CHAPTER 2

Hilbert Spaces

Although it is possible to study time series analysis without explicit use of
Hilbert space terminology and techniques, there are great advantages to be
gained from a Hilbert space formulation. These are largely derived from our
familiarity with two- and three-dimensional Fuclidean geometry and in par-
ticular with the concepts of orthogonality and orthogonal projections in these
spaces. These concepts, appropriately extended to infinite-dimensional Hilbert
spaces, play a central role in the study of random variables with finite second
moments and especially in the theory of prediction of stationary processes.

Intuition gained from Euclidean geometry can often be used to make
apparently complicated algebraic results in time series analysis geometrically
obvious. It frequently serves also as a valuable guide in the development and
construction of algorithms.

This chapter is therefore devoted to a study of those aspects of Hilbert
space theory which are needed for a geometric understanding of the later
chapters in this book. The results developed here will also provide an adequate
background for a geometric approach to many other areas of statistics, for
example the general linear model (see Section 2.6). For the reader who wishes
to go deeper into the theory of Hilbert space we recommend the book by
Simmons (1963).

§2.1 Inner-Product Spaces and Their Properties

Definition 2.1.1 (Inner-Product Space). A complex vector space # is said to
be an inner-product space if for each pair of elements x and y in #, there is
a complex number {x, y, called the inner product of x and y, such that
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(a) <{x,y> = <y, x>, the bar denoting complex conjugation,
by <x+y,z>=<x,z) + {y,zyforall x, y, ze H#,

() <ax,y> =alx,yyforall x,ye# and aeC,

(d) {x,x> = O0forall xe#,

() <x,x>=0ifand onlyif x = 0.

Remark 1. A real vector space # is an inner-product space if for each x, ye #°
there exists a real number {x,y)> satisfying conditions {a)-(e). Of course
condition (a) reduces in this case to {x,y> = {y,x).

Remark 2. The inner product is a natural generalization of the inner or scalar
product of two vectors in n-dimensional Euclidean space. Since many of the
properties of Euclidean space carry over to inner-product spaces, it will be
helpful to keep Euclidean space in mind in all that follows.
ExaMpLE 2.1.1 (Euclidean Space). The set of all column vectors

X =(xy,...,%) R,

is a real inner-product space if we define

X, y) = ; X; Vi (2.1.1)

Equation (2.1.1) defines the usual scalar product of elements of R*. [t is a simple
matter to check that the conditions (a)-(e) are all satisfied.

In the same way it is easy to see that the set of all complex k-dimensional
column vectors

z=1(z4,...,2,)eC*

is a complex inner-product space if we define
k
(w,zy = ) wzZ,. (2.1.2)
i=1

Definition 2.1.2 (Norm). The norm of an element x of an inner-product space

is defined to be
[xl =/ <x x> (2.1.3)
In the Euclidean space R* the norm of the vector is simply its length,

Il = (=1 x2)2.

The Cauchy—Schwarz Inequality. If 5 is an inner-product space, then
[<x ol < lIx[Hivl forallx, ye#, (2.1.4)

and

[<x,p21 = lixIl [yl if and only if x = y{x, y5/<y, ¥>. (2.1.5)
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ProoF. The following proof for complex # remains valid (although it could
be slightly simplified) in the case when J# is real.

Leta = ||y||%, b = |{x,v>|and ¢ = | x||?. The polar representation of {x, y>
is then

{x,y> = be"® forsome Oe(—mn,x].
Now for all re R,
(x —rePy,x —re?yy = (x, x> — re<{y, x> —re Pl y> + 2y
=c —2rb + rta, (21.6)

and using elementary calculus, we deduce from this that

0 <min(c — 2rb + r?a) = ¢ — b¥/a,
reR

thus establishing (2.1.4).

The minimum value, ¢ — b?/a, of ¢ — 2rb + r?a is achieved when r = b/a.
If equality is achieved in (2.1.4) then ¢ — b%/a = 0. Setting r = b/a in (2.1.6) we
then obtain

{x — ye®bja,x — ye®b/a> = 0,
which, by property (e) of inner products, implies that
x = ye"bla = y<{x, y>/<{y, y>.
Conversely if x = y<{x, y>/{y, y> (or equivalently if x is any scalar multiple of
y), it is obvious that there is equality in (2.1.4). O

ExaMPLE 2.1.2 (The Angle between Elements of a Real Inner-Product
Space). In the inner-product space R* of Example 2.1.1, the angle between two
non-zero vectors x and y is the angle in [0, 7] whose cosine is ) ., x;y,/
(Ixif Ilyl)- Analogously we define the angle between non-zero elements x and
y of any real inner-product space to be

0 = cos™ [{x, o /IxN [y (2.1.7)

In particular x and y are said to be orthogonal if and only if {x,y)> = 0. For
non-zero vectors x and y this is equivalent to the statement that 8 = x/2.

The Triangle Inequality. If # is an inner-product space, then
[x + vl < lxll + |yl forallx, yes#. (2.1.8)
PROOF.
Ix +ylI?=<x+y,x+y>
= {x0 + {690 + 0 x) +
< Ul + 20ixf yll + Iyi?
by the Cauchy—Schwarz inequality. |
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Proposition 2.1.1 (Properties of the Norm). If # is a complex (respectively
real) inner-product space and | x|| is defined as in (2.1.3), then

@ llx +yl < x| +llyl forallx,ye#,

(b) Jlax|l = laf x| Jorall xe # and all 0 e C (a € R),
©) x| =0 forall xe #,
d Jx]l =0 if and only if x = 0.

(These properties justify the use of the terminology “norm” for | x|.)

Proor. The first property is a restatement of the triangle inequality and the
others follow at once from Definition (2.1.3). 0O

The Parallelogram Law. If 5 is an inner-product space, then
%+ yI? + Ix — (2 =2[xlI> + 2)y|* forallx,yes#. (2.1.9)
Proor. Problem 2.1. Note that (2.1.9) is not a consequence of the properties

(a), (b), (c) and (d) of the norm. 1t depends on the particular form (2.1.3) of the
norm as defined for elements of an inner-product space. O

Definition 2.1.3 (Convergence in Norm). A sequence {x,,n = 1,2,...} of ele-
ments of an inner-product space # is said to converge in norm to x€ # if
[[x, — x| = 0asn— co.

Proposition 2.1.2 (Continuity of the Inner Product). If {x,} and {y,} are
sequences of elements of the inner-product space # such that ||x, — x| - 0 and
vy, — yll = 0 where x, y € #, then

(@) lxull = Y|
and
(b) <xp V> = <X, ¥
ProofF. From the triangle inequality it follows that |[x|| < |ix — vy + |yl
and ||y < |y — x|l + lix||. These statements imply that
Ix =yl =[xl — Iyl (2.1.10)
from which (a) follows immediately. Now
Xy Yu) = X001 = [Xa Vo = ¥ + (X = %, 90
< X Y = W21+ 1<% — %, 97
< Ixall lym — w1+ Hlx, — X 1L

where the last line follows from the Cauchy—Schwarz inequality. Observing
from (a) that || x,| — | x||, we conclude that

|<xn,yn>—<x9y>|_>0 as n — o0. D
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§2.2 Hilbert Spaces

An inner-product space with the additional property of completeness is called
a Hilbert space. To define completeness we first need the concept of a Cauchy
sequence.

Definition 2.2.1 (Cauchy Sequence). A sequence {x,,n = 1,2,...} of elements
of an inner-product space is said to be a Cauchy sequence if
Ix, — xull =0 asm,n— co,
i.e. if for every ¢ > 0 there exists a positive integer N(g) such that
IIx, — x,ll <& forallm n> N(g).
Definition 2.2.2 (Hilbert Space). A Hilbert space # is an inner-product space

which is complete, i.e. an inner-product space in which every Cauchy sequence
{x,} converges in norm to some element x € #.

ExampLE 2.2.1 (Euclidean Space). The completeness of the inner-product
space R* defined in Example 2.1.1 can be verified as follows. If x, =
(Xn15Xn2s---» Xm) € R¥ satisfies

k
”xn_xm“Z = Z|Xm~—x,m-|2—)0 asm, n— 0,
i=1

then each of the components must satisfy
[Xpi — Xl >0 asm, n— co.
By the completeness of R, there exists x; € R such that
[Xp; — %] >0 asn— oo,
and hence if x = (x,,...,Xx;), then
Ix, — x| >0 asn— 0.
Completeness of the complex inner-product space C* can be checked in the

same way. Thus R* and C* are both Hilbert spaces.

