NON-SEPARABLE AND PLANAR GRAPHS*

BY
HASSLER WHITNEY

Introduction. In this paper the structure of graphs is studied by purely
combinatorial methods. The concepts of rank and nullity are fundamental.
The first part is devoted to a general study of non-separable graphs. Condi-
tions that a graph be non-separable are given; the decomposition of a sepa-
rable graph into its non-separable parts is studied; by means of theorems on
circuits of graphs, a method for the construction of non-separable graphs is
found, which is useful in proving theorems on such graphs by mathematical
induction. In the second part, a dual of a graph is defined by combinatorial
means, and the paper ends with the theorem that a necessary and sufficient
condition that a graph be planar is that it have a dual.

The results of this paper are fundamental in papers by the author on
Congruent graphs and the connectivity of graphsT and on The coloring of graphs.i

I. NON-SEPARABLE GRAPHS

1. Definitions.§ A graph G consists of two sets of symbols, finite in num-
ber: vertices, a, b, ¢, - - -, f, and arcs, a(ab), B(ac), - - -, 8(cf). If an arc a(ab)
is present in a graph, its end vertices a, b are also present. We may write an
arc a(ab) or a(ba) at will; we may write it also ab or ba if no confusion arises,—
if there is but a single arc joining ¢ and b in G. We say the vertices ¢ and b
are on the arc a(abd), and the arc a(ab) is on the vertices a and b. The null
graph is the graph containing no arcs or vertices.

The obvious geometrical interpretation of such a graph, or abstract graph,
is a topological graph, let us say. Corresponding to each vertex of the abstract
graph, we select a point in 3-space, a vertex of the topological graph. Corre-
sponding to each arc «(ab) of the abstract graph, we select an arc joining the
corresponding vertices of the topological graph. An arc is here a set of points
in (1, 1) correspondence with the unit interval, its end vertices corresponding

* Presented to the Society, October 25, 1930; received by the editors February 2, 1931. An out-
line of this paper will be ound in the Proceedings of the National Academy of Sciences, vol. 17
(1931), pp. 125-127.

t American Journal of Mathematics, vol. 54 (1932), pp. 150-168.

1 An outline will be found in the Proceedings of the National Academy of Sciences, vol. 17
(1931), pp. 122-125.

§ Compare Ste. Lagué, Les Réseaux, Mémorial des Sciences Mathématiques, fascicule 18, Paris,
1926.
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with the ends of the interval. Moreover, we let no arc pass through other
vertices or intersect other arcs. We shall consider topological graphs no fur-
ther till we come to the section on planar graphs.

An isolated vertex is a vertex which is not on any arc. A chain is a set of one
or more distinct arcs which can be ordered thus: ab, bc, cd, - - -, ef, where
vertices in different positions are distinct, i.e. the chain may not intersect
itself. A suspended chain is a chain containing two or more arcs such that no
vertex of the chain other than the first and last is on other arcs, and these
two vertices are each on at least two other arcs. A circuit is a set of one or
more distinct arcs which can be put in cyclic order, ad, bc, - - -, ¢f, fa, vertices
being distinct as in the case of the chain. A k-circuit is a circuit containing
arcs. Thus, the arc a(aa) is a 1-circuit; the two arcs a(ab), B(ad) form a
2-circuit.

A graph is connected if any two of its vertices are joined by a chain. Ob-
viously, if a and b are joined by a chain, and b and ¢ are joined by a chain, then
a and ¢ are joined by a chain. Any graph consists of a certain number of con-
nected pieces (one, if the graph is connected). In particular, an isolated vertex
is one of the connected pieces of a graph. A graph is called cyclicly connected
if any two of its vertices are contained in a circuit. If Gy, Gy, - - -+, Gn are a
set of graphs, no two of which have a common vertex (or arc, therefore), we
say the graph G, formed of the arcs and vertices of all these graphs, is the
sum of these graphs. Thus, a graph is the sum of its connected pieces. A forest
is a graph containing no circuit. A #ree is a connected forest. A subgraph H
of G is a graph containing a subset (in particular, all or none), of the arcs of G,
and those vertices of G which are on these arcs.

2. Rank and nullity.* Given a graph G which contains V vertices, E arcs,
and P connected pieces, we define its rank R, and its nullity (or cyclomatic
number or first Betti number) N, by the equations

R=V-—P,
N=E—-R=E—V+P.
If G contains the single arc ab, it is of rank 1, nullity 0, while if it contains
the single arc aa, it is of rank 0, nullity 1.

The first two theorems follow immediately from the definitions of rank
and nullity:

THEOREM 1. If isolated vertices be added to or subtracted from a graph, the
rank and nullity remain unchanged.

* These are just the rank and nullity of the matrix H, of Poincaré. See Veblen’s Colloquium
Lectures, Analysis Situs.
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THEOREM 2. Let the graph G’ be formed from the graph G by adding the arc
ab. Then
(1) #f a and b are in the same connected piece in G, then

R=R N=N+1;
(2) if @ and b are in different connected pieces in G, then
Rr=R+1, N =N.
THEOREM 3. In any graph G,
Rz0, Nz20.

For let G, be the graph containing the vertices of G but no arcs. Then if
R, and N, are its rank and nullity,

We build up G from G, by adding the arcs one at a time. The theorem now
follows from Theorem 2.

THEOREM 4. A forest G is a graph of nullity 0, and conversely.

Suppose first G contained a circuit P. We shall show that the nullity of G
is >0. We build up G arc by arc, adding first the arcs of the circuit P. In
adding the last arc of the circuit, the nullity is increased by 1, as this arc
joins two vertices already connected. (This argument holds even if the circuit
is a 1-circuit.) But in adding the rest of the arcs, the nullity is never decreased,
by Theorem 2. Thus the nullity of G is >0.

Now suppose G is a forest, and therefore contains no circuit. Build up G
arc by arc. Each arc we add joins two vertices formerly not connected. For
otherwise, this arc, together with the arcs of a chain connecting the two ver-
tices, would form a circuit. Therefore, by Theorem 2, the nullity remains al-
ways the same, and is thus 0.

3. Theorems on non-separable graphs. We introduce the following

Definitions. Let H;, which contains the vertex a,, and H,, which contains
the vertex a,, be two graphs without common vertices. Let us rename a, a,
and rename the arcs of H, on @, accordingly; that is, if ¢:b is an arc on a,, we
rename it ab. Rename also e ¢, and rename the arcs of H, accordingly. H, and
H, have now the vertex ¢ in common; they form the graph G, say. We say G
is formed by letting the vertex a, of H, coalesce with the vertex a, of H,, or,
by joining H; and H, at a vertex. Geometrically, we pull the vertices e, and a.
together to form the single vertex a.

