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SEA CONVECTIVE MOTIONS DRIVEN BY RANDOM BUOYANCY INPUTS

V.Bouché
Physics Department,”La Sapienza” University , Rome,Italy

Summary A model for the dynamics of uncorrelated dense water plumes, perturbed by the Coriolis force, and the
conditions for their generation, is presented here. A Lagrangian rapresentation allows their time evolution till the initial
collective rotating chimney formation to be obtained. Scale relations are examined, depending on the surface air-sea
interaction statistics involved; their dependence on buoyancy fluctuations more than mean values is shown

Introduction- The model
Sudden cooling and evaporative events occur on the sea surface during the winter in several regions, inducing
buoyancy instabilities and convective mixing, an important mechanism responsible for deep water formation
(DWF). A recent review and references are given in Maxworthy (1997) and in Marshall and Schott (1998). The
known experimental observations of these phenomena in an open sea can be summed up in:1)a preconditioning
phase during all the winter;2)a violent sudden plume very short (2h)formation phase;3) a plume mixing and
rotating formation phase,4) a chimney baroclinic instability phase untill the chimney finally breaks off as the
external forcing dies down.
The object of the present work is to discuss the plume formation process in a homogeneous (N2 = g

ρ0

∂ρ
∂z = 0),

and a slowly stratified (N ≈ 10−3 − 10−4sec−1)sea, like it is the MEDOC region or the RED sea, DWF sites;
for a sake of semplicity the depth dependence of the vertical stratification and the horizontal stratification
are ignored: the extension of the model to this more physical situation will be object of future work. The
observation of wind data (Zecchetto et al.2001) measured (a)on 11November1994 at 22 : 02 (during the initial
preconditioning phase), and (b)on 18March1997 at 22 : 08 (during the initial DWF event phase) show transverse
winds, symmetric around a central axis, very slowly variable along their motion direction in (a), and transverse
winds, but radially symmetric around the center of the doming in (b), when the sea site is baroclinic and slowly
rotating (ω << f); this radial winds symmetry would mean a strong surface air-sea momentum transfer and a
strong wind stress; but the mechanical mixing due to the winds would be so deep that the convective motion
generated occurs at 1/λ ≥ 100m, where the wind stress is anyway not important.
I examine an initially still sea, perturbed at the surface by sudden transversal dry, cool winds, that appear as
a large series of random events, short range space correlated, occurring in a short time period, whose result is
equivalent to sudden space and time non homogeneous surface cooling, as suggested by Maxworthy about the
1Km large uncorrelated plumes measured by Schott and Leaman (1991) in the Gulf of Lion. By assuming a
correlation between the wind speed and the surface buoyancy flux symmetries, I examine a threedimensional
Navier-Stokes model, in (a)a rectangular and (b) a cylindrical frame; in (a) a very slow dependence on y (the
winds direction) of the surface buoyancy flux and of the plumes evolution, while in (b) a very slow dependence
on the angular polar variable are assumed. It is so possible for both the cases to semplify the threedimensional
model into a couple of equations (for the transversal vorticity ∇2

⊥ψ and the transversal velocity v ((b) uθ),
uncoupled for short times (t < 1/f); i.e. I identify two time scales such that, for t < 1/f , a twodimensional
convective motion is generated, but perturbed (for t ≥ 1/f)by the Coriolis force, such that the full evolution is
the combination between a twodimensional convective motion and a linear tranverse one.
The basic model equations (scaled with the horizontal dimension L, and the Coriolis parameter f) are, in
Boussinesq approximation:

D∇2
⊥ψ

Dt
= sb + sv + sN + E ∂

2∇2
⊥ψ

∂z2 ;
Dv

Dt
= −∂ψ

∂z
+ E ∂

2v

∂z2 ;
Db

Dt
+Nbw(

b

g
− 1) =

dbs
dt

where b is the buoyancy, the viscosity term E = ν
L2f ≈ 3 · 10−7 is negligible, t = ft, sb = − ∂b

∂x , sv = ∂v
∂z , sN =

−Nb ∂P∂x are point vorticity sources; sb is the primary vorticity source, an antisymmetric x function depending on
the horizontal buoyancy gradient produced by the air-sea interaction: dbs

dt = dbs(x,t)
dt e−λze−y

2/2 (λ ≈ 1/100m−1)
is the external input, a symmetric x function, random in x and in t; it is thought off as essentially concentrated
near the central axis, and periodically near a set of axes rightly spaced out: a critical distance between them
and a suitable decaying range a for each of them are being identified for plumes generation; a stochastic model
of a set of short space correlated buoyancy inputs is created such as to have this average periodicity; sN is a
countervorticity source due to stratification (P is the scaled pressure); sv is a correction term to the vorticity
generation due to Coriolis effects: it may be split off into sbv + sNv , working, on long time scales (t ≥ O(1)), on
the horizontal velocities u(ψ(sb)) and u(ψ(sN )) respectively ; moreover it is u = −∂ψ∂z , w = ∂ψ

∂x ;((b)a similar set
of equations is given in cylindrical symmetry, with bs not dependent on θ, ur = −∂rψr∂z , w = ∂rψ

r∂r )
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The method
The Boussinesq approximation allows the solution of the vorticity equation to be considered a single Dirichelet
problem (ψ = 0 on the boundary), solvable by image charge method, by using a transformation to Lagrangian
variables ξ = x−