ExaMpPLE 2.2.2 (The Space L*(Q,&,P)). Consider a probability space
(Q, #, P) and the collection C of all random variables X defined on Q and
satisfying the condition,

EX? = J X (w)? P(dow) < .
Q

With the usual notion of multiplication by a real scalar and addition of
random variables, it is clear that C is a vector space since

E(@X)! =a’EX? < o forallaeRand XeC,
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and, from the inequality (X + Y)? £ 2X? +2Y?,
E(X + Y2 <2EX?+2EY?< o forall X, YeC.

The other properties required of a vector space are easily checked. In particular
C has a zero element, the random variable which is identically zero on Q.
For any two elements X, Y € C we now define

(X,Y> = E(XY). 2.2.1)

It is easy to check that <X, Y ) satisfies all the properties of an inner product
except for the last. If (X, X)> = 0 then it does not follow that X(w) = 0 for
all w, but only that P(X = Q) = 1. This difficulty is circumvented by saying
that the random variables X and Y are equivalent if P(X = Y) = 1. This
equivalence relation partitions C into classes of random variables such that
any two random variables in the same class are equal with probability one.
The space L* (or more specifically L*(Q, #, P)) is the collection of these
equivalence classes with inner product defined by (2.2.1). Since each class is
uniquely determined by specifying any one of the random variables in it,
we shall continue to use the notation X, Y for elements of L? and to call
them random variables (or functions) although it is sometimes important to
remember that X stands for the collection of all random variables which are
equivalent to X.

Norm convergence of a sequence {X,} of elements of L? to the limit X
means

X, — X||> = E|X, — X|*?->0 asn— co.

Norm convergence of X, to X in an L? space is called mean-square con-
vergence and is written as X, =5 X.

To complete the proof that L? is a Hilbert space we need to establish
completeness, i.e. that if || X,, — X,||> — 0asm, n — oo, then there exists X € L2
such that X, =5 X, This is indeed true but not so easy to prove as the
completeness of R*. We therefore defer the proof to Section 2.10.

ExaMPLE 2.2.3 (Complex L? Spaces). The space of complex-valued ran-
dom variables X on (Q, &, P) satisfying E| X |2 < oo is a complex Hilbert space
if we define an inner product by

(X, Y> = E(XY). (22.2)

In fact if 4 is any finite non-zero measure on the measurable space (QQ, %),
and if D is the class of complex-valued functions on Q such that

f IfI?du < o0 (2.2.3)
Q

(with identification of functions f and g such that fQ |f — g|*du = 0), then D
becomes a Hilbert space if we define the inner product to be
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gy = L.fg dy. (2.2.4)

This space will be referred to as the complex Hilbert space L*(Q, #, ). (The
real Hilbert space L*(Q, %, ) is obtained if D is replaced by the real-valued
functions satisfying (2.2.3). The definition of { f,g) then reduces to {q fgdu.)

Remark 1. The terms L%(Q, %, P) and LY(Q, %, u) will be reserved for the
respective real Hilbert spaces unless we state specifically that reference is being
made to the corresponding complex spaces.

Proposition 2.2.1 (Norm Convergence and the Cauchy Criterion). If {x,} is a
sequence of elements belonging to a Hilbert space #, then {x,} converges in
norm if and only if ||x, — x| > 0asm, n - .

Proor. The sufficiency of the Cauchy criterion is simply a restatement of the
completeness of #. The necessity is an elementary consequence of the triangle
inequality. Thus if |x, — x|| = 0,

%, — Xpll < 1%, — x[| + X — Xl =0 asm, n—0. 0O

ExaMpLE 2.2.4. The Cauchy criterion is used primarily in checking for
the norm convergence of a sequence whose limit is not specified. Consider for
example the sequence

S, = Y a.X, (2.2.5)
i=1

where {X;} is a sequence of independent N(0, 1) random variables. It is easy
to see that with the usual definition of the L?-norm,

HSm_SnI|2= Z aiz’ m > n,
i=n+1
and so by the Cauchy criterion {S,} has a mean-square limit if and only if for
every ¢ > 0, there exists N(¢) > 0 such that > 7.,,, a? < ¢ for m > n > N(e).
Thus {S,} converges in mean square if and only if ) 2, a7 < cc.

§2.3 The Projection Theorem

We begin this section with two examples which illustrate the use of the
projection theorem in particular Hilbert spaces. The general result is then
established as Theorem 2.3.1.

ExaMpLE 2.3.1 (Linear Approximation in R*). Suppose we are given three
vectors in R3,
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X2

Xy

—_— X

Figure 2.1. The best linear approximation § = x,X; + ®,X,,t0y.

y=G%D,
X; = (1,05%)’9
x2 = (Os 1!%)(’

Our problem is to find the linear combination § = «,x, + a,x, which is
closest to y in the sense that S = ||y — a,x; — a,X,|/? is minimized.

One approach to this problem is to write S in the form S = (¢ — a,)? +
(3 — a,)? + (1 — %o, — 40,)? and then to use calculus to minimize with respect
to «, and a,. In the alternative geometric approach to the problem we observe
that the required vector § = «, X, + «,X, is the vector in the plane determined
by x, and x, such that y — «,x, — a,X, is orthogonal to the plane of x, and
X, (see Figure 2.1). The orthogonality condition may be stated as

<y_alxl _a2x2’xi> =05 i= 19 23 (231)
or equivalently
o X, X ) + 0, X5, X1 ) =Y, Xy ),
o X1, X2) + 2, {X5, X, ) = (¥, X, ).

For the particular vectors x,, X, and y specified, these equations become
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from which we deduce that a; = o, = %, and § = (4,4, 2.

ExaMpLE 2.3.2 (Linear Approximation in L2(, 4, P)). Now suppose that
X,, X, and Y are random variables in L?(Q, %, P). If only X, and X, are
observed we may wish to estimate the value of Y by using the linear combina-
tion ¥ = o, X, + a, X, which minimizes the mean squared error,

S=E|Y —o X, —a2X2|2 =Y —-a X, —a2X2||2.

As in Example 2.3.1 there are at least two possible approaches to this
problem. The first is to write
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S=EY?+ o«?EX} + 03EX? — 20, E(YX,) — 20, E(YX,) + ay0, E(X | X3),

and then to minimize with respect to a, and «, by setting the appropriate
derivatives equal to zero. However it is also possible to use the same geometric
approach as in Example 2.3.1. Qur aim is to find an element Y in the set

M={XeL*Q,F,P): X =a; X, + a,X, forsome a,, a,eR},

whose “squared distance” from Y, |Y — Y||%, is as small as possible. By
analogy with Example 2.3.1 we might expect Y to have the property that Y — ¥
is orthogonal to all elements of .#. The validity of this analogy, and the extent
to which it may be applied in more general situations, is established in
Theorem 2.3.1 (the projection theorem). Applying it to our present problem,
we can write

Y-, X, —0,X,,X>=0 forall Xe #, (2.3.2)
or equivalently, by the linearity of the inner product,
Y —a, X, —0,X,,X;>=0, i=12. (2.3.3)

These are the same equations for «, and a, as (2.3.1), although the inner
product is of course defined differently in (2.3.3). In terms of expectations we
can rewrite (2.3.3) in the form

a E(XT) + 2, E(X, X)) = E(YX)),
a0 E(X1 X,) + 0, E(X3) = E(YX,),

from which «, and o, are easily found.

Before establishing the projection theorem for a general Hilbert space we
need to introduce a certain amount of new terminology.

Definition 2.3.1 (Closed Subspace). A linear subspace .# of a Hilbert space #
is said to be a closed subspace of # if .# contains all of its limit points (i.e. if
x,€.4 and | x, — x| — 0 imply that x € .#).

Definition 2.3.2 (Orthogonal Complement). The orthogonal complement of a
subset .# of A is defined to be the set .#* of all elements of # which are
orthogonal to every element of .#. Thus

xe.#* if and only if {x,y> = O (written x L y) for all ye .#. (2.3.4)

Proposition 2.3.1. If .# is any subset of a Hilbert space # then #* is a closed
subspace of .

