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INTRODUCTION

The dynamics of surface gravity waves over bottom topography is one of the classical problems of fluid mechanics. It has
been thoroughly studied in various formulations, including linear/weakly-nonlinear monochromatic waves and shallow-
water solitons (see Mei 1983 and references therein). However, an important particular case has been overlooked, as
there seems to be virtually no results on shoaling of wave packets – which omission seems even stranger, if one recalls
the significance of this problem for oceanography. The only exception is the paper by Barnes & Peregrine (1995), who
showed that the behaviour of a shoaling packet is quite different to that of a monochromatic wave. It turned out that the
amplitude of the former is much lower than that of the latter, as the packet tends to spread out – and this effect is more
marked for slowly-varying topography. However, no quantitative results were obtained, which would link the parameters
of the packet to the bottom topography over which it travels.

The present paper addresses this omission.

SURFACE WAVES OVER SMOOTH TOPOGRAPHY

Consider surface gravity waves in a channel with an uneven bottom. We shall assume that both topography and waves are
one-dimensional, i.e. the depthH of the basin and the elevationη of the surface depend on a single horizontal coordinate,
x (η also depends on the timet). We shall further assume that all our variables are non-dimensionalized using the mean
depthH0 and the acceleration due to gravity,g.

In this paper, we are concerned with weakly nonlinear, quasi-monochromatic waves (packets), which can be charac-
terized by a frequencyω. If the bottom was flat,ω would correspond to a certain value of the wavenumberk, determined
by the dispersion relation of surface gravity waves,

ω2 = k tanh kH. (1)

If H depends onx (uneven bottom), (1) can still be used as a means of determiningk – which, however, will now
depend onx (i.e. the frequency of the wave is fixed, while its wavenumber changes as it propagates over topography, see
Djordjevic & Redecopp 1978). To justify the use of (1) for an uneven bottom,H(x) should be a slowly-changing function
of x, i.e. its spatial scale should be much larger than the wavelength2πk−1.

Under these assumptions, the packet can be represented by

η(x, t) = Re
{

A(x, t) exp
[
i

∫
k(x) dx− iωt

]}
,

whereA(x, t) is a slowly-varying function, governed by a modified nonlinear Schrödinger (MNS) equation (Djordjevic
& Redecopp 1978):
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In this equation,cg is the group velocity of surface gravity waves and
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) d (kH)
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.

Observe also that the MNS equation (2) is written in the form, where the spatial coordinatex is the “evolutionary” variable
(which role is usually played byt).

ASYMPTOTIC ANALYSIS

If the bottom is flat, the coefficients of (2) become constant and, provided thatαβ > 0, (2) admits an exact solution
describing steadily propagating envelop soliton,

A =
√

2α

β
λ sechλτ exp

(
ivτ

2α
+

4iλ2x

4 + v2

)
, (3)
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Figure 1. The evolution of wave packet over topography (5) (the curves are marked with the corresponding values of∆H). The
numerical solution of equation (2) is shown in solid line, the asymptotic solution (4) is shown in dotted line.

whereτ = t − (
c−1
g + v

)
x, andλ andv are arbitrary parameters. Observe that the amplitude of the wave packet is

proportional toλ, whereasλ−1 is the width of the packet. Finally,v characterizes the packet’s translation speed.
If the depth of the channel varies withx, but the horizontal scale of this variability is larger than the width of the

packet, we can still assume the solution of (2) to be close to (3), but the parameters of (3),λ andv, should depend now on
x. A straightforward asymptotic procedure results in the following “conservation law” forλ:

4αλ

β

(
tanh kH + kH sech2 kH

)
= const . (4)

EXAMPLES AND DISCUSSION

We shall illustrate the use of (4) by the following example. Let the depth of the channel be

H(x) = 1−∆H tanh [0.002 (x− 2000)] , (5)

which describes a step-like depth variation, of amplitude∆H and width(0.002)−1, located atx = 2000. The initial
values of the packet arek = 2, λ = 0.1 at x = 0. First, we shall consider a small depth variation,∆H = 0.2, and
calculate the evolution of the packet’s amplitude using formula (4) – see Fig. 1. Remarkably – unlike linear waves or
shallow-water solitons (see Mei 1983) – the amplitude of the shoaling packet decreases! This tendency was observed in
all examples considered.

We have also present the results for a stronger depth variation,∆H = 0.6 (see Fig. 1), with all other parameters being
the same as before. In this case, the asymptotic formula (4) predicts that, atx ≈ 2400, the packet’s amplitude vanishes
and its width becomes infinite – which essentially means that the packet disintegrates.

To understand why this occurs, note that, atkH = 1.363, the nonlinearity coefficientβ of the MNS equation vanishes.
Note also that, as follows from (4),λ must vanish together withβ. Hence, ifH(x) becomes sufficiently small,kH reaches
the critical value, and the amplitude of the packet vanishes. Beyond this point,αβ < 0 – and the packet may no longer
exist as a coherent solitary wave. Not dwelling on the details, we remark that a simple formula can be derived, relating the
critical depth to the frequency of the packet:Hcr ≈ 1.195 ω−2. Thus ifH(x) > Hcr, the packet passes over the depth
variation as a coherent solitary wave – and disintegrates otherwise.

To verify the above conclusions, the exact MNS equation (2) has been simulated numerically using the psedospectral
method. The results demonstrated that the agreement between the asymptotic and numerical solution is quite good (see
Fig. 1). Finally, note that, strictly speaking, the asymptotic equation (4) is not applicable near the critical point. We shall
not discuss this question in further detail, but refer the reader to the paper by Malomed & Shrira (1991).
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