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Abstract We review recent theoretical work that analyzes experimental measure-
ments of elastic interactions of biological cells with their environment.
Recent experiments have shown that adhering cells exert polarized forces
on substrates. The interactions of such “force dipoles” in either bulk
gels or on surfaces can be used to predict the nature of self-assembly
of cell aggregates and may be important in the formation of artificial
tissues. Cell adhesion strongly depends on the forces exerted on the
adhesion sites by the tension of the cytoskeleton. The size and shape of
the adhesion regions is strongly modified as the tension is varied and we
present an elastic model that relates this tension to deformations that
induce the recruitment of new molecules to the adhesion region.
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1. Introduction

In this review, we summarize recent progress in our understanding
of the physics of the interaction of biological cells on elastic substrates
and in bulk gels. Cell adhesion is quite different from adhesion of fluid-
filled vesicles because the interior of the cell is an elastic medium (that
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is continuously and actively reorganized) due to the presence of the cy-
toskeleton. In most cells, the cytoskeleton [1] is composed of several
components, including actin, microtubules and intermediate filaments,
each of which have different elastic properties [2] that can be used by the
cell in a variety of circumstances. Force generation that leads to tension
in the actin network arises from the action of myosin bundles that are
activated by ATP to change conformation and exert forces on the actin
filaments.

Recent experiments [3, 4] show that, in contrast to artificial vesicles
that exert only normal forces when they adhere to a substrate, adhering
cells show both normal and lateral forces. The normal forces arise from
the action of either specific adhesion molecules or non-specific interac-
tions (e.g. van der Waals interactions) while the lateral forces arise from
elastic deformations of the adhesion region by cytoskeletal forces. These
lateral forces regulate the size and shape of the adhesion regions (often
called focal adhesions (FA)) [4] and allow a cell to probe and to adjust
the strength of its adhesion to its physical environment. The physical
origin of the mechanosensor in the cell and the conversion of elastic in-
formation to a biochemical response that recruits additional proteins to
the adhesion region is an important problem in cell biology today.

These forces that arise from the tension in the actin cytoskeleton tend
to polarize the actin filaments (also called stress fibers). Thus, one can
sum over all the local focal adhesions and in a coarse-grained picture,
model such an adhering cell as a pair of nearly equal and oppositely
directed contraction forces (termed an elastic force dipole) with typical
forces of 100 nN over a scale of tens of microns. An interesting physics
problem [5, 6] concerns the interactions and self-assembly of many such
force dipoles; this corresponds to the interactions of many cells, each of
which adheres to an elastic medium such as a substrate or in a three-
dimensional gel. These dipoles interact via the elastic deformations of
the medium, and can form chains or other self-assembled structures.
Because these interactions are long-range, the details depend on the
boundary conditions and sample shape. In addition, the interaction
strength depends on the elasticity of the substrate as well as on its
deformations and cells have been observed to migrate towards stiffer
substrates and to rotate on elastically strained media [7]. The physics of
cell adhesion and the interactions of cells in elastic media are important
for the understanding of tissue formation and engineering [8] as well as
wound-healing and metastasis.
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2. Elastic Effects in Cell Adhesion

Adhesion of live cells to external surfaces [9] plays an important role
in many cellular processes, such as cell growth, differentiation, motility
and apoptosis (programmed cell death) [10]. Cell adhesion is not a pas-
sive process, restricted to the formation of bonds between membrane
receptors and extracellular ligands. Adhering cells actively probe the
physical properties of the extracellular matrix; their cellular contractile
machinery participates in the formation of the adhesive junctions. It has
been shown that rigid surfaces give rise to large and stable adhesions,
termed focal adhesions (FA), that are associated with the termini of actin
stress fibers and trigger signaling activity that affects gene expression,
cell proliferation, and cell survival. On the other hand, soft surfaces
mainly support the development of relatively small, transient dot-like
or fibrillar adhesions that are involved respectively in cell motility and
matrix reorganization. In addition, observation of the early phase in the
assembly of FA shows small, primordial adhesions, termed focal com-
plexes (FX) as precursors of FA. FX are formed close to the edge of the
advancing membrane protrusions of cells and can grow in some cases
into FA when subjected to mechanical stress due to either cell contrac-
tility or external perturbations [11]. Indeed, the adhesion process has
been shown to be mechanosensitive; cells can probe the physical prop-
erties of their environment and respond by modulating their adhesions
or migratory activity [6, 12, 13].

