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Abstract The ability to predict and characterize the dynamic behavior of ocean
engineering systems prior to financial commitments of their realization
is an essential element of contemporary engineering. Linear models of-
ten do not provide sufficient accuracy and reliability to analyze and
predict the dynamics of the real system in a satisfying manner. For
example, ships in rough seas, moored offshore platforms and crane ves-
sels under wave excitation show essentially nonlinear behavior. This
paper illustrates how the methods of nonlinear dynamics can be em-
ployed for the prediction of operating limits and extreme responses of
floating structures.
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1. Introduction

The international trade rests to a major extent on maritime traffic.
The economic growth has led to the doubling of the global fleet size
during the past three decades and, recently, to a rapid increase of the
ship capacity. The marine exploitation of hydrocarbons and the power
generation by offshore wind turbines assign further challenging tasks to
ocean engineers. On the one hand, the design of mooring systems has
to guarantee the safe positioning of drilling and production platforms
in increasing water depths. And on the other hand, the development of
offshore power plants in harsh environments, e.g. the North Sea, requires
new approaches to the installation and maintenance procedures.

From statistical data we learn that at least one quarter of the total ship
losses are caused by severe weather conditions. The current regulations
and criteria for assuring the stability of a ship and preventing it from
capsizing (the so-called prescriptive rules by the International Maritime
Organization, IMO, 2002) are empirical and based on the properties of
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the righting lever of the ship in still water. Model tests show, however,
that the current stability criteria do not always correlate with the danger
of capsizing. Hence, researchers agree that the actual criteria have to be
modified. The IMO is working, therefore, on performance-based rules
which apply to each specific ship.

Several computer programs have been developed for the numerical
simulation of nonlinear ship motions in six degrees of freedom under
the consideration of ship-wave interaction. Because of the complexity
of the capsizing problem, these codes were used to evaluate statistical
properties. The probability of capsizing was estimated, and heuristic
arguments were used to interpret this probability and to derive stabi-
lity criteria. Mathematically more advanced analysis techniques were
recently applied to simple single-degree-of-freedom and regular wave ex-
citation models and, with few exceptions, to more complicated models.
By applying these techniques based on nonlinear dynamics theory it is
possible to locate stability boundaries of the systems. The state of the
art of (deterministic as well as stochastic) ship models has been very
well documented in Spyrou and Thompson (2000).

For the accurate motion analysis of moored floating structures it is
inevitable to account properly for the dynamic behavior of the attached
mooring lines. Common practice is to use rather simple models based
on a quasi-static approximation for the mooring systems to describe the
interaction between the motion of structures and the restoring forces.
These simplified models disregard the dynamics of the mooring line in-
cluding the interaction between the fluid, the sea floor and the lines. For
lines in deep water, these effects may cause a tremendous increase in the
tensile force which cannot be predicted by simplified models.

We begin with the general formulation of the equations of motion for
a floating body. Then, a basic model is derived for investigation of the
large amplitude ship roll motions and capsizing in head and following
seas. Next, we address crucial points for the dynamical modeling of
mooring systems. The dynamical investigation of a floating crane serves
as an example how analytical and numerical analysis techniques can be
employed together successfully.

2. Large Amplitude Ship Motions and Capsizing

The linear response of floating rigid bodies to waves can be described
by a coupled system of equations for the six degrees of freedom

(M + A) ξ̈ + Bξ̇ + Cξ = Re
(

fee
iωt

)

, (1)

where ξ = (ξ, η, ζ, ϕ, θ, ψ)T represents the vector of generalized coordi-
nates, as defined in Fig. 1. Matrix M denotes the inertia matrix. The
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Figure 1. Definition of generalized coordinates

added mass matrix A, the damping matrix B, and the excitation vector
fe are computed for a given wave frequency, forward velocity, and wave
direction applying potential flow theory. The hydrostatic restoring cha-
racteristics are described by the matrix C. Assuming harmonic response
with the frequency of encounter ω, the vector of the complex Response
Amplitude Operator (RAO) yields

y(ω) =
[

−ω2 (M + A) + iωB + C
]

−1
fe. (2)

For symmetry with respect to the centerline the surge, heave and pitch
motions in (1) are decoupled from the sway, roll and yaw motions, so that
the linear response for each set of degrees of freedom can be determined
independently from each other. This means that the out-of-plane modes
sway, roll and yaw motions cannot be excited by linear mechanisms
in head or following seas. The roll motion in head and following seas
is induced by the nonlinear kinematic coupling of the pitch and heave
motion, and primarily by the temporal variation of the righting lever
curve in waves.

