CHAPTER 2
PARTIAL ALGEBRAS

§13 and §16 contain the elements of the theory of partial algebras.
§14 and §15 are rather technical; the reader is advised to omit the proofs
at the first reading. §17 and §18 give the characterization theorem of
congruence lattices; the reader should omit these sections completely at
first reading. Since §17 and §18 contain a long series of results, it is useful
to cover them first without reading the proofs. These two sections were
included to show the usefulness of partial algebras.

§13. BASIC NOTIONS

Let us recall that a partial algebra U is a pair <4; F) where A is a non-
void set and F is a collection of partial operations on 4. We will always
assume that F is well ordered, F=<{fo,f1, s p " Dy<ow The type 7
of the partial algebra % is defined in the same way as for algebras.

Two partial algebras %, B of the same type = are isomorphic if there
exists a 1-1 mapping ¢ of 4 onto B such that f,(ao, - - -, a,,_,) exists if
and only if f,(aop, - - -, @y, 1) exists and

fr(aO’ Tt any-l)‘P = fy(aO‘P, RS any—l?’)'

The first question that arises is why we consider partial algebras in the
study of algebras. Our most important motivation is the following:
Consider an algebra % and a nonvoid subset B of 4. Restrict all the opera-
tions to B in the following way: Let f,e F,b,,---,b, _,€B; if
Sfylbo, -+, ba,_1) € B, then we do not change f,(bo, - - -, b,,-,). However,
if fy(bo, - - -, ba, 1) ¢ B, we will say that f,(b,, - - -, b,, -,) is not defined. We
will denote by 8 =({B; F) the system that arises.

In spite of the fact that we started out with an algebra, 9B is only a
partial algebra unless B is closed under all the operations.

Thus we can say that the language of partial algebras is the natural one
if we want to talk about subsets of an algebra and the properties of
operations on these subsets even if the subsets are not closed under all the
operations. The question we are now going to settle is a very simple one.

Is the concept of partial algebras too general from this point of view ?
79
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Theorem 1. Let B be a partial algebra. Then there exists an algebra A
and 4,< A such that

B (A;F).

Proof. Construct 4 as BU {p} (p ¢ B). If f,(ao,---,a,,-1)=0a in B,
keep it. Otherwise, let f,(ao,---, @, _;)=p. Take 4,=B; the rest is
trivial.

For algebras, there is only one reasonable way to define the concepts
of subalgebra, homomorphism, and congruence relation. For partial
algebras we will define three different types of subalgebra, three types of
homomorphism, and two types of congruence relation. In many papers, the
authors select one of each (probably based on the assumption that if there
was one good concept for algebras then there is only one good concept for
partial algebras) and give the reasons for their choices. In the author’s
opinion, all these concepts have their merits and drawbacks, and each
particular situation determines which one should be used.

First we define the three subalgebra concepts.

Let 2 be a partial algebra and let @ #B< 4. We say that B is a sub-
algebra of A if it is closed under all operations in %, i.e., if by, - - -, b,,_, € B
and f,(bo, - - -, by, _,) is defined in A, then

fr(bO; ) bﬂy_l) € B.
In this case,
D(f,, %) N B = D(f,, B) for y <o(7),

where D(f,, A) and D(f,, B) denote the domain of f, in ¥, and in B,
respectively.

In the case of algebras, the new notion of subalgebra is the same as the
old one.

We shall now describe other ways of obtaining partial algebras from a
given one.

Consider a partial algebra U and let @ # B< A. For every y <o(r) we
define f, on B as follows: f,(b, - - -, b,,_;) is defined for b, - - -, b, _, and
equals b if and only if f,(bo, - - -, b,_,) is defined in A and f,(b, - - -, b, _1)=
b e Bin U. Thus for B=<B; F) we have that

D(fy’ %) = {<b0, T bny—1>l<b07 T bny-1> € D(fw slI) N B
and fy(by, - -, bs,-1) € B}.

In this case, we say that B is a relative subalgebra of %, and U an exten-
ston of B. We will use the convention that if we write, “let % be a partial
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algebra, B< A, then the partial algebra 8 - - - ”’, then B always means the
relative subalgebra determined by B. Observe that a subalgebra B of a
partial algebra % is only a partial algebra, and that a subalgebra B is a
relative subalgebra of % with D(f,, 8)= D(f,, %) N B™, for y <o().

To introduce the third kind of subalgebra, we will have to be somewhat
more careful about our notation. Let U be a partial algebra and @ # B< 4.
Suppose we have partial operations f,’ defined on B such that if
f-/’(bm ] bn,—l)zb’ t’henfr(bo’ ] bny—1)=b‘ Let

F' = <f0,:f1’: © "fvl’ C Dy<om:
Then we say that 8, =(B; F') is a weak subalgebra of 9. In this case,
D(f,’,8,) = D(fy, B) = D(f,, A).

Note that we could not use the notation {B; F) in this case because this
would suggest that the partial operations on B are the restrictions of the
partial operations on 4 which is not at all the case.

Next we define three notions of homomorphism.

Suppose that A and B are partial algebras. ¢p: 4 — B is called a homo-
morphism of A into B if whenever f,(ao, - - -, @, ;) is defined, then so is

SFolaops - - -, a’n,-l?’) and
fy(“m ) a'ny—l)‘P = fy(“o‘P’ ttty a’ny—lq’)'

By the definition of homomorphism, if f, can be performed on some
elements of 4, then f, can be performed on their images. A homomorphism
is called full if the only partial operations which can be performed on the
image are the ones that follow from the definition of homomorphism.

Formally, the homomorphism ¢ of % into B is a full homomorphism if

oo, - - "a'ny—l‘P) = ap, Qo, - ':a‘ny—l,aeA

imply that there exist by, - -, b,,_1, b€ A with bop=aep,- -, by, _1¢=
Any 1P bp=ap a’ndfr(bo’ Tt bny-1)=b-

A strong homomorphism ¢ is a homomorphism such that f,(ao, - - -, @, _1)
is defined in % if and only if f,(acp, - -, @y, - 1) is defined in B.

Every strong homomorphism is thus a full homomorphism, but the
converse is false. Every full homomorphism is a homomorphism, and the
converse is again false. In the case of algebras, all three concepts are
equivalent to the concept of a homomorphism of an algebra.

Let ¢ be a homomorphism of % into B, C=Aep, and € the corresponding
relative subalgebra of 8. If ¢ is an isomorphism of % and €, then ¢ is
called an embedding of A into B.
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We shall now discuss congruence relations.
Given a partial algebra % and ®, an equivalence relation, © is called a
congruence relation if we have:

(SP) If a,=b,(0) and if f,(ay, - -, a,,_,) and f, (b, - -, b,,-1) are both
defined, then

fr(ao’ R a"y_l) = fy(bo, R bn,—l)(®)'

A congruence relation © on ¥ is called strong if whenever a,=b,(0),
0<i<mn,, and f/a,,- -, @y, 1) exists, then f,(bo, - - -, b, _,) also exists.
The following four lemmas connect up the above defined concepts.

Lemma 1. Let % and B be partial algebras and let @ be a homomorphism
of A into B. Let ¢, be the equivalence relation induced by . Then &, is a
congruence relation.

Proof. Suppose that f,(ao,- -, a,,-;) and f,(by, - - -, b,,-1) are both
defined and that a,=b(e,). Since a,=b,(¢,) is equivalent to a,p=b,p, We
have that

fy(a'm Tt an,—l)q’ = fy(a097> ) an,—lq’) = fy(bO‘P’ Tt bn,—lq’)
= f'/(bo’ ] bn,—l)‘P:
so that

fy(a'm ) an.,—l) = f'/(bm ) bn,—l)(sw)'

Lemma 2. Let % and B be partial algebras and let ¢ be a strong homo-
morphism; then e, is a strong congruence relation.

Proof. It suffices to verify that if f,(a,, - -, @,,_1) is defined and
a;=by(e,), then f,(b, - - -, b, _;) is also defined.

Since f,(ao, - - -, @y, ;) is defined and ¢ is a homomorphism, we have
that f,(aop, - - -, @y, _ 1) is also defined and so

fy(ao: v '1a’ny—1)(P = fy(ao(Pr ©e ':any—l‘P) = fv(b0<P’ ) bn,—l‘P)'

By the definition of strong homomorphism, f,(byp, - - -, b,, _1p) is defined
if and only if f,(b,, - - -, b,,_,) is defined; thus f,(b,, - - -, b,, 1) is defined.

To prove the converse of Lemmas 1 and 2 we need to define a quotient
partial algebra.

Let U be a partial algebra and let © be a congruence relation of %. We
define the quotient partial algebra A/ O ={A/O; F) as follows:

If bo, - - -, by, -1 € A/ O, then f,(b, - - -, by, _,) is defined to be equal to b
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if and only if there exist a; € A and a € A such that b,=[a,]©®, b=[a]® and
fy(a'07 cee, any_1)=a,,

Lemma 3. Let % be a partial algebra and © a congruence relation of U.
Then the mapping @: a — [a]® is a full homomorphism of A onto /O =
<4/0; F> and e,= 0.

Proof. The proof follows directly from the definition.

Lemma 4. Let U be a partial algebra and © a strong congruence relation
of . Then the mapping ¢: a — [a]O is a strong homomorphism of A onto
A/ O and e,= 6.

Proof. Again, by the definitions.

Summarizing, we have the following theorem.

Theorem 2. Under the correspondence o — e, homomorphisms correspond
to congruence relations on the one hand and strong homomorphisms correspond
to strong congruence relations on the other hand.

There is no such concept as “full congruence relation”’, which would
correspond to full homomorphism, since “g is full” means a relationship
between 2 and B and is not a property of e,,.

As we explained at the beginning of this section, we develop the theory
of partial algebras in order to obtain a theory to use when considering the
properties of an operation on a subset of an algebra. Therefore, if U is an
algebra, o # B< A and © is a congruence relation of U, then it is quite
natural to require that ®; be a congruence relation of the partial algebra
B, and every congruence relation of 8 can be so obtained from some
algebra 2. Our next theorem states that the notion of congruence relation
as defined above does exactly this.

Theorem 3. Let B be a partial algebra and let © be a congruence relation
of B. Then there exists an algebra A which is an extension of B, and a
congruence relation ® of W such that Py= 0.

Theorem 3 will be proved in §14 and §15 in a much stronger form. It was
proved in another form by G. Gratzer and E. T. Schmidt [2]. A similar
characterization of strong congruence relations will be given in §16. A
very simple direct proof of Theorem 3 is given in G. Gritzer and G. H.
Wenzel [1].
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§14. POLYNOMIAL SYMBOLS OVER A PARTIAL ALGEBRAf

Let 7 be a fixed type of partial algebras. The polynomial symbols
P@(7) are defined the same as they were for algebras. In this case, an
a-ary polynomial symbol does not always induce a mapping of 4¢ into 4,
if A is a partial algebra. However, some of them do; this will be clear from
the following definition.