plaque of adaptor proteins

(vinculin, paxillin, etc)

cell membrane

anchor proteins (integrins)

extracellular matrix

stress fibers

(actin cytoskeleton,

molecular motors)

few µm

100 nm

Figure 1. Schematic representation of a focal adhesion. The bottom of the contact
is anchored to the extracellular matrix and the top surface is acted upon by the cy-
toskeletal tension. (Reprinted with permission from [27], Copyright (2004), American
Physical Society).
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Live cells exert directional, lateral forces on adhesive junctions; these
forces originate from the organization of actin filaments and their asso-
ciated molecular motors into stress fibers (Fig. 1). Adhesions respond
dynamically to the local stresses: increased contractility leads locally to
larger adhesions, whereas FA are disrupted when myosin II is inhibited
[14]. The physics challenge in the understanding of these effects lies in
(i) quantifying on a coarse-grained scale, the forces that cells exert on
surfaces or in the bulk (ii) understanding the implication of these forces
for adhesion of a single cell, the interactions among many cells in an
elastic medium and the consequent self-assembled structures that may
form (iii) predicting the microscopic origin of these forces and why ad-
hesion growth is sensitive to the magnitude and direction of the internal
or external cytoskeletal stresses.

Lateral Forces at Adhesion Sites

Biological cells can exert strong physical forces on their surroundings.
One example are fibroblasts, that are mechanically active cells found
in connective tissue. The main technique to measure cellular forces is
the elastic substrate method [15] which was introduced by Harris and
coworkers in the early 1980s [16]. Quantitative analysis of elastic sub-
strate data was pioneered by Dembo and coworkers [17].

Recently, a novel elastic substrate technique to measure cellular forces
at the level of single FA [4] was developed using a micropatterned, thick
polymer film. From the deformations of the grid on the film surface, the
forces exerted by FA were estimated. Correlation of these forces with
the lateral size of the FA showed that there exists a linear relationship
between force, F , and area, A, of a single FA. This finding translates
into a force of several pN per receptor, which is consistent with recent
experiments on strength of single molecular bonds at slow loading [18].

Since the adhering cells are rather flat, forces exerted on the substrate
can be considered to be tangential to the plane of the substrate surface.
Also, because surface displacements are much smaller than the film thick-
ness, one can use linear elasticity theory for an elastic isotropic halfspace.
For incompressible elastic substrates, the resulting displacement of the
substrate surface remains within the plane of the substrate surface [19].
Therefore, the whole elastic problem becomes two-dimensional. Since
lateral deformations of the substrate are not observed in the absence of
FA, we assume that forces are exerted mainly at the sites of FA. For
a single, discrete force density (force per unit volume) ~f at position ~r,
the displacement field ~u at position ~r is:
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ui(~r) =

∫

d~r ′ Gij(~r − ~r ′)fj(~r
′), (1)

where the subscripts refer to the vector components and where Gij is
the Green function of the elastic isotropic halfspace, that is, a tensor of
rank two:

Gij(~r) =
3

4πEr

(

δij +
rirj

r2

)

. (2)

We use the convention of summation over repeated indices, δij denotes
Kronecker Delta and E is the Young modulus. The Poisson ratio has
been set to 0.5 and the indices i, j take the values 1,2. Note that in finite
systems, the Green function Gij(~r − ~r ′) will be an explicit function of
both ~r and ~r ′. This is because the elastic forces can be long range and
thus depend on the boundary conditions. In the case of the half-space,
the displacements are mostly in the plane; there are negligible normal
displacements and the translational symmetry is approximately restored.

Since linear elasticity theory allows for superposition, one can gen-
eralize the above to treat a set of discrete forces that act at the sites
of the observed focal adhesions. One must solve the inverse problem
of predicting the forces, given the observed diplacement. The resulting
force pattern turns out to be very sensitive to small changes in the dis-
placement data. To regularize the problem [20], a reasonable constraint
is that the forces should not be exceedingly large.

