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Summary In this contribution a constitutive model based on the macromechanical Theory of Porous Media (TPM) for a saturated
thermo elastic porous body has been developed. The body under investigation consists of an organic and inorganic moisturized phases
and a gas phase. Based on a consistent thermomechanical treatment the governing equations and constitutive equations will be given.
Thus, we obtain a mathematical concept describing the motion of the solid phase, the pressure of the gas phase, the temperature
of the mixture and the biodegradation of organic material into a gas mixture of methane and carbon dioxide produced by bacterial
decomposition during stable methane fermentation (biogas).

INTRODUCTION

The Earth’s average surface temperature rose by around 0.6◦C during the 20th century. It seems to be evidence that
most of the global warming is caused by emissions of carbon dioxide (CO2), methane (CH4) and other greenhouse effect
gases. Landfilling belongs to an important global sources of greenhouse gases. In this case, the time scale belongs
to hundreds of years. Therefore, development of a numerical model describing the effect of solid phase composition
(consisting of organic and inorganic materials) and the pore structure of the landfill body on the conversion phenomena
and multi-component gas transport is of great importance. This has been done based on the well established Theory of
Porous Media for which basic relations will be summarized in the following section.

MODELING

The Theory of Porous Media is the mixture theory restricted by the concept of volume fractions. Hereby, we consider a
continuum which consists of several constituents. As aforementioned, the investigated porous body consists ofϕS (solid),
ϕO (organic) andϕG (gas). A porous medium occupying the control space of the porous solidBS, with the boundary
∂BS, consists of constituentsϕα (α = S, O, G) with real volumesvα. The boundary∂BS is a material surface for the
solid phase and a non-material surface for the liquid and gas phases. The volume fractionsnα(x, t) = dvα/dv refer
the volume elements dvα of each individual constituentsϕα to the bulk volume elementdv. The main statement of the
volume fraction concept can be founded by the saturation condition

∑SOG
α nα(x, t) =

∑SOG
α ρα/ραR = 1, see [1],

whereinx is the position vector of the spatial pointx in the actual placement and t is the time. Moreover, the partial
density of the constituentϕα, namelyρα, is related to the real density of the materialsραR involved via the volume
fractionsnα. The concept of volume fractions is an important part of the theory following in the next sections. Due to the
volume fraction concept, all geometric and physical quantities, such as motion, deformation and stress, are defined in the
total control space. Thus, they can be interpreted as the statistical average values of the real quantities.

Field equations
The local statements of the balance equations of mass and of of momentum are given for the constituentsϕα by

(ρα)′α + ρα div x′α = ρ̂α, div Tα + ρα(b− x′′α) + p̂α − ρ̂α x′α = 0 . (1)

In (1), “div” denotes the divergence operator,ρ̂α represents the mass supply between the phases which has to conform
to ρ̂S + ρ̂O + ρ̂G = 0 , Tα is the partialCAUCHY stress tensor,ρα b specifies the volume force and̂pα describes the
interactions of the constituentsϕα which are restricted tôpS + p̂O + p̂G = 0 . Additionally, the balance of energy
concerning the whole mixture body must be taken into account:

∑S,O,G
α ( ρα [(ψα)′α + (θα)′α ηα + θα (ηα)′α︸ ︷︷ ︸

(εα)′α

]−Tα ·Dα − ρα rα ) =

=
∑S,O,G

α (− div qα + êα − p̂α x′α−ρ̂α(ψα + θα ηα

︸ ︷︷ ︸
εα

−1
2

x′α · x′α) ).
(2)

Herein,(ψα)′α and(εα)′α represent the material time derivation of the freeHELMHOLTZ energyψα and of the internal
energyεα, respectively,θα is the temperature,ηα specifies the specific entropy,Dα is the symmetric part of the spacial
velocity gradient,rα denotes the local external heat supply andqα is the heat influx vector. The local energy supply term
êα must satisfy the constrain condition̂eS + êO + êG = 0. At least, in order to close the set of equation, the saturation
condition has to be taken into consideration.