Definition 1. Let U be a partial algebra of type =, ag, -+, a,,--- €4,
y<a,p€P@(r). Then p(ag, - -, a,,- ) is defined and equals a € A if and
only if it follows from the following rules:

(i) If p=x,, for 8 <a, then p(ag, - -+, Ay + - + ) =as;

(11) ifpt(ao’ e )are deﬁnedandpt(ao’ e ) =bi (O é 1< ny)’fy(bo’ ] bn, —1)

18 defined and p=£,(po, - - -, Pn, 1), then p(ay, - - -) is defined and

P(am v ) = f?(bo’ tt bn,—l)'
The basic difficulty which arises is that if we take

a = <a0,...’ay’...>y<a

(a, € A) where U is a partial algebra, then the congruence relation ®, of
P@(7) cannot be defined as in Theorem 8.2. As a matter of fact, it can be
defined that way if and only if the a, generate a subalgebra which is an
algebra.

Our main result in this section is the following theorem.

Theorem 1. Let A be a partial algebra, aec A% a={ay, -, a,, - ).
Define a binary relation ©, on P@(7) as follows:

P=q(0,) if and only if there exist r € P®(7), p;, q; € P@(7) (0 =1 < k) such
thatpi(aO) Tty ay, . ')and qi(a’O) Tty aya o ) exiSt and

pl(ao»""ay"") = (14(%,"',617,"')
and

P="(Po "> Px-1)s
q=r(qo" " q-1)-

Then O, is a congruence relation of P (7).

Remark. If we want to find a congruence relation ® of B@(7r) such that
pl@g, - -+, ay, - )=q(ay,---,a,---) implies p=q(®), then it is obvious
that our ®; is contained in ®. One does not expect, however, that ©; is

1 The results of this section are taken from G. Grétzer [13].
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transitive. Thus the natural statement would be that the smallest such
congruence relation is the transitive extension of ©,.

Proof. Q, is reflexive; indeed, let p € P@(7); then, by Lemma 8.5,
P —3 p(xo’. . -’xy’--.)‘

By Lemma 8.6,
P(Xgy -+ Xy o) = F(Xypy o5 Xy ),
for some r € P%® (7). Thus
P=7(Xy, 5 Xy )5
since z,, (@, - * -, @,, - - -) always exists, this verifies that p=p(0,).

It is trivial that ®, is symmetric. To prove the substitution property,
let p=£,(po, " - -» Pny—l)’ q=f,(qo, " -, qn,-1) and

P = q(0,), 0=i<n,

Then

P = ni(po’, s Pi;,—1)’

q = (g’ - s ‘Iim.—1),
and pag, -+, @y -+ ), 440, - - -, @y, - - +) exist and

pj‘(aO’ . .’ay, . ) = qj{(aoi .. .’ay’ . .)'
Set n=ng+n;+ -+ +n,, 1. By the second part of Lemma 8.6, for
0 <i<n, there exists an n-ary polynomial symbol r;’, such that

7y(bg, - - -, bm—l)

’
=T (CO’ t "cn°+---+n,_1—1’b0’ o ')bn(—licno+~~-+nn‘ : ‘}cn—l)

for any values b; and ¢;. Thus we have that

! 0 0 n, —1 ny,—1

pi=" (Po’s - s Prg-10" 05 Po? "")Pn{ny_l)-l)
for all 0<i<m,.

Set
’ !
r=f(ry, -, 1h,_1)
Then
0 0 1 1 -1 n,—1 —
r(PO > Prg -1 Po ""’Pnl—l’""ng )""Pn(y,.y_l)—l) =p
0 0 n,—1 -1 —
7(qo° - CQng -1 907 Ty ‘I;.‘Z,,,_l,q) =9q,

establishing that
P = q(0,).
which was to be proved.

To establish the transitivity of @, we need a lemma.
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Lemma lT' Let P=fv(P0’ Tty Pny—l) and q=fd(q0’ R ‘In.,—1)- Then
P=q(0,), if and only if either p(@) and ¢(@) exist and p(@)=q(@), or y=3
and p,=q(0,). Moreover, if p=q(0,) and p@) and q@) exist, then
p(@)=q(@).

Proof. Let us assume that p(@) does not exist. By the definition of @,
p and q have representations of the form

P="(Pos s Pr-1)s

q= 7(‘10', Tt qllc—l)’
where p;(@)=g¢,'(@), 0Si<k and re P®(7). Since p(@) does not exist,
r#x; for 0<i1 <k, and so

r = f,(ro, -, rnv—l)'

Therefore,

pP= fr(PO’ ] Pn-,—l) = fv(rO(POIa ) Pllc—l): ) rnv—l(PO" ) pllc—l))

and

q= fé(qo’ Tt ‘In,—1) = fv(ro(‘lo', T qllc—-l), ) Tn,-l(‘lo', ] ql’c—l))'

Thus y=v and 8= and so y=3§. From the equalities given above we con-
clude that

P = 7i(Po’s *, Pr—1)
and

q; = 7i(q017 Tty q;c-l)

for 1=0,---, k—1. Since p/=q/(0,) for 0<i<k and O, has (SP), we
conclude that

PiEqi(ed)’ 7:=O>"'7k—1’

which was to be proved. The other statements of Lemma 1 are trivial.

Now we return to the proof of transitivity of the ®,. Let q=p(0,) and
P=r(0,). It follows from the definition of ©,, that if ¢(@) exists, then
p(@) and (@) exist and ¢(@) =p(@) =r(a@), hence q=r(0,).

Let us assume now that ¢(a@) does not exist. Then p(a@) and (@) do not
exist. Let # be the maximum of the ranks of p, q, and r. We prove the
transitivity by induction on n. If n=2, we get a contradiction to the
assumption that g(@) does not exist. Let us assume that the transitivity
has been proven for maximum rank <n, and apply Lemma 1 to the two
congruences.

T This lemma and the conclusion of the proof of Theorem 1 are due to G. H. Wenzel;
the original proof was much longer.
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We get that
P = f£,(Po,- -, Pry-1)s
q =190, @,-1),
r = f(r, -, Ty, _1)s

and q,=p(0,), p=ry(0O,) for ¢=0,---, n,_,. Since for a fixed ¢, the
maximum of the ranks of gq;, p;, r; is less than =, we get q;=r,(0,), and so
by (SP), q=r(0,). This completes the proof of Theorem 1.

Let %A be a partial algebra, a=<{ao, - -, a,, >, <q and assume that
each element of 4 occurs once and only once in this sequence. We consider
the quotient algebra f(7)/®, and we denote by A* the set of elements
of the form [x,] 9.

Theorem 2. The relative subalgebra W*=<{A*; F) of R@(r)/Q, 1is
isomorphic to A, and the correspondence

P a, —>[x,]0,

18 an isomorphism between A and A*.

Proof. As the first step, we prove that

[x,]0; = [x,]O,
if and only if y=3.
Assume that [x,]0;=[x,;]0,, that is,
X, = x4(0,).
Then by Lemma 1, z,(@) =x4@), that is, a,=a,, and so y=34.
Thus, we have proved that the mapping ¢ is 1-1; ¢ is obviously onto.
To conclude the proof of Theorem 2, we must verify that

Flags - ) = a (1)
if and only if
Fi[%6)0a; - - -, [xs,,_10a) = [%5]Oq. (2)
(2) is equivalent to
FlRagr s Xan, ) = %(Oa). 3)
Using the same argument as we used for the congruence
X, = X4(0y)

above, we can prove analogously that the two sides of (3) have only
trivial representations and then the equivalence of (1) and (3) follows.
This concludes the proof of Theorem 2.
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Theorem 2 gives another proof of Theorem 13.1, namely, it gives an
embedding of a partial algebra % into an algebra. While Theorem 13.1
gives the most economical construction, Theorem 2 gives the least eco-
nomical one, that is, @ (7)/ @, is the largest algebra into which % can be
embedded, such that the image of % is a generating set.

We conclude this section by describing the structure of the algebra
B(1)] 0.

First we define certain subsets 4, ,, and 4%, ,, (0=n<w,0=y<o(1))
of this algebra as follows:

A’(O,O) = A*,

where A* was defined before Theorem 2;

A(n,6> = A’(n,6> v {fa(bo» ] bna~1) I bo, ) bn.,—l € A'<n,6>};

’<n.6) = U (A(m.y) l <m, 7> < <n’ 8>), if <n: 8>9é<0’ O>’
where (m, y><{(n, 8 means that m<n or m=n and y<§ (thus the
{m, y)> form a well-ordered set of order type w-o(r)).
Lemma 2. The following equality holds:
P@(7)[0, = U (A(n,6>|0 Sn< w028 <o)

Proof. The following inclusions are trivial, by the definitions of 4 ,,,,
and A%, ,5:

!’ .

Anyy S Alney S Ay I ¥y <3,
’ .

Ay S Aoy S Amsy If n < m.

Take p € P(r). We will prove by induction on the rank of p that
(P]1Oa € A¢n,) (4)
for some n<w and 8 <o(7). If p=x,, then [x,]0; € A"y ¢y. Let
P = £,(Po; -+ Pny-1);
and assume that (4) holds for each p;, that is,

[Pt] ®d € A(ﬂ(,0¢>'

We set
n = max (Mg, -+, Ny, 1)
and
8 = max (8¢, -+, 8n,-1)-
Then

’ ’
Aoy S Ainsy S Ansr,0 S Alnrryye
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Thus,
[p10®z = f([Po]®s; - - -, [Pr,-110a) € A(ni1,yys

which was to be proved.

To get our final result in this section, we introduce the following
notation.

Definition 2. Let B be a partial algebra, X = B and
Y = XU {f(@o -, 2,-1) |2 € X}, y < o(r).

We will write
Y = X[f 7]

f fy(@o, - s @, 1) =F5(@o, - -+, Xn,-1) € Y — X, §<o(r) imply that
Y = 81 Lo = xo',' Cy &py -1 = z;ty—l?

and if whenever {x,, - - -, Tn, -1y E X, then fy(xo, - - -, Ty, _1) does not exist in
Y, for any p<o(7). If W and B are partial algebras, A is a relative subalgebra
of B and B=A[f,], then we will write B=AU[f,].

Lemma 3. 4, ,, =A%, »[f)]

Proof. We start with the following observation which follows imme-
diately from the definition of ®;:

(*) For any p € P®(7), p(a) is defined if and only if [p]®; € A*.