The combination of the experimental and computational method de-
scribed above allowed, for the first time, a measurement of the cellular
force at the level of FA and its correlation with aggregation characteris-
tics [4]. One finds a linear relationship between magnitude of force and
the area of the FA. The direction of force usually coincided with the ma-
jor axis of the elliptically shaped FA. The observed force is proportional
to the area of the FA, with a stress constant of 5.5 nN/µm2. Since several
thousand integrin adhesion molecules and myosin II molecular motors
correspond to one FA, the pN scale of single molecules is amplified to
the nN-range at FA.

Elastic Interactions of Cells: Force Dipoles

Anchorage-dependent cells constantly assemble and disassemble focal
adhesions, thereby probing the mechanical properties of their environ-
ment. The protein aggregates in FA are connected to the actin cytoskele-
ton. This generates a contractile force pattern, that is actively produced
by myosin II molecular motors interacting with the actin cytoskeleton.
The minimal configuration of this machinery is a set of two focal ad-
hesions connected by one bundle of actin filaments (stress fiber), that
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leads to a pinch-like force pattern. In condensed matter physics, such
an object is known as an anisotropic force contraction dipole [21, 22].

By analogy with electric dipoles, a force dipole, Pij is a second rank
tensor defined as the second moment of a spatially distributed force
density (force per unit volume), ~f(~r)

Pij =

∫

d~s sifj(~s), (3)

where the subscripts refer to the vector components. The elastic defor-
mation field, ~u(~r), is related to the force distribution and to the Green
function as given in Eqs. (1,2) above. If the force distributions are de-
scribed in terms of force dipoles, the displacement field at point ~r due
to a dipole at point ~r ′ can be written [6]

ui(~r) = Gil,k′(~r, ~r ′) P ′
kl, (4)

where the extra index after the comma, denotes a derivative of the Green
function with respect to the variable ~r; a prime on this index indicates
that the derivative is with respect to the variable ~r ′. As before, there is
an implied summation over repeated indices. The prime on P indicates
that the dipole is located at position ~r ′. The interaction of two dipoles
proceeds via the deformation of the medium; each dipole feels the de-
formations induced by the other and this creates an effective interaction
between them. For dipoles located at ~r and ~r ′ one can derive the ef-
fective interaction due to the elastic deformation energy of the medium.
This energy is proportional to the elastic constant tensor and the prod-
uct of the gradients of the diplacements, ~u(~r) that are related to the
forces by Eqs. (1,2). One finds [6] that the elastic deformation of the
medium results in a contribution to the elastic energy, W :

W = Pli ui,l = Pli Gij,lk′(~r, ~r ′) P ′
kj , (5)

where Pli and P ′
kj are the force dipoles located at ~r and ~r ′ respectively,

ui,l is the derivative of the displacement component ui with respect to
component l of the position vector ~r; the last two subscripts in the Green
function represent derivatives with respect to ~r and ~r ′ respectively. For
translationally invariant systems, such as an elastic half space with pla-
nar displacements,

Gij,lk′(~r, ~r ′) = Gij,lk′(~r − ~r ′) = −Gij,lk(~r − ~r ′). (6)

This interaction energy scales as 1/|~R|3 where ~R is the distance between
dipoles and is proportional to P 2/E where P is the dipole strength and
E is the Young’s modulus of the medium. Equation (5) is not the only
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relevant energy to be considered since in the case of inert matter one
must add to the deformation energy of the medium, an energy propor-
tional to the product of the local force and the local displacement; this
accounts for the direct interaction of the dipole with the environment.
The elastic theory can also describe [6] the interaction of a single di-
pole with an external strain imposed on the elastic medium or with the
boundary of a finite-sized sample.

Recently, we have extended the concept of force dipoles to model
the mechanical activity of cells [5]. Cells in an isotropic environment
often show isotropic (that is round or stellate) morphologies. However,
since the focal adhesion dynamics is local, even in this case there is an
anisotropic probing process, that can be modeled by anisotropic force
contraction dipoles. The anisotropy of focal adhesion dynamics becomes
apparent when stress fibers begin to orient in one preferential direction,
either spontaneously during a period of large mechanical activity, or in
response to some external anisotropy, or during cell locomotion. In this
case, cellular dipoles have been measured to be of the order of P ≈
−10−11J (this corresponds to two forces of 200 nN each, separated by
a distance of 60µm) [4, 23]. In Fig. 2 we show schematic representations
of the physical and cellular cases discussed here.