∫ τ
0 u(ξ, η, τ ′)dτ ′, η = z−

∫ τ
0 w(ξ, η, τ ′)dτ ′, τ = t, such that: D

Dt = ∂
∂τ , ∂

∂x = a11
∂
∂ξ +a12

∂
∂η , ∂

∂z =

a21
∂
∂ξ + a22

∂
∂η ; so : Dψ

Dt = ∂ψ
∂τ =

∑R0
na

k=0

∫ na
2

0 dx′
∫ h

0 dz0s(x′, z0)gk(x, z, x′, z0) =
∑R0

na

k=0

∫
dq(x′, z0)gk(x, z, x′, z0)

where na is the plumes periodicity, g0 = log r2r3r1r4
, (ri = ((x ± x′)2 + (z ± z0)2)1/2), gk 6=0 = log

r+
2kr
−
4k

r−2kr
+
4k

, rik =

((x±x′−nka)2+(z±z0)2)1/2 and the antysimmetric far dypole depending on rik = ((x±x′+nka)2+(z±z0)2)1/2

has been neglected. It is known that gk → x′z0
(x′2+z2

0)2 | x | z for x, z → 0,(x = x − nka) i.e gk is hyperbolic

near each of the axes; moreover: b(x, z, t) = b(ξ+
∫ τ

u(ξ, η, τ ′)dτ ′, η+
∫ τ

w(ξ, η, τ ′)dτ ′, τ) + bs(x, z, t)−
∫ τ ( bg −

1)Nbwdτ ′; ρ(x, z, t) = ρ(ξ +
∫
u(ξ, η, τ ′)dτ ′, η +

∫ τ
w(ξ, η, τ ′)dτ ′, τ) + ρs(x, z, t) and, for t ≥ O(1), v(x, z, t) =∫ τ

u(ξ, η, τ ′)dτ ′ + v(ξ +
∫ τ

u(ξ, η, τ ′)dτ ′, η +
∫ τ

w(ξ, η, τ ′)dτ ′, τ). The non linear problem can be linearized if
we note that the envelope of all the closed streamfunctions generated by each dq is essentially summed up near
the axes where the buoyancy is really mostly concentrated, i.e where an hyperbolic approximation is good, so
that a11 = a22 = 1, a12 = a21 = 0 all the time. The consequence is that the buoyancy is dragged along the
streamfunction produced by the space integrated vorticity sources situated in ’centers’ (Pk ≡ (∆k

i (t), ζki (t))

such that qki
2 =

∫ ζki dqki (x = 0, z); q
k
i

2 =
∫∆k

i dqki (ζ, x), following the equation
d2ζkqb
dt2 = ∂2ψk

∂τ∂x

hyp

z=ζkqb
, with the initial

condition: ζkqb(t = 0) = 1
λ log2, ζkqN (t = 0) = h

2 , ∆k
qb

(t = 0) = ∆k
qN (t = 0) = a

√
2(log2− log(1 + 2e−n2/8)),

soluble for long times, such that ∆i << ζi.

Results-one plume
1)In order to have a sinking plume it is necessary a steep buoyancy gradient, i.e. a has to be << 1, otherwise
only a very slow, not sinking, flow perturbation is visible. 2)A scale invariance with λ is obtained. A single δ(t)

external input, such as bs(x) = bae
− x2

2a2 , generates (for times t < 1/f), a single sinking plume, following the law
ζ(t) = (C < B0 > t3)

1
2 (B0 is the surface buoyancy flux) ; a numerical calculation verifies this Marshall scale

law with C ≈ (3.2±1.2)λ−2, got for t ≈ 0.3f−1 >> 1.4 ·10−2f−1. A stochastic time set of such external inputs,
with random ba, generates a single sinking plume following a higher law power (t5/2), or the same, depending
on the probability 1/τ of each random event; these ’scaling’ laws depend on the mean value B0 or on its
time fluctuations (< B2

0 > − < B0 >
2)1/2, depending on the air-sea interaction statistics. A surface buoyancy

produced by a slowly time continuous variable summed to a stochastic set of such events leads, for large values of
τ ,to small amplitude variance oscillations, whose frequency is dependent on time. A constant surface buoyancy
flux leads to Marshall scale laws. 3)An analysis of the internal randomness leads to intermittent plumes,
but internal randomness is anyway hidden by the external randomness 4)The stratification has a perturbative
decreasing in time effect on the homogeneous sea vorticity dynamics, depending to the external statistics. 5)For
long time scales the Coriolis effect generates a transverse shear (antisymmetric around x ((b)r)=

√
3z): the

buoyancy,mostly trapped in the hyperbolic region, is driven along the y((b) θ) direction; but the slow dependence
on y((b)θ) allows each surface y = c((b) θ = c) to have the same behaviour, so that the buoyancy evolution is
not affected directly in average.The vorticity source sv lets the perturbation to be horizontally propagated; in
a stratified sea for long times this propagation is such as to change the sinking evolution law.

Results-more plumes
1)The sinking plume laws depend on the maximum values of the buoyancy and on the steepness of the gradient,
not on its mean values. Statistically they depend on buoyancy space fluctuations. 2)A critical distance lc = 2

√
2a

is identified. For l ≥ 6a a set of independent ’one plume’ motions like before, for 2
√

2a < r < 6a a set of
independent plumes, with the same time power laws as before, (C depending on the buoyancy gradient), are
identified. 3)A short space correlation range between a set of surface buoyancy inputs is identified, such as to
have this kind of periodicity. 4)For t = O(1) the collective effect of the transversal shear ((b)of the rotation) is a
final rotation on the boundary ((b)a collective chimney rotation).5)In a stratified sea the before told propagation
lets the single plumes to interact in time.
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