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Summary A new instability mechanism is found for Kelvin’s vortex ring, which may surpass the Widnall instability. The effect of
ring curvature emerges at O(ε) in the asymptotic solution of the Euler equations in powers ε, the ratio of core to ring radii. We show
that the O(ε) field causes a parametric resonance between a pair of Kelvin waves whose azimuthal wavenumbers are separated by 1. A
closed-form solution enables us to calculate the maximum growth rate to be 165/256ε and to make headway to nonlinear stability.

MOTIVATION AND MAIN RESULT

Vortex rings are invariably susceptible to wavy distortions, leading to violent wiggles and sometimes to disruption. It has
been widely accepted that the Moore-Saffman-Tsai-Widnall instability (the MSTW instability) is responsible for genesis
of unstable waves [1]–[5]. Remember that this is an instability for a straight vortex tube subjected to a straining field.

When viewed locally, a thin vortex ring looks like a straight tube. Because of circular-cylindrical symmetry, the Rankine
vortex, a circular core of uniform vorticity, is neutrally stable and supports a family of three-dimensional oscillations
called the Kelvin waves. The vortex ring induces, on itself, not only a local uniform flow that drives itself but also a local
straining field akin to a pure shear [1]. This is a quadrupole field proportional to cos 2θ and sin 2θ, in terms of local polar
coordinates (r, θ) in the meridional plane, with its origin at the core center and with θ = 0 along the traveling direction .
This field breaks the circular symmetry of the core by deforming it into ellipse, and feeds parametric resonance between
two Kelvin waves whose azimuthal wavenumbers are separated by 2.

However this might be a oversimplified picture. The asymptotic solution of the Navier-Stokes or the Euler equations for
a thin vortex ring in powers of a small parameter ε, the ratio of core- to ring-radii, starts with a circular-cylindrical tube
at O(ε0). A vortex ring is featured by vortex-lines curvature This feature manifests itself, at O(ε1), as a local dipole field
proportional to cos θ and sin θ. The quadrupole field comes merely as a correction at O(ε2) [3, 6, 7]. The dipole field also
acts as a symmetry-breaking perturbation. Despite its dominance, this has not attracted as much attention as it deserves.

In the present investigation, we explore a possible instability that the dipole field can trigger. We show that the dipole field
causes a parametric resonance between two Kelvin waves whose azimuthal wavenumbers differ by 1.

Remarkably we have succeeded in constructing an explicit solution of the linearized Euler equations, in terms of the Bessel
and the modified Bessel functions. Thereby, an accurate computation of the growth rate becomes feasible for all azimuthal
wavenumber combinations (m, m + 1) of Kelvin waves. The closed-form solution is amenable to an asymptotic analysis.
We reveal that that the most unstable mode occurs in the short-wave limit with radial are azimuthal wavenumbers being of
the same magnitude, with the maximum growth rate 165/256 ε. The same value has been reached by the geometric optics
method [8]. Contrary to the MSTW instability, all of multiple eigenvalues do not result in resonance. This discrepancy is
accounted for by Krein’s theory of Hamiltonian spectra [9], with the aid of the formula for energy of Kelvin waves [5].

SETTING OF LINEAR STABILITY PROBLEM

A formulation of the linear stability analysis was performed by Widnall & Tsai [3], but the dipole effect has gone un-
touched.
The center circle penetrating inside the toroidal ring is parameterized by the arclength s. Kelvin’s vortex ring is an
axisymmetric solution of the Euler equations valid to O(ε). The r and θ components of velocity field inside the core are
written, after an appropriate nondimensionalization, as

U = εU1(r, θ) + · · · , V = V0(r) + εV1(r, θ) + · · · ; V0 = r , U1 =
5
8
(1 − r2) cos θ , V1 =

(
−5

8
+

7
8
r2

)
sin θ .

Upon this, we superimpose the following form of the disturbance velocity

ṽ = (v0 + εv1 + · · ·)ei(ks−ωt) ; k = k0 + εk1 + · · · , ω = ω0 + εω1 + · · · .

Suppose that a pair of Kelvin waves whose azimuthal wavenumbers differ by 1 are simultaneously excited to O(ε0):

v0 = v
(1)
0 eimθ + v

(2)
0 ei(m+1)θ .

Then the wave excited at O(ε) is found from the linearized Euler equations to possess the following angular dependence

v1 = v
(1)
1 eimθ + v

(2)
1 ei(m+1)θ + v

(3)
1 ei(m−1)θ + v

(4)
1 ei(m+2)θ .
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Figure 1. Dispersion relation of Kelvin waves of m = 5
(dashed lines) and m = 6 (solid lines).

Figure 2. Growth rate of the principal modes.
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Excitation, at O(ε), of a pair of waves with the same azimuthal wavenumbers as at O(ε0) implies a possibility of para-
metric resonance. In practice, imposition of the boundary conditions at the edge of the core (r = 1) yields solvability
conditions including the amplitude of the m and the m + 1 waves of O(ε0). Simultaneous excitation of both waves are
requisite for instability (Im ω1 > 0), and a combination of the conditions for the m and the m + 1 waves give rise to the
growth rate σ1 = |Im ω1|.

NUMERICAL RESULTS AND SHORT-WAVELENGTH ASYMPTOTICS

Instability is permissible only at the intersection points, in the (k0, ω0) plane, of the dispersion curves of the m and the
m+1 waves. In case of instability, resonance occurs in a small wavenumber band of width of O(ε) around the intersection
point k = k0 and the growth rate takes its local maximum value σ1max at k = k0.

Figure 1 illustrates the dispersion relation of Kelvin waves of m = 5 (dashed lines) and m = 6 (solid lines). Both waves
consist of infinitely many branches. The growth rate σ1max is calculated at many of the intersection points. Destabilization
occurs only at the intersection points between upgoing modes of m = 5 and downgoing modes of m = 6. Relatively
large growth rate is maintained to short wavelengths at intersection points of branches with the same labels, which we call
the principal mode.

Calculation of the growth rate for the principal modes is extended to a large azimuthal wavenumber m in figure 2.
The same symbol is used for the same azimuthal wavenumber pair (m, m + 1), and the lowest sequence (symbol +)
corresponds to m = 0. Given (m, m + 1), the growth rate decreases with k0 and tends to σ1max = 15/64π2 ≈
0.02374715242 as k0 → ∞. On the other hand, given the branch label, the growth rate increases monotonically with m
and approaches the common value σ1max = 165/256 = 0.64453125 as m → ∞. By virtue of the closed-form solution
for v

(1)
1 and v

(2)
1 , the asymptotics for the first principal mode (the leftmost curve) is deduced as

σ1max ≈ 0.64453125− 1.548698742/m2/3 .

This is the most dominant mode over the all possible resonance pairs. This mode outweighs, for the entire range of
ε (0 < ε

<∼ 1), the Widnall instability which is of O(ε2).

The disturbance vorticity field is calculated and its correlation with the local strain is examined. The instability mechanism
is traced to stretching of disturbance vortex lines in the toroidal direction. Discussions are also given to the effects of
viscosity and nonlinearity.
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