For inert, physical dipoles, the equilibrium configuration follows by
minimizing the sum of the elastic energy of the strained medium and
the direct interaction energy between the force dipole and elastic envi-
ronment. The first term represents a restoring force and raises the energy
(i.e., its sign is always positive), while the second term is a driving force
that reduces the total energy (i.e., its contribution will always be nega-
tive). The total interaction between two dipoles has the form of Eq. (5)
but with a negative sign due to the effect of the local force-displacement
interaction.

The equilibrium configuration corresponds to the minimum of the to-
tal energy as a function of position and orientation of the force dipoles,
which results in an effective, so-called elastic interaction between the
force dipole and other dipoles, sample boundaries or external strain
fields. We have predicted that the competition between direct and im-
age interactions should lead to hierarchical structure formation, with the
direct interaction leading to structure formation on a length scale set by
the elastic constants and similar to that of electric quadrupoles [5]. We
suggested that such a behaviour should be expected for artificial or inert
cells, that is for physical particles with a static force contraction dipole,
but without any internal dynamic or regulatory response.

In contrast to this physical case, the effective behavior of active cells
usually follows from dynamic and tightly regulated non-equilibrium pro-

Mechanics of 21st Century - ICTAM04 Proceedings



8 ICTAM04

(a) (b) (c)

Figure 2. Schematic representation of physical and cellular force dipoles. (a) Physi-
cal case: an intercalated defect deforms the simple cubic host lattice, thus acting as an
isotropic force expansion dipole. (b) Cellular case: anchorage-dependent cells probe
the mechanical properties of the soft environment through their contractile machin-
ery. Actin stress fibers (lines) are contracted by myosin II molecular motors and are
connected to the environment through focal adhesions (dots). Even if cell morphology
is round or stellate, different stress fibers probe different directions of space and com-
pete with each other for stabilization of the corresponding focal adhesions. Therefore
the probing process can be modeled as an anisotropic force contraction dipole. (c)
Cell morphology becomes elongated in response to anisotropic external stimuli, dur-
ing locomotion or spontaneously during times of strong mechanical activity. Then
most stress fibers run in parallel and the whole cell appears as an anisotropic force
contraction dipole. (Reprinted with permission from [6], Copyright (2004), American
Physical Society).

cesses inside the cell. More recently, we have shown that despite this
severe complication, it is still possible to describe the active response of
mechanosensing cells in an elastic material in the same framework as the
physical case [6]. Motivated mainly by recent experiments with elastic
substrates [24], we have suggested that effective cellular behavior can be
described as simple preference for large effective stiffness in the environ-
ment (including both rigidity and tensile prestrain). Moreover, we have
shown that this principle is equivalent to minimization of the energy cost
of straining the environment. (But this does not include the energy due
to the direct force-displacement interaction.) This results in an interac-
tion energy between two force dipoles with a positive sign as given in
Eq. (5). The direct elastic interaction between cells has been predicted
to be similar to that of electric dipoles, leading to strings of cells [6].
This is not the case for inert dipoles (due to the difference in the sign of
their interaction), where more compact structures are predicted [6].

The different energies and opposite sign of the interactions for the
case of inert force dipoles and active cell force dipoles leads to interesting
differences in their behavior. For example, active cells are attracted and
repeled by clamped [25] and free sample boundaries, respectively. In the
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case of inert dipoles, this behaviour is inverted. The predictions for the
elastic response cells explain several experimental findings reported in
the literature [6] and can be used for rational design of tissue equivalents.

3. Theoretical Model for Mechanosensitivity of
Adhesion

Cell Adhesion Mechanosensitivity

The coupling of the FA to the internal stresses that are regulated by
the cell (e.g., via actin-myosin activity or actin polymerization) means
that the cell can respond to the elasticity of its adhesive environment.
Recent experiments have shown that external forces can also cause the
anisotropic growth of focal adhesions. Independent of the origin of
the stress (e.g. internal contractility [4], shear flow [26], micropipette-
induced shear stress [14]), small adhesions grow into focal adhesions
(FA), that elongate in the direction of the force. The FA grows via
a biochemical process that is very sensitive to the force applied to the
adhesion region by the cytoskeleton and the origin of this mechanosen-
sitivity is an important problem in cell biology.