PROOF. It is easy to check from (2.3.4) that Oe.#' and that if x,, x,e.4*
then all linear combinations of x, and x, belong to .#*. Hence .#"' is a
subspace of #. If x, e .#* and ||x, — x|| — 0, then by continuity of the inner
product (Proposition 2.1.2), {x,y» = Ofor all ye .#, so xe .#* and hence .#*
is closed. O
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Theorem 2.3.1 (The Projection Theorem). If .# is a closed subspace of the
Hilbert space # and x € #, then

(1) there is a unique element X € .4 such that
Ix — %[ = inf [lx — yl|, (23.5)
ye #

and
(i) Xe.# and |x—R| =inf,. 4Ix—yll i and only if %Xe. and
(x — R)eHt.

[The element % is called the (orthogonal) projection of x onto M .]

Proor. (i) If d = inf,_ , ||x — y|{* then there is a sequence {y,} of elements of
4 such that ||y, — x||* > d. Apply the parallelogram law (2.1.9), and using
the fact that (y,, + y,)/2 € .#, we can write
0 < 1ym = yull? = =41y + yu)/2 = xI2 + 2(ys = xI + |y — xI?)
< —4d + 21y, — x> + [lym — xII?)
—0asm, n— 0.
Consequently, by the Cauchy criterion, there exists £ € # such that ||y, — X| —

0. Since .# is closed we know that £e.#, and by continuity of the inner
product

Ix — %)? = lim |lx — y,|? = d.

To establish uniqueness, suppose that je.# and that ||x — §||® =
lx — %||? = d. Then, applying the parallelogram law again,
0<% —Pl2 = —4l(® + $)/2 — x| + 2(I% — x[|> + {9 — x[?)
< —4d +4d=0.
Hence y = X.
(i) If e .# and (x — %)e.#" then % is the unique element of .# defined
in (i) since for any ye .#,
[x —yP=<{x—%+L2—px—X+x—y
= lx = %[>+ |2 — y|?
> x — %%,
with equality if and only if y = %.

Conversely if X e .# and (x — %)¢.#* then % is not the element of .# closest
to x since

¥ =X+ ay/lyl?

is closer, where y is any element of .# such that (x — %,y> # 0 and
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a = {x — %,y). To see this we write
[x —F?=— X+ -Fx—%+ £ —%
= l|lx — %1 + |a’/liyl® + 2Re<x — £, % — %)
= llx — 21> — lal*/llyl?

< llx —%|*. O

Corollary 2.3.1 (The Projection Mapping of # onto #). If # is a closed
subspace of the Hilbert space # and I is the identity mapping on #, then
there is a unique mapping P, of # onto M such that I — P, maps # onto M*.
P, is called the projection mapping of # onto M.

Proor. By Theorem 2.3.1, for each xe # there is a unique X e .# such that
x — Xe.#*. The required mapping is therefore

Pyx=2% xei. (2.3.6)
O

Proposition 2.3.2 (Properties of Projection Mappings). Let ## be a Hilbert
space and let P, denote the projection mapping onto a closed subspace M.
Then

(1) P/t(ax+ﬁY)=“P/lx+ﬂP//y, X,yejf’ o, BGC’
(i) lIx)|1* = IPx]1* + (I — Pg)xII?,
(iii) each x € # has a unique representation as a sum of an element of M and
an element of M7, ie.

x=Pyx+ (I — Py)x, (2.3.7)
(tv) Pyx,— Pyxif |x, — x|l =0,
(v) xe # if and only if Pyx = x,
(vi) xe.#* if and only if Pyx = 0,
and
(vii) M, < M, if and only if Py Py x = Py x forall xe #.

PROOF. (i) aPyx + P,y e .# since .# is a linear subspace of #. Also

ax + By — (aPyx + BPyy) = alx — Pyx) + B(y — Pyy)
I/ l,

since .# " is a linear subspace of # by Proposition 2.3.1. These two properties
identify aP,x + P,y as the projection P,(ax + By).

(1) This is an immediate consequence of the orthogonality of P,x and
(I — Py)x.

(1i1) One such representationisclearly x = P,x + (I — P,/)x.lf x = y + z,
ye. M, ze A" is another, then

y—Pyx+z—(I—Py)x=0.
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Taking inner products of each side with y — P, x gives ||y — P,x|? = 0, since
z—(I —Py)xe#* Hence y = Pyxand z = (I — Py)x.

(iv) By (ii), IP¢(x, — )* < lix, — x| > 0if | x, — x| > 0.

(v) xe.# if and only if the unique representation x = y + z, ye .#,ze .4,
is such that y = x and z = 0, i.e. if and only if P, x = x.

(vi) Repeat the argument in (v) with y = O and z = x.

(vii) x = Py, x + (I — P,,)x. Projecting each side onto .#, we obtain

Py x =Py Pyx + Py (I — Py )x.

Hence P, x = P, P, x for all xe # if and only if P, y = O for all ye My,
ie. if and only if #3 < 1, ie. if and only if 4, < M,. 0

The Prediction Equations. Given a Hilbert space s, a closed subspace ./,
and an element x € 3¢, Theorem 2.3.1 shows that the element of .# closest to
x is the unique element £ € .# such that

(x— %,y> =0 forall ye 4. (2.3.8)

The equations (2.3.1) and (2.3.2) which arose in Examples 2.3.1 and 2.3.2 are
special cases of (2.3.8). In later chapters we shall constantly be making use of
the equations (2.3.8), interpreting £ = P,x as the best predictor of x in the
subspace /4.

Remark 1. It is helpful to visualize the projection theorem in terms of Figure
2.1, which depicts the special case in which # = R3, .# is the plane containing
X, and x,, and ¥ = P,y. The prediction equation (2.3.8) is simply the state-
ment (obvious in this particular example) that y — § must be orthogonal to
M. The projection theorem tells us that j = P,y is uniquely determined by
this condition for any Hilbert space 5# and closed subspace .#. This justifies
in particular our use of equations (2.3.2) in Example 2.3.2. As we shall see later
(especially in Chapter 5), the projection theorem plays a fundamental role in
all problems involving the approximation or prediction of random variables
with finite variance.

ExaMpLE 2.3.3 (Minimum Mean Squared Error Linear Prediction of a
Stationary Process). Let {X,,t = 0, £+ 1,...} be a stationary process on (Q, #, P)
with mean zero and autocovariance function y(-), and consider the problem
of finding the linear combination X, = 3 "1 @y X+, —; Which best approxi-
mates X,,, in the sense that E|X,,, — > ", ¢,;X,,,_;|* is minimum. This
problem is easily solved with the aid of the projection theorem by taking
H =L*Q,F,Pyand M = D1 0,X,41-;:%4,...,a,€R}. Since minimization
of E|X,;, — X,n4,|? is identical to minimization of the squared norm | X, ., —
X,+1/%, we see at once that X,,, = P, X,.,. The prediction equations (2.3.8)
are

<Xn+l - Z ¢ann+1—j7 Y> =0 forall Ye .ﬂ,
ji=1
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which, by the linearity of the inner product, are equivalent to the n equations

<Xn+1 -y ¢,,jX,,+1_j,Xk> =0, k=nn—1,..,1
=1

Recalling the definition (X, Y) = E(XY) of the inner product in L2(Q, &, P),
we see that the prediction equations can be written in the form

Lé=17a (2.3.9)

where (bn = (¢n1 IR ¢nn)/a In = ('})(1)’ ey ’y(n))l and Iﬂn = [‘Y(l - J)]:l)=1 . The pro-
jection theorem guarantees that there is at least one solution ¢, of (2.3.9). If
I, is singular then (2.3.9) will have infinitely many solutions, but the projection
theorem guarantees that every solution will give the same (uniquely defined)
predictor X, ..

ExaMPLE 2.3.4. To illustrate the last assertion of Example 2.3.3, consider
the stationary process
X, = Acos(wt) + Bsin(wt),

where w € (0, ) is constant and A, B are uncorrelated random variables with
mean 0 and variance 2. We showed in Example 1.3.1 that for this process,
y(h) = a2 cos(wh). It is easy to check from (2.3.9) (see Problem 2.6) that

¢, =cosw and ¢, =2cosw, —1).

