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LEVEL-SET SIMULATIONS OF SHEAR FLOW WITH INERTIA PAST A DROPLET ADHERING
TO A WALL WITH MOVING CONTACT LINES

Peter D. M. Spelt∗
∗Theoretical Mechanics, University of Nottingham, Nottingham NG7 2RD, United Kingdom

Summary A level-set method for the numerical simulation of incompressible two-phase flow is developed for flows with moving
contact lines. The method is used to study shear flow past a two-dimensional droplet that adheres to a solid substrate. Cases with
pinned and moving contact lines can be simulated. Previous work on this problem assumed Stokes flow, whereas the present method is
suitable for flow with significant Reynolds number.

INTRODUCTION

The deformation of droplets adhering to a wall in shear flow has practical applications in cleaning processes, and serves
as a model of a cell adhering to a blood vessel. Of practical interest is for instance the determination of conditions beyond
which part of a droplet will be sheared off. The creeping flow case with fixed contact lines has been studied thoroughly in
two and three dimensions; results available for moving contact lines are restricted to creeping flow in 2D [3]. We present
here results from numerical simulations for the corresponding flow with inertia, in two dimensions. For this purpose, a
level-set method is adapted such that multiple contact points can be simulated.
Results are presented for cases in which the contact points are allowed to move. In order to avoid the stress singularity
at moving contact lines, the usual no-slip condition is replaced by the Navier condition for the velocity componentU1

along the wall,U1 = λ∂U1/∂x2, where the sliplengthλ is small. The contact-line speed will be prescribed through
Ucl = κ(θ − θs), whereθ andθs are the dynamic and static contact angle, respectively. More complicated expressions
for Ucl (Dussan V. 1979) can be implemented in a straightforward manner.

NUMERICAL METHOD

Level set is an efficient numerical method for tracking interfaces. In [4], a level-set method is developed for the simulation
of incompressible two-phase flows. In this approach, the level-set functionφ at a point is the distance from the interface,
such that an interface corresponds to a surface whereφ = 0. The equations of motion for both fluids involved are combined
into a single continuity and momentum equation with variable density and viscosity; surface tension is represented as a
sink term in the momentum equation. Required variables such as the density, viscosity and curvature are expressed
explicitly in terms ofφ. At each timestep,φ is advected by the fluid velocity field. To ensure thatφ remains the signed
distance function (at least close to interfaces), a redistance step is subsequently required. In order to guarentee mass
conservation, the subcell fix of [2] has been implemented, andφ is scaled at each timestep in the way proposed in [5].
Conventional methods are used to solve the velocity and pressure fields.
Level set has been used for many flows that do not involve intersections of interfaces with solid boundaries (contact
lines). In order to use level set for flows with contact lines, boundary conditions forφ are required, instead of using an
extrapolation from the fluid interior for the value ofφ in ghostcells. In [5], the axisymmetric spreading of oil under ice is
simulated using level set (involving a single contact point). The interface is extrapolated through the wall, and the value
of φ at ghostcells is either the signed-distance function corresponding to this extrapolated interface, or (if a normal cannot
be drawn from the ghostpoint to the extrapolated interface) an extrapolation ofφ from the fluid interior.
For more complicated problems, such as a droplet adhering to a wall, the approach in [5] must be generalized. The
position of contact points is obtained by integrating the adopted expression for the contact-line speedUcl. The boundary
conditions forφ are determined as follows (Fig. 1). For points left of the left contact line shown in Fig. 1, a boundary
condition (obtained from the distance toL1) at ghostpoints is required. For points far to the right of the right contact
line, it is not possible to draw a normal to the nearest imaginary interfaces (dashed part ofL2), the distance to be used
should correspond to that from the solid part of the interfaceL2, and no boundary condition should be imposed onφ (the
value ofφ in ghostcells is therefore obtained from second-order extrapolation). The two points P and Q indicate possible
ghost-point locations between two contact lines. At P, a boundary condition is required forφ, obtained from the distance
to the nearest imaginary interface. At Q, the minimum distance to an interface may be that to the solid part ofL1, which
can be obtained from extrapolation ofφ from the interior. These boundary conditions are imposed during the redistance
step.

RESULTS

In Fig. 1b, the contact angles and perimeter of a droplet relaxing towards static contact angles of120o are shown as a
function of time. The initial contact angles are30o, and there is no imposed shear flow. The capillary number is small: at
t = 0, µUcl(t = 0)/γ = 3.4 · 10−3 (the Reynolds numberρHUcl/µ = 13.3, whereH = initial droplet height). Hence
the drop should almost be a circular cap throughout the simulation. The perimeter is seen in Fig. 1b to compare very well

Mechanics of 21st Century - ICTAM04 Proceedings



.

................................................................................................................................................... .

..........................................................................

ss
L1 L2

QP

. .............
. .............

. .............
. .............

. .............
. .............

. .............
. ............. .

.
.............

.
.............

.
.............

.
.............

time

θ,
P

0 10 20 30 40
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

0 10 20 30 40
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

time
0 5 10 15 20 25 30 35 40

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

P(t)

θ1,2(t)

Figure 1. (a). Definition sketch for boundary conditions forφ imposed. (b). Droplet with moving contact lines in a fluid without
external flow. Relaxation from initial contact angles of30o, to static contact angle of120o. PerimeterP and contact angles as a
function of time. The long-dashed line represents the perimeter for an exact circular interface with contact angles corresponding to the
values resulting from the simulations. To show the influence of slip, results for the contact angles withλ = 0.01 are indicated by short
dashes.
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Figure 2. (a). Velocity flags (indicating local direction of fluid velocity) for a drop with moving contact lines in a shear flow with
ρ1 = 1, ρ2 = 20, µ1 = µ2 = 0.1592, γ = 3.175. Initial contact angles areπ/2; θs = 2π/3. Simulations have approached a
quasi-steady state, in which the drop moves at constant speed without further deformation.(b). PerimeterP and contact angles as a
function of time, for a128× 32 mesh. The dashed line corresponds toθ2 when using a64× 16 mesh.

with that determined from assuming a circular-cap shape and using the contact angles as a function of time. Results were
also found to compare well with the boundary-element simulations of [3] for creeping shear flow past a drop on a wall.
Fig. 2 shows a droplet that is deformed by an imposed shear flow. The contact lines are allowed to move, withκ = 0.1,
λ = 0.01. The droplet has approached a quasi steady state, in which it moves at almost constant speed and does not
deform further. The contact angles and perimeter are shown as a function of time in Fig. 2b. A small oscillation is
observed in the contact angles, that decreases with increasing mesh size. It is seen from Fig. 2a that a wake has formed
downstream of the drop; this moves together with the drop. Due to the direction of rotation inside the drop and the wake,
the fluid that shears just over the droplet is seen to make a U-turn between the drop and its wake; this effect was found to
be especially prominent in cases of pinned contact lines, where the wake is closer to the droplet.

CONCLUSIONS AND FUTURE WORK

The level-set method proposed in [4,5] has been extended to allow for the presence of multiple contact lines that can
move. The method has been used to simulate the motion and deformation of a 2D droplet adhering to a wall in a shear
flow. The method is currently extended to allow for contact-line hysteresis, and is being used to determine critical values
of dimensionless parameters, beyond which droplets are displaced from an adhering surface by a shear flow with inertia.
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