Let G be a connected graph such that there exist no two graphs H; and
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H,, each containing at least one arc, which form G if they are joined at a
vertex. Then G is called non-separable. Geometrically, a connected graph is
non-separable if we cannot break it at a single vertex into two graphs, each
containing an arc. For example, the graph consisting of the two arcs ab, bc
is separable, as is the graph consisting of the two arcs a(aa), 8(aa). A graph
containing but a single arc is non-separable, as is the graph containing only
the arcs a(ab), B(ab).

If G is not non-separable, we say G is separable. Thus, a graph that is not
connected is separable. Suppose some connected piece G, of G is separable.
If H, and H, joined at the vertex a form G, we say a is a cut vertex of G. We
have consequently

THEOREM 5. A necessary and sufficient condition that a connected graph be
non-separable is that it have no cut vertex.

THEOREM 6. Let G be a connected graph containing no 1-circuit. A neces-
sary and sufficient condition that the vertex a be a cut vertex of G is that there exist

two vertices b, ¢ in G, each distinct from a, such that every chain from b to ¢ passes
througha.

First suppose a is a cut vertex of G. Then, by definition, H, and H,, each
containing at least one arc which is not a 1-circuit, form G if they are joined
at a. Let b be a vertex of H, and ¢ a vertex of H,, each distinct from a. As @
is the only vertex in both H. and H,, every chain from b to ¢ in G passes
through a.

Suppose now every chain from b to ¢ in G passes through a. Remove the
vertex ¢ and all the arcs on a. The resulting graph G’ is not connected, b and ¢
being in different connected pieces. Let H{ be that connected piece of G’ con-
taining b, and let H{ be the rest of G’. Replace a by the two vertices ¢, and ..
Now put back the arcs we removed, letting them touch a, if their other end
vertices are in H{, and letting them touch a; otherwise. Let H, and H: be
the resulting graphs. Then H, and H, each contain at least one arc, and they
form G if the two vertices ai, a; are made to coalesce. Hence, by definition,
ais a cut vertex of G.

THEOREM 7. Let G be a graph containing no 1-circuit and containing at
least two arcs. A necessary and sufficient condition that G be non-separable is
that it be cyclicly connected.*

If G is not connected, the theorem is obvious. Assume therefore G is con-
nected.

* A similar theorem has been proved for more general continuous curves by G. T. Whyburn,
Bulletin of the American Mathematical Society, vol. 37 (1931), pp. 429-433.
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Suppose first G is separable. Then, by Theorem 5, G has a cut vertex a,
and by Theorem 6, there are two vertices b, ¢ in G such that every chain from
b to ¢ passes through ¢. Hence there is no circuit in G containing b and c.

Suppose now there exist two vertices b, ¢ in G which are contained in no
circuit. Let bd, de, - - - , gc be some chain from b to c.

Case 1. There exists a circuit containing b and d. In this case, let a be the
last vertex of the chain which is contained in a circuit passing also through .
Let f be the next vertex of the chain. Then every chain from f to b passes
through a. For suppose the contrary. Let C be a chain from f to b not passing
through a. Let P be a circuit containing b and a. Follow C from f till we first
reach a vertex of P. Follow the circuit P now as far as b if b was not the vertex
we reached, and continue along P till we reach a. Passing from a to f along
the arc af completes a circuit containing both b and £, contrary to hypothesis.
Hence, by Theorem 6, @ is a cut vertex of G, and therefore G is separable.

Case 2. There exists no circuit containing b and d. Then there is but a
single arc joining b and d, and they are joined by no other chain. As G is con-
nected and contains at least two arcs, there is either another arc on b or an-
other arcon d,say the first. The other case is exactly similar. If we add a vertex
b’ and replace the arc bd by the arc b’d, b and d are no longer joined by a chain,
and hence the resulting graph G’ is not connected. Let H, be that part of G’
containing the arc b’d, and let H, be the rest of G’. As there is still an arc on
b, H; contains at least one arc. Letting the vertices b and b’ coalesce forms G,
and hence G is separable. The proof is now complete.

THEOREM 8. 4 non-separable graph G containing at least two arcs contains
no 1-circuit and is of nullity >0. Each vertex is on at least two arcs.

Suppose G contained a 1-circuit. Call it H;. Let H. be the rest of the graph.
Then H, and H; have but a single vertex in common, and thus G is separable.

Next, by Theorem 7, G is cyclicly connected. As G contains no 1-circuit, G
contains at least two vertices. Containing these there is a circuit. Therefore,
by Theorem 4, the nullity of G is >0.

Finally, if there were a vertex on no arcs, G would not be connected. If
there were a vertex a on the single arc ab, b would be a cut vertex of G.

THEOREM 9. Lei G be a graph of nullity 1 containing no isolated vertices,
such that the removal  f any arc reduces the nullity to 0. Then G is a circuit.

By Theorem 4, G -ontains a circuit. Suppose G contained other arcs be-
sides. Removing one o these, the nullity remains 1, as the circuit is still pres-
ent, contrary to hypothesis. There are no other vertices in G, as G contains
no isolated vertices. Hence G is just this circuit.

29



344 HASSLER WHITNEY [April

TrHEOREM 10. A non-separable graph G of nullity 1 is a circuit.

If G contains but a single arc, it is a 1-circuit, being of nullity 1. Suppose G
contains at least two arcs. By Theorem 8, it contains no 1-circuit. By Theorem
7, it is cyclicly connected. Remove any arc ab from G; a and b are still con-
nected, and therefore, by Theorem 2, the nullity of G is reduced to 0. Hence,
by Theorem 9, G is a circuit.

The converses of the last two theorems are obviously true.

4. Decomposition of separable graphs. If the graph G contains a con-
nected piece which is separable, we may separate that piece into two graphs,
these graphs having formerly but a single vertex in common. We may con-
tinue in this manner until every resulting piece of G is non-separable. We say
G is separated into its components.

LeMMA. Let the connected separable graph G be decomposed into the two
pieces Hy and H, which had only the vertex a in common in G. Then every non-
separable subgraph of G is contained wholly in either H, or H,.

Suppose the contrary. Then some non-separable subgraph I of G is not
contained wholly in either H; or H,. Let I; be that part of I in H,, and I, that
part in H,; I, and I, have at most the vertex ¢ in common. I; and I, each con-
tain at least one arc. For otherwise, if I3, say, contained no arc, as it contains
a vertex distinct from g, it would not be connected. Thus I is separable into
the pieces I, and I,, a contradiction again.