Our model (see Fig. 1) assumes that the biochemical response of ad-
hesions to cytoskeletal stresses originates from the stress-induced elas-
tic deformation of the adhesion site. These force-induced deformations
modify the local density of the proteins found in and around the ad-
hesive junction, and thus their interactions. This, in turn, can trigger
a conformational change or a molecular reorganization that initiates the
biochemical cascade responsible for the aggregation of new proteins and
the directional, anisotropic growth of the adhesion. For example, one
could identify the mechanosensor with the layer of transmembrane, in-
tegrin proteins [11], since they are connected to the extracellular matrix
and are elastically deformed by cytoskeletal forces; this deformation can
activate conformational or organizational changes that enhance their
binding with plaque proteins [10].

In addition to the fact that adhesion to an anchoring surface makes
a junction sensitive to shear [27] (even if the latter is composed of fluid-
like assemblies of molecules), several observations support the view we
propose. First is the observation that independent of the origin of the
stress, small adhesions grow into focal adhesions (FA), that elongate in
the direction of the force. This anisotropy is predicted by our theory
since stress-induced deformations are correlated with the applied force
and exert different effects on the proximal (front) and the distal (back)
aspects of the adhesive junctions. In our model, where we relate the
biochemical response to deformations, this anisotropy also leads to an

Mechanics of 21st Century - ICTAM04 Proceedings



10 ICTAM04

anisotropic addition (or loss) of proteins. Moreover, the size and the
strength of the adhesive junctions depend on the elastic properties of
the extracellular matrix [28, 29]. Our model predicts that a local force
applied to an adhesive junction induces a pure translation of the junction
(and thus no deformation) if the extracellular matrix is very soft, whereas
strongly grafted adhesions on a rigid matrix are elastically deformed by
lateral, local stresses.

Description of the Model

The total force transmitted by FA has been shown to be proportional
to their surface [4], suggesting that the region over which stress fibers
act grows with the junction. As a model, we consider the adhesion and
the membrane-associated integrins as an elastic, thin film grafted at its
bottom surface and stressed by a local lateral force on its top surface;
“local” means here that the force only acts on a finite region of the
adhesive junction, which, as explained below, needs only to be somewhat
smaller than the total area of the adhesion by a few thicknesses of the
FA (typically, a few tens of nanometers).

The localization of the force is a crucial aspect of our model, since
a homogeneously applied stress would give rise to a uniform shear of the
adhesive junction and a translational motion of the surrounding lipid
membrane. A local, tangential stress induces a compression at the front
edge and an expansion at the back of the stressed region because the un-
stressed part is also grafted and cannot slide. In this case, a lateral force
induces anisotropic density changes in proteins located inside or close
to the stressed region. The resulting stress-induced deformation profile
can be calculated using continuum elasticity theory [27]. Our model
assumes that this change in density triggers the biochemical response
responsible for the growth or dissolution of FA. Anisotropic variations
of density thus give rise to different molecular dynamics in the front and
back regions near the edge and can result in either overall growth or
shrinking of the FA as shown below.

We first consider a quasi-two-dimensional model of FA in which the
elastic thin film is represented by particles that interact via springs of
stiffness k0 (see Fig. 3). The particles are bound to the anchoring surface
by springs of stiffness kb, that measure the resistance to normal shear.
Each particle in our model is a protein complex consisting of one integrin
molecule and the associated intracellular proteins that connect it to the
actin cytoskeleton. The elastic properties of the extracellular matrix
and its connection to the anchoring surface are included by fixing the
anchors to the surface via a sinusoidal potential which, in the limit of
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x

un-1 un un+1

a

k0

kb

f

Figure 3. One dimensional chain of interacting particles bound to anchors, as
a model for focal adhesions grafted to an extracellular matrix. The potential V (x)
accounts for the grafting properties of the extracellular matrix. The distance a be-
tween the anchors is the integrin-integrin spacing and un is the displacement of the
n

th particle from its position in absence of force. (From Ref. [30], Copyright (2004),
National Academy of Sciences, USA)

small displacements, reduces to a spring-like interaction where km is the
stiffness of the anchorage close to the equilibrium position. The case of
a grafted layer is found by taking the limit km → ∞.

