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Summary Direct numerical simulations of compressible channel flow have been performed at subsonic and supersonic Mach numbers with 
the aim to better understand effects of compressibility. The ability of outer and inner scalings to collapse profiles of turbulence stresses on 
to their incompressible counterparts is investigated. It turns out that such collapse is possible with outer scaling when sufficiently far from 
the wall, but not with inner scaling. Compressibility effects on the turbulent stresses, their anisotropy and their balance equations are 
identified. A reduction in the near-wall pressure-strain, is explained using a Green’s function-based analysis of the pressure field.  
 

INTRODUCTION 
 

Supersonic channel flow is a prototypical example of a high-speed internal flow that allows for a systematic study of 
compressibility effects in wall-bounded turbulence. Pioneering investigations of this flow have been made by Coleman 
et al. [1] and Huang et al. [2]. Coleman et al. [1] performed DNS of supersonic channel flow between cold isothermal 
walls with Mach numbers up to M = 3. They found that Morkovin’s hypothesis, “the flow dynamics follows an 
incompressible pattern”, holds for the most part, and that the Van-Driest log-law is valid. Huang et al. [2] observed that 
the turbulent stresses, ijRρ , scale with the wall shear stress, τw, and that semi-local scaling is useful. Lechner et al. [3], 
in their study of M = 1.5 channel flow, reported that the anisotropy of the Reynolds stresses was changed relative to the 
corresponding incompressible values, but they did not provide any explanation. Morinishi et al. [4] simulated 
supersonic channel flow at M = 1.5 with one wall isothermal and the other wall adiabatic, and found significant 
differences between the flows in the two halves of the channel. Based on this literature survey it appears that there are 
open issues regarding the behaviour of the turbulent stresses. The first objective of the current work is to evaluate the 
applicability of the incompressible fluctuating velocity scale (the friction velocity) and the inner and outer length scales 
to compressible flow where the density and viscosity are functions of position, and the second objective is to provide an 
explanation for the systematic change of the turbulent stresses with increasing Mach number. 
 

DETAILS OF DNS 
 
The compressible Navier-Stokes equations are numerically solved using a pressure-velocity-entropy formulation 
following the algorithm of Sesterhenn [5]. The mean pressure gradient that drives the channel flow is replaced by a 
uniform body force. Both channel walls are cooled and kept at a temperature of Tw = 500 K. Periodic boundary 
conditions are applied in stream- and spanwise directions. The compact 5th-order upwind scheme of Adams & Shariff 
[6] is used to discretize the Euler terms, the compact 6th-order scheme of Lele [7] for the molecular terms, and a 3rd-
order low-storage Runge-Kutta scheme for the time advancement.  
The numerical algorithm has been validated in [3] for a M = 1.5 case and excellent agreement with data of [1] has been 
found. In the present work the mean mass flow rate is systematically increased so that the Mach number M = uav / cw 
based on the Reynolds cross-sectionally averaged velocity and the sound speed at wall temperature takes values 
between 0.3 and 3.0. The bulk Reynolds number Re = ρm uav h / µw is based on the cross-sectionally averaged mean 
density. It increases with M. The friction Reynolds number Reτ = ρw uτ h / µw,  with  uτ = (τw / ρw )1/2 is a result of the 
simulation. Table 1 summarizes the flow parameters, computational box sizes and number of grid points used in the 
different compressible cases M0.3 to M3.0. Equidistant grids are taken in streamwise x1- and spanwise x3-directions. In 
the wall-normal x2-direction, points are clustered using tanh-functions [3]. The compressible flow results are compared 
with the incompressible data of Moser et al. [8] at various Reynolds numbers: Reτ = 180, 395, and 590, denoted by 
cases I1, I2, I3, respectively.  
 

              

Case M Re Reτ Lx1/h Lx2/h Lx3/h Nx1 Nx2 Nx3 ∆x1
+ ∆x2

+
min ∆x2

+
max ∆x3

+ 
              

M0.3 0.3 2820 181 9.6 2 6 192 129 160 9.12 1.02 4.21 6.84 
M1.5 1.5 3000 221 4π 2 4π/3 192 151 128 14.46 0.84 5.02 7.23 
M2.5 2.5 5000 455 2π 2 2π/3 256 201 128 11.16 1.17 7.46 7.44 
M3.0 3.0 6000 560 2π 2 2π/3 256 221 128 13.37 0.89 9.38 8.91 
 

TABLE 1. Flow and computational parameters 
 

The flow physics in compressible channel flow with isothermal cold walls is different from that in incompressible  
channel flow mainly because of the large change in fluid properties. The mean temperature increases in the core of the 
channel due to viscous heating and, since µ ~ T0.7, so does the mean viscosity. The mean density, being inversely 
proportional to the mean temperature, decreases from its wall value with increasing x2. 
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PRESSURE-STRAIN CORRELATION 
 
The pressure-strain correlation, Пij, plays a key role in changing the turbulent stresses and associated anisotropy. It is 
observed that the pressure-strain profiles for all incompressible and compressible cases collapse in the outer region, x2/h 
>0.35 when scaled with τw uav / h (outer scaling). In the inner region,  Пij is reduced in compressible channel flow as 
compared to the incompressible counterpart. In an attempt to explain the underlying mechanism, an equation for the 
pressure fluctuations is derived taking the divergence of the momentum equation, and using mass conservation. After 
some algebraic manipulation, the following equation results for channel flow: 
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In incompressible flow, the terms A1 to A2 describe effects by nonlinear fluctuations and mean shear, respectively. In 
compressible flow, the additional terms involve effects by viscosity (A3),mean density gradients (B1, B2) and by density 
fluctuations (C1, C2, C3). Neglecting the density fluctuations, eq. (1) can be interpreted as a Poisson equation for the 
pressure which accounts solely for mean density variations. In this case the rhs of (1) is replaced by f ′ρ  and a Green’s 
function analysis is performed. It turns out that the Green’s function G is the same as that given by Kim [9] for 
incompressible channel flow. An extra inhomogeneous  fluctuating term B’, however, appears in compressible flow due 
to nonzero wall-normal pressure gradient fluctuations. The pressure-strain correlation can finally be expressed in the 
form 
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Fig. 1 shows a comparison of the analytical solution, eq. (3), and the DNS data for cases M0.3 and M1.5.The overall 
agreement is very good, confirming our ansatz that a variable-density extension of the Poisson equation is sufficient for 
obtaining the pressure-strain term in wall-bounded flows. 
 

 

 

 
 

 

Figure 1. Left: Comparison of the DNS data with results using eq. (3) for the pressure-strain correlation. Right: Contribution of source terms, A1- A3, 
B1 to eq. (3) in the case of П11 are shown by lines for case M1.5. 

CONCLUSIONS 
 

Conventional outer scaling of the turbulent stresses with τw collapses all compressible and incompressible profiles for x2/h 
>0.35. Similarly, τw uav / h is the proper outer scale for the pressure-strain correlation, Пij. The significant difference of 
compressible and incompressible turbulent stresses in the near-wall region is linked to a reduction in the pressure-strain 
correlation. A variable-density ansatz, neglecting wave-propagation in the pressure equation, leads to a simplified 
Green’s function solution which identifies the reduction of ρ  with respect to its wall value as the primary reason for 
the observed decrease in Пij. 
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