Thus

X, =(2cosw)X, — X,.
The mean squared error of X is

E(X; —(2cosw)X, + X,)® =0,

showing that for this process we have the identity,

X, =(2cosw)X, — X,. (2.3.10)
The same argument and the stationarity of {X,} show that

X, =Qcosw)X; — X,, (2.3.11)

again with mean squared error zero. Because of the relation (2.3.10) there are
infinitely many ways to reexpress X, in terms of X,, X, and X,. This is
reflected by the fact that I'; is singular for this process and (2.3.9) has infinitely
many solutions for ¢;.

§2.4 Orthonormal Sets

Definition 2.4.1 (Closed Span). The closed span $p{x,, te T} of any subset
{x,,te T} of a Hilbert space s# is defined to be the smallest closed subspace
of # which contains each element x,, te T.
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Remark 1. The closed span of a finite set {x,,...,x,} is the set of all linear
combinations, y = a;X; + ' + 0, %,, %q,..., d,€C (or R if # is real). See

n’vn>

Problem 2.7. If for example x,, x, € R* and x, is not a scalar multiple of x,
then Sp{x,, X, } is the plane containing x, and x,.

Remark 2. If .# =5p{x,,...,x,}, then for any given x € #, P,x is the unique
element of the form
Pyx =0 x; + 0+ o, X,
such that
(x = Pyx,y) =0, yed,

or equivalently such that

CPyx,x;) = {X,X;, j=1...,n (24.1)

The equations (2.4.1) can be rewritten as a set of linear equations for «4, ..., «,,
Viz.

Y oolxn x> =<x,%;), j=1,...,n (2.4.2)

i=1

By the projection theorem the system (2.4.2) has at least one solution for ),
..., o,. The uniqueness of P, x implies that all solutions of (2.4.2) must yield
the same element a; x; + - + a,X,.

Definition 2.4.2 (Orthonormal Set). A set {e,,re T} of elements of an inner-
product space is said to be orthonormal if for every s, te T,

¢ N 1 ifs=1, (243)
“ =0 ifs£e i

ExampLE 2.4.1. The set of vectors {(1,0,0), (0,1,0), (0,0,1)} is an ortho-
normal set in R3.

ExXAMPLE 2.4.2. Any sequence {Z,teZ} of independent standard normal
random variables is an orthonormal set in L?(Q, &, P).

Theorem 2.4.1. If {e|,..., e} is an orthonormal subset of the Hilbert space #
and M4 =spie,,..., e}, then

k
Pyx =Y (x,e;e; forall xe#, (2.4.4)
i=1
k
IPyxl? = Y [<x, e for all xe #, (24.5)
i=1
k k
x = Y<xede| < |x—Y ce| forallxed, (24.6)
i=1 i=1
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and for all ¢y, ..., c,€C (or Rif # is real). Equality holds in (2.4.6) if and only
ife,=<x, e, i=1,...,k

The numbers {x, e; > are sometimes called the Fourier coefficients of x relative
to the set {e,...,e,}.

ProOF. To establish (2.4.4) it suffices by Remark 2 to check that P, x as defined
by (2.4.4) satisfies the prediction equations (2.4.1), i.e. that

k
<Z<x’ei>ei7ej>=<x7ej>, ]:1,,k
i=1

But this is an immediate consequence of the orthonormality condition (2.4.3).
The proof of (2.4.5) is a routine computation using properties of the inner
product and the assumed orthonormality of {e,,...,e,}.
By Theorem 2.3.1 (ii), |x — Pyx|| < ||x — y| for all ye .#, and this is
precisely the inequality (2.4.6). By Theorem 2.3.1 (ii) again, there is equality in
(2.4.6) if and only if

k k
Zi ce; = Pyx = Zi {x,e)e;. (2.4.7)

Taking inner products of each side with ¢; and recalling the orthonormality
assumption, we immediately find that (2.4.7) is equivalent to the condition

;=Lxe>,j=1,..,k O
Corollary 2.4.1 (Bessel’s Inequality). If x is any element of a Hilbert space 3#
and {e,,..., e} is an orthonormal subset of # then

__il [<x, e 1? < (|2 (2.4.8)
ProoF. This follows at once from (2.4.5) and Proposition 2.3.2 (ii). O

Definition 2.4.3. (Complete Orthonormal Set). If {e,,te T} is an orthonormal
subset of the Hilbert space s and if # =5p{e,,te T} then we say that
{e,,te T} is a complete orthonormal set or an orthonormal basis for #.

Definition 2.4.4 (Separability). The Hilbert space # 1is separable if
# = sple,, t € T} with {e,, t e T} a finite or countably infinite orthonormal
set.

Theorem 2.4.2. [f # is the separable Hilbert space # = sp{e,,e,,...} where
{ei,i =1,2,...} is an orthonormal set, then

(i) the set of all finite linear combinations of {e,, e,,...} is dense in ¥, ie.
for each xe # and & > O, there exists a positive integer k and constants c,,
.., Cy Such that

k
x— Y cell <e (24.9)
i=1
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(i) x =32, {x,e,>e; foreachxe H,ie. |x — Y 1 {x,e)ell >0asn— o,
(i) Ix1Z = 2, [<x, eI for each xe #,

(iv) (x,¥> =Y 2, {x,e;><e;,y) for each x, ye #, and

(v) x=0ifandonly if {x,e;> =0 foralli=1,2,....

The result (iv) is known as Parseval’s identity.

PRrOOF. (i) If $ = {72, 5P {e;,..., ¢}, the set of all finite linear combinations
of {e,,e,,...}, then the closure S of S is a closed subspace of # (Problem 2.17)
containing {e;,i = 1,2,...}. Since J is by assumption the smallest such closed
subspace, we conclude that S = #.

(i) By Bessel's inequality (2.4.8), Y %, [<x,e;>|* < ||x||* for all positive
integers k. Hence Y 2, [{x,¢;>|* < ||x[*>. From (2.4.6) and (2.4.9) we conclude
that for each ¢ > 0 there exists a positive integer k such that

< &.

k
X — Z <x>ei>ei
i=1

Now by Theorem 2.4.1, Y 7_, (x,e;>e; = P,x where .# = 5p{e,,...,e,}, and
since for k < n, Y ¥, {x,e;>e;€ M, we also have

<¢ foralln>k. (2.4.10)

n
X = Z <X, ei>ei
i=1

(iii) From (2.4.10) we can write, for n > k,

2
+

2

i {x,ee

i=1

Ix]I* =

n
x— Y <x,e)e
i=1

<&+ 2 1Kx e,
Since ¢ > 0 was arbitrary, we deduce that
IxI? < 3. [Kxep P,
which together with the reversed inequality proved in (i), establishes (iii).
(iv) The result (2.4.10) established in (iii) states that ||} 7=, {x,e;>e; — x| =0

asn — oo for each x € #. By continuity of the inner product we therefore have,
for each x, ye #,

n—oo \i=1

(% yy = lim <z (xeden z . e,->e,->

= lim 2 (x,ep<eny)

n—o i=1

= 3 (xepenn.

(v) This result is an immediate consequence of (ii). O
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Remark 3. Separable Hilbert spaces are frequently encountered as the closed
spans of countable subsets of possibly non-separable Hilbert spaces.