Now to prove Lemma 3 we first observe that the first requirement of
Definition 2 follows trivially from Lemma 1 and (*). Now assume that
{ag, -+, @p,_1}E A%y, but that filag,---,a,,_,) exists in 4, ,,. By
Lemma 1 and (*) we get that fi(ag, - - ,@,,-1) € A¢n s Let a;=[p,]0,,
P=%:(Po; - - *» Pn,—1)- Since [p]®, € A%, ,5, we have that

(P1O; € A(m,ny

for some smallest {m, AY<<{(nm,y>. By (*) and the assumption that
{@0, -, Ay, 1} E A% 4y, We have that (m, A> #0, 0> so

[P]®d € A(m,A) - A’<m,h>-

Hence p=f,(qo, -, q,,-1) for some [q;]®,; € A%y, »y, Which implies by
Lemma 1 and (*) that A= 6 and q;=p,(0;). Thus a;=[p,]0; € A a0y S 4.y
a contradiction. This completes the proof of Lemma 3.
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We now summarize what we have proved so far concerning the structure
of ()] Og:

Theorem 3. B@(7)/ O, contains a relative subalgebra A* isomorphic to
the partial algebra U; if we start with A* and we perform two kinds of
constructions,

(i) taking the set union of the previously constructed sets,
(ii) constructing X[f,] from X,

then we get a transfinite sequence of increasing subsets of P¥(7)[©, such that
the union of all these subsets is the whole set.

It is obvious from Theorem 3 that B=%*(7)/®, has the following
properties:
() B has a relative subalgebra 2+ isomorphic to 2% and A+ generates

B;
(B) if fr(bo: Ty bny—l) =fo(bo'> ) b;g—l) ¢ A+’ then 7=8 and
bo=bo’,"‘,bn,-1=b;y—1;

(7) iffy(bOa T bﬂy-l) 6A+’ then bo; ot "bny—-l edr.

Theorem 4t. Conditions (a)—(y) characterize B (r)] O up to isomorphism.

Proof. Let 9B satisfy («)-(y). Then B, ,, and B, ,, can be defined in B
as A, and A%, ,, were defined in PB@(r)/®,, respectively.
Let ¢%0,05 be an isomorphism between A+ and A*. If ¢, ,, is defined for
all {m, 8> <<{m, ), set
P = U (@m0 | {m, 8 < {n,y)).

Then ¢, ,, wil map B, ,, into 4%, ,,, and it is 1-1 and onto. If
x € By =B Sy, then x=f(xo,- -, x,,_;), where x, - - -, Xy, - are
uniquely determined elements of B, ,,. Set

’ ’
TPin,yy = fr(xO‘Pw,v)’ S xny—l‘P<n,7>)'
Then

¢ = U @mn|n <oy <o)
will be the required isomorphism. The easy details are left to the reader.
It should be noted that if A =<{0}; ">, A is of type (1>, and D(’, A)= &,

then (a)—(y) is the usual Peano axiom system of natural numbers. If % is
arbitrary with D(f,, A)= @ for all y <o(7), then ®;=w, and thus («)—(y)

1 J. Schmidt (oral communication).
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characterize B(7) up to isomorphism. In this special case, algebras
satisfying («)—(y) are called absolutely free algebras or Peano algebras in the
literature.

§15. EXTENSION OF CONGRUENCE RELATIONS

In this section we will prove a strong version of Theorem 13.3. Using the
notation of §14, we proved that 2 and 2A* are isomorphic (Theorem 14.2).
Let us identify these two partial algebras; then we can say that
PB@(7)/ @, is an algebra which contains U as a relative subalgebra.

Theorem 1. Let © be a congruence relation of U. There exists a congruence
relation ® of B (1) 0, such that ©,= 0.

According to Theorem 14.3, it suffices to prove the following two lemmas.

Lemma 1. Let A be a partial algebra, A= \J (X,|y<«), and X, =X,

Yo —
if yo<y1.
Let O be a congruence relation of X, such that

0%,, = On
f yo<y1.
Then there exists a congruence relation © of U such that
®X = @y

Y

for each y < a.

Lemma 2. Let U be a partial algebra and B a relative subalgebra of A.
Assume that A =B[f,] for some y <o(7). Then to every congruence relation O

of B there corresponds a congruence relation ® of A such that ©,= 0.

Remark. Let us note that Theorem 1 is stronger than Theorem 13.3
since we extended 2 to an algebra such that every congruence relation of
A can be extended—not merely a given one.

Theorem 1 was first given in G. Grétzer and E. T. Schmidt [2], but in a
weaker version; namely, in that paper it was proved that every partial
algebra can be extended to an algebra which satisfies the requirements of
Theorem 1 but it was not proved that this algebra can be represented as
PB@(7)/O4. As a matter of fact, that version follows directly from Lemmas
1 and 2; for that we do not need the investigations of §14 at all. A minor
difference is that in that paper a third construction was also needed to
get the algebra (besides the constructions given by Lemmas 1 and 2), but
it is easy to see that it can be eliminated.
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Proof of Lemma 1. Set

®=U(0y<a)

It is routine to check that © is a congruence relation. As an illustration,
we prove the transitivity of ©.

Let a=5b(0) and b=c(0). Then <a, b, <b, ¢) € |J (07| y <a). Therefore,
{a, by € O, (b, c) € ®"1. Suppose, for instance, that y,<y;. Then

{a, b),<b,c) e O"

and thus by the transitivity of ©”1, {a, ¢) € ®"1. The proof of reflexivity,
symmetry, and the substitution property is similar.
Finally, let us compute O, ;
Ox, = 0N (X,xX,) = (0°]|8 <a)n(X,xX,)
=U (@ nNnX,xX,)|8 <«

A

= U (0N (X,xX,)|y <8 <o)
U(@" |‘y<8<a)
=U(0"|ys8<aq

= 0,

which was to be proved.

Lemma 3. Under the conditions of Lemma 2, for a fized ©, define a
relation @ on A as follows:

(i) a=b(D), a, b € B if and only if a=b(O
(i) a=b(D), ac B,b¢ B (b=f,(%o," -, ¥n,-1)) f and only if there
exists a u=f,(Yo, - -, Yn,-1) € B such that a=u(0), x;=y(0), 0=st<n,;
and the symmetric condition holds for a ¢ B, b € B;
(iii) a=b(P), a, b ¢ B (@=fy(2o, -+, xn,—l)’ b=f,%o0, " -, yny—l)) if and
only if
(iiiy) #,=9y,(0),0=¢<n,, or
(iiig) thereexistu=f,(ug, - - -, Un,_1) € B, v=F,(vg, -+, Vn,_1) € B such
that r;=u,(0), v,=y,(0), 0=t <n,, and u=v(0).

Then @ is a congruence relation of U.

Let us note that Lemma 3 implies Lemma 2 since ®;= 0 is equivalent
to (i).

The following diagrams illustrate rules (i)—(iii), in case f,=f is binary.
Dotted lines denote congruence modulo ® and solid lines denote con-
gruence modulo ©.



Rule (i)

Rule (ii)

Rule (iiiy)

Yo b =1(yo¥;)

Rule (iiiy)

a=f(xq,X,)
o\ 01

N
N

N0 b= fyg.y,)

u=Huguy) f(B)

v =f(vy.,Vy)

Yo

93
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Proof of Lemma 3. @ is reflexive since a=a(®) follows from (i) if
a € B and a=a(®) follows from (iii;) if @ ¢ B. Since all conditions are
symmetric, ® is symmetric. To prove the substitution property, assume
that

a4 = bt(q))s 0<i< Mgy

and suppose that

So(@os =+ @py_1) and  f5(bo, - - "bnd—l)
exist. If §#y, then this implies

Qg * - "ana—bbof ) bng—l!fé(a@" . ',a/ng—l)’fé(b())' . '3bn(5—1) EB;

thus, by (i), a;=b(0) and so fy(@o, -, @py—1)=Ffs(bo, - -5 bny—1)(O)
which, by (i), implies the same congruence modulo ®.
If y=0, then a;, b€ B and a;=b,(0). Then we get the congruence

fy(a/o’ T aﬂ-y—l) = f'y(bO) ) bny—l) ((D)

by (1) iffy(ao’ T any—l)’ fy(bo’ Tt bny—l) € B; by (1111) iffv(ao’ T any—l)»
fy(bO’ T bny—l) ¢B;a’ndiff7(a’0" ) a’ny—l) EB: fy(bo, ) bny—l) ¢ B (a‘nd
in the symmetric case), then we have to use rule (ii) with

U =f7(a/0:' : ',aﬂy‘l)'

All that remains is to prove the transitivity of ®. To simplify the com-
putations, let f=f, be a binary partial operation, as in the diagrams.
Assume that a=b(®), b=c(®). We will distinguish eight cases according to
the positions of a, b, ¢ with respect to B.

(1) a, b, c € B. Then, by (i), a=b(0), b=¢(0). Thus, a=c(0®) and, by
(i), this implies a =c(®D).

(2) @, b€ B, c¢ B, c=f(co, ¢;). Then by (i) and (ii), a=5b(0) and there
exists u = f(ug, 4;) € B such that co=ue(0), ¢;=u,(0), and b=u(0).
Then a=u(0) and thus (ii) implies a = ¢(®), using the auxiliary element u.

(8) ae B,b¢ B,ce B,b=f(by, b,). Then by (ii) there exist u=
f(ug, uy) € B, v=f(vy, v;) € B such that a=u(0), uo=by(0), u;=b,(0),
and by=v0(0), b;=v,(9), and v=c(0). Then u,=v,(0) and u,=v,(0);
thus, w=f(ug, u;)=f(vo, v;)=0(0). Thus a=u=v=c¢(0) which implies
a=c(0), and by (i) we obtain a=c(P).

(4) ae B, b¢ B, c¢ B, b=f(by, b;), c=f(co, ¢;). Then by (ii) there
exists u=f(uo, ;) € B such that a=u(0), ug=b(0), u, =b,(0). We dis-
tinguish two cases according to b=c(®) by (iii;) or (iily):

(41) bo=c¢o(0), by=c,(0).
(4,) There exist v=f(v,, v;) € B, w=f(w,, w;) € B such that
bo=vo(0), by =v,(0), we=¢o( V), w; =c,(O) and v=w(O).
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In the first case, (4,), ug=co(®) and u, =c¢,(0) and thus by (ii) we get
a=c(®), using the auxiliary element u.

In the second case, (43), uo=vo(®), u; =v,(0) and thus w=Ff(ug, u,)
=f (v, v1)=v(0). Therefore a=u=v=w(0) and so a=w(O). Thus by
(ii) we get a=c(®), using the auxiliary element w.

() a ¢ B, be B, ce B. The proof is similar to that of (2).

(6) a¢ B,be B,c¢ B,a=f(ao, a,), c=f(co,¢;). Then, applying (ii)
twice, we get the existence of u=f(uo, u,) € B and of v=f(v,, v;) € B such
that b=u(0), uy=ay(0), u;=0a,(0) and b=v(0), vo=0co(0), v;=¢,(0).
Then u=v(0®) and thus a=¢(®) by (iii,), using the auxiliary elements
% and v.

(7) a¢ B,b ¢ B, ce B. The proof is similar to that of (4).

(8) ab,c ¢ B, a=f(a‘0’ a,), b=f(b01 bl)’ C=f(00s Cy)-

We have four subcases to distinguish, according to which of (iii;) and
(iiiy) give us a=b(®P) and db=c¢(D).

(8,) We apply (iii;) twice. Then a,=by(0), a;=b,(0), by=cy(0),
by =c¢,(0); thus we get a=c(P) by (iii,).

