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Summary This work deals with the overturning of a rocking rigid block on an oscillating base, an old fascinating topic which is 
reconsidered by modern techniques of dynamical systems theory. The paper is divided in two parts: The first is theoretical and concerns 
the amplitude threshold for contact between stable manifolds and rest position, while the second is numerical and leads to the definition of 
the “true” safe basin of attraction. These points are somehow correlated, and they go thoroughly into previous authors’ insights [2, 3]. 
 

INTRODUCTION 
 
The overturning behaviour of rocking rigid blocks has been attracting interest of researchers for a long time, starting 
with its interest for the estimation of ancient earthquake magnitudes from observations of monuments ruins [4]. Many 
other practical problems have also been seen to involve this paradigmatic model (see [2, 3] for a brief account), which 
has a very complex dynamical behaviour in spite of its apparent simplicity. The well-known Housner model [1]: 
 ϕ&& +δϕ& –ϕ+α+γcos(ωt+ψ)=0, ϕ>0,           ϕ&& +δϕ& –ϕ–α+γcos(ωt+ψ)=0, ϕ<0,           ϕ& (t+)=rϕ& (t−), ϕ=0, (1) 
is used (δ=damping=0.02, α=block diagonal angle=0.2, γ, ω, ψ=amplitude, frequency and phase of the horizontal 
excitation). It is based on the assumption that the block can only rock without sliding and uplifting, and undergoes 
instantaneous impacts (r=restitution coefficient=0.95). It is a quite accurate model for investigating the overturning, 
which is the practically more interesting outcome. This question has been recently reconsidered by the authors, who 
studied in detail the heteroclinic bifurcation of the hilltop saddles [2], as well as the question of its optimal control. 

Heteroclinic bifurcation is a lower bound for the actual overturning 
threshold, because below the penetration of the tongues of the overturned 
attractor into the safe in-well basin is prevented. This is shown in Fig. 1 
[3]. Extensive numerical simulations have shown that (Fig. 1): (1) for 
small γ the block does not overturn (grey) at all; (2) for large γ it directly 
topples (white) without oscillations. The third intermediate region, where 
overturning may or may not occur, possibly with a bounded transient, 
exhibits fractal features. 

The boundary between high and intermediate regions is the immediate 
overturning threshold γimm, and corresponds to the minimum γ above 
which there is overturning without oscillations in the potential well. The 
boundary between low and intermediate regions is the first overturning 
threshold γfirst, and corresponds to the minimum γ above which the rest 
position topples irrespective of the transient length in the potential well. 
γimm has been determined also analytically, while γfirst has been 
analytically approximated from below by γhet (heteroclinic bifurcation 
threshold) and γstat (static overturning criterion), as shown in Fig. 1. γimm 
is also an upper bound for γfirst (Fig. 1). 

The paper [3] has emphasized two important aspects: i) the role of the 
excitation phase, which is strictly related to the fact that one deals with a 
single initial condition (the rest position (ϕ,ϕ& )=(0,0)) instead of the 
whole dynamics, and (ii) the role of the invariant manifolds in the 
immediate overturning. In particular, it has been shown that γimm 
corresponds to the first direct touching of the stable manifolds Ws with 
the rest position (i.e., when A touches O for an arbitrary phase, Fig. 2). 
 

THEORETICAL ANALYSIS 
 
Actually, practical interest is rather in determining analytical conditions for first overturning, to be possibly pursued 
through an invariant manifold interpretation of the dynamics occurring  for values of γ<γimm and finally ending (for a 
certain phase) with block toppling. It is accomplished in this work by looking for the analytical condition corresponding 
to touching of point B with the rest position O (Fig. 2). This will allow us to identify a lower upper bound of γfirst.   

The generic point (ϕ,ϕ& ) of the second, left, branch of the perturbed stable manifold 2,sWr  of the right saddle (Fig. 2) 
can be written in the form 
 ϕ=E1α+γ[E2cos(ψ)+E3sin(ψ)],           ϕ& =E4α+γ[E5cos(ψ)+E6sin(ψ)], (2) 
where the coefficients Ei depends on δ, r, ω and on the time β necessary to this initial condition to impact before 
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Figure 1. 
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Figure 2. γ=0.7,ω=5 ,ψ=0. 
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asymptotically approaching the right saddle. When the excitation phase ψ varies, the point (2) describes an ellipse in the 
plane (ϕ,ϕ& ) (pseudo phase space), and the point having the maximum value of ϕ(ψ) is given by 
 ϕmax=E1α+γ√(E2

2+E3
2),           ϕ& max=E4α+γ[E5E2+E6E3]/√(E2

2+E3
2),          ψ=atan(E3/E2). (3) 

The critical condition corresponding to the touching of B with O is 
mathematically given by ϕmax=0 and ϕ& max=0. When α, δ, r, ω are fixed, 
this is a system of two equations in the two unknowns γ and β. The 
solutions γ° give the amplitude threshold for this critical event. For 
example, for δ=0.02, r=0.95, α=0.2, ω=5 the lowest solution is 
γ°=0.8492 and ψ°=0.6476, and the corresponding manifold-phase-
portrait is reported in Fig. 3. Note that γ° is below γimm=1.0297 (Fig. 4). 

The solutions γ°=γ°(ω) of the previous system are depicted in Fig. 4. 
They are constituted by several branches, which are reported with 
different colors. As expected, the red line represents a better analytical 
upper bound of γfirst. 
 

NUMERICAL INVESTIGATION 
 
In the problem of overturning the initial condition is fixed and the 
excitation phase is unknown. Thus, safe basins of the attraction in the 
classical sense (the union of the basins of all in-well attractors), related to 
a fixed ψ (Fig. 6), do not provide adequate informations. It can, and 
actually does, occur that for a given phase the block does not overturn, 
while it topples for a different ψ. 

Then, one must look for phase-independent arguments, and the idea is 
that of defining the “true” safe basin of attraction as the intersection of 
all classical safe basins when ψ ranges over the period: this is the 
smallest phase-indendent set of initial conditions which do not entail 
overturning, and it is therefore reliable from a practical point of view. 

To practically determine the “true” safe basin we project the 2D stable 
manifolds (in the 3D phase space (ϕ,ϕ& ,t)) onto the plane (ϕ,ϕ& ): the out 
of projection area surrounding the rest position (0,0) is the “true” safe 
basin (Fig. 5). 

The comparison between Figs. 5 and 6 permits to appreciate the 
differences between the “true” and the classical safe basins. In particular 
it is seen how by classical arguments the safety from overturning, here 
interpreted as the farness from the closest initial condition leading to 
toppling, is strongly overestimated. 

The erosion of the “true” safe basin when the excitation grows is the 
triggering phenomenon for toppling. 
 

CONCLUSIONS 
 
To the authors knowledge, this work is one of the first attempts to make 
explicit the role played by the invariant manifolds on the overturning of 
rigid blocks, thus providing a theoretical interpretative framework of this 
important practical phenomenon. 

The obtained γ° threshold corresponds to touching of the stable 
manifold with the rest position. The investigation of the possible 
occurrence of homo/heteroclinic connections between the hilltop and  
secondary saddles, likely responsible for erosion of the safe basin below 
γfirst and for touching with γfirst<γ<γ°, is left for future work. 
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Figure 3. ω=5 γ°=0.8492, ψ°=0.6476. 
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Figure 6. ω=5 γ=0.35, ψ=0. 
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