THEOREM 11. Every non-separable subgraph of G is contained wholly in one
of the components of G.

This follows upon repeated application of the above lemma.

THEOREM 12. A graph G may be decomposed into ils components in a unique
manner.

Suppose we could decompose G into the components Hy, H,, - - -, H,,
and also into the components H{, Hy, - - - , H,!. We shall show that these
sets are identical. Take any H. It is a non-separable subgraph of G, and thus
is contained in some component H/, by Theorem 11. Similarly, H/ is con-
tained in some component H. Thus H;is contained in H;, and they are there-
fore identical. Hence H; and H/ are identical. In this manner we show that
each H, is identical with some H/, and each H/ is identical with some H;
proving the theorem.

THEOREM 13. Let Hy, H,, ---, H, be the components of G. Lei
Ry, Ry, - -+, Ry, and Ny, Ny, - - -, N,, be their ranks and nullities. Then
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R=Ri+ R+ -+ Ry
N=Ni+No+: -+ Np.
Let G’ be G separated into its components, and let R’ be the rank of G'.
G is formed from G’ by letting vertices of different components coalesce. Each
time we join two pieces, the number of vertices and the number of connected
pieces are each reduced by 1, so that the rank remains the same. Thus
R=FR.
Now
Vi=Vi+ Vit -+ Vy,
P'=P + P+ -+ P,
(where each P;=1). Subtracting,

R=R =R+ R+ ---+ R,.
As also
E=E+E+- -+ E,,
it follows that
N=Ni+ N+ -+ N

For a converse of this theorem, see Theorem 17.

THEOREM 14. Divide the arcs of the non-separable graph G into two groups,
each containing at least one arc, forming the subgraphs Hy and H,, of ranks R,
and Ro. Then

R, + R, > R.

Let the connected pieces of H, be Hy, - - - , Hy,, (there may be but one
piece, Hy), and let those of Hy be H,y, - - -, H;,. Then obviously

Ri=Ru+ -+ Rinm,
Ry = Rai+ - - - + Run,

whence
Ri+R:=Ru+- -+ Rin+ Ru+ -+ 4 Ran.
Let G’ be the sum of the graphs Hu, - - -, H,,. Then G’ is of rank
Ru+ -+ - +Rs.. We form G from G’ by letting vertices of the graphs
H,, - - -, H;, coalesce. Each time we let vertices of different connected

pieces coalesce, the rank is unaltered. Each time we let vertices in the same
connected piece coalesce, the rank is reduced by 1. This latter operation hap-
pens at least once. For otherwise, let a; and a, be the last two vertices we let
coalesce. Then a; and a, were formerly in two different pieces, I; and I,. Thus
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I, and I, joined at a vertex form G, and G is separable, contrary to hypothesis.
Thus the rank of G is less than the rank of G’, that is,

R < Ru+ -+ R
Hence
Ri+ R; > R.*

Theorems 13 and 14 give

THEOREM 135. A necessary and sufficient condition that a graph be non-sepa-
rable is that there exist no division of its arcs into two groups H, and H,, each con-

taining at least one arc, so that
R = Rl + Rz.

5. Circuits of graphs. We shall say two non-separable graphs, each con-
taining at least one arc, form a circuit of graphs, if they have at least two
common vertices. (They may also have common arcs.) Thus the two graphs
G:: a(abd) and G,: a(abd) (which are the same graph) form a circuit of graphs.
However, the two graphs Gi: a(aa) and G,: 8(aa), having but one common
vertex, do not form a circuit of graphs. We shall say three or more non-
separable graphs form a circuit of graphs if we can name them Gy, G, - - - ,Gn
in such a way that G, and G. have just the vertex a; in common, G, and G;
have just the vertex @, in common, - - -, G, and G, have just the vertex a,,
in common, these vertices are all distinct, and no other two of these graphs
have a common vertex. Thus the three graphs Gi:ab, G.:bc, G;:ca form a cir-
cuit of graphs.

We note that there can be no 1-circuit in a circuit of graphs; also, no sub-
set of the graphs in a circuit of graphs form a circuit of graphs. We may think
of a circuit of graphs as forming a single graph.

THEOREM 16. A circuit of graphs G is a non-separable graph.

First suppose there are but two graphs, G, and G., present. Suppose G
were separable. Then it is separable into at least two components
H, H,, - - -, H:. By Theorem 11, G, and G. are each contained wholly in
one of these components. As G; and G, together form G, there are just two
components, and they are G; and G,. These, when joined at a vertex, form G.
But this is contrary to the hypothesis that G, and G; have at least two ver-
tices in common.

Next suppose there are more than two graphs present. Let C; be a chain
in G\ joining a. and a;, let C; be a chain in G, joining ¢, and a, - - -, let C,,
be a chain in G, joining @1 and a... These chains taken together form a cir-

* This theorem may also be proved easily from Theorem 17.
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cuit P passing through all the graphs. Now separate G into its components.
By Theorem 11 (see the converse of Theorem 10), P is contained in one of
these components. The same is true of each of the graphs Gi, Gy, - - -, G,
and hence these graphs are all contained in the same component. Thus G is
itself this component, that is, G is non-separable.

THEOREM 17. Let Gy, - - - , G be a set of non-separable graphs, each con-
laining at least one arc, and let G be formed by letting vertices and arcs of differ-
ent graphs coalesce. Then the following four statements are all equivalent:

(1) Gy, - - -, G are the components of G.

(2) No two of the graphs Gy, - - -, G have an arc in common, and there is
no circuit in G containing arcs of more than one of these graphs.

(3) No subset of these graphs form a circuit of graphs.

(4) If R, Ry, - - -, R, are the ranks of G, Gy, - - -, G, respectively, then

R=Ri+ -+ Rn.

We note that we cannot replace the word rank by the word nullity in (4).
For let G be the graph containing the arcs a(ab), 8(ab), y(abd). Let G, contain
a and B, and G, B and v. Then the nullity of G is the sum of the nullities of
G, and G3, but G, and G; are not the components of G. We shall prove

(a) if (1) holds, (2) holds,

(b) if (2) holds, (3) holds,

(c) if (3) holds, (1) holds, establishing the equivalence of (1), (2) and (3);

(d) if (1) holds, (4) holds, and finally

(e) if (4) holds, (3) holds, establishing the equivalence of (4) and the other
statements.

(a) If (1) holds, (2) holds. For first, in forming G from its components
Gy, - - -, Gm, we let vertices alone coalesce, and thus no two of the graphs
have an arc in common. Also, there is no circuit in G containing arcs of more
than one of the graphs; for each circuit, being a non-separable graph, is con-
tained entirely in one of the components of G, by Theorem 11.