§2.5 Projection in R"

In Examples 2.1.1, 2.1.2 and 2.2.1 we showed that R" is a Hilbert space with
the inner product

X,y) = é‘i X;Vis (2.5.1)
the corresponding squared norm
[x)? = Zn:l x?, (2.5.2)
and the angle between x and y,
0= cos‘1< X.¥) ) (2.5.3)
Iyl

Every closed subspace .# of the Hilbert space R" can be expressed by means
of Gram-Schmidt orthogonalization (see for example Simmons (1963)) as
M =5p{ey,...,e,} where {e,,...,e,} is an orthonormal subset of .# and m
(<n)is calted the dimension of .# (see also Problem 2.14). If m < n then there
is an orthonormal subset {e,,.,...,e,} of #* such that £+ = 5p{e,s1,...,e,}.
By Proposition 2.3.2 (iii) every x € R” can be expressed uniquely as a sum of
two elements of .# and .#* respectively, namely

X = Pyx + (I — Py)x, (2.54)
where, by Theorem 2.4.1,
Pyx = i (x,e;>e; (2.5.5)
and
(I —Pyx = ._anﬂ {x,e;>e,;. (2.5.6)

The following theorem enables us to compute P, x directly from any specified
set of vectors {x;,...,X,,} spanning .#.
Theorem 2.5.1. If x,eR", i=1,...,m, and # =3p{x,,...,X,} then

Pyx = X8, (2.5.7)
where X is the n X m matrix whose j'™ column is x; and

X'XB=Xx. (2.5.8)
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Equation (2.5.8) has at least one solution for B but X B is the same for all solutions.
There is exactly one solution of (2.5.8) if and only if X' X is non-singular and in
this case

P,x=X(X'X)1X'x (2.5.9)
PRrOOF. Since P,x € .4, we can write
Pyx=Y Bx;=Xp, forsomepf=(f,....0.)eR™ (2510)
=1

The prediction equations (2.3.8) are equivalent in this case to

(XBx;> = {x,X;), j=1L...,m, (2.5.11)
and in matrix form these equations can be written
X'Xp=Xx (2.5.12)

The existence of at least one solution for # is guaranteed by the existence of
the projection P, x. The fact that X § is the same for all solutions is guaranteed
by the uniqueness of P,x. The last statement of the theorem follows at once
from (2.5.7) and (2.5.8). O

Remark 1. If {x,,...,X,,} is an orthonormal set then X’ X is the identity matrix
and so we find that

Pyx = XX'x = ) (XX DX,
i=1
in accordance with (2.5.5)

Remark 2. If {x,,...,x,,} is a linearly independent set then there must be a
unique vector # such that P,x = Xp. This means that (2.5.8) must have a
unique solution, which in turn implies that X' X is non-singular and

P,x=X(X'X)'X'x forall xeR"
The matrix X (X’ X)™' X’ must be the same for all linearly independent sets

{x,...,X,} spanning .# since P, is a uniquely defined mapping on R".

Remark 3. Given a real n x n matrix M, how can we tell whether or not there
is a subspace .# of R” such that Mx = P,x for all xe R*? If there is such a
subspace we say that M is a projection matrix. Such matrices are characterized
in the next theorem.

Theorem 2.5.2. The n x n matrix M is a projection matrix if and only if
@ M=M
and

(by M? =M.
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ProOF. If M is the projection matrix corresponding to some subspace .# then
by Remark 2 it can be written in the form X(X'X)™'X’ where X is any
matrix having linearly independent columns which span .#. It is easily verified
that (a) and (b) are then satisfied.

Suppose now that (a) and (b) are satisfied. We shall show that Mx = P,x
for all x e R" where .# is the range of M defined by

R(M) = {Mx :xeR"}.

First observe that Mx e R(M) by definition. Secondly we know that for any
y € R(M) there exists we R” such that y = Mw. Hence

x — Mx,y) ={x — Mx,Mw) =x'(I — MyMw =0 forall ye R(M),

showing that Mx is indeed the required projection. Ol

§2.6 Linear Regression and the General Linear Model

Consider the problem of finding the “best” straight line

y=0,x+06,, (2.6.1)
or equivalently the best values 0, 0, of 6,, 6, €R, to fit a given set of data
points (x;, y;), i = 1, ..., n. In least squares regression the best estimates 8,, 0,

are defined to be values of 6,, 8, which minimize the sum,

01’02 Z (yl Xi 92)2’

of squared deviations of the observations y; from the fitted values 6, x; + 6,.
This problem reduces to that of computing a projection in R" as is easily
seen by writing S(6,, §,) in the equivalent form

S(01,6,) = iy — 8;x — 6,1]%, (2.6.2)

where x = (x,,...,x,), 1 =(1,...,1) and y = (yys- ..,y,,) By the projection
theorem there is a unique vector of the form (6,x + 6,1) which minimizes
8(6,,6,), namely P,y where .# = 5p{x,1}.
Deﬁmng X to be the n x 2 matrix X = [x,1] and 8 to be the column
vector § = (91, 02) , we deduce from Theorem 2.5.1 that
Pyy=Xx0
where
X'X0=XYy. (2.6.3)
There is a unique solution 0 if and only if X' X is non-singular. In this case
0=X'X)Xy. (2.6.4)

If X’ X is singular there are infinitely many solutions of (2.6.4), however by the
uniqueness of Py, X0 is the same for all of them.
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The argument just given applies equally well to least squares estimation
for the general linear model. The general problem is as follows. Given a set of
data points

1 2 [ — .
(ng )’ng ),”"ngm)syi)’ l—l,...,n,mSn,

we are required to find a value 6 =(4,,...,0,) of 0 =(6,,...,6,) which
minimizes

S0) = 3, (5= O,xV = = G, x()
i=1
= ||y _ 91"(1) e emx(m)”Z’

wherey = (y,,...,y,) and x¥ = (x{),... x{’Y,j = 1,..., m. By the projection
theorem there is a unique vector of the form (f;xV + -+ + §,x") which
minimizes S(#), namely P,y where .# =sp{x"),...,x™}.

Defining X to be the n x m matrix X = [x,...,x"™] and 0 to be the
column vector 6 = 0,,...,8,), we deduce from Theorem 2.5.1 that

where
X'X0=Xxy (2.6.5)

As in the special case of fitting a straight line, @ is uniquely defined if and only
if X' X is non-singular, in which case
0=XxX'X)'XxYy. (2.6.6)
If X’ X is singular then there are infinitely many solutions of (2.6.5) but X6is
the same for all of them.
In spite of the assumed linearity in the parameters 8, ..., 6,,, the applica-

tions of the general linear model are very extensive. As a simple illustration,
let us fit a quadratic function,

y=6,x*+ 6,x + 0,
to the data

00 1
111 [ 10— 20

X=| 4 2 1| gving(X'X)" =51 —40 174 108},
9 3 1 20 —108 124
16 4 1

The least squares estimate 6 = (91,92,(93)’ is therefore unique and is found
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from (2.6.6) to be
0 =(0.5 —0.1,06).

The vector of fitted values X0 = P,y is given by

~

X0 =1(0.6,1,24,48,8.2),
as compared with the vector of observations,

y=(1,0,3,5,8).

§2.7 Mean Square Convergence, Conditional
Expectation and Best Linear Prediction in
L*(Q, #,P)

All results in this section will be stated for the real Hilbert space L2 =
L2(Q, #, P) with inner product {X, Y> = E(XY). The reader should have no
difficulty however in writing down analogous results for the complex space
L*(Q, #, P) with inner product {(X,Y)» = E(XY). As indicated in Example
2.2.2, mean square convergence is just another name for norm convergence
in L2, ie. if X,, X e L?, then
X, 25X ifandonlyif | X, — X|2=E|X,— X|*?—>0asn— .
(2.7.1)
By simply restating properties already established for norm convergence we
obtain the following proposition.

Proposition 2.7.1 (Properties of Mean Square Convergence).
(a) X, converges in mean square if and only if E|X, — X,|* > 0asm, n— 0.
(b) If X, =3 X and Y, =3 Y then as n — oo,

(i) EX, =<X, 1) > {(X,1) =EX,
(i) E|X,I> = {(X,,X,> - (X, X)> = E|X]%
and
(i) E(X,Y,) =<{X,,Y,> > <{X,Y) = E(XY).
Definition 2.7.1 (Best Mean Square Predictor of Y). If .# is a closed subspace

of L? and Y € L?, then the best mean square predictor of Y in .# is the element
Y e.# such that

|Y — P2 = inf |Y— Z|? = inf E|Y — Z|2. 2.7.2)
Ze M Ze

The projection theorem immediately identifies the unique best predictor of
Y in .# as P, Y. By imposing a little more structure on the closed subspace
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M, we are led from Definition 2.7.1 to the notions of conditional expectation
and best linear predictor.

