UNIQUENESS RESULTS FOR THE REFLECTION-TRANSMISSION PROBLEM

Angelo Morro

University of Genova, DIBE, Via Opera Pia 11a, 16145 Genova, Italy

 $\underline{Summary}$ Reflection and transmission of mechanical waves are investigated for a viscoelastic layer sandwiched between homogeneous elastic half-spaces. On the basis of appropriate boundary conditions for the layer, uniqueness is established for C^2 solutions to the initial/boundary-value problem in the space-time domain.

INTRODUCTION

This paper investigates the reflection and transmission of waves, in the time domain, generated by a viscoelastic (anisotropic) layer sandwiched between homogeneous elastic half-spaces. The problem is regarded as a initial/bound-ary-value problem for the layer. At least on a interface, both the incident and the reflected/transmitted waves occur simultaneously and hence we cannot pick part of the boundary where the solution is known. This explains why ordinarily existence and/or uniqueness results are lacking in reflection-transmission problems.

The approach presented in this paper follows an energy method and is based on two main steps. First, the boundary conditions for the layer are written in a form which accounts directly for the outgoing character of the (unknown) reflected and transmitted waves. Second, an energy functional is considered for the viscoelastic layer which is a potential for the traction. As a result, uniqueness is established for C^2 solutions in the space-time domain.

Notation and assumptions

Consider a layer of thickness L sandwiched between two half spaces. Let z be the Cartesian coordinate such that $z \in (0, L)$ is the layer and z < 0 and z > L are the half spaces. Let $\mathbf{u}(\mathbf{x}, t)$ on $\mathbb{R}^3 \times \mathbb{R}$ be the displacement. We disregard body forces and write the equation of motion as

$$\rho \partial_t^2 \mathbf{u} = \nabla \cdot \mathbf{T}$$

where ρ is the mass density, **T** is the symmetric Cauchy stress tensor and ∂_t denotes (partial) time differentiation. To account for viscoelasticity we let **T** be given by the gradient of displacement, $\nabla \mathbf{u}$, in the form

$$\mathbf{T}(\mathbf{x},t) = \mathbf{G}_0(\mathbf{x})\nabla\mathbf{u}(\mathbf{x},t) + \int_0^\infty \mathbf{G}'(\mathbf{x},\eta)\nabla\mathbf{u}(\mathbf{x},t-\eta)d\eta$$

where the values of \mathbf{G}_0 and \mathbf{G}' are fourth-order tensors and $\mathbf{G}'(\mathbf{x},\cdot) \in L^1(\mathbb{R}^+)$. We also assume that $\nabla \mathbf{u}(\mathbf{x},\cdot)$, $\partial_t \mathbf{u}(\mathbf{x},\cdot)$, $\partial_t^2 \mathbf{u}(\mathbf{x},\cdot) \in L^1(\mathbb{R})$. Both \mathbf{G}_0 and \mathbf{G}' are required to satisfy the minor and major symmetries. The traction, at the planes z = constant, is denoted by $\tau = \mathbf{Te}_3$, \mathbf{e}_3 being the unit vector of z. In the elastic half-spaces z < 0 and z > L it is $\mathbf{G}' = 0$. In the layer $z \in (0, L)$ both \mathbf{G}_0 and \mathbf{G}' are allowed to depend on \mathbf{x} only through z (axial inhomogeneity). Thermodynamics requires that \mathbf{G}_0 be positive definite. We also assume that \mathbf{G}' is negative semidefinite.

For isotropic solids the governing equations decouple [1]. The present approach for anisotropic solids leads again to decoupled equations, in the elastic homogeneous half-spaces, by using the eigenvectors of the acoustic tensor.

EQUATIONS FOR ANISOTROPIC SOLIDS AND NORMAL INCIDENCE

Assume that ρ and \mathbf{G}_0 , \mathbf{G}' depend on \mathbf{x} through z and $\mathbf{u} = \mathbf{u}(z,t)$, which is the case if the incident wave is normal. Hence the equation of motion becomes

$$\rho \partial_t^2 \mathbf{u} = \partial_z [(\mathbf{Q}_0 + \mathbf{Q}' *) \partial_z \mathbf{u}], \qquad z \in (-\infty, 0) \cup (0, L) \cup (L, \infty),$$