(b) If (2) holds, (3) holds. For suppose the contrary. If, first, some two
graphs, say G and G, form a circuit of graphs, they have at least two ver-
tices in common, say ¢ and b. Join ¢ and b by a chain C in G; and by a chain D
in G.. By hypothesis, G and G have no arcs in common, and thus the arcs
of C and D are distinct. From a follow along C till we first reach a vertex d of
D. From d follow along D till we get back to a. We have formed thus a cir-
cuit containing arcs of both G, and G, contrary to hypothesis.

Now suppose the graphs Gy, - - -, Gi, k>2, formed a circuit of graphs.
In the proof of Theorem 16 we found a circuit passing through all the graphs
of such a circuit of graphs, again contrary to hypothesis.
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(c) If (3) holds, (1) holds. Assuming that nosubset of the graphs Gy, - - - ,Gn
forms a circuit of graphs, we will show first that some one of these graphs
has at most a single vertex in common with other of the graphs. For suppose
each graph had at least two vertices in common with other graphs. Then G,
has a vertex ¢, in common with some graph, say G,. As G, has at least two
vertices in common with other graphs, it has a vertex as, distinct from a, in
common with another graph, say G;. If we continue in this manner, we must
at some point get back to a graph we have already considered.

Now starting with G, consider the graphs in order, and let G; be the first
one which has a vertex in common with one of the preceding graphs other
than the vertex a;_;, which we know already it has in common with G_,.
Now of the graphs G;_1, Gi—s, - - -, Gy, let G; be the first with which G; has a
common vertex, other than the vertex a;_,. First suppose G; is G;—;. Then G;
and G;_; have at least two vertices in common, and they form therefore a
circuit of graphs, contrary to hypothesis. Next suppose G; is not G;_,.Then
on account of the choice of G; and Gj, G; and G;;, have just one common
vertex a;, G;;1 and Gj;» have just one common vertex @;.1, - - -, G; and G;
have just one common vertex a; (for otherwise G; and G; would form a cir-
cuit of graphs), and no other two of these graphs have a vertex in common.
These vertices a;, @41, - - -, a; are all distinct. For, on account of the con-
struction of the chain of graphs, two succeeding vertices a; and a4 are dis-
tinct. ¢; and a; are distinct, for otherwise G; and G;;1 would have a common
vertex, etc. These graphs G;, G;41, - - -, Gi form therefore a circuit of graphs,
contrary to hypothesis.

Some graph therefore, say Gy, has at most a single vertex in common with
the other graphs. Thus either it is separated from them, or we can separate

it at a single vertex. Now among the graphs G, - - -, G, there is also no
circuit of graphs, so again we can separate one of them, say G,. Continuing,
we have finally separated G into its components Gy, G, - - - , Gm.

(d) If (1) holds, (4) holds. This is just Theorem 13.

(e) If (4) holds, (3) holds. Let G’ be the sum of the graphs Gy, - - - , Gn.
We form G from G’ by letting vertices and arcs of different graphs coalesce.
Each time we let two vertices coalesce, either (a) the two vertices were form-
erly in different connected pieces, in which case the rank is unchanged, or
(B) the two vertices were in the same connected piece, in which case the rank
is reduced by 1. Letting arcs alone coalesce (their end vertices having already
coalesced) does not alter the rank. Thus in any case, the rank is never in-
creased. To begin with, the rank of G’ is Gi+ - - - +Gn, and by hypothesis,
the rank of Gis Gi+ - - -+ +G,. Thus the rank is never altered, and (8) never

34



1932] NON-SEPARABLE AND PLANAR GRAPHS 349

occurs. Hence, obviously, no circuit of graphs is formed in forming G from
G’. This completes the proof of the theorem.

6. Construction of non-separable graphs. We prove the following theo-
rem:

THEOREM 18. If G is a non-separable graph of nullity N > 1, we can remove

an arc or suspended chain from G, leaving a non-separable graph G’ of nullity
N-1.

Assume the theorem is true for all graphs of nullity 2,3, - - - , N—1. We
shall prove it for any graph of nullity N (including the case where N =2).
This will establish the theorem in general.

Take any non-separable graph G of nullity N >1. It contains at least two
arcs, and therefore, by Theorem 8, it contains no 1-circuit. Remove from G
any arc ab, forming the graph G,. If G, is non-separable, we are through. Sup-
pose therefore G, is separable, and let its components be Hy, Hs, - - - , Hp_s.
G, is connected, for between any two vertices ¢, d there exists a circuit in G
by Theorem 7, and therefore there is a chain joining them in G..

Let H,. consist of the arc ab. By Theorem 17, no subset of the graphs

H, -, Hyn; form a circuit of graphs, while some subset of the graphs
H,, - -, H, form a circuit of graphs. We shall show that the whole set of
graphs Hy, - - - , H,, form a circuit of graphs. Otherwise, some proper subset,

which includes H,,, form a circuit of graphs.

Let H be the graph formed from this circuit of graphs by dropping out
H,. By Theorem 16, the circuit of graphs is a non-separable graph; hence H
is connected. All the arcs in G; not in the circuit of graphs, form a graph 7.
Let I, be a connected piece of 7. Then I, has at most a single vertex in com-
mon with the rest of G. For suppose I; had the two vertices ¢ and d in common
with H. From c¢ follow along some chain towards d in H till we first reach a
vertex e in I;. From e follow back along some chain in 7, to ¢. We have formed
thus a circuit containing arcs of both H and I,. But as H consists of a certain
subset of the components of G, this circuit contains arcs of at least two com-
ponents of G,, contrary to Theorem 17. Thus 7, has at most a single vertex
in common with the rest of G, and hence G is separable, contrary to hypoth-
esis. Thus H,, - - -, Hn form a circuit of graphs, that is, G is formed of a
circuit of graphs.

As we assumed G, was separable, m = 3. Therefore we can order the graphs
so that H, and H, have just the vertex a, in common, - - - , H,,_; and H,, have
just the vertex an_1=b in common, and H, and H, have just the vertex
@»=a in common. Moreover, these vertices are all distinct, and no other two
of the graphs H,, - - -, H, have a common vertex.
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As the nullity of G was >1, the nullity of G, is >0. By Theorem 13, this
is the sum of the nullities of Hy, - - -, Hn—1. Therefore the nullity of some
one of these graphs, say H;, is >0.

Suppose first the nullity of H;is 1. Then, by Theorem 10, H; is a circuit,
consisting of two chains joining a;_; and @;. Remove one of these chains from
G. This leaves a graph G’, which again is a circuit of graphs. For the graph
H; we replace by an ordered set of non-separable graphs, each consisting of
one of the arcs of the chain we have left in H,.

