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Summary A novel contact model is presented which includes normal contact force and damping, rolling resistance torque and tangential
friction force. It features a contact stiffness proportional to the contact area and leads automatically to the correct selection of the point
of action of the force, which is shown to be proportional to the interpenetration volume. A numerical simulation of a sphere impacting
on the inside surface of a cylinder is presented.

INTRODUCTION

Contact models often drastically simplify the interaction of complexly shaped bodies to simple cases, or even point
contacts. The significance of the shapes of the colliding bodies on the resulting contact forces is generally not taken into
account, or not modeled in a consistent manner for all components of the contact force, namely, normal and tangential
force, rolling and spinning resistance torques.
The Hertzian contact model, which assumes an elastic half-space approximation, is often used to model contact phenom-
ena. However, this approximation is not valid for bodies that have conforming surfaces. Strictly speaking, the Hertz theory
should be used to model the contact mechanics only when the colliding body surfaces can be described by second order
polynomials. However, in practice its application can be extended to bodies with smooth surfaces as long as the resulting
contact area remains small with respect to the dimensions of the bodies. Even though the geometric boundary conditions
may not be exactly fulfilled, the Hertz theory’s assumption that the pressure distribution over the contact area is elliptical
will still apply, or at least provide a good approximation, such that the theory still applies, but only for non-conforming
geometries.
Johnson [1] suggests to use the Winkler elastic foundation as a simple approximation in complex situations where half-
space theory would be very cumbersome. Hippmann [2] uses this approach to deal with complex, i.e., conforming,
polygonal, geometries. The contact force is derived by numerically summing up the contribution of each polygon using a
simple contact model.
In this paper, a model for distribution the pressure over the contact area will be presented. Using this model, it is shown
how a complete contact model can be analytically derived by integrating the contact pressure over the area. This novel
approach includes all forces and moments resulting from the contact mechanics effects between the colliding bodies, and
in particular it includes the rolling resistance torque.

NORMAL AND TANGENTIAL FORCE MODEL

The Winkler elastic foundation model (Figure 1) predicts that the pressurep(s) at any locations on the contact surfaceS
is proportional tohs(s), the interpenetration depth between the two undeformed surfaces at points. However, it does not
include any damping effect to dissipate energy during the contact process. The energy dissipation is best modeled using a
hysteretic damping terma [3]. Therefore, a new pressure distribution model is proposed as

p(s) =
dfn(s)

dS
=

kf

hf
hs(s) (1 + a vn(s)) , (1)

wherekf is the elastic modulus of the foundation,hf is the depth of the foundation mattress, andvn is the relative
velocity component normal toS at s. The volumeV spanned by the intersection of the two undeformed geometries of
the colliding bodies is labeled thevolume of interference. By definition, the volume of interference contains theS. The
volume of interference and its centroidr c are given by

V =
∫

S

hs(s) dS =
∫

V

dV ; r c =
1
V

∫
V

r dV , (2)

wherer is a point in the volume of interference. Integratingdfn(s) over S and using Equations (2) the contact force
results as

f
n

=
kf

hf
V (1 + a vcn)n , (3)

wherevcn is the normal component of the relative velocity atr c. The tangential friction is computed as given in [3] using
this new definition off

n
as given in Equation (3).

The interference volume, its centroid, and the contact surface normal, necessary to evaluate Equation (3), can be derived
either analytically or numerically from geometric and kinematic information. This model features a contact stiffness
proportional to the contact area and defines the location of the point of action of the contact force asr c. Contact models

Mechanics of 21st Century - ICTAM04 Proceedings



based on penetration depth typically assume the point of action to be located at the point of maximum penetration.
However this causes problems when the contact area is large and the surfaces of the colliding bodies are nearly parallel,
i.e. instantenous change of point of action and of the moment arm of the contact force w.r.t. the colliding bodies.

ROLLING FRICTION MODEL

The shape of load distribution across the contact area gets distorted due to the presence of the hysteretic damping term.
Hence, the centroid of the load distribution is not at the same location as the centroid of the interpenetration volume. If
the point of application is selected asr c, an additional rolling resistance torque has to be applied.
The torque aboutr c resulting from the contact force distribution over area of contact is computed by integrating the
infinitesimal rolling friction torquedτ r(s) = ρ

s
× df

n
(s) overS, whereρ

s
= s − r c. It can be shown that

τ r =
kf

hf
aJc · ω t ; Jc =

∫
S

(
(ρ

s
· ρ

s
) I − ρ

s
ρ

s

)
hs(s) dS , (4)

whereω t is the component of the relative angular velocity tangential toS. Since the interpenetration depth is typically
small,Jc is closely approximated as the second moment of volume about the centroid ofV .
When the bodies are rolling with respect to each other, thenτ r is the resistance torque acting to prevent the rolling.
Equation (4) shows that if the two bodies are not rolling with respect to each other (ω t = 0), then the normal force is
distributed symmetrically around the volume of interference centroid, so the net moment at the centroid is zero.

NUMERICAL EXAMPLE: BOUNCING SPHERE

The model described above was utilized to simulate a sphere bouncing inside a cylinder. Figure 2 shows the three-
dimensional trajectory of the sphere center. Figure 3 shows the decays in both of the angular and translational velocities
over time. Observe that the sphere eventually stops moving iny-direction. Clearly, the resistance torques act to prevent
rotational motion, as we expected. The parameters used are give in [3].
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Figure 1. The Winkler elastic founda-
tion model.
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Figure 2. Trajectory of sphere center.
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Figure 3. Position and velocity compo-
nents versus time.

CONCLUSIONS

In this paper, a novel contact model was presented which includes normal contact force and damping, rolling resistance
torque and tangential friction force. A modified Winkler elastic foundation model was introduced to obtain the pressure
distribution across the contact area. The contact force is expressed analytically by integrating the pressure distribution over
the contact area. The resulting model features a contact stiffness proportional to the contact area and leads automatically
to the correct selection of the point of action of the force, which is shown to be proportional to the interpenetration volume.
The proposed model is not restricted to contact situations where the bodies have non-conforming geometries, but can
be used for any geometry with reasonably flat contact area. A numerical simulation example of a sphere colliding on
the interior surface of a cylinder under the action of gravity was provided. The resulting dynamic behavior is physically
realistic and satisfies the condition|v| = R|ω| and it is seen that the effect of the resistance torque is to dissipate rotational
energy such that the sphere’s motion is eventually stopped.
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