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ATTRACTOR AND PATTERN CONTROL IN NONLINEAR MEDIA BY LOCALIZED DEFECTS
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Summary We consider pattern and attractor control in nonlinear dissipative systems. We develop an analytic approach to attractor
control for neural, genetic networks systems of coupled oscillators and spatially extended systems. In particular, we apply this method
for some systems of Ginzburg-Landau’s type and others.

1. Introduction. In the last decade, a great attention has been given to chaos existence [1,18], pattern formation and
control. Complicated patterns and large time behaviour can be observed in mechanics, chemistry, biology, physics (liquid
crystals, magnetic thin films, Langmuir monolayers, polymers [2, 3]).
We propose new methods for pattern control in continuous and discrete nonlinear dissipative media. We first describe an
analytic theory of the attractor and pattern control for the Hopfield neural networks. Basing on it, we then obtain algo-
rithms of pattern and attractor control for many mechanical, physical and biological systems. In particular, we consider
systems of Ginzburg-Landau’s type, genetic networks, and some hydrodynamical models.
2. Attractor control for neural networks
Consider the Hopfield system ( a basic model for so-called attractor neural networks)

dqi

dt
= σ(

m∑

j=1

Kijqj − ηi)− cqi, (2.1)

wherem is the number of neurons, the matrixKij defines the interaction between neurons,c > 0 is a constant, andηi are
thresholds. The functionsqi(t) define neuron states. The main result is given by the following theorem [4,5]:
Theorem . Suppose a system ofn ordinary differential equations has a structurally stable invariant setA. Then, for
anyn, parametersm,K, η, c can be adjusted in such a way that system (2.1) will have an invariant setA′ topologically
equivalent toA. Dynamics of (2.1) restricted toA′ is orbitally topologically equivalent to the given dynamics onA. If A
is an attractor, thenA′ also is an attractor for (2.1).
This yields that any hyperbolic chaos (studied by works of S. Smale, D. Ruelle and R. Takens, D. V. Anosov et al., see
[1,18]) can appear in the Hopfield dynamics. In particular, there are possible a complicated time behaviour connected
with transverse homoclinic orbits. Structural stability means that, topologically, dymamics on invariant set persists under
smallC1 perturbations (hyperbolic sets possess this property).
Moreover, the neurons form complicated coherent patterns. There aren << m "leading" neurons (for instance,q1, ..., qn).
The dynamics of the remaining ones is completely captured by these leading neurons. Namely,qi =

∑n
j=1 Bijqj , where

i > n andB is some matrix. Similar results hold for networks with discrete time [6].
The proof is constructive and gives a method for the attractor control. It is based on multilayered and wavelet approxi-
mations. Notice that ifA is the global attractor of a prescribed system ofn differential equations, the paramaters in (2.1)
can be found in such a way thatA′ will the global attractor of (2.1) as well. In a sense, we can "prescribe" dynamics (2.1)
(locally, or globally).
If we remove the condition of structural stability, we can control families of trajectories of eq. (2.1) on large (but bounded)
time intervals[0, T ], whereT can be chosen arbitrarily. In this case the parameters in (2.1) depend onT andm →∞ as
T∞.
3. Attractor and pattern control for spatially extended systems.
These results are also useful in finding of other coupled oscillator and spatially extended systems with complicated large
time behaviour.
We show that Theorem can be extended to a large class of coupled oscillator systems. We demonstrate that eq. (2.1) can
serve as a normal form describing small oscillations at fixed points for many such systems.
It allows us to find an analytical approach on dynamics control for a number of important systems (however, it is necessary
to note, that in contrast to (2.1), in general we cannot control the global attractor completely, i.e., we can control only
small oscillations at some equilibrium states).
Consider now systems of partial differential equations describing nonlinear dissipative continuous media. Basic ideas are
as follows. For such systems a complex behaviour is often generated by interface motion (for reaction-diffusion models) or
vortex movement (for hydrodynamical models). We apply the following approach: motion of localized modes (interfaces,
vortices etc.) can be effectively controlled by well localized inhomogeneities. The localized modes approach the space
defects (pinning effect) and interact with other modes through these defects. This interaction is nonlocal (similarly to
(2.1)) and can be described by coupled oscillator systems admitting chaotic behaviour. In this approach, the important
mathematical tool is so-called method of realization of vector fields [17].
We have found many important systems, where complicated patterns or chaotic attractors exist and where these attractors
and patterns are controllable by system parameters.
The first important example is given by genetic networks. These systems are intensively studied [12-16]. We have
considered the model proposed by [16] since this model is similar to the Hopfield equations (2.1).
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It can be shown analytically that this model are capable to generate any spatio-temporal patterns [9, 10]. Moreover, there
is an numerically effective algorithm allowing us to adjust a gene interaction producing a given pattern. So, genes are
capable to produce any time sequences of any space structures.
Another example is two dimensional system of Ginzburg-Landau’s type [5,7,8]:

ut = ε2u− u3 + a(x, y)u + b(x, y)v, (3.1)

vt = ∆v − c2v + g(x, y)u. (3.2)

We consider this system in a two-dimensional rectangle under zero Neumann conditions. Here control parameters are
small inhomogeneitiesa, b andg andε. For this problem our approach essentially uses ideas of [2,3]. The coefficients
a, b andg can be found as sums of well localized peaks. The pattern is formed by a number of interfaces (kinks) parallel
to y with coordinatesqi(t), i = 1, ..., m depending on time. This solution describes multilayered patterns (which is well
studied for the casea, b, g = const [2,3]).
For interface coordinates one obtains a system of differential equations, which is a small perturbation of (2.1) for small
ε and appropriate functionsa, b andg. The matrixK and coefficientsηi depend ona, b andg. Changing these inhomo-
geneities we can obtain any parametersK, η. It allows us to show that there is possible a complicated large time behaviour
[5] (but, for each time moment, the spatial structure is simple: it is always a multilayered pattern).
We have considered three component generalizations of system (3.1), (3.2) [8]. Numerical and asymptotical calculations
show existence of more complicated space patterns.
Recently we have extended this method to vortex motion in two-dimensional hydrodynamical systems. We have found
a linear feedback boundary control for two-dimensional vortex motion. These boundary control uses a permeable wall
following ideas [11].
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