Suppose next the nullity of H;is >1. It is less than N, as H; is contained
in Gy, whose nullity is N —1. Therefore, by induction, we can remove an arc
or a suspended chain, leaving a non-separable graph H/ of nullity one less. If
neither a,_; nor a; has thus been removed, we again have a circuit of graphs.
Suppose a; but not a;_, was removed. Replace that part of the chain we re-
moved joining a; and a vertex of H; distinct from a;_,. Here again we have a
circuit of graphs, H; being replaced by H/ and a set of arcs. The case is the
same if a;_, but not a; was removed. If finally, both ¢; and ¢,_, were in the
chain we removed, we put back all of the chain but that part between these
two vertices. Here again, the resulting graph G’ is a circuit of graphs.

Thus in all cases we can drop out from G an arc or suspended chain, leav-
ing a circuit of graphs. By Theorem 16, the resulting graph G’ is non-sepa-
rable. As also the nullity of G’ is one less than the nullity of G, the theorem
is now proved.

As a consequence of this theorem, Theorem 8, and Theorem 10, we have

THEOREM 19. We can build up any non-separable graph containing at
at least two arcs by taking first a circuit, then adding successively arcs or sus-
pended chains, so that at any stage of the construction we have a non-separable
graph.

It is easily seen that, conversely, any graph built up in this manner is
non-separable. For each time we add an arc or suspended chain, these arcs,

each considered as a graph, together with the non-separable graph already
present, form a circuit of graphs.

II. DuUALS, PLANAR GRAPHS

7. Congruent graphs. We introduce the following

Definitions. Given two graphs G and G’, if we can rename the vertices
and arcs of one, giving distinct vertices and distinct arcs different names, so
that it becomes identical with the other, we say the two graphs are con-
gruent.* (We used formerly the word “homeomorphic.”)

* See the author’s American Journal paper, cited in the introduction.
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The geometrical interpretation is that we can bring the two graphs into
complete coincidence by a (1, 1) continuous transformation.

Two graphs are called equivalent if, upon being decomposed into their
components, they become congruent, except possibly for isolated vertices.

8. Duals. Given a graph G, if H, is a subgraph of G, and H. is that sub-
graph of G containing those arcs not in H,, we say H, is the complement of
Hl in G.

Throughout this section, R, R’, 7, 7', etc., will stand for the ranks of G,
G’, H, H', etc., respectively, with similar definitions for V, E, P, N.

Definition. Suppose there is a (1, 1) correspondence between the arcs of
the graphs G and G’, such that if H is any subgraph of G and H’ is the comple-
ment of the corresponding subgraph of G’, then

r =R —n.

We say then that G’ is a dual of G.*
Thus, if the nullity of H is #, then H' (including all the vertices of G’)
is in # more connected pieces than G’.

THEOREM 20. Let G’ be a dual of G. Then
R =N,
N’ = R.
For let H be that subgraph of G consisting of G itself. Then
n=N.

If H' is the complement of the corresponding subgraph of G’, H' contains no
arcs, and is the null graph. Thus

r = 0.
But as G’ is a dual of G,

These equations give

The other equation follows when we note that E' =E.
THEOREM 21. If G’ is a dual of G, then G is a dual of G'.

Let H' be any subgraph of G’, and let H be the complement of the cor-
responding subgraph of G. Then, as G’ is a dual of G,

* While this definition agrees with the ordinary one for graphs lying on a plane or sphere, a
graph on a surface of higher connectivity, such as the torus, has in general no dual. (See Theorems
29 and 30.)
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v = R — n.

By Theorem 20,
R =N.
We note also,
e+é¢ =E.
These equations give
r=e—n=e¢— (R —7r)=e— V+(—1n)

=E—-N-—-#n"=R-—#w.

Thus G is a dual of G’.
Whenever we have shown that one graph is a dual of another graph, we
may now call the graphs “dual graphs.”

LeMMA. If a graph G is decomposed into its components, the rank and nullity
of any subgraph H is left unchanged.

For each time we separate G at a vertex, H is either unchanged or is
separated at a vertex. Hence neither its rank nor its nullity is altered. (See
the proof of Theorem 13.)

THEOREM 22. If G’ and G'’ are equivalent and G’ is a dual of G, then G'' is a
dual of G.

Let H be any subgraph of G, and let H’ be the complement of the cor-
responding subgraph of G’. Let G," and G{’ be G’ and G'’ decomposed into
their components. Then G{ and G{’ are congruent. H’ turns into a subgraph
H{ of G'. Let H{' be the corresponding subgraph of G{’, and H’' the same
subgraph in G’’. Then

ri =r{".
But by the above lemma,
r=r{, o =r.
Hence

f, —_ f”»

As a special case of this equation, letting H' be the whole of G’, we have

RI — RI/'
As G’ is a dual of G,

r =R —n.
Therefore

7 = R — n,
and G’ is a dual of G.

The converse of this theorem is not true. For define the three graphs
G: a(ab), B(ab), v(ac), 8(ch), e(ad), §(db);
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G/ (@), B'('d), 7' (@'D), §'(a'd"), ¢ ('), £ (')

Gll:all(allb/’) B//(bllcll),ﬁy’/(a//dl/), B/I(al/d//)’ eI/(C//(ill) g-ll(clldll)-

G’ and G’’ are both duals of G, but they are not congruent.*

THEOREM 23. Let Gy, - - - , G and GY, - - -, G,) be the components of G
and G’ respectively, and let G! be a dual of Gi,i=1, - - -, m. Then G’ is a dual
of G.

Let H be any subgraph of G, and let the parts of H in Gy, - - -, G be
H,, - .-, H, Let H! be the complement of the subgraph corresponding to
H;inG!,i=1,---,m,and let H' be the union of H{, - - - , H,! in G'. Then
H'’ is the complement of the subgraph in G’ corresponding to H in G. Using
the proof of Theorem 13, we find that

r'=rl 4+ -+,

and

n=mn+ -+ nn.
Asalso

R =R{ 4+ -+ R
and

r! = Rl — n; (i=1,---,m)),
adding these last equations gives

v = R — n,
and hence G’ is a dual of G.

THEOREM 24. Let Gy, - -+ , Gm and G{, - - -, G, be the components of the
dual graphs G and G’', and let the correspondence between these two graphs be
such that arcs in G; correspond to arcs in G!,i=1,-- -, m. Then G; and G!
are duals, i=1, - - - , m.