In order to set up an appropriate model to describe the nonlinear ship
roll motion, we follow the linear order of magnitude analysis by Newman
(1977) to identify the leading order forces. In waves of wavelengths
comparable to the ship length, the hydrostatic forces and the Froude-
Krylov forces are of leading order for heave, roll, and pitch modes. Thus,
in the first place, it is important to account for the hydrostatic and
Froude-Krylov force contributions in the nonlinear model. Further, the
forces associated with heave and pitch are at least of one order greater
than those associated with the roll motion. We deduce that the nonlinear
coupling of heave, roll and pitch motion will affect the roll motion to
a higher degree than vice versa, and consider linear heave and pitch
behavior as an appropriate assumption.

The nonlinear roll equation of motion will account for nonlinear damp-
ing effects and employ the instantaneous righting moment

[Ixx +Axx(ωn)] ϕ̈+ b1ϕ̇+ b3ϕ̇
3 = Mr(ζ, ϕ, θ, t), (3)
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where Ixx denotes the roll inertia moment of the ship, and Axx(ωn) is
the hydrodynamic inertia at the roll natural frequency ωn with

ω2

n = g∆GM/ [Ixx +Axx(ωn)] , (4)

where g denotes the acceleration of gravity, ∆ the ship mass, and GM
the initial metacentric height. The damping coefficients b1 and b3 are
obtained by a nonlinear polynomial regression of experimental data for
effective damping coefficients (Blume, 1979) for the corresponding block
coefficient, beam to draft ratio, and Froude number. The righting mo-
ment Mr is determined from the pressure distribution in the incident
waves at the actual position of the ship.

Parametric Rolling in Head Seas. We investigate a fast 173 m
passenger ferry advancing in head seas at Froude number Fn = 0.3 which
corresponds to 85% of the service speed. Under these conditions, the en-
counter frequency in waves of wavelengths comparable to ship length is
about twice the natural roll frequency. This two-to-one frequency ratio
is assumed to be critical for parametric excitation. The ship responds
directly to the wave excitation in the heave and pitch modes and pro-
duces an oscillation of the righting lever curve with the frequency of
encounter. The RAOs for heave and pitch motions are shown in Fig. 2
and Fig. 3, respectively.

Linear methods generally tend to overstate the response amplitudes
at resonance, here at a wave frequency of about 0.5 rad/s for heave and
pitch motions. We consider a wave frequency of 0.55 rad/s which corre-
sponds to a wave-to-ship length ratio of 1.2. This frequency is sufficiently
far from the resonant wave frequency, so that the results of the linear
heave and pitch motion analysis can be employed with confidence.
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Figure 2. Heave RAO in head seas
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Figure 3. Pitch RAO in head seas
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Figure 5. Variation of the initial sta-
bility with respect to the wave height

In order to study the variation of the dynamic righting moment, the
righting lever curves are computed for still water, wave crest and wave
trough condition. Figure 4 compares the dynamic righting lever curves at
a wave height of 6 m. In both, crest and trough condition, the maximum
righting lever is reduced in comparison to the still water condition.

Further investigations show that the wave crest and trough curves
correspond to the limiting curves of the righting lever oscillation. Only
for moderate wave heights of up to 1.5 m it can be assumed that the
metacentric height GM oscillates about the metacentric height in still
water. The dependence of the GM -variation on the wave height is shown
in Fig. 5.

For the analytical investigation we approximate the restoring moment
curve by a cubic polynomial. The temporal variation of the initial stabi-
lity in waves is modeled by a harmonically oscillating component. The
restoring moment has the form

Mr(ζ, ϕ, θ, t) = −c(t)ϕ+ c3ϕ
3, with (5)

c(t) = g∆

[

GM +
δGM

2
cos(ωt)

]

= c1 + cδ cos(ωt), (6)

where δGM corresponds to the difference between the initial metacentric
height in trough and crest condition.