Assumptions
The system is investigated under the condition of a compressible gas phase but an incompressible solid and organic phase
and we imbibe that the immobile phases have the same motion:(ρSR)′S = 0, (ρOR)′S = 0, x′S = x′O. The liquid is
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assumed to be an integral part of organic and solid phase. Moreover, we assume the solid to be not involved in the mass
transition: ρ̂S = 0. In addition, the organic phase is neglected in respect to the interaction forces:p̂O = 0. In order to
keep the numerical complexity in a manageable scope, we have made restrictions for all phases of small deformations,
excluding accelerations and a unique temperature of all phases at the same place:x′′α = 0, θS = θO = θG = θ.

Constitutive equations
From the evaluation of the entropy inequality of the the liquid and/or gas saturated porous body considering saturation
condition as a constraint, see [1], we obtain the constitutive relations forTβ (β = S, O) and the mobile phaseTG:

Tβ = − nβ pGR I + 2 ρβ FS
∂ψβ

∂CS
FT

S , TG = − nG pGR I , (3)

with the realistic gas pressurepGR, the tensor of identityI, the deformation gradientFS and the right Cauchy-Green
tensorsCS according to the solid. For the compressible gas phase,pGR is related to the real densityρGR with the
nonlinear expression:pGR = cG

p ln(ρGR
0 /ρGR) whereincG

p = ρGR
0 θ RG denotes a parameter concerning the reference

densityρGR
0 and the specific gas constant RG. From the evolution of the entropy inequality, see [2], we gain restrictions

concerning the interaction forcêpG and the heat fluxqSOG with qSOG =
∑S,O,G

α qα:

p̂G = pGR grad nG + θ αG
wGS

grad θ − θ SG wGS, qSOG = − αθ (θ)2 grad θ − αG
wGS

(θ)2 wGS. (4)

Herein, “grad” denotes the gradient operator,αG
wGS

represents a value concerning the dependency between the heat flux
and interaction forces andαθ is the heat conductivity. Moisture content is an important influencing factor concerning heat
conductivity. Moreover,SG describes the interaction between the gas phase and the remaining constituents in connection
with the seepage velocitywGS with wGS = x′G−x′S. The material parameter functionSG is postulated in dependence of
the volume fractionnL, see [3]. The Ansätze concerning to the free Helmholz energy functionsψα have been taken over
by [2]. However, an intensive investigation onψα has to be exerted. The mass supply reads

ρ̂O = − δO
ψOG

1
θ
(ΨO −ΨG) = − δO

ψOG KB (
θ − θ0S

θ0S
) ρO, (5)

whereinδO
ψOG defines a positiv constant for the chemical potential functionsΨO andΨG , see [2],KB denotes a parameter

associated with active biomass andθ0S is the reference temperature. The organic mass supply expresses the changes in
organic phase due to bacterial activity, by which degradable organic matter is degraded. The more organic waste presents
in a landfill, the more landfill gas is produced by the bacteria during decomposition. Organic mass supply depends on
substrate concentration, expressed as density of organic matter, active biomass and temperature.

Numerical Treatment
Within the framework of a standardGALERKIN procedure, weak formulations are formed. Under consideration of
the assumptions as well as the constitutive equations we receive the set< of unknown quantities< = <(x, t) =
{uS,wGS, nS,nO,nG, pGR, θ} whereinuS denotes the displacement of the solid phase. In order to develop an effec-
tive calculation concept, we insert the saturation condition, the integral statement of the balance of mass concerning
the solid phase:nS = nS

0S det F−1
S = nS

0S J−1
S , into the set of equations. ThereinnS

0S denotes the reference volume
fraction of the solid phase. Moreover, the seepage velocity concerning the gas phaseswGS will be calculated using the
balance of momentum in theDARCY formulation, see [3]. Finally, the set of unknown quantities< can be reduced to
< = <(x, t) = {uS,nO, pGR, θ}.

CONCLUSION

A closed calculation concept for the simulation of thermal mass transition in porous media has been developed. An
essential contribution is given by implementation of the thermal mass transfer on the basis of an thermodynamical and
physical motivated investigation. To this subject, there have been many empirical approaches published but only a limited
number of continuum mechanical treatments are known. The presented contribution in the framework of a “smeared”
continua has led to reasonable field equations, and in particular, to proper constitutive equations for the stresses, interaction
volume forces, heat flux and mass supply. Nevertheless, further investigations are necessary to fit the presented calculation
concept in respect of landfill bodies.
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