Let H, be any subgraph of Gy, let H' be the complement of the correspond-
ing subgraph in G’, and let H{ be the complement in G’. Then H{,G{, - - -,
G, form H’. By Theorem 13, we find

R'=R{ +R{+--+R

and

r'"=r+R + -+ Ra.
Now

v = R — n,,
hence

r{i = R{ — m,
and G{ is a dual of G,. Similarly for GJ, - - - ,G. .

* See the author’s American Journal paper, however.
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THEOREM 25. Let G and G’ be dual graphs, and'let H 1+, Hn be the com-
ponents of G. Let H{ , - - -, H. be the corresponding subgraphs of G'. Then
H{,---,H, arethecomponents of G’y and H! is a dual of H;, i=1,- - - , m.

H, is the subgraph of G corresponding to H{ in G’. Its complement is I,,
the graph formed of the arcs of Hy, - - - , H,.. Obviously H,, - - - , H,, are the
components of I,. Hence, by Theorem 13, the nullity of I, is na+n;+ - - -
+#,. Thus, as G’ is a dual of G,

=R —(ma+tn+- - +nm.*
Similarly,
ry =R/—(”1+"3+"'+”m),

‘
S
It
=
l
—
3
+
&
+
+
$

L
~—

Adding these equations gives
i+l =mR — (m— D) +na+ -+ nm).
AsH, H,, - - - ,H, are the components of G,
N=nm+n+- -4+ n,.
Also, as G and G’ are duals, by Theorem 20,

R = N.
Hence
i+ +- - +rd =mR —(m— )R
= R'.

Let now Hy/, - - -, Hix, be the components of H{ (there may be but one)
and similarly for H;, - - -, H,/. Then, by Theorem 13,

Adding these equations gives
Drii=ri4 4 rm=R.
Wi
As the graphs Hy/, - - -, H.,, are non-separable, Theorem 17 tells us that

they are the components of G’. Hence G’ has at least as many components as

* Which equals #;.
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G. Similarly, G has at least as many components as G’. They have therefore
the same number, m, of components.

There are therefore m graphs in the set Hyf, - - - , H.lx,. But there is at

least one such graph in each graph H{, - -, H, , and there is therefore
exactly one in each. Hence each graph H,/ fills out the graph H/, and the two
sets of graphs Hi/, - -, Hu, and H{, - -, H, are identical, that is,
H{,---,H, arethe componentsof G'.

The rest of the theorem follows from Theorem 24.
As a special case of this theorem, we have

THEOREM 26. A dual of a non-separable graph is non-separable.

9. Planar graphs. Up till now, we have been considering abstract graphs
alone. However, the definition of a planar graph is topological in character.
This section may be considered as an application of the theory of abstract
graphs to the theory of topological graphs.

Definitions. A topological graph is called planar if it can be mapped in a
(1, 1) continuous manner on a sphere (or a plane). For the present, we shall
say that an abstract graph is planar if the corresponding topological graph is
planar. Having proved Theorem 29, we shall be justified in using the follow-
ing purely combinatorial definition: A graph is planar if it has a dual.

We shall henceforth talk about “graphs” simply, the terms applying
equally well to either abstract or topological graphs.

LemMA. If a graph can be mapped on a sphere, it can be mapped on a plane,
and conversely.

Suppose we have a graph mapped on a sphere. We let the sphere lie on the
plane, and rotate it so that the new north pole is not a point of the graph. By
stereographic projection from this pole, the graph is mapped on the plane.
The inverse of this projection maps any graph on the plane onto the sphere.

By the regions of a graph lying on a sphere or in a plane is meant the re-
gions into which the sphere or plane is thereby divided. A given region of the
graph is characterized by those arcs of the graph which form its boundary.
If the graph isin a plane, the outside region is the unbounded region.

LEMMA. A planar graph may be mapped on a plane so that any desired region
is the outside region.

We map the graph on a sphere, and rotate it so that the north pole lies
inside the given region. By stereographic projection, the graph is mappec
onto the plane so that the given region is the outside region.

We return now to the work in hand.
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THEOREM 27. If the components of a graph G are planar, G is planar.

Suppose the graphs G; and G; are planar, and G’ is formed by letting the
vertices @, and ¢; of G, and G; coalesce. We shall show that G’ is planar. Map
G, on a sphere, and map G: on a plane so that one of the regions adjacent to
the vertex a is the outside region. Shrink the portion of the plane containing
G. so it will fit into one of the regions of G, adjacent to a.. Drawing e, and a.
together, we have mapped G’ on the sphere.* The theorem follows as a re-
peated application of this process.

TureoreM 28. Let G and G’ be dual graphs, and let a(abd), o’(a’d’) be two
corresponding arcs. Form G, from G by dropping out the arc a(ab), and form G{
from G’ by dropping out the arc a'(a’d’), and letting the vertices a’ and b’
coalesce if they are not already the same veriex. Then G, and G, are duals, pre-
serving the correspondence between their arcs.

Let H, be any subgraph of G, and let H/ be the complement of the cor-
responding subgraph of G .

Case 1. Suppose the vertices ¢’ and b’ were distinct in G’. Let H be the
subgraph of G identical with H,. Then

n = n;.
Let H' be the complement in G’ of the subgraph corresponding to H. Then
=R —n.

Now H'’ is the subgraph in G’ corresponding to H{ in G{, except that H’
contains the arc a’(a’d’), which is not in H{. Thus if we drop out «’(a’d’)
from H’ and let ¢’ and b’ coalesce, we form H/ . In this operation, the number
of connected pieces is unchanged, while the number of vertices is decreased
by 1. Hence

ri =7 — 1.

As a special case of this equation, if H' contains all the arcs of G’, we find

R{ =R — 1.
These equations give
r 1' =R 1’ — n;.
Thus GY is a dual of G;.
Case 2. Suppose ¢’ and b’ are the same vertex in G’. In this case, defining
H and H’ as before, we form H{ from H’ by dropping out the arc a’(a’a’).
This leaves the number of vertices and the number of connected pieces un-

* Here and in a few other places we are using point-set theorems which, however, are geo-
metrically evident.
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changed. Thus two of the equations in Case 1 are replaced by the equations
1’1’ =1, Rll = Rl.

The other equations are as before, so we find again that G/ is a dual of G..
The theorem is now proved.

THEOREM 29. A necessary and sufficient condition that a graph be planar
is that it have a dual.

We shall prove first the necessity of the condition. Given any planar
graph G, we map it onto the surface of a sphere. If the nullity of G is N, it
divides the sphere into N +1 regions. For let us construct G arc by arc Each
time we add an arc joining two separate pieces, the nullity and the number of
regions remain the same. Each time we add an arc joining two vertices in the
same connected pieces, the nullity and the number of regions are each in-
creased by 1. To begin with, the nullity was 0 and the number of regions was
1. Therefore, at the end, the number of regionsis N +1.