The dynamics of (3) with the restoring moment defined by (5) and
(6) can be assessed by the method of multiple scales (Oh et al., 2000).
The first approximation yields

ϕ(t) = a cos

[

1

2
(ωt− γ)

]

, (7)
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with slowly varying amplitude a and phase γ governed by

a′ = −b1ω
2
n

2c1
a+

3b3ω
4
n

8c1
a3 − cδωn

2c1
a cos γ, (8)

γ′ = σ +
3c3ωn

4c1
a2 − cδωn

c1
sin γ, (9)

where the detuning parameter σ is defined by ω = 2ωn + σ. For the
numerical values of all the parameters employed, we refer to Kreuzer
and Sichermann (2004). The fixed points of (8) and (9) correspond to
stationary solutions of (3). Setting a′ = 0 and γ′ = 0 yields a nonlinear
relation for the excitation and the response amplitude. In combination
with the variation of the metacentric height with respect to the wave
height, as shown in Fig. 5, the expected roll amplitude can be plotted
over the wave height, Fig. 6. It is observed that up to a wave height
of 4.8 m, no roll motion is excited. In the interval from 4.8 m to 5.1 m
both, zero amplitude and large amplitude motions are possible. Be-
yond the wave height of 5.1 m there exist only stable motions with large
amplitudes.

The investigation of parametrically excited roll motions in harmonic
waves represents only a special case of the more general situation in
ocean waves. However, essential information on the roll behavior in
irregular seas can be obtained from the analysis in regular waves. Nu-
merical simulations of the roll equation (3) show that for an average
wave frequency of 0.55 rad/s, large amplitude motions do not occur for
significant wave heights smaller than 4.5 m. For greater wave heights,
large amplitude motions are observed, and the maximum roll angles cor-
respond to the limiting values found in the analysis of the deterministic
case.

While in the deterministic case the choice of initial conditions deter-
mines whether the system exhibits large amplitude motions or settles
down to the trivial solution, large amplitude motions in irregular waves
occur in stochastic patterns. Figure 7 shows the time history of a nu-
merical realization, where the occurrence of large amplitude motions was
observed three times within a period of 20 minutes.

Capsizing in Following Seas. We now consider the reference ship
at Fn = 0.3 in following seas. The frequency of encounter is significantly
reduced and the righting lever curve oscillates with a longer period, so
that the ship is endangered to capsize on the wave crest before sufficient
stability is regained in the wave trough. The reference ship shows very
high initial stability (GM = 3.54 m) so that the righting lever variation
is unlikely to induce capsizing for realistic wave heights. In order to
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illustrate the mechanism of capsizing, we reduce the initial metacentric
height to 2.0 m corresponding to an increase of the ship’s center of gravity
by 1.5 m.

In contrast to the scenario of parametrically excited roll motions,
where the system behavior is studied in the vicinity of the upright posi-
tion, the capsizing mechanism has to be investigated at large deviations
from the equilibrium position. Therefore, different techniques of analy-
sis have to be introduced. Capsizing is considered to have a mechanical
equivalent in the escape problem from a potential well, where the po-
tential is characterized by the righting lever curve. Such problems can
be investigated by Melnikov’s method, which has already been applied
successfully to capsizing analyses of ships in beam seas (Jiang et al.,
2000; Spyrou et al., 2002). The roll equation (3) is transformed into the

first order system for x = (ϕ, ϕ̇)T

ẋ = f(x) + ǫg(x, t), where (10)

f(x) =
(

ϕ̇,−α1φ+ α3ϕ
3
)T

and (11)

ǫg(x, t) =
(

0,−β1ϕ̇− β3ϕ̇
3 + ϕαδ cos(ωt)

)T
. (12)

Here, new coefficients have been introduced for the sake of clarity. The
parameters α1, α3, αδ, and the parameters β1 and β3 correspond to the
normalized restoring and damping coefficients. The right-hand side of
(10) has been split into conservative and non-conservative components.
The term (11) accounts for the effect of the average righting lever curve,
whereas (12) respects damping and the temporal variation of the righting
lever curve. The parameter ǫ emphasizes that (12) is one order of magni-
tude smaller than (11). Thus, the system will behave approximately like
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Figure 6. Roll response amplitude in
regular head seas
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ẋ = f(x), which shows three fixed points corresponding to the upright
position ϕ = 0 and to the angles of vanishing stability ϕ = ±ϕv to star-
board and port side, respectively. The outer fixed points are connected
by heteroclinic trajectories

xh(τ) = ±
√

α1

α3

[

tanh

(
√

α1

2
τ

)