(8,) We first apply (iii;) and then (iiiy). Then a,=by(0), a, =b,(0),
and there exist u=f(uq, ;) € B, v=f(vy, v;) € B such that
bo=uo(0), by=u,(0), vo=co(0), vy =¢,(0) and u=v(0). Then
ao=uo(0), a,=u,(0); thus, by (iii;) a=c(P), using the
auxiliary elements % and v.

(83) We first apply (iii,) and then (iii,). The proof is similar to (8,).

(84) We apply (iii,) twice. Then there exist w=f(uo, u;) € B,
v=f(vy, v1) € B, w=f(wy, w;) € B, 2=f (20, 2,) € B such that
ao=uo(0), a;=uy(0), u=v(0), v,=bo(0), v,=b,(0),
bo=wy(0), by=w,(0), w=2(0), 2o=cx(0), 2,=¢,(0). Then
vo=wo(®) and v, =w,(0), and so v=f(v,, v;)=f(w,, w;)=
w(0). Consequently, u=v=w=2(0); that is, u=2(0) and
thus we get a=¢(®), using (iii;) and the auxiliary elements
% and z.

This completes the proof of Lemma 3.
To conclude this section, we give another version of Theorem 1.

Theorem 2. Let U be a partial algebra, © a congruence relation on A,
and let @=<ag, -+, Ay, >, o be a sequence of type o of elements of A,
containing each element of A exactly once. Then there exists a congruence
relation @ of P (7) such that ® = O, and x,=x,(P) if and only if a,=a,(©).

Theorem 2 is simply Theorem 1 combined with the second isomorphism
theorem (Theorem 11.4).
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§16. SUBALGEBRAS AND HOMOMORPHISMS OF PARTIAL
ALGEBRAS

In this section we will review some of the results of Chapter 1 within
the framework of partial algebras.

Since the proofs in most cases remain the same we will just rephrase the
results. Some further results will be reviewed in the Exercises.

Let % be a partial algebra and let (%) denote the family of all subsets
B such that (B; F) is a subalgebra of % with the void set added if there
are no nullary partial operations (defined in %). Then Theorem 9.1
remains true; in Lemma 9.3 we have to add the condition that
plhg, - - -, hy_,) is defined and equals a. The only result which fails to hold
for partial algebras is Lemma 9.1.

However, congruence relations of partial algebras behave differently
from congruence relations of algebras.

Lemma 10.1 remains valid and we can add that it is valid not only for
congruence relations, but also for strong congruence relations. Lemma
10.2 is in general false for partial algebras, but Corollary 3 of Lemma 10.2
and Lemma 10.3 are valid. Of course, we must change the proofs, since
they cannot be referred to Lemma 10.2. Since we needed only Lemmas
10.1 and 10.3 to prove Theorems 10.1 and 10.2, they remain valid.

We now proceed to prove for partial algebras the converse of Theorem
10.2.

Theorem 1 (G. Gritzer and E. T.Schmidt [2]). Let U be a partial algebra
and let C(U) denote the system of all congruence relations of A. Then C(A) =
(C(A); = 1s an algebraic lattice. Conversely, if L is an algebraic lattice, then
it s tsomorphic to some C(A).

Proof. The first part of Theorem 1 is just a restatement of Theorem 10.2
for partial algebras. To prove the second statement, let € be an algebraic
lattice. Represent this algebraic lattice & as (&), the lattice of all ideals
of a semilattice ©={8; v ) with 0 (Theorem 6.3).

We construct the partial algebra as follows. Let 4=S. For a,be S,
define a binary partial operation f,, so that D(f,,)={<a, b, <0, 0>},
favla, b)=a Vv b, f,,(0, 0)=0. Further, for every a, b €S such that b<a we
define a unary partial operation g,, so that D(g,,)={a, 0}, g..(a)=b,
9ar(0)=0.

For every a, b €S such that a#b, define a unary partial operation ,,
such that D(h,,)={a, b} and h,,(a)=a, hy,(b)=0.

Consider the partial algebra A ={4; F), where F denotes the collection
of all these partial operations.
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Consider an ideal I of the semilattice & and define a binary relation O,
on 4 as follows:

=y(®, ifandonlyif 2=y or =z,yel

We shall now verify that ©, is a congruence relation of . It is clear that
©, is reflexive, symmetric, and transitive.

To prove the substitution property for f,,, assume that z,=y,(®;) and
x,=y,(0;), and that fo,(x,, ;) and fo,(y,, y1) exist and (2o, Yoy #<{Z1, Y1>-
Then (zo, x,)=<a,b) and <y, y1>=<0,0> (or {yo,y,»=<a,b) and
(&g, 21> =<0, 0)). Then the conditions mean that a, b € I. By applying f,»,
we get a v b=0(0,), which is true since 0, avbe I.

Similarly, the substitution property for g,, is satisfied since a € I, b<a
imply b€ I; the substitution property for Ak, is satisfied since a#b,
a=b(0,) imply @, 0 € I.

Thus we have proved that:

(i) O, is a congruence relation.
The following statement is trivial:
(ii) 0,20, if and only if I=J.
(iii) Let ® be any congruence relation on 2 and define

I={z|x=000)}
Then I is an ideal.

To prove (iii), let @, b € I. This means that a=0(®), b=0(®). Therefore,
aVvb=fu(a, b)=f(0,0)=0(®) and soavbe I

Let a € I, b<a; then a=0(0®) and thus b=g,,(a)=¢,,(0)=0(0) and so
b € I, which completes the proof of (iii).

(iv) Let © be a congruence relation, I ={z|z=0(0)}. Then = 0,.
0, £ 0 is trivial. To prove that 0,= 0, let r=y(0), x#y. Then
€r = hzy(x) = hxy(?/) = O(G))’

that is, € 1. Similarly, y € I. Thus, z=y(0,).
Statements (i), (ii), (iii), (iv) prove that the correspondence I — ©,

is an isomorphism between (&) and €(A), completing the proof of
Theorem 1.

Now we consider the problem of defining the concept of a homomorphic
image of a partial algebra. Let 2 and B be partial algebras, and let ¢ be a
homomorphism of U into B.

Then the relative subalgebra {(Ag; F) of B is not necessarily isomorphic
to the quotient algebra (4 /e,; F>, not even if ¢ is 1-1 and onto. Consider
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the following trivial example. Let A={x}, B={y}, F={f}, r={,
D(f, W)= o, D(f, B)={y}, and f(y)=y, ¢:  — y. Then ¢ is a 1-1 homo-
morphism of (4; F) onto (B; F) but <4; F)#{de; F) since f is not
defined in {4; F), whereas it is defined in (4Ap; F>. The reason for this is
that only

D(fw We < D(fy’ Aep)

holds in general, and we do not always have equality. Therefore, we
define B to be a homomorphic image of U if there exists a homomorphism
¢: A — B which is onto and full.

Note that an isomorphism is always a full homomorphism.

Adopting this definition, we encounter no difficulty in proving the
homomorphism theorem for full homomorphisms. Also, the isomorphism
theorems carry over, without any difficulty, the first isomorphism theorem
(Theorem 11.2) for strong congruences, and the second isomorphism
theorem (Theorem 11.4) for all congruences.

We can then define endomorphisms, full endomorphisms, and strong
endomorphisms and consider the sets

EQ), EzA), and E(N)

of all endomorphisms, full endomorphisms, and strong endomorphisms of
the partial algebra %, respectively.
Then E(A)2 Ep(A) 2 Ey(A).

Lemma 1. (E(N); >, <HEp(N); >, and {EgN); > are semigroups with
unit element and the first contains the second and third and the second contains
the third as subsemigroups.

Finally, we will prove an embedding theorem for partial algebras which
is similar to Theorem 13.3 and which characterizes the strong congruence
relations.

Theorem 2. Let U be a partial algebra and let ® be a congruence relation
of . The congruence relation O is strong if and only if A can be embedded in

an algebra B and © can be extended to a congruence relation © of B such that
[@]® = [a]® forall acA.

The algebra B can always be chosen as P@(7)/ O, (see Theorem 14.2).

Remark. This condition means that ®,= ® and any equivalence class

of ® in A4 is also an equivalence class of © in B. Theorem 2 was announced
by G. Gritzer in the Notices Amer. Math. Soc. 13 (1966), p. 146. A direct
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proof of Theorem 2 without the last statement can be given using the
construction of Theorem 13.1.
Proof. We first prove that if such an embedding exists, then ® is strong.

Recall that a congruence relation © is strong if whenever f,(ao, - - -, @n, 1)
€ 4 and a;=b,(0), then f,(b,, - - -, b,,_,) is defined in A.
Since f,(b, - - -, b,,_1) is always defined in B, all we have to prove is that

it is in 4. Set a=f,(ao, - - -, @,,_1); then by assumption (@]© =[a]®.

Since © is an extension of @, we have that a,=b,(0) and thus

f@o, s @n, 1) = fybo, - -+, ba,—1)(O),
that is,

Folbos -+, b, —1) €[a)® = [a]® < 4.
Thus,
fy(bo’ T bﬂ-y_l) € A:

which was to be proved.
Now assume that © is a strong congruence relation and put

B = s»B(o‘)(T)/ ®a-

We extend ® to B using Lemmas 15.1 and 15.3.

We prove that if we assume that © is a strong congruence relation, then
[@]® =[a]® holds for a € 4.

Suppose that in Lemma 15.1, (4,; F) is the partial algebra we start
with and that we know that for each y <«,

[a]®° = [a]®.
Then

[@]® = U ([a]O" ]|y < «)
= U ([@]0°]|y < )
= [a]0°,

so that this property is preserved under the construction of Lemma 15.1.

Now consider the construction in Lemma 15.3. Lett a € B and assume
that [@]© #[a]®. Then there exists a b ¢ B such that a=b(®). By Rule (ii)
this means that b=f(x,, ;) and that there exists a u=f(y,, y,) € B such
that a=u(0), y,=2,(0®) and y,==x,(0). The last two congruences to-
gether with the existence of f(y,, ;) imply (since ® is strong) that
f(xo, ;) exists in B, that is, b € B, which is a contradiction. This com-
pletes the proof of Theorem 2.

1 We use the notation of Lemma 15.3.
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§17. THE CHARACTERIZATION THEOREM OF CONGRUENCE
LATTICES: PRELIMINARY CONSIDERATIONS

Let A={A; F) be a unary partial algebra and let 8={B; F) denote the
algebra 8@ (7)/ O, of Theorem 14.2. B contains U as a relative subalgebra
and A4 generates B. If g and h are unary operations, we will write gh(x) for

g(h(x)) and similarly for » unary operations. If b € B, then we can always
represent b in the form

*) b=g,---gu(a); acd and g,eF*

where F*=F U {e} and e is the identity function on 4, that is, e(a)=a
foralla € 4.

A representation (*) of b is reduced provided b € 4 and the representation
isb=e(b),orb ¢ 4 and a ¢ D(g,, A).

It is obvious from Theorem 14.3 that every element of B has a reduced
representation.

