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Summary Considered are the elasto-plastic and elasto-viscoplastic versions of the Superior sand model for describing 
static liquefaction of granular deposits. Limit points and instability in stress-controlled undrained loading are analyzed. 
Examples of the effect of loading rate on shear band formation and growth of accelerated deformation in an inertial 
process in biaxial compression numerical simulations also are given. 
 
Refined Superior sand model 
Loosely-packed, water-saturated granular deposits (sands, mine tailings) are prone to spontaneous loss of strength and 
accelerated deformation process when subject to increasing stress-controlled loading (static liquefaction). Due to 
increase in pore-water pressure the ensuing process transforms a solid-like material into a liquid-like medium. The 
process may grow unlimitedly, or terminate when the pore-water pressure drops and the material regains its strength. 
This behavior is described by the elasto-plastic refined Superior sand model formulated within the framework of critical 
state concept in [3], and subsequently analyzed and generalized in [1, 2, 5]. The elastic deformations are governed by a 
pressure-dependent elasticity. The evolution of plastic deformations is defined by a closed and smooth yield surface with 
configuration hardening parameter, and a non-associated flow rule. In terms of triaxial compression invariants 

,,, pqp ε′ and qε , the yield condition, plastic potential, and hardening rule are given by 
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where v is the specific volume, L, M, m, r, s, α, κ, and λ are constants, and *Fp ′ is a parameter of the reference surface. 
Examples of the stress-strain curves and stress paths obtained in undrained loading are depicted in Fig. 1.  
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      Fig.1 Elasto-plastic response and instability points; a) strain- and stress-control, b) stress paths  
 
The response of the model can be characterized by its limiting and instability points. These depend on the process 
control variable � stress or strain. In stress-controlled loading, the instability occurs at the first limit point where 

 
02 == qqW ε&&                             (3) 

 
as indicated in Fig. 1 by circles. The severity (energy) of liquefaction can be assessed from the excess of applied load 
over the reduced strength, and in ideal conditions amounts to the area between the applied stress and material stress-
strain curve.  
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To account for the observed experimentally delayed liquefaction under constant load (creep), and the dependence of the 
stress-strain curves on the rate of strain-controlled loading [4], the refined Superior sand model was modified within the 
framework of viscoplasticity of Perzyna (1963).  The resulting stress-strain curves in strain-controlled loading 0qq εε && = , 
and in stress-controlled loading 0qq && = , are governed, respectively, by 
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where τ is the coefficient of viscosity, η=q/p�, µ and n are constants, and dp′  is a parameter of the dynamic yield surface. 
The rate-dependence of the model affects the limiting states at which an accelerated process (instability) may 
commence. In fact, condition (3) no longer applies, because, in contrast to strain-controlled loading, in stress-controlled 
loading no apparent softening occurs. The onset of accelerated process takes place when   
 

03 == qqW ε&&                            (5) 
and this is demonstrated in Fig. 2 
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Fig. 2 Elasto-viscoplastic response and instability points; a) strain-control, b) stress-control ,c) evolution of strain-rate 
 
Numerical simulations  
To illustrate the model predictions further, two types of numerical simulations (FLAC) of the undrained, plane-strain, 
biaxial compression test were performed. In the first, the elasto-plastic model was used to demonstrate the effect of 
hydro-mechanical coupling on the formation of shear bands in a specimen subjected to strain-controlled loading. The 
results confirm the theoretical findings in [7] that low hydraulic conductivity and high loading rates support the 
occurrence of shear bands in the case of contractant material; in essence, the process is controlled by a characteristic 
dimensionless parameter.  In the second type of simulation, the specimen made of the elasto-viscoplastic material was 
subjected to load-controlled loading in a fully inertial system that allows for spontaneous growth of accelerated 
deformation of the specimen in the post-stable regime. Demonstrated is the resulting difference in stress measurements 
at the various locations in the specimen. The results of both simulations have direct implications in designing and 
conducting physical tests on water-saturated granular deposits, and in their data interpretation. 
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