We construct G’ as follows: In each region of the graph G we place a
point, a vertex of G’. Therefore G’ contains V' =N +1 vertices. Crossing each
arc of G we place an arc, joining the vertices of G’ lying in the two regions the
arc of G separates (which may in particular be the same region, in which case
this arc of G’ is a 1-circuit). The arcs of G and G’ are now in (1, 1) correspond-
ence.

G’ is the dual of G in the ordinary sense of the word. We must show it is
the dual as we have defined the term.

Let us build up G arc by arc, removing the corresponding arc of G’ each
time we add an arc to G. To begin with, G contains no arcs and G’ contains
all its arcs, and at the end of the process, G contains all its arcs and G’ con-
tains no arcs. We shall show

(1) each time the nullity of G is increased by 1 upon adding an arc, the
number of connected pieces in G’ is reduced by 1 in removing the correspond-
ing arc, and

(2) each time the nullity of G remains the same, the number of connected
pieces in G’ remains the same.

To prove (1) we note that the nullity of G is increased by 1 only when the
arc we add joins two vertices in the same connected piece. Let ab be such an
arc. As a and b were already connected by a chain, this chain together with
ab forms a circuit P. Let a’d’ be the arc of G’ corresponding to ab. Before we
removed it, a’ and b’ were connected. Removing it, however, disconnects
them. For suppose there were still a chain C’ joining them. As ¢” and b’ are
on opposite sides of the circuit P, C’ must cross P, by the Jordan Theorem,
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that is, an arc of C’ must cross an arc of P. But we removed this arc of C’
when we put in the arc of P it crosses. (1) is now proved.

The total increase in the nullity of G during the process is of course just NV.
Therefore the increase in the number of connected pieces in G’ must be at least
N. But G’ was originally in at least one connected piece, and is at the end
of the process in ¥V =N 41 connected pieces. Thus the increase in the number
of connected pieces in G’ is just N (hence, in particular, G’ itself is connected)
and therefore this number increases only when the nullity of G increases,
which proves (2).

Let now H be any subgraph of G, let H’ be the complement of the cor-
responding subgraph of G’, and let H' include all the vertices of G’. We build
up H arc by arc, at the same time removing the corresponding arcs of G'.
Thus when H is formed, H' also is formed. By (1) and (2), the increase in the
number of connected pieces in forming H’ from G’ equals the nullity of H,
that is,

p'— P =n.
But
7”=V"—P', R =V — P,
as G’ and H' contain the same vertices. Therefore

" = R' — n,
that is, G’ is a dual of G.

To prove the sufficiency of the condition, we must show that if a graph
has a dual, it is planar. It is enough to show this for non-separable graphs. For
if the separable graph G has a dual, its components have duals, by Theorem
25, hence its components are planar, and hence G is planar, by Theorem 27.
This part of the theorem is therefore a consequence of the following theorem:

THEOREM 30. Let the non-separable graph G have a dual G'. Then we can
map G and G’ together on the surface of a sphere so that

(1) corresponding arcs in G and G’ cross each other, and no other pair of arcs
cross each other, and

(2) inside each region of one graph there is just one veriex of the other graph.

The theorem is obviously true if G contains a single arc. (The dual of an
arc abis an arc ¢’a’, and the dual of an arc aa is an arc a’d’.) We shall assume
it to be true if G contains fewer than E arcs, and shall prove it for any graph
G containing E arcs. By Theorem 8, each vertex of G is on at least two arcs.

Case 1. G contains a vertex b on but two arcs, ab and bc. As
G is non-separable, there is a circuit containing these arcs. Thus dropping
out one of them will not alter the rank, while dropping out both reduces the
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rank by 1. As G’ is a dual of G, the arcs corresponding to these two arcs are
each of nullity 0, while the two arcs taken together are of nullity 1. They are
thus of the form a’(a’d’), 8'(a’d’), the first corresponding to ab, and the
second, to bc.

Form G, from G by dropping out the arc bc and letting the vertices b and ¢
coalesce, and form G{ from G’ by dropping out the arc 8'(a’d’). By Theorem
28, G1 and G{ are duals, preserving the correspondence between the arcs. As
these graphs contain fewer than E arcs,* we can, by hypothesis, map them to-
gether on a sphere so that (1) and (2) hold; in particular, @’(a’d’) crosses ac.
Mark a point on the arc ac of G, lying between the vertex ¢ and the point
where the arc a’(a’d’) of G’ crosses it. Let this be the vertex b, dividing the arc
ac into the two arcs @b and bc. Draw the arc 8'(a’d’) crossing the arc bc. We
have now reconstructed G and G’, and they are mapped on a sphere so that
(1) and (2) hold.

Case 2. Each vertex of G is on at least three arcs. As then G contains
no suspended chain, and G is not a circuit and therefore is of nullity
N >1, we can, by Theorem 18, drop out an arc ab so that the resulting graph
G, is non-separable. G’ is non-separable, by Theorem 26, and hence the arc
a’b’ corresponding to ab in G is not a 1-circuit. Drop it out and let the vertices
a’, b’ coalesce into the vertex e/, forming the graph G!. By Theorem 28,
G and G{ are duals, and thus G/ also is non-separable.

Consider the arcs of G’ on a’. If we drop them out, the resulting graph G’/
has a rank one less than that of G’. For if its rank were still less, G’* would be
in at least three connected pieces, one of them being the vertex a’. Let ¢ and
d be vertices in two other connected pieces of G'’. They are joined by no chain
in G'’, and hence every chain joining them in G’ must pass through &', which
contradicts Theorem 6. If we put back any arc, the rank is brought back to
its original value, as a’ is then joined to the rest of the graph. Hence, G’ being
a dual of G, the arcs of G corresponding to these arcs are together of nullity 1,
while dropping out one of them reduces the nullity to 0. Therefore, by
Theorem 9, these arcs form a circuit P. One of these arcs is the arc ab. The
remaining arcs form a chain C. Similarly, the arcs of G corresponding to the
arcs of G’ on b’ form a circuit Q, and this circuit minus the arc ¢b forms a chain
D. C and D have the vertices ¢ and b as end vertices. Also, the arcs of G,
corresponding to the arcs of G{ on a{ form a circuit R. These arcs of G{ are
the arcs of G’ on either a’ or b’, except for the arc a’b’ we dropped out. Thus
the arcs of G, forming the circuit R are the arcs of the chains C and D.