Lemma 1. The reduced representation is unique, that is, if g, - g,(a)
and hy - - - hy(a’) are both reduced representations of b € B, then a=a’, r=s,
and g, =hy, -+, g, =h,.

Proof. This follows easily from Theorem 14.4. A more direct proof is the
following.

Let be B; thenbe 4, ,, for some n<w, y<o(r) (Lemma 14.2). We will
prove the statement by transfinite induction on (n, y>. The statement is
known for A= A", ¢,. Assume that it has been proved for all elements of
A m.sy With (m, 8> <(n,y)> andletbe 4, ,,.

We can assume by the induction hypothesis that b ¢ A', ,,. Thus, if
b=g, - -¢,(a) is any reduced representation of b, then g,=f,. Let b=
g:' - - - g5 (a’) be another reduced representation of b. Then, again, g,"=f,.
Thus, by Definition 14.2 and Lemma 14.3, f,(95 - - - g,(@))=f,(g2" - - - g5'(a))
if and only if g, - - g,(@)=g," - - - 9;'(a'). Now we can apply the induction
hypothesis to this element. This completes the proof.

Summarizing, we have that every element of B has a reduced repre-
sentation and equality of these representations is formal equality.

Let us assume that there are in F three unary partial operations g,, g,,
and 93 such that D(gl’ 91):{(1}, D(ga7 QI):{b}, D(gza QI): g, gl(a)=65
gs(b)=d, a,b,c,de 4, and a # b. Form

A" = Alg,1 v Alg.] v Algs] = B.

We define in A" ={A4"; F) a relation ®: z=y(®) if and only if x=y or
z=¢,(b), y=95(a) or x=g5(a), y=9,(b), or x=g,(b), y=gs(a) or z=gs(a),



§17. CHARACTERIZATION THEOREM (PRELIMINARIES) 101

y=go(b). Obviously, @ is a congruence relation. Set A'=A"/®. By identi-
fying [2]® with x, we get the diagram for %’. Note that D(f,, A')=
D(f,, A) if f,#g, and D(g, A')=4,i=1,2, 3.

—8,(b) =g,

\
N——g,b) =g,

Let ® be a congruence relation of A. O is admissible provided either
a#b(0) or a=b(0) and c=d(0).

Lemma 2. Let O be a congruence relation of A. Then © can be extended to
A’ if and only if O is admissible.

Proof. Assume that ® can be extended to U’, that is, there exists a
congruence relation @ of A’ such that ®,= 0. If a=5b(0), then a=b(D),
and 50 0=, (a) =9, (5) = 92(a) = go(b) = ga(@) =g5(b) =d(®), that is, c=d(®),
which was to be proved.

Assume that O is admissible. Define a binary relation ®* on 4’ as
follows: x=y(0*) if z,ye A and x=y(0), or z,ycg,(4) for some 1,
x=g,("), y=9i(y'), «’, y' € 4, and z'=y'(0).

We claim that the transitive extension ® of ®* is a congruence relation
and ®,=0.

Let us agree that go(z)==, for €A and that the elements g;(a) and
g:(b), =1, 2, 3 are called the extreme elements of A’. If n=14 (mod 4),
0<¢<3, then g¢,(4) stands for g¢,(A4). Then it is obvious that
g:(4) N g;,1(A4) consists of one element which is an extreme element.

Since © is transitive on A, ©* is transitive on each g;(4). This implies
that if u, v € 4’ and w=v(®), then a nonredundant sequence u==x,- - -,
2, =v such that z;_, =z,(®*) consists of » and v and of extreme elements.
Since an extreme element cannot occur twice in a nonredundant sequence,
we deduce that n £5.

Suppose that u, v € g;(4) and u=v(P). Let u=x,, -, x,=v be a non-
redundant sequence, as before. If n#1, we may have n=3, 4, or 5 (if u
or v is an extreme element the cases n=3 or n=4 may occur). By possibly
adding a slight redundancy, and by symmetry, we may assume that n=5,
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zy, 4 € g;(4). Then g;(a)=g,(b) (O*) for j=1, 2, or 3, so a=b(0®) which
implies that g;(a)=g;(b) for all ¢=1, 2, 3 and c=d (©). Thus, we have u=
z, =x,=0(0%*), that is, u=v(0*).

This proves that @, = 0%, 4 and, in particular, ®,= ©. It remains
to prove that ® is a congruence relation. @ is obviously an equivalence
relation. The substitution property for all f,#g; follows from ®,= 0 and
for the g; from the definiton of ®*. This completes the proof of Lemma 2.

Corollary 1. Let ® be an admissible congruence relation of A and @ the
smallest extension of © to A'. Then u=v(D) if and only if, for some 1, one of
the following holds :

(1) u, v e g (4) and u=v(O*).
(i) u € gi(4), v € g, 41(d) and for {x} =g,(4) N g, ,1(4), we have u=2z(0O*)
and x=v(0O*) (and the symmetric case).
(iii) u € g,(4) and v eg;,5(4) and for {z}=g,(4) N g;,1(4) and {y}=
Gi+1(4) N g, 0(A) we have u=zx=y=v(0*), or the same condition for
{}=g:(4) N gi_1(4) and {y'}=g,_1(4) N g;_5(4).

Proof. We already know the cases (i) and (iii). To prove case (ii), it is
enough to observe that in this case there are only two nonredundant
sequences, namely, the one given in (ii) and wu,g(4) N g;_,(4),
gi_1(A) N g;_5(A4), g;_o(A) N g;_g(a), v. In the latter case, we will have
g;(@)=g;(b)(®*) for j=1,2 or 3. Thus, a=b(0®) and all the extreme
elements are congruent to one another and to » and ». In particular,
u=x=v(0*) for the x given in (ii).

Ifu=xy, -, z,=v and x;_; =2,(©*), then let us call this a ®-sequence
connecting u and v.

Corollary 2. In cases (i) and (ii), the shortest ®-sequence connecting u and
v 18 unique; tn case (iii), there are one or two shortest ©-sequences.

Lemma 3. Let O be a congruence relation of A. Then there exists a smallest
admyissible congruence relation @°= Q.

Proof. If a#b(®), then ®= O° and if a=5b(®), then G°=06 v O(c, d).

If © is an admissible congruence relation of %, then ® will denote the

smallest extension of ® to 2. Note that ® is described by Corollary 1 to
Lemma 2.

Lemma 4. Let u,v € A'. Then there exists a smallest admissible congru-

ence relation ®(u, v) of U such that u=v(D(u, v)).
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Proof. We distinguish three cases as in Corollary 1 to Lemma 2. Let ©
be an admissible congruence relation such that u=v(0).

(1) u,v € g;(4), that is, u=g,(u’) and v=g,(v'), u’, v’ € 4. Then u=v(0)
if and only if u=v(®*), which is equivalent to %' =v'(®), that is,
O(u’, v') < ©. This implies that in this case

D(u, v) = (O, v'))°. (1)

(i) w e gi(4),v € gi1(A4), u=g(u'), v=g;,1(v'). Let {a} =g,(4) N g;+1(4)
and z=g;(x')=¢;,,(¢"). Then u=v(®) if and only if u=x(O*) and
z=v(0*), which implies that

D(u, v) = (O(u',z') v O(z", v))°. (2)

(i) u € g,(4), veE g, 2(4), u=giu'), v=¢;,4(v'). We distinguish two
subcases.

First, let i=0 (the case i=2 is similar). Then u=v(0) if and only if
u=c=g,(a)=g,(b) =g5(a) =v(0%), or, u=d=g;(b)=gs(a)=g,(b)=v(0*).
Let

0, = Ou,c) Vv Oa,db) v O(a, ')
and
@, = Ou,d) v O(a,b) v O(b, ).

Then either ®;, < ® or ®,< 0. Thus, if we prove that ©,°= 0,° then
®(u, v) = 0,° will be established. Observe that a=b(0,°); thus, c=d(0,°).
Therefore, d=c=u(0,°); that is, O(u, d) < 9,°.

Since O(b, v')< 0,° we have 0,<0,° Similarly, 0,<0,% thus,
0,°= 0,°. Therefore, in this case,

D(u, v) = (O(u, c) v Oa,d) v O(a, v'))°. (3)

Second, let ¢=1 (the case =3 is similar). Just as in the first subcase,
we form the congruence relations ®,= 0O(u’, b)v O(a, b) v O(a, ') and
O,= 0, a)V O(c, d) v O(b, v') and again we have that u=v(®) implies
0,50 or 0,0. We will establish 0,°<©,° which will prove
D(u, v)= 0,°.

Indeed, u'=b=a(®,); thus, O(u’, a) < 0©,°. Since 0,° is admissible and
a=b(0,%, we have O(c, d)< 0,° Finally, b=a=0v'(0,%; thus, (b, ")
< 0,° Thus, @,=< 0,° which implies that ®,°=< ®,° Thus, in this case,

D(u, v) = (O, a) v O(c,d) v O, ). 4)
This completes the proof of Lemma 4.

We will now generalize the results of Lemmas 2 through 4.
Consider a partial algebra &=<8; F), where

F={gMreA i=1,23V{f,|ceQ}
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and D(g,")={a"}, D(gs")={0"}, D(9.")= 2, 9."(a") =0, g5"(b")=d" and

D(f,)=S8. In other words, every partial operation is either a member of a
pathological triplet, g,, g5, g5 discussed above, or it is a unary operation.
We call the congruence relation ® of & admaissible if for any A € A, either
a*#£b(0) or a*=b)(0) and c*=d*(0). We assume that a* # b* for Ae A.

Lemma 3'. Let © be a congruence relation of {(S; F). Then there exists a
smallest admissible congruence relation ©°= Q.

Proof. Define @,=0, 0;,,=0,v V (0(c", d*)| A€ A and a*=b%(0))).
It is routine to check that ©°= \/ (0,|i<w).

Let & be the partial algebra which is constructed from & using g,%,
g2, and g3* the same way as A’ was constructed from o using g,, g5, and gs.
Assume that all the S* are constructed in such a way that S* N §'=8 if
A vEA, AFv.

Define 8'= | (8*| A € A). Defining the operations on §’ in the natural
way, we get the partial algebra &'.

Let © be a congruence relation of &. It is obvious that if ® can be
extended to &', then © is admissible. If ® is admissible, then it has a
smallest extension ®, to (S§*; F) by Lemma 2. (Note that we used the
obvious fact that if ® is admissible in the new sense, then it is admissible
for any fixed A € A in the old sense.)

We define a relation ® on S’ as follows: let u=v(®) mean u=v(®,) if
u,ve8; if ueS* and ve 8, \,ve A, A#v, then let u=v(P) mean that
there exists an « € § such that u=z(®,) and x=u(D,). ® is well defined
because if u, v € S* and u, v € S with A# X, A, X’ € A, then u, v e S* N SY
=8. Since (9,)s=(D,)s= 0, we get that u=v(P) means u=v(0), which
does not depend on A. @ is obviously reflexive and symmetric, and the
substitution property follows from the simple observation that for any
u,ve S and operation f, if f(u) and f(v) are defined, then there exists a A
such that u, v, f(u), f(v) €S*. ® is also transitive. Indeed, let u e S,
v €S2, we 8, and u=v(0), v=w(D).

