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UNIQUENESS RESULTS FOR THE REFLECTION-TRANSMISSION PROBLEM

Angelo Morro
Unaversity of Genova, DIBE, Via Opera Pia 11a, 16145 Genova, Italy

Summary Reflection and transmission of mechanical waves are investigated for a viscoelastic layer sandwiched between
homogeneous elastic half-spaces. On the basis of appropriate boundary conditions for the layer, uniqueness is established
for C* solutions to the initial/boundary-value problem in the space-time domain.

INTRODUCTION

This paper investigates the reflection and transmission of waves, in the time domain, generated by a viscoelastic
(anisotropic) layer sandwiched between homogeneous elastic half-spaces. The problem is regarded as a initial /bound-
ary-value problem for the layer. At least on a interface, both the incident and the reflected/transmitted waves
occur simultaneously and hence we cannot pick part of the boundary where the solution is known. This explains
why ordinarily existence and/or uniqueness results are lacking in reflection-transmission problems.

The approach presented in this paper follows an energy method and is based on two main steps. First, the boundary
conditions for the layer are written in a form which accounts directly for the outgoing character of the (unknown)
reflected and transmitted waves. Second, an energy functional is considered for the viscoelastic layer which is a
potential for the traction. As a result, uniqueness is established for C? solutions in the space-time domain.

Notation and assumptions

Consider a layer of thickness L sandwiched between two half spaces. Let z be the Cartesian coordinate such that
z € (0,L) is the layer and z < 0 and z > L are the half spaces. Let u(x,t) on R* x R be the displacement. We
disregard body forces and write the equation of motion as

piu=V-T

where p is the mass density, T is the symmetric Cauchy stress tensor and d; denotes (partial) time differentiation.
To account for viscoelasticity we let T be given by the gradient of displacement, Vu, in the form

T(x,t) = Go(x)Vu(x,t) + [0 VG’(x,n)\_/u(x,t —n)dn

where the values of Gy and G’ are fourth-order tensors and G'(x,-) € L}(R*). We also assume that Vu(x,-),
du(x,-), du(x,-) € LY(R). Both G and G' are required to satisfy the minor and major symmetries. The
traction, at the planes z = constant, is denoted by 7 = Tez, ez being the unit vector of z. In the elastic half-spaces
z<0and z > L itis G' = 0. In the layer z € (0, L) both Gy and G are allowed to depend on x only through =z
(axial inhomogeneity). Thermodynamics requires that Gg be positive definite. We also assume that G’ is negative
semidefinite.

For isotropic solids the governing equations decouple [1]. The present approach for anisotropic solids leads again
to decoupled equations, in the elastic homogeneous half-spaces, by using the eigenvectors of the acoustic tensor.

EQUATIONS FOR ANISOTROPIC SOLIDS AND NORMAL INCIDENCE

Assume that p and Gy, G’ depend on x through z and u = u(z,1), which is the case if the incident wave is normal.
Hence the equation of motion becomes

pdiu = 0.[(Qo + Q'+)0.ul, z € (—00,0) U (0,L) U (L, oc0),

where * means convolution in R™ and Qo = e3Goes and likewise for Q'; in suffix notation @}, = Gj,,,. As the
half-spaces are elastic and homogeneous we can write Q' = 0 and Qg = constant as z € (—o0,0) U (L, o).
Letting a,,as, a3 be the eigenvectors of Qg we find that

3
u(z,t) = Z[u{(z, t) + ul(z,1)]a,, z € (—00,0) U (L, o0)
=

where the superscripts f and b are reminders for forward- and backward-propagating d’Alembert’s solutions [2].
Now, for any function h(z % ct) we have 8,h 9 h = +c(8.h)?. Hence for any component «/ and u’ we have

d.uf duf <0, dub oyl > 0.
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For definiteness we let the incident wave come from z < 0 and then the reflected and transmitted waves take the
general form

3 3
u(z,t) = Zu:ﬂ(z,t)ar, z <0, u’(z,t) = Zu;f(z,t)ar, z> L.
r=1 r=1
Hence, because 7 = Qud.u we find that the power T - J;u for the reflected and the transmitted waves satisfies the
inequalities
3 3
8. gu” = Z grO.ul dpul > 0, " 9" = Z gr0:ul dul <0
r=1 =1

where ¢1, g2, q3 are the positive eigenvalues of Qg, in the pertinent half-space.

Energy functional
Let u € C?((—o0,0) U (0, L) U (L,o0) x RT). For any point x of the layer, z € (0, L), and time t, consider the
functional

¥ (0, u(t), .u) = %ch(t} - Qu.B:u(t) — % [0 Co.ut — € — d.u(t)] - Qult — £) — Hou(t)de

the dependence on x being understood and not written. A direct calculation shows that ¥ is the potential for the
traction,

ov o )
Jou| = Qud.u(t) + /) Q' (6)d.u(t — £)de = T(t).

Consider the energy E(t) for the layer in the form

L1 .
) = —=ploa(t)|” + .u(t),d.u dz.
B() = [ {golom(o + w(0.u(0).0.u) }d

The assumption that (Q')’" be positive semidefinite, integrations by parts and use of the symmetry of Qu, Q' allow
us to find that the time derivative E is bounded by

E(t) < 7(L_,t) - 8u(L_,t) — 7(0,,1) - §u(0,, ).

UNIQUENESS FOR THE REFLECTION-TRANSMISSION PROBLEM

The reflection-transmission problem P consists in finding a function u(z,t) € C%((—00,0) U (0, L) U (L, 00) x RY)
such that u(z,t) = 0,z € R,t < 0 whereas u, 7 are continuous everywhere and the incident wave u' is known so
that u'(0_,%) = w(t), t > 0. Uniqueness is proved first for the layer z € (0, L) and next for the half-spaces z < 0,
z>L.

Theorem 1 (Layer) The restriction to z € (0, L) of the solution u to P is unique in C%((0, L) x R*).

Proof. Let u;,us be two solutions to P and 7,72 the associated tractions. The differences v = u; — uy and
o = T1 — T2 satisfy the equation .0 = pd?v as z € (0, L), t > 0, the initial condition v(z,0) = 0, z € [0, L] and
the inequalities - &y v > 0 as 2 =0, and o - 9yv < 0 as z = L_. The energy of the layer E(t) associated with v is
shown to satisty E(t) > 0, E(0) = 0, and E < 0. This implies the vanishing of E in R* and hence the vanishing of
v in [0, L] x R*. This in turn implies uniqueness. a

Because u is unique as z € [0, L] and u is continuous then u(0_,#) and u(L,,¢) are unique.

Theorem 2 (Half-spaces) For every finite T > 0 the solution u to P subject to u(0_,1) = v(t), u(L.,t) = {(t),
t <0 and u(z,0) = I(z), z € (—00,0] U [L,00), whereas u(z,t) has compact support as t < T, is unique in
C?((—00,0) U (L,00) x [0,T7]).

Proof. The difference v of two solutions has compact support and is subject to v(0_,¢) =0, v(L.,t) =0, ¢ > 0,
v(2,0) =0, z € (—00,0_) U (L;,00). Consider the energy of the half-space z < 0, E_(¢), associated with v. We
find that E_(t) = o(0_,t) - 8;v(0_,#) = 0. Because E_(t) > 0 and E_(0) = 0 it follows that E_(¢) = 0, ¢ € [0,T).
Hence we conclude that u is unique as z € (—oc, 0]. Likewise we establish uniqueness for z € [L, 00). O

Uniqueness is shown to hold also if the half-space z > L is replaced by a fixed boundary, u(L,t) = 0, or a free
boundary, 7(L,t) = 0.
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