Definition 2.7.2 (The Conditional Expectation, E ,X). If # is a closed sub-
space of L? containing the constant functions, and if X € L?, then we define
the conditional expectation of X given .# to be the projection,

Using the definition of the inner product in L2 and the prediction equations
(2.3.8) we can state equivalently that E 4, X is the unique element of .# such
that

E(WE ,X) = E(WX) forall We 4. (2.7.4)

Obviously the operator E, on L? has all the properties of a projection
operator, in particular (see Proposition 2.3.2)

Ey(aX +bY)=aE, X + bE,Y, a,beR, (2.7.5)
E X, ™S E,X ifX,5X (2.7.6)

and
Ey(Ey,X)=E X i M, S MH,. (2.7.7)

Notice also that
E, 1 =1 (2.7.8)

and if .#,, is the closed subspace of L2 consisting of all the constant functions,
then an application of the prediction equations (2.3.8) gives

E 4 X = EX. (2.7.9)

Definition 2.7.3 (The Conditional Expectation E(X|Z)). If Z is a random
variable on (Q, #, P)and X € L*Q, #, P) then the conditional expectation of
X given Z is defined to be

E(X|Z) = Eyz X, (2.7.10)

where .#(Z) is the closed subspace of L? consisting of all random variables in
L? which can be written in the form ¢{(Z) for some Borel function ¢ : R — R.
(For the proof that .#(Z) is a closed subspace see Problem 2.25.)

The operator E 4, has all the properties (2.7.5)—(2.7.8), and in addition

EynX >0 ifX>0. 2.7.11)

Definition 2.7.3 can be extended in a fairly obvious way as follows: if Z,,
..., Z, are random variables on (Q, #, P) and X € L?, then we define

E(X|Zy,-sZ) = Eq,. 2)(X), (2.7.12)

where #(Z,,...,2Z,) is the closed subspace of L? consisting of all random
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variables in L? of the form ¢(Z,,...,Z,) for some Borel function ¢: R" —» R.

The properties of E 4, listed above all carry over to E4z,. . 2,

Conditional Expectation and Best Linear Prediction. By the projection theorem,
the conditional expectation Ez, .z ,(X) is the best mean square predictor
of Xin #(Z,,...,2Z,),i.e.itis the best function of Z,, ..., Z, (in the m.s. sense)
for predicting X. However the determination of projections on #(Z,,...,Z,)
is usually very difficult because of the complex nature of the equations (2.7.4).
On the other hand if Z,, ..., Z,e L?, it is relatively easy to compute instead
the projection of X onsp{1,Z,,...,Z,} = M(Z,,...,Z,) since we can write

Pﬁ{l,z1 ..... zn}(X) = Z w2z, Zo=1, (2.7.13)
i=0
where a,, ..., o, satisfy

6ZnZ, ) =<{X,Z> j=0,1,...,n (2.7.14)
J J

i=0

or equivalently,

i

wE(Z;Z)=E(XZ), j=0,1,...,n (2.7.15)
The projection theorem guarantees that a solution {(«, . . ., «,) exists. Any solu-
tion, when substituted into (2.7.13) gives the required projection, known as
the best linear predictor of X in terms of 1, Z,, ..., Z,. As a projection of X
onto a subspace of #(Z,, ..., Z,)it can never have smaller mean squared error
z,X. Nevertheless it is of great importance for the following

reasons:

(a) it is easier to calculate than E 4, ., (X)),

(b) it depends only on the first and second order moments, EX, EZ,;, E(Z,Z;)
and E(XZ;) of the joint distribution of (X, Z,,...,Z,),

(c) if(X,Z,,...,Z,) has amultivariate normal distribution then (see Problem
2.20),

P12,

sp

z,,}(X) = EJ/{(Z1 ..... z,,)(X)-

Best linear predictors are defined more generally as follows:

.....

Definition 2.7.4 (Best Linear Predictor of X in Terms of {Z;, Ae A}). If X e L?
and Z,eL? for all AeA, then the best linear predictor of X in terms of
{Z,, A€ A} is defined to be the element of Sp{Z;, 1€ A} with smallest mean
square distance from X. By the projection theorem this is just Pz, ;a3 X.

ExaMPLE 2.7.1. Suppose Y = X2 + Z where X and Z are independent
standard normal random variables. The best predictor of Y in terms of X
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is E(Y|X) = X2 (The reader should check that the defining properties of
E(Y|X) = E 4 Y are satisfied by X?, i.e. that X?e.#(X) and that (2.7.4) is
satisfied with .# = .#(X).) On the other hand the best linear predictor of Y
in terms of {1, X} is

Pﬁ{l,x}Y =aX + b,
where, by the prediction equations (2.7.15),
{aX + b, X)> =Y, X)>=EYX)=0
and
(aX + b, 1> =(Y,1)=E(Y)=1.
Hence a = 0 and b = 1 so that
PgaunY =1
The mean squared errors of the two predictors are
IE(Y|X) — YII* = E(Z*) =1,
and
1Y = P Y12 = [Y]? — 1 = E(X*) + E(Z*) - 1 =3,

showing the substantial superiority of the best predictor over the best linear
predictor in this case.

Remark 1. The conditional expectation operators Ez and Ey ;. . .z
usually defined on the space L'(Q, #, P) of random variables X such that
E|X| < oo (see e.g. Breiman (1968), Chapter 4). The restrictions of these
operators to L*(Q, #, P) coincide with E, and E4;, . ,, as we have
defined them.

.....

§2.8 Fourier Series

Consider the complex Hilbert space L*[ —n, z] = L%([ — =, n], %, U) where #
consists of the Borel subsets of [ —z, 7], U is the uniform probability measure
U{dx) = (2n) ! dx, and the inner product of f, ge L?[ —n,n] is defined as
usual by
1 4
9> = Efg = ZJ S(x)g(x)dx. (28.1)

The functions {e,, n € Z} defined by
e,(x) = e, (2.8.2)
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are orthonormal in L?[ —x, 7] since

T

1 .
<em’en> — _J‘ eitm—mx dy
2n

1 k4
= z—j [cos(m — n)x + isin(m — n)x]dx
n -
_JU ifm=n
0 ifm#n
Definition 2.8.1 (Fourier Approximations and Coefficients). The »n™ order

Fourier approximation to any function feL?[ —n,n] is defined to be the
projection of f onto sp{e;, |j| < n}, which by Theorem 2.4.1 is

Sf= 3 (fepe 28.3)

j=-n

The coefficients
1 (" .
{fie;> = AJ‘ JSx)e ¥ dx (2.8.4)
2n | _,.
are called the Fourier coefficients of the function f.

We can write (2.8.3) a little more explicitly in the form

n
Snf(x) = Z <f’ ej>eijx> xe[—n, T[], (285)
j=-n
and one is naturally led to investigate the senses (if any) in which the sequence
of functions {S, f} converges to f as n — co. In this section we shall restrict
attention to mean square convergence, deferring questions of pointwise and
uniform convergence to Section 2.11.

Theorem 2.8.1. (a) The sequence {S, f} has a mean square limit as n — oo which
we shall denote by Y 7. _ ., {f,¢;>e; or Sf.
(b) Sf =f.

PROOF. (a) From Bessel's inequality (2.4.8) we have Y ;<. |<(f,e;>1* < | fI?
for all n which implies that Y %2 |<{f, e;>|* < co. Hence forn > m > 1,
IS0f — SuflI* < > IKfig|> >0 asm— oo,
\

i>m
showing that {S,f} is a Cauchy sequence and therefore has a mean square
limit.
(b) For |jl <n,<S,f,e;> = {f,e;, so by continuity of the inner product
(Sf,¢;> =1lim (S, f,e;> = {f,e;) foralljeZ.

n—oo
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In Theorem 2.11.2 we shall show that {g, ;) = Oforall je Z implies that g = 0.
Hence Sf — f = 0. O

Corollary 2.8.1. L*[ —n,n] = sp{e;,je Z}.

PRrOOF. Any fe L?[ —n, =] can be expressed as the mean square limit of S, f
where S, fesp{e;,je Z}. Since 5p{e;,j€ Z} is by definition closed it must con-
tain f. Hence 5p{e;,je Z} = L*[—n, 7). »

Corollary 2.8.2. (2) | /1% = Y32 - I< S e %
(b) <fog> = Y5 {frt)) <gres.