First, let A; % A;. Then there exists an x €S such that u=2(®,,) and
x=v(D,,). If A;=A;, then u=2(®,,) and x=w(D,,), establishing u =w(D).
If A;#A;, then there exists a y € S such that v=y(®,,) and y=w(D,,).
This implies that x=v=y(®,,) and since »,y €S, we have z=y(0).
Consequently, x=y(®, ). Thus, x=y=w(®,,). We proved that u=x(®D,)
and x=w(®,,); thus, u=w(®). The case A, =A, can be discussed as was
the case Ay = Ag.

By definition, ® is an extension of ®. It is also obvious that again ® is
nothing more than the transitive extension of ®@*. (®*is defined for &’ the
same way as it was for A’".)
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Theorem 1. A congruence relation © of & can be extended to &' if and
only if © is admissible. If © is admissible, the smallest extension of © to &'
18 the transitive extension of @*. Let u, v e 8'. Then there exists a smallest
admissible congruence relation ®(u, v) such that u=v(D(u, v)), where B(u, v)
denotes the minimal extension of ®(u, v) to S'.

Proof. We have proved all but the last statement of Theorem 1. It has
also been established for u, v € S* for some A € A.

To establish the last statement in the general case, it is useful to
introduce the following terminology.

Let u, v e 8" and let c:u=ux,, - - -, 2, =v be a sequence of elements having
the property that, for each 7, z,_, and x, € g\(S) for some Ae A and
J=1,2,3. Then x;,_,=gx;_,) and x,=g,\(x,*), where z;_, and x;* are
uniquely determined elements of S. We form the congruence relation

( V (G)(x;—b xi*)|1‘=1’ ] n))o

and we call this congruence relation @7, the congruence relation associated
with the sequence o. We will again call o a ©-sequence if x,=2,,,(®*) and
o is nonredundant. a is an extreme element of S’ if it is an extreme element
of some S?. It is obvious that all members of a ®-sequence, except the
first and last one, must be extreme elements; any two consecutive mem-
bers are in some ¢;*(S); and excepting the first and last elements there are
at most two consecutive extreme elements of S? in it; if any sequence ¢ has
these properties, we will call it a path.

If © is an admissible congruence relation of @ and o : u=2,, - - -, 2, =v
is o ©-sequence connecting u and v, then ®°< ®. Hence, to prove the
existence of the smallest admissible ® such that u=v(®), we have to find
all paths o,, - -between u and v and we have to prove that there is a
smallest congruence relation of the form ©¢.

Let T™ denote the set g,*(S) U g,2(S) U ¢5(8).

Now let u e 8", ve 8, u,v ¢ 8, A # v, and take a path ¢ connecting u
and v. The sequence o breaks up into three parts, o, in T, 0, in S, and o,
in TV let o) tu=w,, - -+, Ug; 05 : Ug, Vg; T3 : Vg, * - -, T, =v. Then u, is ¢c* or
d* and v, is ¢” or d”. If ¢* or d* is not u,, then denote it by u, and similarly
for v,. Further, let o, denote the path between w and u, which does not
contain .

(1) If o, contains two extreme elements, then for the sequence ¢’ which
consists of o,"; %,, vy; and o; we have @7 < Q°.

Indeed, by assumption, g*a) and g*(b) are in o,; thus, a*=b*(0).
Hence c*=d*(0Q7), that is, u; =u,(©°) and @° < ©°. This, of course, implies
that 07 < ©°.

Therefore, we can find a o connecting % and v such that ®7< @ for
any path ¢’ connecting % and v, in the following way: if u € ¢,*(S), then
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choose ug=c"; if u € g;(8), choose u,=d*; otherwise, let u,=c* or d*. We
choose v, similarly. Then let o,(resp. o3) be the path connecting « and
u, (resp. v and v,) and let o equal oy; ug, vg; 05. This completes the proof
of Theorem 1.

In the next step we want to extend the result of Theorem 1 to the
algebra B which we get from &’ by Theorem 14.2.

Lemma 5. Every element be B,b¢ 8, has a representation of the form
(**) b=hy- - hgMa)

where n=1, hy,---,h, e F, and a € 8S. If a#a*, a#b*, and a#c’, ad’,
for all ve A, then the representation (**) is unique. In general, if b=
hy' - -hy'gy (a') is another representation of b, then for some p with 0 <p=n,
O0<p<mwehaveh,=h, fort<pandh,, - -hgr(@)=h,, - kb9, )eS".

Proof. Trivial from Lemma 1 and the construction of §’.

Let T by, - - -, h,) denote the set of all elements of the form
hy - - hagita)
for a € § and
TMby, -+ hy) = TMhy, -5 b)) O TP by, hy) U TMby, - - -, by).
In case n=0, T will stand for g(8S).
Corollary 1. T hy, -+, h,) and T}, ((hy, -+, k), t=1,2, have exactly

one element in common, namely for 1=1, hy -+ - h,g, (b)) =hy - - - hogot(a?),
for i=2, hy - - - hog (b)) =h, - - - hygs(@?).

Corollary 2. Let be T Mhy, - - -, h,); then b has one and only one repre-
sentation of the form
b=h - hgMa), aecsl.

In other words, if we already know that b € T*(hy, - - -, k), then with
fixzed by, - - -, hy, Aand ¢ in (**), a is uniquely determined.
Let us introduce the following notation:

So=28,---,8, = {hx)|x€8,_,, he F*}.
Then Sy=8,< --- <8, --- and
Usli=12,---)=B.

Corollary 3. T*(h,,- - -, k,) and S, have one or two elements in common,
namely, by - - - hy(*)=hy - - - hogiNa?) and kg - - hy(dN)=hy - - - hagg(BY).
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Lemma 6. The following equality holds:
S =800 U (TMhy, -+, byey) [ A€ A By, - By_y € F).

Proof. Observe that S;=8U {J (T*| A A). Hence,

Sy =8, U {h(z)|x €8, he F}
=8, U U ({ha)|ze T |Ae A, he F)
=8, VU MTN|AeA ke F)
=8, UU (TNh)|AeA, ke F).

This proves the statement for n=2. The proof of the general case is
similar.

Next we define the relation ®* on B. Let ® be an admissible congruence
relation of &; let u=v(0O*) ifu,v e Sand u=v(0), or u,ve T Nhy, -, hy)
and «'=v'(®), where wu',v" are given by wu=h, - -h,g Mu') and
v=hy - kg 0").

Then ©* is well defined; indeed, » and v uniquely determine »’ and v’ if
hy,---,h,, A and 7 are fixed (Corollary 2 to Lemma 5). Furthermore, if
u,v€ TMhy, -+, h,)and alsou, v e T*(gy, - -+, 9p), With A#v or ¢4, then
u=wv, since if us£ v, then one of the representations u=h, - - - h,g,* (%) or
v=hy - h,g ') is reduced.

Lemma 7. O* is reflexive and symmetric. It is transitive on S and on
each TMhy, -+, k). Finally, if u=v(0%), then h(u)=h(()(O%) for any
heF.

Proof. All the statements are trivial since if u#v, u,v € T hy, - - -, hy),
then u and v uniquely determine n, hy, - - -, h,, X and 7, and keeping these
fixed %’ and v’ are unique.

Let @, denote the transitive extension of ®* in §,,.

Lemma 8. @, is a congruence relation of &,=<{8,; F>. Furthermore, if
®, _, denotes the minimal extension of ®,_, to S, then ®,_,=,.

Proof. The first statement of this lemma follows from the second state-
ment since we know that @, is a congruence relation of @ =&,; thus, by
the second statement, ®, = @, is a congruence relation of &,, and so on.

We prove the second statement by induction on ».

®,= @, was proved in Theorem 1.

Assume that @,,_, = @, has already been proved for k <n. This implies
that @, _, is a congruence relation of &, _,. It follows from Lemma 7 that
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®,_,=®,. Finally, we prove that ®,_, <®,. Let u, veS,_;[h]=8,_, U
{h(x)| x € 8,1} This notation is justified, since S,_, U {h(z)|z€S,_1}
satisfies the requirements of Definition 14.2 by Lemma 5. Let ¥, denote
the minimal extension of ®,_, to S,_;[k]. We will prove that u=v(¥},)
implies w=v(®,). Lemma 8 follows from this since @, _, can be described
in terms of ¥}, in just the same way as ® was described in terms of @, on
page 104, and this description implies b, <0,

So, let u=v(¥,). Then by Lemma 15.3, we have to distinguish three
cases:

(1) w,veS,_;. Then u=v(D,_,); thus, u=v(d,).

(2) ueS,_1,v¢8,_;. Then v=n~(v,), and there exists a w=h(w,) € S,
such that u=w(®,_,) and w;=v,(P,_;). Thus, there exist sequences
U=xg, +, Ty=w and w;=yq, -, Y,=v; such that z,_,=x,(0*) and
Y;—1=y;(0*). By Lemma 7, Ah(y,_,)=h(y,)(0*); thus, the sequence
U=Tg, -+, Ty=wW=h(w;), A(Yy), -, M(yy)=h(v;)=v will establish that
u=v(D,).

(8) u,v¢S,_,. Using the condition in Lemma 15.3 and Lemma 7, we
get u=v(®,) in a manner similar to case (2). This completes the proof of
Lemma 8.

Theorem 2. Let u,v e B. Then there exists a smallest admissible con-

gruence relation © of & such that u=v(0), where ® denotes the smallest
extension of ® to B.

Proof. We will use the following notation. If ® is an admissible con-
gruence relation of &, then O™ will denote the transitive extension of @*

in 8,. By Lemma 8, if u,v€S,, then u=v(®) if and only if u=v(0O").
Since for any u, v € B we have «, v € S, for some n, Theorem 2 is equiva-
lent to the following statement.

If u, v € S,, then there exists a smallest admissible congruence relation
® such that u=v(O").

We will prove this statement by induction on n. If n=1, then this is
simply Theorem 1. Assume that the statement has been proved for n—1.

If u=v(0O"), then there exists a sequence o : u=x, - - -, , =0 such that
x;_; =x;(©*). By Corollary 2 to Lemma 5 and the definition of ©*, we can
find elements x;_, and z;* of S such that z;_,;=x*(®) if and only if
x;_ =x,(0%).

Thus, we can associate again with ¢ an admissible congruence relation
O and then necessarily ®7 < @. Hence, again, we have only to find all
paths oy, - - -connecting 4 and v and we have to prove that there exists
a smallest congruence relation of the form ®7.