where * means convolution in \mathbb{R}^+ and $\mathbf{Q}_0 = \mathbf{e}_3 \mathbf{G}_0 \mathbf{e}_3$ and likewise for \mathbf{Q}' ; in suffix notation $Q'_{ik} = G'_{i33k}$. As the half-spaces are elastic and homogeneous we can write $\mathbf{Q}' = 0$ and $\mathbf{Q}_0 = \text{constant}$ as $z \in (-\infty, 0) \cup (L, \infty)$. Letting $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$ be the eigenvectors of \mathbf{Q}_0 we find that

$$\mathbf{u}(z,t) = \sum_{r=1}^{3} [u_r^f(z,t) + u_r^b(z,t)] \mathbf{a}_r, \qquad z \in (-\infty,0) \cup (L,\infty)$$

where the superscripts f and b are reminders for forward- and backward-propagating d'Alembert's solutions [2]. Now, for any function $h(z \pm ct)$ we have $\partial_z h \partial_t h = \pm c(\partial_z h)^2$. Hence for any component u_r^f and u_r^b we have

$$\partial_z u_r^f \, \partial_t u_r^f \le 0, \qquad \partial_z u_r^b \, \partial_t u_r^b \ge 0.$$

For definiteness we let the incident wave come from z < 0 and then the reflected and transmitted waves take the general form

$$\mathbf{u}^{\scriptscriptstyle R}(z,t) = \sum_{r=1}^3 u^b_r(z,t) \mathbf{a}_r, \qquad z < 0, \qquad \mathbf{u}^{\scriptscriptstyle T}(z,t) = \sum_{r=1}^3 u^f_r(z,t) \mathbf{a}_r, \qquad z > L.$$

Hence, because $\tau = \mathbf{Q}_0 \partial_z \mathbf{u}$ we find that the power $\tau \cdot \partial_t \mathbf{u}$ for the reflected and the transmitted waves satisfies the inequalities

$$\boldsymbol{\tau}^{\scriptscriptstyle R} \cdot \partial_t \mathbf{u}^{\scriptscriptstyle R} = \sum_{r=1}^3 q_r \partial_z u^b_r \, \partial_t u^b_r \geq 0, \qquad \boldsymbol{\tau}^{\scriptscriptstyle T} \cdot \partial_t \mathbf{u}^{\scriptscriptstyle T} = \sum_{r=1}^3 q_r \partial_z u^f_r \, \partial_t u^f_r \leq 0$$

where q_1, q_2, q_3 are the positive eigenvalues of \mathbf{Q}_0 , in the pertinent half-space.

Energy functional

Let $\mathbf{u} \in C^2((-\infty,0) \cup (0,L) \cup (L,\infty) \times \mathbb{R}^+)$. For any point \mathbf{x} of the layer, $z \in (0,L)$, and time t, consider the functional

$$\Psi(\partial_z \mathbf{u}(t), \partial_z \mathbf{u}^t) = \frac{1}{2} \partial_z \mathbf{u}(t) \cdot \mathbf{Q}_{\infty} \partial_z \mathbf{u}(t) - \frac{1}{2} \int_0^{\infty} [\partial_z \mathbf{u}(t-\xi) - \partial_z \mathbf{u}(t)] \cdot \mathbf{Q}' [\partial_z \mathbf{u}(t-\xi) - \partial_z \mathbf{u}(t)] d\xi$$

the dependence on \mathbf{x} being understood and not written. A direct calculation shows that Ψ is the potential for the traction,

$$\frac{\partial \Psi}{\partial [\partial_z \mathbf{u}^t]} = \mathbf{Q}_0 \partial_z \mathbf{u}(t) + \int_0^\infty \mathbf{Q}'(\xi) \partial_z \mathbf{u}(t-\xi) d\xi = \boldsymbol{\tau}(t).$$

Consider the energy E(t) for the layer in the form

$$E(t) = \int_0^L \left\{ \frac{1}{2} \rho [\partial_t \mathbf{u}(t)]^2 + \Psi(\partial_z \mathbf{u}(t), \partial_z \mathbf{u}^t) \right\} dz.$$

The assumption that $(\mathbf{Q}')'$ be positive semidefinite, integrations by parts and use of the symmetry of \mathbf{Q}_0 , \mathbf{Q}' allow us to find that the time derivative \dot{E} is bounded by

$$\dot{E}(t) \le \boldsymbol{\tau}(L_{-}, t) \cdot \partial_{t} \mathbf{u}(L_{-}, t) - \boldsymbol{\tau}(0_{+}, t) \cdot \partial_{t} \mathbf{u}(0_{+}, t).$$