As G, and G{ contain fewer than E arcs, we can map them together on a

* Obviously G, is non-separable.
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sphere so that properties (1) and (2) hold. a{ lies on one side of the circuit R,
which we call the inside. Each arc of R is crossed by an arc on a{, and thus
there are no other arcs of G/ crossing R. There is no part of G/ lying in-
side R other than a{, for it could have only this vertex in common with the
rest of G{, and G{ would be separable. Also, there is no part of G, lying in-
side R, for any arc would have to be crossed by an arc of G{, and any vertex
would have to be joined to the rest of Gi by an arc, as G, is non-separable.

Let us now replace a{ by the two vertices ¢’ and b’, and let those arcs
abutting on a{ that were formerly on a’ be now on a’, and those formerly on
b’, now on b’. As the first set of arcs all cross the chain C, and the second set
all cross the chain D, we can do this in such a way that no two of the arcs
cross each other. We may now join a and b by the arc ab, crossing none of
these arcs. This divides the inside of R into two parts, in one of which &’
lies, and in the other of which b’ lies. We may therefore join @’ and b’ by the
arc a’d’, crossing the arc ¢b. G and G’ are now reconstructed, and are mapped
on the sphere as required. This completes the proof of the theorem, and there-
fore of Theorem 29.

THEOREM 31. A necessary and sufficient condition that a graph be planar
is that it contain neither of the two following graphs as subgraphs:

G1. This graph is formed by taking five vertices a, b, ¢, d, e, and joining each
pair by an arc or suspended chain.

Ge. This graph is formed by taking two sets of three vertices, a, b, c, and d, e, f,
and joining each vertex in one set to each vertex in the other set by an arc or
suspended chain.

This theorem has been proved by Kuratowski.* It would be of interest to
show the equivalence of the conditions of the theorem and Theorem 29
directly, by combinatorial methods. We shall do part of this here, in the fol-
lowing theorem:f

THEOREM 32. Neither of the graphs G, and G, has a dual.

Suppose the graph G, had a dual. By Theorem 28, if G, contains a sus-
pended chain, we can drop out one of its arcs and let the two end vertices
coalesce, and the resulting graph will have a dual. Continuing, we see that the
graph Gs, in which each pair of vertices of the set a, b, ¢, d, e are joined by an
arc, must have a dual. Similarly, if G, has a dual, then the graph G, in which
each vertex of the set a, b, ¢ is joined to each vertex of the set d, ¢, f by an arc,
must have a dual. Both of these are impossible.

* Fundamenta Mathematicae, vol. 15 (1930), pp. 271-283.

t The other half has recently been proved by the author. See Bulletin of the American Math-
ematical Society, abstract (38-1-39). (Note added in proof.)
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(a) The graph G,. To avoid subscripts, let us call it G. Suppose it had a
dual, G’. Then

R =N =4,
N =R =6,
E = E = 10.

If G’ has isolated vertices, we drop them out, which does not alter its
relation to G.

(1) There are no 1-circuits, 2-circuits or triangles in G’. For if there were,
dropping out the corresponding arcs of G would have to reduce the rank of G.
But we cannot reduce its rank without dropping out at least four arcs.

(2) G’ contains at least five quadrilaterals. For if we drop out the four
arcs on any vertex of G, the rank is reduced by 1, and if we put back any of
these arcs, the rank is brought back to its original value; Theorem 9 now
applies.

(3) At least two of these quadrilaterals have an arc in common, as there
are but ten arcsin G’.

There are just two ways of forming two quadrilaterals out of fewer than
eight arcs without forming any 2-circuits or triangles. One of these graphs,
I/, contains the arcs a’d’, b’e’, a’c’, c’e’, a’d’, d’¢’. The other, I, contains the
arcs a’e’, e'f’, f'b’, b’a’, e'c’, ¢’d’, d’f’. But there is no subgraph of the type
I! in G’, for this subgraph is of rank 4 and nullity 2, and there would have to
be a subgraph of G of rank 2 and nullity 2, and such a graph contains a 1-
or a 2-circuit, of which there are none in G. Hence G’ contains a subgraph 4.

(4) Each vertex of G’ is on at least three arcs, as there are no 1- or 2-cir-
cuitsin G.

Each of the vertices @', b, ¢/, d’ of I{ is on but two arcs. Hence there
must be another arc on each of these vertices. As I contains seven arcs, and
G’ contains but ten, one of the three arcs left must join two of these vertices.
But if we add an arc ¢’d’ or ¢’d’, we would form a 2-circuit; if we add an arc
a’c’ or b’d’, we would form a triangle; if we add an arc ¢’d’ or b’c’, we would
form a graph of the type I{. As G’ contains none of these graphs, we have a
contradiction.

(b) The graph G.. Let us call it G. If it has a dual G’, then

R=N =5,
N=R =4,
E=FE =09.

We proceed exactly as for the graph G;. In outline:
(1) G’ contains no 1- or 2-circuits.
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(2) There is no subgraph of G’ containing four vertices, each pair being
joined by an arc. For this graph is of rank 3 and nullity 3, and G would have
to contain a subgraph of rank 2 and nullity 1, that is, a 2-circuit.

(3) There are at least nine subgraphs of G’ of rank 3 and nullity 2, and
hence of the form a’b’, a’c’, b’c’, b’d’, ¢’d’, as there are nine quadrilateralsin G.

(4) As G’ contains but nine arcs, two of these subgraphs have an arc in
common. There is therefore a subgraph of one of the forms I : ¢’e’, a’b’, b’e’,
a’c’,c’e’,a’d’ ,d’e’,orI{:a’e’,a’b’,b’e’,b'c’, c'e’,c’d’,de’.

(5) Each vertex of G’ is on at least four arcs.

Now each of the graphs I{, IJ contains seven arcs. We have but two
arcs left which we must place so that each vertex of I{ or IJ is on at least
four arcs. This cannot be done. The theorem is now proved.

Theorem 31 together with this theorem gives an alternative proof of the
second part of Theorem 29. For suppose a graph G had a dual. Then it con-
tains neither the graph G, nor G.. For if it did, dropping out all the arcs of G
but those forming one of these graphs, Theorem 28 tells us that this graph
has a dual. But we have just seen that this is not so. Hence, by Theorem
31, G is planar.

Euler’s formula. Map any connected planar graph G on a sphere, and con-
struct its connected dual G’ as described in the proof of Theorem 29. Then
in each region of G there is a vertex of G’. Let F be the number of regions
(or faces) in G. Then

R' =N,
R=V -1,
R=V -1,
V' =F,

and hence
V—E+F=R+1—E+N+1
= 2’
which is Euler’s formula.
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