Predictions of the Model

In a one dimensional version of this approach (Fig. 3, which can easily
be generalized to a two-dimensional layer), the mechanical equilibrium
for a such a system of particles pulled by a force F (x) is, in the continuum
limit:

k0a
2
d2u

dx2
− kbu + F (x) = 0, (7)

where k0 is the spring constant connecting the particles and kb accounts
for the restoring force due to the connections to the fixed and rigid
extracellular matrix; the integrin-integrin spacing is denoted by a. We
solve Eq. (7) for a gate-shaped field of force of amplitude, f , per unit
length and width L; that is, the force is only non-zero for −L/2 < x <
L/2. This force profile corresponds to the local pulling force due to stress
fibers, and induces the following spatial variation of the local, average
density, δΦ(x), relative to the undeformed density Φ:

δΦ

Φ
(x) = −du

dx

=
f√
kb k0

{

sinh x
ℓ e−L/2ℓ if |x| < L/2

sinh L
2ℓ e−|x|/ℓ sign(x) if |x| ≥ L/2.

(8)
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Equation (8) is derived in the case of a stiff matrix (km → ∞) and shows

that the deformation decreases exponentially with a range ℓ = a
√

k0

kb
.

Remembering that an actual adhesion has a finite thickness fixes the
order of magnitude of ℓ: force-induced deformations must vanish at the
bottom surface due to the grafting boundary condition appropriate to
the case of a immobilized extracellular matrix. The range ℓ is thus of
order of the thickness of the junction (∼ 100 nm). The representation
of the adhesion as an infinite elastic medium pulled by a force acting on
a region of size L is therefore valid once the actual size of the adhesion
is larger than L + 2ℓ, where ℓ ∼ 100 nm ≪ L.

The three dimensional case is treated more rigorously in [27], using
a full elastic treatment of a thin film subject to a surface force, F , on its
top surface with zero displacement boundary conditions at the bottom
surface where the film is grafted to the substrate. The density, δΦ at
the top surface is anisotropic and varies like,

δΦ ∼ F

E

h

ℓ

e−r/ℓ

√

r/ℓ
cos φ, (9)

where φ is the azimuthal angle, E is the Young’s modulus of the film,
h is the film thickness, r is the distance from the applied force, and as
above, ℓ is proportional to the thickness and is a function of the elastic
constants of the film [27]. This predicts a highly anisotropic response to
the force in two dimensions and is consistent with the observation that
the FA only grow in the direction of the applied force. The variation of
density due to a local stress is only significant close (within a distance ℓ)
to the edges of the stressed area. The predicted anisotropy means that
changes in density are therefore much smaller on the sides of the stressed
area perpendicular to the force, in accord with observations [14].

Growth of Focal Adhesions

The main hypothesis of our model is that force-induced deformations
trigger the biochemical response of FA, via conformational (e.g. activa-
tion of integrins) and/or organizational changes (e.g. binding of plaque
proteins) of molecules embedded in a narrow region of size ℓ where the
density varies. This local activation increases the rate of association of
free proteins within this area. The competition of the elastic and bio-
chemical energies determine whether additional proteins will join the FA.
Within our model, the addition of a protein complex of cross-sectional
area a2 to the FA results in a deformation with an elastic energy cost,

∆Eel proportional to f2 a2

2k where k (which replaces kb defined above) is
an effective elastic constant that includes the finite stiffness of the extra-
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cellular matrix. We now suppose that the association of a free protein
complex to the front edge of the adhesion releases an energy, ∆Ea, that
depends on the change in density at the front edge of the stressed re-
gion. In the absence of density variations, the probability of attaching
a new particle is unchanged, and ∆Ea = 0. For small variations of the
density, ∆Ea can be taken to vary linearly with the change in density at
the edge. This energy also scales with the free energy of reaction of one
protein complex, e. Adding a protein complex to an adhesive junction
thus involves an overall variation of free energy:

∆E =
f2 a2

2k
− e

f√
k k0

. (10)

When e < 0, aggregation of new particles to an existing adhesion is
thermodynamically unfavorable (∆E > 0), and an additional input of
energy is required to stabilize the protein cluster. For this thermodynam-
ically unfavorable growth process, increasing the force per unit length,
f , leads to smaller adhesions. FA can only grow when the overall free
energy of Eq. (10) is negative, corresponding to e > 0 – i.e. favorable
aggregation energy and an exothermic, local chemical interaction. How-
ever immobilization of the extracellular matrix (k → 0) or very large
forces can lead to positive value for ∆E, and, if large enough, may ar-
rest the growth process, even if e > 0. This analysis can be generalized
to predict the kinetics of growth of FA [30].
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