10; (c) high melt rate, mesh 20x20; (d) base melt rate, mesh 5x5; (e) base melt rate, mesh 10x10; (f) base melt rate, mesh 20x20.
Figure A9-6. Effects of melt rate, time step, and mesh size on columnar macrostructure in a Ti-17 ingot: (a) high melt rate, $\delta t = 10$ s, mesh 10x10; (b) high melt rate, $\delta t = 1$ s, mesh 10x10; (c) base melt rate, $\delta t = 10$ s, mesh 10x10; (d) base melt rate $\delta t = 1$ s, mesh 10x10; (e) high melt rate, $\delta t = 10$ s, mesh 20x20; (f) high melt rate, $\delta t = 1$ s, mesh 20x20.
Figure A9-7. Effects of melt rate, time step, and mesh size on equiaxed macrostructure in a Ti-17 ingot (mesh size 10x10): (a) high melt rate, $\delta t = 10$ s; (b) high melt rate, $\delta t = 1$ s; (c) base melt rate, $\delta t = 10$ s; (d) base melt rate $\delta t = 1$ s.
Figure A-9. Effects of impingement factor (imp) and melt rate on columnar macrostructure in a Ti-17 ingot (mesh size 10x10): (a) high melt rate, imp = 0.5; (b) high melt rate, imp = 1.0; (c) high melt rate, imp = 1.5; (d) base melt rate, imp = 0.5; (e) base melt rate, imp = 1.0; (f) base melt rate, imp = 1.5.
Figure A9-10. Effects of impingement factor (imp) and melt rate on equiaxed macrostructure in a Ti-17 ingot (mesh size 10x10): (a) high melt rate, $imp = 0.5$; (b) high melt rate, $imp = 1.0$; (c) high melt rate, $imp = 3.0$; (d) base melt rate, $imp = 0.5$; (e) base melt rate, $imp = 1.0$; (f) base melt rate, $imp = 3.0$.
Figure A9-14. Effects of nucleation and melt rate on equiaxed macrostructure in a Ti-17 ingot (mesh size 10x10, $C_2 = 0.0$ in Eq. (2-7)): (a) high melt rate, $C_0 = 10^4$, $C_1 = 10^4$; (b) high melt rate, $C_0 = 10^4$, $C_1 = 10^5$; (c) high melt rate, $C_0 = 10^4$, $C_1 = 10^6$; (d) base melt rate, $C_0 = 10^4$, $C_1 = 10^4$; (e) base melt rate, $C_0 = 10^4$, $C_1 = 10^5$; (f) base melt rate, $C_0 = 10^4$, $C_1 = 10^6$.
Figure A9-18. Effects of growth parameter \(m \) on columnar macrostructure in a Ti-17 ingot (high melt rate, mesh size 10x10, \(n = 0.10 \)): (a) \(m = 0.01 \); (b) \(m = 0.05 \); (c) \(m = 0.10 \); (d) \(m = 0.25 \); (e) \(m = 0.50 \); (f) linear model.
Figure A9-19. Effects of growth parameter (n) on columnar macrostructure in a Ti-17 ingot (high melt rate, mesh size 10x10, m = 0.10): (a) n = 0.01; (b) n = 0.05; (c) n = 0.10; (d) n = 0.25; (e) n = 0.50; (f) linear model.
Figure A9-20. Time-step effects on the formation of columnar macrostructure in a Ti-17 ingot (high melt rate, mesh size 10x10, \(m = 0.10, n = 0.10 \)): (a) \(\delta t = 10 \) s; (b) \(\delta t = 1 \) s; (c) linear model.
Figure A9-21. Effects of growth parameter \(m\) on the formation of columnar macrostructure in a Ti-17 ingot (high melt rate, mesh size 10x10, \(n = 0.5\)): (a) \(m = 0.1\); (b) \(m = 0.2\); (c) \(m = 0.3\); (d) \(m = 0.4\); (e) \(m = 0.5\); (f) linear model.
Figure A9-22. Effects of growth parameter \((m) \) on the formation of columnar macrostructure in a Ti-17 ingot (base melt rate, mesh size 10x10, \(n = 0.5 \)): (a) \(m = 0.1 \); (b) \(m = 0.2 \); (c) \(m = 0.3 \); (d) \(m = 0.4 \); (e) \(m = 0.5 \); (f) linear model.
Figure A9-23. Effects of thermal gradient (G_m) and melt rate on CET in Ti-17 PAM ingots (mesh size 10x10): (a) high melt rate, $G_m = 2000$ K/m; (b) high melt rate, $G_m = 2500$ K/m; (c) base melt rate, $G_m = 2000$ K/m; (c) base melt rate, $G_m = 2500$ K/m.
Figure A9-26. Effects of columnar nucleation and melt rate on CET in Ti-17 PAM ingots (mesh size 10x10, $C_1 = 0.0$ and $C_2 = 0.0$ (see Eq. (9-7)): (a) high melt rate, $C_0 = 1$; (b) high melt rate, $C_0 = 100$; (c) high melt rate, $C_0 = 100$, linear model; (d) base melt rate, $C_0 = 1$; (e) base melt rate, $C_0 = 100$; (f) base melt rate, $C_0 = 100$, linear model.
Figure A9-29. Effects of equiaxed nucleation and melt rate on CET in Ti-17 PAM ingots (mesh size 10x10, $C_0 = 10^4$ and $C_2 = 0.0$ in Eq. (9-7)): (a) high melt rate, $C_1 = 10^4$; (b) high melt rate, $C_1 = 10^5$; (c) high melt rate, $C_1 = 10^6$; (d) base melt rate, $C_1 = 10^4$; (e) base melt rate, $C_1 = 10^5$; (f) base melt rate, $C_1 = 10^6$.
Figure A9-32. Effects of time step and melt rate on CET in Ti-17 PAM ingots (mesh size 10x10): (a) high melt rate, $\delta t = 20$ s; (b) high melt rate, $\delta t = 10$ s; (c) base melt rate, $\delta t = 1$ s; (d) base melt rate, $\delta t = 10$ s.
Figure A9-35. Comparison of experimental and simulated results for Ti-17 PAM ingot solidification structure: (a) and (b) high melt rate case; (c) and (d) base melt rate case.
Figure 10-1. Schematic representation of (a) the ingot casting process with imposed EMS from the induction coils and (b) stirring coil setup for the ingot mold [11].
Figure 10-2. Simulation results for the 5-in diameter PAM-processed Ti-6-4 alloy ingot [11]: (a) Mesh and temperature profile for the ingot top; (b) Comparison of pool and temperature profiles with and without EMS.
Figure 10-3. Electric field profile (a) and Joule heating rate and Lorentz force profiles (b) for a 5-in diameter PAM Ti-6-4 alloy ingot with EMS [11].
Figure 10-4. 2-D velocity contours and velocity vectors for the 5-in diameter PAM Ti-6-4 alloy ingot: (a) without EMS and (b) with EMS [11].
Figure 10-5. Simulation results for an 8-in diameter PAM-processed Ti-6-4 alloy ingot [12]:
(a) Pool and temperature profiles; (b) Velocity contours.
Figure 10-6. Experimental without EMS (a) simulated without EMS (b) and simulated with EMS (c) macrostructures for a 5-in diameter PAM-processed Ti-6-4 ingot [11].
Figure 10-9. Mesoscale modeling of microstructure with and without powder addition.