Let we T*hy, -+, hy_y); if ve TNy, -+, h,_,), then we find © as in
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Lemma 4. If v ¢ T*(hy, - - -, b,_,), then any path u=x,, - - -, ¥, =v breaks
up into two parts o, : u==x,, - - -, 4o and oy : U, - - -, T, =v, Where

U € T)\(hl: Tt hn-l) N Sn—l’

that is, ug="hy - h,_,(c*) or hy - - h,_;(d*). Hence, the principle (}) of
Theorem 1 applies in this case as well, that is, if the sequence o, contains
two extreme elements, then we take o,’, the other nonredundant sequence
between u and u,, and the sequence o', consisting of ¢,” and o,, will have
the property that @ £ @°. Thus, we can find the o, for which ®° is mini-
mal in the following manner. Let %, be that one of &, ---hk,_,(c*) and
hy -+ h,_1(d*) for which o, : u, u, is a sequence connecting % and wu,; if
neither of them has this property, then u, is either of them. In this case,
let o, be the shortest path connecting » and u,. If ve§,_,, we choose
v=vy. fve TV(ky, -, ko_1), v#A, v ¢S, _,, then we choose v, in the same
manner as we have chosen u,, and we define o; the same way we defined
a,. Since u, and v, are in S, _,, there exists a smallest congruence relation
©, such that u,=vy(O% ). Let o, be a nonredundant ®,-sequence which
connects u, and v,. Then the sequence o which consists of o, o5, and o3
will be the required sequence.

§18. THE CHARACTERIZATION THEOREM OF CONGRUENCE
LATTICES

Theorem 1. Let & be an algebraic lattice. Then there exists a partial
algebra B ={B; F) with the following properties:

(i) The congruence lattice of B is isomorphic to L.
(ii) Every f € F is unary and f is either an operation or D(f) consists of
two elements.
(iii) B consists of all finite subsets of K containing 0, where K is the set of
all compact elements of Q.
(iv) O is a compact congruence relation of B if and only if ® = O(a*, {0}),
where a*={a, 0}, a € K the representation of ® in this form is unique.

Note that this result is a sharpening of Theorem 16.1. The proof is
also quite similar.

Proof. Let K be given as in (iil). For a € K, let us put a*={a, 0}; in
particular, 0* ={0}.

We define B as the set of all finite subsets of K containing 0. Then
{B; U, N> is a distributive lattice with 0* as the zero element. It is also
relatively complemented, which means that if >y >z, then there exists a
¥, such that y U y, =2 and y N y, =2. This implies that there is a 1-1
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correspondence between congruence relations and ideals; we obtain this
correspondence by letting the congruence relation ® correspond to the
ideal Ig={x|2=0%(0)}. If I is an ideal, then ©(I) will denote the con-
gruence relation which corresponds to I. Let us define F to consist of the
following operations and partial operations: for every x € B, we define
k., and 7, by k(y)=x Uy and L (y)=xNy; for a,be K, a#b, a0,
b#0, we define g,, by D(g,,) = {{a,0,0},0*} and g¢,,({a,b,0}) = (a v b)*,
9ap(0*)=0*. Finally, for a,be K, 0£b=<a, we define h,, by D(h,,)=
{a*, 0%} and hg,(a*) =b*, hy,(0%)=0%.

Let F denote the collection of all partial operations defined so far; let
F, denote the collection of all operations k, and ., and set 8=(B; F).

A binary relation © is a congruence relation of {B; U, N) if and only
if it is a congruence relation of (B; F,> (cf. Exercise 1.50). Thus, every
congruence relation of B is also a congruence relation of (B; U, N).

Let I be an ideal of (K; v ) and let I denote the family of all finite
subsets of I containing 0. Then I is an ideal of (B; U, N). Thus, I deter-
mines a congruence relation ®(f). We claim that the mapping I — O([) is
an isomorphism between the lattice of all ideals of (K; v ) and the con-
gruence lattice of (B; F). The details of the proof of this step are the
same as those of Theorem 16.1, and so they can be omitted.

Now all the statements of Theorem 1 are clear; (iv) means that the
compact elements correspond to the principal ideals.

In this section, let us call a partial algebra regular if it is of the type
described on pages 103 and 104.

Lemma 1. Let {B; F') be a partial algebra satisfying (ii) of Theorem 1.
Then there exists a regular partial algebra { B; F,)> such that © is a congruence
relation of {(B; F") if and only if © is an admissible congruence relation of
{(B; Fy).

Proof. Trivial. All we have to do is to replace every fe F' for which

D(f) consists of two elements a, b by three partial operations fi, f,, f5 in
the obvious manner.

Theorem 2. Let A={A; F) be a regular paitial algebra having the
property that if © is a compact congruence relation of U, then O° (the smallest
admissible congruence relation containing ©) is of the form (O(a, b))° for
some a,b € A. Then there exists another regular partial algebra N, =<{A4,; F,>
such that the following conditions hold :

(i) A< A, FSF; and {4; F) is a relative subalgebra of (A,; F).
(ii) Every f € F is fully defined on A4,.
(iii) Every admissible congruence relation © of {A; F) has one and only
one extension © to an admissible congruence relation of (Ay; Fy).
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(iv) Every admissible congruence relation @ of (A,; F,) can be written in
the form ® =0 for some admissible congruence relation ® of (A; F.

(v) If O is a compact congruence relation of (A,; F,>, then ©° is of the
form (©(a, b))° for some a, b€ A,.

Proof. Let us construct the partial algebra (4’; F') as on page 104 and
then let us consider the algebra (4,; F> which we get from <{4’; F) by
Theorem 14.2. By Theorem 17.2, for u, v € 4,, there exists a smallest
admissible congruence relation ® of {4; F) such that w=v(©). This ©
was constructed as the least admissible congruence relation containing a
compact congruence relation. Hence, by assumption

0 = (O(a(u, v), b(u, v)))°.

Of course, a(u, v) and b(u, v) are not necessarily unique but by the Axiom
of Choice we can fix them.

For every u, v € 4,, we define k,, by D(k,,)={u, v} and k,,(u)=a(u, v)
by, (v)=b(u, v). Let F'=F U {ky,|u,ve 4}

Then (4,; F’) has the following properties:

(') A< A,, F<F’, and {(4; F) is a relative subalgebra of (4,; F).
(ii’) Every f e F is fully defined on 4.
(iii’) Every admissible congruence relation @ of (4; F) has one and
only one extension © to a congruence relation of (4,; F').
(iv’) Every congruence relation @ of (4,; F') can be written in the
form ® =0 for some admissible congruence relation @ of <A4; F).

Of these, (i’) and (ii’) are trivial. To prove (iii’), first we note that by
Theorem 17.1 and Theorem 15.1, every admissible congruence relation ©
of (A; F) can be extended to a congruence relation 0 of (4,; F)>. We
claim that O is a congruence relation of (4,; F'), that is, the substitution
property can be proved for the k,,. In other words, u=v(®) implies
a(u, v)=b(u, v)(@). Indeed, u=v(®) implies that © = ®(u, v)=(O(a(u, v),
b(u, v)))°, where ®(u, v) denotes the smallest admissible congruence re-
lation of (4; F) such that u=v(®(u, v)). Hence, a(u, v)=b(u, v)(©) and
s0 a(u, v) = b(u, v)(0).

To prove the uniqueness statement of (iii’), assume that @, and @, are
both congruence relations of (4,; F') and that both are extensions of
the admissible congruence relation © of <4; F). If ®,# ®,, then there
exist u,v e A, such that u=v(®,) and uzv(d,) (or, symmetrically,
uzv(D,) and u=v(D,)). Since u=v(D,), we get k,,(u) =k, (v)(P,); that is,
a(u, v)=b(u, v)(D,). Thus, a(u, v)=b(u, v)(0), thatis, O = O(u, v). But we
have that © <®,, thus u=v(®,), which is a contradiction.
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(iv’) is trivial.

If we combine what we have proved so far with Lemma 1, we get the
proof of (i)-(iv) of Theorem 2.

To prove (v), let ® be a compact congruence relation of (4,; F",
0=V (O(u;, v;)|0<i<n). Let ® be a congruence relation of (4; F)
defined by ®= \/ (O(a(u;, v;), b(u;, v,))|0=<i<n). Then by assumption,
P°=(0O(a, b))°, for some a,beA. Now it is easy to check that
O =(0(a, b))° in (4,; F’> implying (V).

Now we are ready to state and prove the characterization theorem for
congruence lattices.

Theorem 3 (G. Gritzer and E. T. Schmidt [2]). Let & be an algebraic
lattice. Then there exists an algebra W whose congruence lattice is isomorphic
to L.

Proof. Consider the partial algebra (B; F) constructed in Theorem 1
and let (B; F'y=(A,; F,> denote the regular partial algebra that we get
from {B; F) by applying Lemma 1. By (iv) of Theorem 1, {(4,; Fy>
satisfies the conditions of Theorem 2; hence, we can apply the construction
of Theorem 2 and we get a regular partial algebra (4,; F,>. By (v) of
Theorem 2, (4, ; F,) again satisfies the conditions of Theorem 2; hence,
it can be applied again and we get the regular partial algebra (A4,; Fy).
Proceeding thus, we construct (4,; F,> for every nonnegative integer n.
Set A= | (4,|n<w) and F= |J (F,|n<w). We claim that (4; F) is
an algebra and its congruence lattice is isomorphic to 2.

First we note that

B=4,c A, c A, c---c4,<---
and
F'r=F,cF,cF,c.---c<F, < -

Let fe F andlet a € A. Then a € A4, for some n and by (ii) of Theorem 2
we have that f is fully defined on A,. Thus, (4; F) is an algebra.

Finally, we observe that every admissible congruence relation of
{B; F’> can be extended to a congruence relation of (4; F) in one and
only one way. Indeed, if ® is an admissible congruence relation of
{B; F'y, then by Theorem 2 it has one and only one extension ©,; to
{Ay; F,)>, and so on. Let us define the congruence relation ®, of <4,; F,>
as the only extension of O, _, to (4,; F,>.

Set ©,= U (0,|n<w). It is obvious that ®,, is a congruence relation
of (4; F». The uniqueness is also obvious since if ® has two extensions
®@,, ®, to (A4; F>, then the restriction of ®; and @, to some 4, would also
be different, contradicting (iii) of Theorem 2.
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Thus, the congruence lattice of (4; F) is isomorphic to the lattice of
admissible congruence relations of ¢(B; F’>, which in turn by Lemma 1 is
isomorphic to the lattice of congruence relations of 8, which by Theorem 1
is isomorphic to €, and this is what we were required to prove.

The method of the last section can be summarized as follows: we want
to construct an algebra % having property P; it is easier to construct a
partial algebra B having P; B generates an algebra %, however A does not
have P; introducing additional partial operations on % we make it into a
partial algebra which has P; and so on ---; finally a “direct limit” is
formed.

This method has been successfully used by others. For instance,
A. A. Iskander [1] used this method to prove that for any algebraic lattice
2 there exists an algebra o such that @~ (F(A?); =>. See also G. Gritzer
and W. A. Lampe [1].

EXERCISES

1. Characterize all partial algebras in which every relative subalgebra is a
subalgebra.

2. Characterize all partial algebras in which every weak subalgebra is a
relative subalgebra.

3. Let A and B be partial algebras and ¢ a full homomorphism of 9 into B.
Prove that (A¢; F) is a subalgebra of 8. Is the converse true ?

