
XXI ICTAM, 15–21 August 2004, Warsaw, Poland

TRANSIENT DYNAMIC CRACK ANALYSIS IN FGMS UNDER IMPACT LOADING
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Summary Transient elastodynamic analysis of a two-dimensional (2-D) in-plane crack in functionally graded materials (FGMs)
is performed by a time-domain boundary integral equation method (BIEM). An exponential law is applied to describe the material
gradients of the FGMs. The crack is subjected to an impact crack-face loading. Special attention is devoted to explore the effects of the
material gradients and the crack orientation on the dynamic stress intensity factors (DSIFs) and their overshoot over static values.

PROBLEM STATEMENT AND BOUNDARY INTEGRAL EQUATIONS

Transient elastodynamic crack analysis in FGMs is of particular interest to fracture mechanics and ultrasonic quantita-
tive non-destructive evaluation of FGMs, which received in last years more and more attention in material sciences and
engineering applications due to their superior thermal and mechanical properties. Due to the mathematical complexity
arising in such an analysis, most of the previous works on crack analysis in FGMs have been limited to very special crack
orientation and loading conditions. In this paper, we present a transient elastodynamic crack analysis in unidirectional or
bidirectional FGMs subjected to an impact crack-face loading.
We consider an infinite, isotropic, continuously non-homogeneous, and linear elastic solid containing a finite crack of
length 2a as shown in Fig. 1.

Figure 1. A finite crack in FGMs with (a) unidirectional gradation and (b) bidirectional gradation

The crack is subjected to an impact crack-face loading, and the deformation of the solid is in plane strain or plane stress.
In the absence of body forces, the cracked FGMs satisfy the equations of motion

σαβ,β = ρ(x)üα , (1)

the Hooke’s law
σαβ = µ(x)E0

αβδγuδ,γ , (2)

the initial conditions
uα(x, t) = u̇α(x, t) = 0 , for t = 0 , (3)

and the boundary conditions on the crack-faces

fα(x, t) = σαβ(x, t)nβ(x) = f∗
α(x, t) , x ∈ Γc . (4)

In Eqs. (1)-(4), ρ(x) is the mass density, µ(x) is the shear modulus, Γc = Γ+
c + Γ−

c are the crack-faces, nβ is the unit
normal vector, f∗

α(x, t) is a pre-scribed crack-face loading, and

E0
αβδγ =

3 − κ

κ − 1
δαβδδγ + δαδδβγ + δαγδβδ . (5)

Here, κ = 3 − 4ν for plane strain, κ = (3 − ν)/(1 + ν) for plane stress, ν is Poisson’s ratio which is assumed to be
constant in this analysis, and δαβ is the Dirac-delta. The spatial variations of the shear modulus and the mass density are
described by the following exponential laws

µ(x) = µ0e
αx1+βx2 ; ρ(x) = ρ0e

αx1+βx2 , (6)
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where α and β are gradient parameters of the FGMs. The exponential law (6) enables us to describe crack problems in
both unidirectional and bidirectional FGMs as shown in Fig. 1.
The initial-boundary value problem governed by Eqs. (1)-(4) can be formulated as a set of time-domain traction BIEs as

nβ(x)
∫

Γ+
c

TG
γαβ(x,y; t, τ) ∗ ∆uγ(y, τ)ds = f∗

α(x, t) , x ∈ Γ+
c , (7)

where TG
γαβ are the time-dependent traction Green’s functions, ∆uα represent the unknown crack-opening-displacements

(CODs), and an asterisk denotes Riemann convolution. Note here that the time-domain traction BIEs (7) are hypersingular.
The hypersingular integral in (7) has to be understood in the sense of Hadamard finite-part integral.

NUMERICAL SOLUTION PROCEDURE

A time-stepping scheme is developed for solving the hypersingular time-domain BIEs (7). The scheme uses the convo-
lution quadrature formula of Lubich [1] for computing the temporal convolution integral and a Galerkin-method for the
spatial approximation of the unknown CODs. The unknown CODs are approximated by

∆uγ(y1, τ) =
√

a2 − y2
1

K∑
k=1

cγ;k(τ)Uk−1

(y1

a

)
, (8)

where K is the number of series, cγ;k(τ) are the unknown time-dependent expansion coefficients, and Uk−1(y1/a) are the
Chebyshev-polynomials of second kind. Substituting Eq. (8) into Eq. (7), multiplying both sides by

√
a2 − x2

1Ul−1(x1/a),
integrating them with respect to x1 from −a to +a, and applying the convolution quadrature formula of Lubich [1] lead
to a system of linear algebraic equations for the expansion coefficients

n−1∑
j=0

An−jdj = tn , n = 1, 2, ..., N , (9)

where dj = {cj
1, c

j
2}T and tn = {fn

1 , fn
2 }T , with cj

γ = {cj
γ;k} and fn

γ = {fn
γ;l}. Here, the time variable t is divided into

N equal time-steps ∆t and the upper indices stand for the time-steps. The system matrix and the right-hand side of Eq.
(9) can be obtained by using

An =
r−n

N

N−1∑
m=0

Â(pm)e−2πi·nm/N , (10)

fn
α;l = (−1)l+1

+a∫
−a

f∗
α(x1, n∆t)

√
a2 − x2

1Ul−1

(x1

a

)
dx1 . (11)

In Eq. (10), pm = δ(ζm)/∆t, δ(ζm) =
∑2

j=1(1 − ζm)j/j, ζm = re2πi·m/N , and rN =
√

ε with ε being the numer-

ical error arising in the computation of the Laplace-domain system matrix Â(pm). An essential feature of the present
time-domain method is that it uses the Laplace-domain instead of the time-domain Green’s functions, which are yet not
available in literature for FGMs. An explicit expression of the time-domain Green’s functions TG

γαβ is not required in

the present method. The Laplace-domain Green’s functions T̂G
γαβ are expressed as Fourier-integrals. The computation

of Eq. (10) can be performed very efficiently by using the Fast-Fourier-Transform (FFT). The system of linear algebraic
equations (9) can be solved time-step by time-step to obtain the expansion coefficients cj

γ;k. The DSIFs can be computed
immediately in a simple manner.

NUMERICAL RESULTS AND CONCLUSIONS

Numerical results obtained by the present time-domain BIEM show that the method is highly accurate, efficient and stable.
Several numerical examples will be presented, to analyze the effects of the material gradients and the crack orientation
with respect to the material gradation on the DSIFs and their dynamic overshoot over the corresponding static values.
To the authors knowledge, the results presented in this paper are completely new and they cannot be found elsewhere in
literature. The corresponding anti-plane crack problem has been investigated in [2], while a 2-D elastostatic crack analysis
in FGMs has been performed in [3] by the authors .
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