,

√

α1

2
cosh−2

(
√

α1

2
τ

)]T

, (13)

which separate the phase space regions of bounded and unbounded mo-
tion. The region of bounded motion, enclosed by the heteroclinic tra-
jectories, is referred to as the safe basin. In a conservative system each
trajectory corresponds to a constant energy state of the system. Hence,
every trajectory starting inside the safe basin cannot cross the basin
boundary since this implies increasing the system’s energy. The basin
boundaries for still water and wave crest condition at a wave height of
8 m are shown in Fig. 8.

Introducing the non-conservative term (12) will alter the system’s
energy and enable trajectories close to the heteroclinic trajectory to
cross the potential barrier. The Melnikov function is here derived from
a simple energy viewpoint (Simiu, 2002). The change of energy during
motion along the heteroclinic trajectory corresponds to the dissipated
energy and to the work performed by the parametric excitation

E = −
∫

∞

−∞

(

β1ϕ̇
2

h + β3ϕ̇
4

h

)

dτ +

∫

∞

∞

ϕhϕ̇hαδ cos [ω(τ + t0)] dτ. (14)

It can be shown that E is equivalent to the Melnikov function M(t0) of
the system (10). For M(t0) > 0, the system’s energy is increased, and
trajectories close to the basin boundary are likely to escape from the safe
domain. The condition M(t0) > 0 is therefore considered as a necessary
condition for capsizing. Carrying out the integrations in (14) yields

M(t0) = −k + αδ |H(ω)| cos [ωt0 + ν(ω)] with (15)

k =
2
√

2α
3/2

1

3α3

β1 +
8
√

2α
7/2

1

35α2
3

β3, (16)

H(ω) = i
πω2

α3

sinh−2

(

πω√
2α1

)

, and (17)

ν(ω) = arctan [ImH(ω)/ReH(ω)] . (18)
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The Melnikov scale factor |H(ω)| is shown in Fig. 9. When the excita-
tion is a Gaussian process with the spectral density function S(ω), the
Melnikov function is also Gaussian with mean value −k and spectral
density

SM (ω) = α2

δ |H(ω)|2S(ω). (19)

For a Gaussian Melnikov process the mean time between consecutive
zero up-crossings is

τup = 2π

√

m0

m2

exp

(

k2

2m0

)

, (20)

where m0 and m2 denote the spectral moments of order zero and two,
respectively. Provided that capsizing is a rare event, the probability that
there are no zero up-crossings of the Melnikov process during a time
interval T ≪ τup can be approximated by the Poisson distribution with
an average waiting time τup. The probability that there will be at least
one zero up-crossing of the Melnikov process in the interval T yields

PM,T = 1 − exp(−T/τup). (21)

Since M(t0) > 0 is a necessary condition for the escape from the safe
basin only, PM,T yields an upper bound for the probability that capsizing
occurs within the time interval T . For the specific case of our reference
ship and the observation time T = 1 h, we observe that the upper bound
for the capsizing probability starts to increase strongly at a significant
wave height of 7.5 m. However, arbitrary choice of the time interval T
and of a tolerable capsizing probability will produce distinct limiting
wave heights. Nevertheless, the quantitative comparison of different de-
signs is possible, when the considered time interval and the threshold
probability are held constant.
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3. Mooring Line Dynamics

The mooring lines of ocean engineering systems can spread out over
many kilometers. Typically, the lines consist of anchors, heavy chains
and nylon ropes or steel cables which are attached to the floating object.
A displacement of the attachment point with respect to the equilibrium
position causes lowering or lifting of the heavy chain links from the
ground and thus results in a restoring force. The force characteristics
of this system shows a significantly nonlinear behavior: as the displace-
ment of the vessel increases, the catenary system shows stiffening of the
restoring forces. The fluid forces on the transparent mooring lines are
obtained from the modified Morison’s equation, which gives the incre-
mental normal force dFn on a mooring line segment of length ds

dFn =

(

ρ
πD2

4

∂vn

∂t
+ Caρ

πD2

4

∂urn

∂t
+ Cd

ρD

2
|urn|urn

)