UNIQUENESS FOR THE REFLECTION-TRANSMISSION PROBLEM

The reflection-transmission problem P consists in finding a function $\mathbf{u}(z,t) \in C^2((-\infty,0) \cup (0,L) \cup (L,\infty) \times \mathbb{R}^+)$ such that $\mathbf{u}(z,t) = 0, z \in \mathbb{R}, t \leq 0$ whereas $\mathbf{u}, \boldsymbol{\tau}$ are continuous everywhere and the incident wave \mathbf{u}^t is known so that $\mathbf{u}^t(0_-,t) = \mathbf{w}(t), t \geq 0$. Uniqueness is proved first for the layer $z \in (0,L)$ and next for the half-spaces z < 0, z > L.

Theorem 1 (Layer) The restriction to $z \in (0, L)$ of the solution \mathbf{u} to \mathbf{P} is unique in $C^2((0, L) \times \mathbb{R}^+)$.

Proof. Let $\mathbf{u}_1, \mathbf{u}_2$ be two solutions to P and $\boldsymbol{\tau}_1, \boldsymbol{\tau}_2$ the associated tractions. The differences $\mathbf{v} = \mathbf{u}_1 - \mathbf{u}_2$ and $\boldsymbol{\sigma} = \boldsymbol{\tau}_1 - \boldsymbol{\tau}_2$ satisfy the equation $\partial_z \boldsymbol{\sigma} = \rho \partial_t^2 \mathbf{v}$ as $z \in (0, L), t > 0$, the initial condition $\mathbf{v}(z, 0) = 0, z \in [0, L]$ and the inequalities $\boldsymbol{\sigma} \cdot \partial_t \mathbf{v} \geq 0$ as $z = 0_+$ and $\boldsymbol{\sigma} \cdot \partial_t \mathbf{v} \leq 0$ as $z = L_-$. The energy of the layer E(t) associated with \mathbf{v} is shown to satisfy $E(t) \geq 0$, E(0) = 0, and $E \leq 0$. This implies the vanishing of E(t) = 0 and E(t) = 0 and E(t) = 0. This implies the vanishing of E(t) = 0 and E(t) = 0 are E(t) = 0.

Because **u** is unique as $z \in [0, L]$ and **u** is continuous then $\mathbf{u}(0_-, t)$ and $\mathbf{u}(L_+, t)$ are unique.

Theorem 2 (Half-spaces) For every finite T > 0 the solution \mathbf{u} to P subject to $\mathbf{u}(0_-, t) = \psi(t)$, $\mathbf{u}(L_+, t) = \zeta(t)$, $t \leq 0$ and $\mathbf{u}(z, 0) = \mathbf{l}(z)$, $z \in (-\infty, 0] \cup [L, \infty)$, whereas $\mathbf{u}(z, t)$ has compact support as $t \leq T$, is unique in $C^2((-\infty, 0) \cup (L, \infty) \times [0, T])$.

Proof. The difference \mathbf{v} of two solutions has compact support and is subject to $\mathbf{v}(0_-,t)=0, \ \mathbf{v}(L_+,t)=0, \ t\geq 0, \ \mathbf{v}(z,0)=0, \ z\in (-\infty,0_-)\cup (L_+,\infty).$ Consider the energy of the half-space $z<0, \ E_-(t),$ associated with \mathbf{v} . We find that $\dot{E}_-(t)=\boldsymbol{\sigma}(0_-,t)\cdot\partial_t\mathbf{v}(0_-,t)=0.$ Because $E_-(t)\geq 0$ and $E_-(0)=0$ it follows that $E_-(t)=0, \ t\in [0,T].$ Hence we conclude that \mathbf{u} is unique as $z\in (-\infty,0].$ Likewise we establish uniqueness for $z\in [L,\infty).$

Uniqueness is shown to hold also if the half-space z > L is replaced by a fixed boundary, $\mathbf{u}(L,t) = 0$, or a free boundary, $\boldsymbol{\tau}(L,t) = 0$.

References

- [1] Morro A.: Uniqueness results for reflection and transmission in a solid layer, Math. Mech. Solids, in print.
- [2] Caviglia G., Morro A.: Reflection and transmission of transient waves in anisotropic elastic multilayers, Quart. Jl Mech. Appl. Math., in print.