4. Is it possible to distinguish within 9 between congruence relations in-
duced by homormorphisms and congruence relations induced by full
homomorphisms ?

5. Simplify Theorem 14.1 (that is, simplify the description of ©;) in case all
partial operations are unary.

6. Let @ be as in Theorem 14.1, and consider different representations of a
polynomial symbol p in the form

(*) P = 7(Po>* s Pk-1)s

where a can be substituted into p,. Is there a largest such representation
(*) in the sense that if

P = 71(Pos - s Pn-1)

is another such representation, then the p; are polynomials of pg,- - -, p -1 ?
7. Prove that if (n, 8> <{m, A, then in general

Ay # Amoaye

8. Prove that for p; € P)X(7), {po,- -, pn-1} is L -independent if and only if
forr,s€e P(n)(7')9 r(PO’ “+*y Pn-1)=8(Pos- - *» Pn—l) unplles r=s.



114

10.

11.
12.

13.
14.
15.
16.
17.

18.
19.

20.
21.

22.

23.
24.

25.

26.

27.

28.

29.

30.
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. Prove that py, « « -, pp-1 I8 & -independent if and only if {[po,* - *5 Prn-1]; F>

is isomorphic to B™(7) and there is an isomorphism ¢ such that pp=x;,.
Let B be a subalgebra of ‘B)(7). Let us say that p € B is irreducible in
B if p=7(po»**»Pn-1)> Po>***> Pn-1 € B implies r=x, and p=p;. Prove
that any sequence of irreducible polynomials is #-independent.

Prove that every subalgebra of () is isomorphic to some B4(r).

Let p be an n-ary polynomial symbol and let qo,- -+, q,_; be «-ary poly-
nomial symbols. Let p(qo,- - -, q,-,) denote the «-ary polynomial symbol
that we get from p by replacing every occurrence of x, by ;. Prove that

P(d0s s Gn-1) = P(qo>" 5 Gn—-1)-

Prove Theorem 13.3 using only Lemmas 15.1 and 15.3.
Generalize Lemmas 7.3 and 7.4 for partial algebras.
Why does Lemma 8.4 fail for partial algebras?
Let ® and ® be congruence relations of the partial algebra 9. Then
® v @ is not necessarily a congruence relation of 9 (v is formed in € (4)).
Let Cy(A) denote the set of strong congruence relations of . Show that
C(A)=<C(A); =) is a sublattice of E(4).
Is €(A) a sublattice of E(A4)? Is C,(A) a sublattice of E(A)?
Let A and B be partial algebras and ¢ a homomorphism of % into B.
When is it possible to find algebras 9U; and B, such that Y is a relative
subalgebra of ,, B is a relative subalgebra of B,;, and there exists a
homomorphism ¢ of U, into B; with J,=¢?
Can you generalize Ex. 1.50 to partial algebras?
Prove that the description of ®(a, b) (Theorem 10.3) does not hold for
partial algebras.
Does Lemma 10.4 hold for partial algebras? Does it hold for strong
congruence relations ?
Prove the homomorphism theorem for full homomorphisms.
Under what conditions can we prove the isomorphism theorem for partial
algebras ? Prove the necessity of the conditions.
Define the concept of derived partial algebra and prove Theorem 12.1 for
partial algebras.
Characterize those subsets B of P(A4 x A) for which there exists a partial
algebra A =<{A4; F) with B=C(%).
In Lemma 15.3, is it true that for given u, v € A, there exists a smallest
congruence relation @ of B such that u=v(®)?
Let & be an algebraic lattice. Show that there exists a set A such that &
is isomorphic to some complete sublattice of €(A4).
(P. M. Whitman) Show that every lattice can be embedded into some
€4).
For every algebra <{4; F') there exists an algebra <{4,; F;> such that
AcA,, FS F,,{A; F) is a subalgebra of (A,; F> and

(i) every congruence @ of {4; F') can be extended to a congruence
relation © of (A.; F1>;

(i) ® — O is an isomorphism between €({4; F)) and €({4,; F;>);
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(iii) every compact congruence relation of {(4,; F,> is principal.
(G. Gréatzer and E. T. Schmidt [1] and [2].)
Show that the results of §17 cannot be extended to nonunary algebras
(Theorem 17.2 fails to hold, in fact the extension @, of @, from &, to S,
does not necessarily have the property stated in Theorem 17.2).}
Let & be a group. Find a simple algebra U such that the automorphism
group of ¥ is isomorphic to &.
Let & be an algebraic lattice. Find an algebra % such that the congruence
lattice of Y is isomorphic to € and 9 has no nontrivial automorphism
(i.e., BA)=1).
|C()| =1 implies |GA)| =1.
(W. A. Lampe) Let & be an algebraic lattice in which there exists an
element a#0 such that a< \/ (x,lz’eI) implies a<z; for some %€ I.
Then for any group & there exists an algebra 9 such that €(Y)x~ £ and
Gz .
Let A be an algebra of type = generated by H ={h, | y<a}. There is an
isomorphism ¢ between ¥ and P*(7) such that h,p=x, for y <« if and
only if one of the following conditions holds:

(i) forp, g€ P™(1), n <o, Plhygs -+ *s Ry, ) =q(Rygs+ = 5 Py, ) and y £y
for ¢#j imply p=gq;

(ii) if B is an algebra of type 7, b, € B for y < «, then there is a homo-
morphism ¢ of U into B with h,p=b,, for y<«;

(iii) there exists a homomorphism ¢ from 9 into P (r) with hh=x,
for y<a.
Let A and B be algebras of type 7. Prove that U and B have up to iso-
morphism a common extension if and only if either there are no nullary
operations or there are nullary operations and <[ g lu; F>~ ([ &1s; F).
(K. H. Diener}) The following condition can be added to Ex. 36:

(iv) (ii) holds for every extension 8 of U and if there are nullary opera-
tions, ([ @l F) = BO(r).
Generalize Ex. 37 for partial algebras.
Generalize Ex. 37 to any set of algebras (partial algebras).
Let H, K<{x,|y<o}<SP9(r). Prove that H N K= g implies that
[H] N [K]= @ if there are no nullary operations and [H] N [K]=P©(7)
otherwise.
Let A be an infinitary partial algebra. Then there exists an infinitary algebra
B which contains A as a relative subalgebra and has the property that every
congruence relation of U can be extended to B. (Generalize Lemmas
15.1-15.3.)
(W. A. Lampe) Let % be an algebra, ¢ € E(), p, the right multiplication
by ¢ on E(X), ¢, and ¢,, the equivalence relations induced by ¢ and p, on
A and E() respectively. Then &, — ¢,, is an order preserving map.

1 This shows that the proofs of the Theorem of E. T. Schmidt [2], and Theorem 6
of G. Grétzer [8] are incorrect.

1 See K. H. Diener and G. Gratzer [1].
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(W. A. Lampe) If ¢ is a right-zero in §(X), then e, ¢, for all ¢ € E(Y).
Let m and n be regular cardinals and m < n. Prove that every m-algebraic
lattice is also n-algebraic and find an n-algebraic lattice which is not
m-algebraic. (See Ex. 0.82.)

Describe those partial algebras 9 in which all congruence relations are
strong. (D(f,, )= & or A™.)

State and prove Theorem 11.4 for infinitary algebras.

An endomorphism of a relational system {(4; R) is a mapping ¢ of A4 into
A such that r(ag, ay, - - -) implies 7(agp, a9, - - -) for all » € R. For a unary
algebra 9 find a relational system (4; R) such that each r € R is binary
and ¢: A — A is an endomorphism of U if and only if ¢ is an endomor-
phism of <4; R).

For every set A there exists a binary relation » such that the identity map
is the only endomorphism of <4 ; ). (P. Vopénka, A. Pultr and Z. Hedrlin,
Comment. Math. Univ. Carolinae 6 (1965), 149-155). (Hint: for |4|= R,
assume A={-y|y§ 8+ 1} where 8 is an initial ordinal. Define » by the
following rules: (i) 0r2; (ii) er(e+1), « = 8; (iii) if B is a limit ordinal not
cofinal with w, then «rg if and only if « is a limit ordinal and « < B; (iv) if «
is a limit ordinal cofinal with w, then «=lim a,, ¢; <ap<---, and
oy =dy+n, where @, is a limit ordinal; set yraif and only if y = «, for some
n=2; (v) ar(8+ 1) if and only if a =8 or « is a nonlimit ordinal # 8+ 1.)
Let (4; R) be a relational system with all » € R binary. Find a binary
relational system {B; ) whose endomorphism semigroup is isomorphic to
the endomorphism semigroup of {(4; R)>. (A. Pultr, Comment. Math.
Univ. Carolinae 5 (1964), 227-239.) (Hint: Let R={r/|ieI}. Set
B=A U U (rx{i}|ieI) UIU {v;, vy s uy, uy). Define r as follows:
(i) r on I as in Ex. 49; (ii) xor{xg, 21, 1 yre,; (iil) {xq, 2y, ¢ Y7t for 7 € I; (iv)
v11varvgrvy; (v) for 4 € I, drug; (vi) uyrug and uyrv,, j=1, 2; (vii) for z € 4,
xru,.)

(Z. Hedrlin and A. Pultr [1]) In Theorem 12.3, % can be chosen of type
<1, 1>. (Hint: combine Theorem 12.3 with Ex. 48-50. In constructing A
from {(B;r), the two unary operations should act as projection maps
for r.)

PROBLEMS

Let BS P(A x A). When is it possible to find a partial algebra <{4; F)
with B=Cy({4; F))? (See Ex. 17 and 18.)

Let €, and &, be lattices. Under what conditions does there exist a partial
algebra A with C(A)~ &, and E,(A)x~ L, ? (See Ex. 17 and 18.)

Relate the following four classes of lattices:

Ly: the class of finite lattices; L,: the class of lattices isomorphic to sub-
lattices of finite partition lattices (i.e., lattices which are isomorphic to a
sublattice of some (Part(4); <) for some finite set A); L,: the class of
lattices isomorphic to strong congruence lattices of finite partial algebras;
Lj: the class of lattices isomorphic to congruence lattices of finite algebras.
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Does Theorem 14.1 hold for infinitary partial algebras ?

Let B P(4AxA). When is it possible to find an infinitary algebra
A ={A; F) with O(Y)= B? Characterize €().

Characterize (G(), Ex(A), Es(A)> as a triplet of semigroups. (See Lemma
16.1.)

Characterize the congruence lattices of algebras of finite type.

For an integer n> 2 characterize the algebraic lattices € which can be
represented as (% (A"); <) for some algebra Y. (See the result mentioned
on p. 113).

For a nonvoid set 4, and integer n > 1, characterize those subsets B< A"
for which B=%#(A"), for some algebra A={A; F). (For n=1 this was
done in Theorems 9.1 and 9.2. In contrast with Problem 18, this is open
also for n=2.)

Develop properties of algebras whose automorphism groups are transitive
doubly transitive, and so on. (See, e.g., G. Gritzer [2]).
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