ds (22)

with the density of the fluid ρ, the line diameter D, the normalized
acceleration of the fluid ∂vn/∂t, the added mass coefficient Ca, the rela-
tive normalized acceleration between the fluid and the structure ∂urn/∂t,
the damping coefficient Cd, and the normalized relative velocity between
fluid and structure urn. Considering the dynamics of mooring lines as
a multibody system leads to a large set of differential equations with
hundreds of degrees of freedom. Dividing the catenary and the cable
into several subsystems as shown in Fig. 10 and including the appropri-
ate boundary conditions for each subsystem can be advantageous for the
integration of the equations of motion.

While in general practice only the static forces on the mooring line are
considered, the present approach reveals that the dynamical influence
must not be neglected, especially in great water depths (Kreuzer and
Wilke, 2003). Simulations show that instead of just following the motion
of the moored vessel, some parts of the mooring system might rest or
even move in the opposite direction as shown in Fig. 11.

Figure 10. Possible division of sub-
systems in a catenary mooring system

z

y

Tangent

dFn

Figure 11. Line motion behavior in
great water depths
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4. Floating Cranes

One example of a moored multibody system is a floating crane. In ad-
dition to the mooring line forces and the fluid-structure interaction, the
dynamics is influenced by coupling between the vessel and the swinging
load. In our analysis, the forces of the mooring system are simplified by
using a polynomial approximation of the static mooring line curve. For
the case of in-plane-excitation, the system behavior can be described en-
tirely by the surge, heave, pitch motion and the angle α of the swinging
load. This gives a system with four degrees of freedom: u = (x, θ, z, α)T .
Experiments with floating cranes in a wave tank have shown that such
a system may exhibit large amplitude subharmonic motion (Clauss et al.,
2000). The subharmonic response was observed to become particularly
obvious from the surge motion.

In order to investigate this phenomenon mathematically, two different
techniques are applied (Ellermann et al., 2002). The first technique is
the multiple scales method, generally applicable to systems with weak
nonlinearity. After the order of magnitude analysis and scaling of the
different parameters in the equations of motion and the relation between
the forcing and the resonance frequencies of the system, we obtain an an-
alytical approximation for the solution. The advantage of this procedure
is that it can easily be evaluated for any set of parameters. Figure 12
gives an example of solutions obtained by the multiple scales method.
The solid curves indicate the first and the second primary resonance.
The shaded areas give the range of the subharmonic P2 (period 2) mo-
tion and the dotted curve shows the amplitude of the subharmonic P3
solution.

The second technique, the numerical bifurcation analysis based on
a path-following method is applied to give a more precise solution for
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the individual motions and the position of the bifurcation points. Figure
13 shows an example for a numerically determined bifurcation diagram.
The parameters correspond to those used in Fig. 12. The bifurcation
diagram clearly shows the same two peaks for the first two primary
resonances; it gives the P2 motion at the frequencies predicted by the
multiple scales method and it also reveals the strong bending of the
curve for the P3 motion. The difficulty when applying the path-following
technique is that isolated solutions such as the P2 motion at 0.35 rad/s
cannot be found directly. Only those solutions which result from a bifur-
cation can be traced systematically. By using different free parameters
in the bifurcation analysis and possibly following periodic solutions be-
yond the range of validity of the model, some of these different solutions
can be found.

5. Conclusions

We have explored the nonlinear dynamics of ships, mooring lines, and
floating cranes. The mathematical models of these and other ocean en-
gineering systems are often of high dimensions, especially when the flow
problem has to be solved explicitly. In order to promote the under-
standing of the rather complex dynamic nature, we have focused on the
study of model equations with only few degrees of freedom. The analyt-
ical investigation of extreme ship motions has been helpful to identify
the critical parameters detrimental to the seakeeping behavior of ships
in regular and irregular seas.

The accuracy of the approximate models, however, has to be veri-
fied with respect to the solutions of full-order models. An example of
a sophisticated high-dimensional model was presented by the modeling
of mooring line dynamics. The analysis of subharmonic floating crane
response has demonstrated how the combination of analytical and nu-
merical techniques can be employed successfully. Further demand of
research is identified for the investigation of the nonlinear dynamic be-
havior of complex systems with random excitation.
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