Proor. Corollary 2.8.1 implies that the conditions of Theorem 2.4.2 are
satisfied. O

§2.9 Hilbert Space Isomorphisms

Definition 2.9.1 (Isomorphism). An isomorphism of the Hilbert space #, onto
the Hilbert space #, is a one to one mapping T of #; onto J#, such that for
all fla fZE%I’

(a) T(af, + bf,) = aTf, + bTf, for all scalars a and b

and

(b) <Tf1’Tf2> = <f1af2>-

We say that 3, and #, are isomorphic if there is an isomorphism T of 5,
onto #,. The inverse mapping T ™! is then an isomorphism of 3, onto #,.

Remark 1. In this book we shall always use the term isomorphism to indicate
that both (a) and (b) are satisfied. Elsewhere the term is frequently used to
denote a mapping satisfying (a) only.

EXAMPLE 2.9.1 (The Space [?). Let 12 denote the complex Hilbert space of
sequences {z,,n = 1,2,...},z,eC, Z;‘f;l |z2| < oo, with inner product

Ayatsizaty = 2 ViZ;.

(For the proof that 2 is a separable Hilbert space see Problem 2.23.) If now
# is any Hilbert space with an orthonormal basis {e,,n = 1,2,...} then the
mapping T: # — I% defined by

Th = {<h,e,)) (29.1)

is an isomorphism of # onto I (see Problem 2.24). Thus every separable
Hilbert space is isomorphic to .
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Properties of Isomorphisms. Suppose T is an isomorphism of #, onto #,. We
then have the following properties, all of which follow at once from the
definitions:

(i) If {e,} is a complete orthonormal set in #, then {Te,} is a complete
orthonormal set in 7.
(i) || Tx|| = |x| for all xe #,.
(i) ||x, — x| = O if and only if | Tx, — Tx| — 0.
(iv) {x,} is a Cauchy sequence if and only if {Tx,, } is a Cauchy sequence.
(V) TPsp{x,\ AeA}(x) = Pﬁ{TxA,}.eA}(Tx)'

The last property is the basis for the spectral theory of prediction of a
stationary process {X,,t€Z} (Section 5.6), in which we use the fact that the
mapping

TX, = e
defines an isomorphism of a certain Hilbert space of random variables onto
a Hilbert space L*([ —n,n], 4%, ) with u a finite measure. The problem of

computing projections in the former space can then be tranformed by means
of (v) into the problem of computing projections in the latter.

§2.10* The Completeness of L*(Q, %, P)

We need to show thatif X,e L>,n = 1,2,...,and | X, — X,,| = Oasm,n — 0,
then there exists X e L2 such that X, =3 X. This will be shown by identifying
X as the limit of a sufficiently rapidly converging subsequence of {X,}. We
first need a proposition.

Proposition 2.10.1. If X, e L?* and |X,,., — X,| <27",n=1,2,..., then there
is a random variable X on (Q, %, P) such that X,, > X with probabzlzty one.

PrOOF. Let X, =0. Then X, =37 (X; — X, ;). Now Y2, |X;,— X,_,| is
finite with probability one since, by the monotone convergence theorem and
the Cauchy—Schwarz inequality,

EY IX;— X;4| = Z EIX;— X, | <Y IX;— X < 1X, 01+ ) 277 < o0.

j=1 j=1 j=1 j=1

It follows that lim,~,, » /-, IX; — X;_,| (and hence lim,_, ", (X; — X;_,) =
lim,_. . X,)exists and is finite with probablllty one. 0

Theorem 2.10.1. L2(Q, %, P) is complete.

Proor. If {X,} is a Cauchy sequence in L? then we can find integers n,, n,,
.,such thatn, <n, <---and
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X, — Xl <27% forn,m>n,. (2.10.1)

(First choose n, to satisfy (2.10.1) with k = 1, then successively choose n,, n,,
..., to satisfy the appropriate conditions.)

By Proposition 2.10.1 there is a random variable X such that X, — X with
probability one as k - oo. Now

X, — X||?> = f'X" — X*dP = Jlim inf|X, — X, |*dP,
k=
and so by Fatou’s lemma,
IX, — X|? < liminf | X, — X, |12 (2.10.2)
k—
The right-hand side of (2.10.2) can be made arbitrarily small by choosing n

large enough since { X, } is a Cauchy sequence. Consequently | X, — X{/* - 0.
The fact that E|{X|? < co follows from the triangle inequality

XN < 11X, — X1 + X1,

the right-hand side of which is certainly finite for large enough »n. O

§2.11* Complementary Results for Fourier Series

The terminology and notation of Section 2.8 will be retained throughout this
section. We begin with the classical result that trigonometric polynomials are
uniformly dense in the space of continuous functions f which are defined on
[ —=, 7] and which satisfy the condition f(n) = f(—m=).

Theorem 2.11.1. Let f be a continuous function on [ —r, 7] such that f(n) =
f(—mn). Then
RN Sof + Sif+ S ) f (2111

uniformly on [ —m, 7] as n — o0.

PROOF. By definition of the n® order Fourier approximation,

S. /()= Y {fiee

lil<n

=0 | ) T ey,

ljl<n

which by defining f(x) = f(x + 2n), xe R, can be rewritten as

S, f(x) = @2m)~! f_n J(x = y)D,(y)dy, (2.11.2)

where D,(y) is the Dirichlet kernel,
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Figure 2.2. The Dirichlet kernel Ds(x), —5 < x < 5(D,(*) has period 2n).
B pln+12)y _ p=itn+1/2)y —————Sm[(_n T )] ify #0,
D,(y) = Uéne”y = o2 _ o2 = sin(zy)
- 2n+ 1 ify=0.
(2.11.3)

A graph of the function D, is shown in Figure 2.2. For the function f(x) = 1,
{f,eo> = 1 and {f,¢;> =0, j # 0. Hence §,1(x) = 1, and substituting this in
(2.11.2) we find that

@)t j D,(y)dy = 1. (2.11.4)

-n

Making use of (2.11.2) we can now write

nHSo f(X) + - + S,y f(X) = f‘ flx =K, (»dy,  (2115)
where K, (y) is the Fejer kernel,

i‘ _ 2cosin[(+ 2))’]
2rnsin($y)

K,(y) =

Evaluating the sum with the aid of the identity,

2sin(3y)sin[(j + 3)y] = cos(jy) — cos[(j + 1)y],
we find that
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Figure 2.3. The Fejer kernel K4(x), —5 <x <5 (K,(-) has period 2x).

1 sin%(ny/2)

———— if 0
2nn sin?(y/2) iy #0,
K.(y) = (2.11.6)
n .
I ify=0.

The Fejer kernel is shown in Figure 2.3. It has the properties,

(a) K,(y) = 0 (unlike D,(y)),
(b) K,(-) has period 2=,
(¢c) K,(')is an even function

(d) |2 Ku(»)dy =1,
(e) foreachd >0, {°,K,(y)dy - 1 asn— co.

The first three properties are evident from (2.11.6). Property (d) is obtained by
setting f(x) = 1 in (2.11.5). To establish (e), observe that
1

Ky =5 i 672)

for0<déd<|yl<m

For each é > 0 this inequality implies that

s .
f K.(y)dy + J K, (»)dy—0 asn- oo,

-n ]

which, together with property (d), proves (e).
Now for any continuous function f with period 27, we have from (2.11.5)
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and property (d) of K,(.),
Ax) = 107 (So f(x) + - + Sy f(X) — f(%)]

| s = a0

f [10x — ) — FO91K () dy ’
Hence for each 6 > 0,

Anx) <

o
f Lf(x =) — f()]K,(y) dY{

0 2.11.7)
_+_

j Lf(x — ) — (XK, (y)dy
[~ wI\(=4,8)

Since a continuous function with period 27 is uniformly continuous, we can
choose for any ¢ > 0, a value of § such that sup_, .. |f(x —y) — f(x)| <e¢
whenever {y| < 6. The first term on the right of (2.11.7) is then bounded
by ef*,K,(y)dy and the second by 2M(1 — [°;K,(y)dy) where M =
SUP_,<x<.|f(x)|. Hence

F P
sup  A,(x) < £J K, (dy)dy + 2M<1 - j K,,(y)dy)

—T<X<T® -5 ~3
—> £ asn-— .

But since ¢ was arbitrary and A, (x) > 0, we conclude that A,(x) — 0 uniformly
on [ —x, 7] as required. O

Remark 1. Under additional smoothness conditions on f, S, f may converge
to f in a much stronger sense. For example if the derivative f* exists and
f'e L*[ —n,n], then S, f converges absolutely and uniformly to f (see Chur-
chill (1969) and Problem 2.22).

Theorem 2.11.2. If fe L*[ —n, ] and {{, e;> =0foralljeZ, then f = 0 almost
everywhere.

ProoF. It sufficies to show that {,f(x)dx = 0 for all Borel subsets A of
[ —=, 7] or, equivalently, by a monotone class argument (see Billingsley (1986)),

b
(2n)“J fX)dx = {fIzp> =0 (2.11.8)

for all subintervals [a, b] of [ —x, n]. Here I, ;; denotes the indicator function
of [a,b].

To establish (2.11.8) we first show that {(f,g)> =0 for any continuous
function g on [ —n, 7] with g(-7n) = g(n). By Theorem 2.11.1 we know that
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—n a a+1/n b—1/n b =

Figure 2.4. The continuous function h, approximating I, ;.

for g continuous, g, = n"*(Seg + -+ + S,_g) — ¢ uniformly on [ —x, #], im-
plying in particular that

Gn =9

By assumption {f,g,> = 0, so by continuity of the inner product,

fog>=1lim{f,g,>=0.

n— o

The next step is to find a sequence {h,} of continuous functions such that
h, =5 I, ;- One such sequence is defined by

0 f —r<x<aq,

n(x — a) fa<x<a+1/n
h(x)=<1 ifa+1l/n<x<b-—1/n,

—n(x—b) ifb—1n<x<bh,

0 ifb<sx<m,

since ||, — holl? < (1/27)(2/n) > 0 as n — oo. (See Figure 2.4.) Using the
continuity of the inner product again,

Sodgpy = lim {fih, > =0. d

n—+w

Problems

2.1. Prove the parallelogram law (2.1.9).

221 {X,t=0,+1,...} is a stationary process with mean zero and auto-
covariance function y(-), show that ¥, = }'%_, 4, X, converges in mean square
if Y203 % oaa7(i — j) is finite.

2.3. Show that if {X,,t =0, £1,...} is stationary and |0| < 1 then for each n,
i 06X, . _; converges in mean square as m — oo.

2.4. If M is a closed subspace of the Hilbert space 5, show that (#1): = 4.
2.5. If # is a closed subspace of the Hilbert space # and x € #, prove that

min ||x — y| = max{|<x,z)|:ze.#*, |z| = 1}.
ye.#
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2.6.

2.7.

2.8.

29.

2.10.

2.11.

2.12.

2.13.

2.14.

2. Hilbert Spaces

Verify the calculations of ¢, and ¢, in Example 2.3.4. Also check that X; =
(2cosw) X, — X,.

If # is a complex Hilbert space and x;e #,i = 1,...,n,show thatSp{x,,...,x,} =
B oxioeCj=1,...,n}

Suppose that {X,,t = 1,2,...} is a stationary process with mean zero. Show that
Pﬁ{l,x1 ..... X,,}Xn+] = Pﬁ{xl ..... X,,}Xn+l'

(a) Let # = L3([—1,1], 48[ —1,1], u) where du = dx is Lebesgue measure on
[ —1,1]. Use the prediction equations to find constants «,, «, and &, which
minimize

1
e —ay — oy x — o, x| dx.
o 1 2
-1

(b) Find maxc 41 1,1 =n [', €g(x) dx where # = sp{1, x, x?}.

If X,=2,—0Z,_,, where |0| <1 and {Z,,t =0, +1,...} is a sequence of un-
correlated random variables, each with mean 0 and variance o2, show by check-
ing the prediction equations that the best mean square predictor of X, ., in
SP{X;, —o0 <j<n}is

-~ X N

Xpry = — Z 91Xn+1Aj-

i=1
What is the mean squared error of X, ,?

If X, is defined as in Problem 2.10 with 6 = 1, find the best mean square predictor
of X,,, insp{X;,1 <j < n} and the corresponding mean squared error.

X, =¢ X+ X s+ + X, +7Z,t=0, £1,... where {Z,} is a se-
quence of uncorrelated random variables, each with mean zero and variance o2
and such that Z, is uncorrelated with {X;,j < t} for each t, use the prediction
equations to show that the best mean square predictor of X,., in §p{X,,
—o0 <j< n}is

Xn-#—l =X, + Xy +0 ¢an+1—p-

(Gram-Schmidt orthogonalization). Let x,, x5, ..., x, be linearly independent
elements of a Hilbert space # (i.e. elements for which ||a;x, + - + a,x,| =0
implies that a; = a, = - = o, = 0). Define

Wy =Xy
and

w, =Xx, — P, wi %o k> L

Sp{wl, .y

Show that {e, = w,/lwe].,k=1,...,n} is an orthonormal set and that
Spleq,....e} =p{xp,...,xfforl <k <n

Show that every closed subspace .# of R" which contains a non-zero vector can
be written as .# = §p{e,,....e,} where {e,,...e,} is an orthonormal subset of
# and m (< n) is the same for all such representations.



Problems 75

2.15.

2.16.

2.17.

2.18.

2.19.

Let X, X, and X, be three random variables with mean zero and covariance
matrix,

14 -1 3
V=1| -1 5 -1
3 -1 1

Use the Gram-~Schmidt orthogonalization process of Problem 2.13 to find
three uncorrelated random variables Z,, Z, and Z such thatSp{X,} = 5p{Z,},
SP{X1, X2} =5p{Z,,Z,} and SP{ X, X, X3} = SPp{Z,,Z,, Z;}.

(Hermite polynomials). Let # = L3(R, &, u) where du = (2r) 2e "2 dx. Set
folx) =1, fi(x) = x, f>(x) = x2, f3(x) = x*. Using the Gram-Schmidt ortho-
gonalization process, find polynomials H,(x) of degree k, k = 0, 1, 2, 3 which are

orthogonal in J#. (Do not however normalize H,(x) to have unit length.) Verify
k

d
that Hy(x) = (— 1)ke¥? — ™2 k=0, 1, 2, 3.
dx*

Prove the first statement in the proof of Theorem 2.4.2.

(a) Let x be an element of the Hilbert space # = Sp{x,,x,,...}. Show that #
is separable and that

Blxr..x) X X @SR 0.

(b) If {X,,t =0, +1,...} is a stationary process show that

P

(X, o <jen Xnt1 = UM Py vy jomXprr-

(General linear model). Consider the general linear model
Y=X0+7Z,

where Y = (Y,,..., Y,) is the vector of observations, X is a known n x m matrix
of rank m < n, 8 =(6,,...,6,) is an m-vector of parameter values, and Z =
(Z,,...,Z,) is the vector of noise variables. The least squares estimator of 9 is
given by equation (2.6.4), i.e.

0=(X'X)'XY.

Assume that Z ~ N(0,6%1,) where I, is the n-dimensional identity matrix.

(a) Show that Y ~ N(X0,021)).

(b) Show that & ~ N(8,62(X' X)™*).

(c) Show that the projection matrix P, = X(X'X)"! X’ is non-negative definite
and has m non-zero eigenvalues all of which are equal to one. Similarly,
I, — P, is also non-negative definite with (n — m) non-zero eigenvalues all
of which are equal to one.

Show that the two vectors of random variables, P,(Y — X8)and (I, — P,)Y
areindependent and that a2 | P,(Y — X@8){>and ¢2|/(I, — P,)Y|? are inde-
pendent chi-squared random variables with m and (n — m) degrees of freedom
respectively. (| Y| here denotes the Euclidean norm of Y, ie. (3 1., ¥;2)'%)
(e) Conclude that

«

—
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2.20.

221.

2.22.

2.23.
2.24.

2. Hilbert Spaces

(n —m)| P, (Y — X0)|
m|Y — P,Y|*

has the F distribution with m and (n —m) degrees of freedom.
Suppose (X, Z,,...,Z,) has a multivariate normal distribution. Show that

P${1,21 ..... z,,)(X) = Eu/((zl ..... z,,)(X),

where the conditional expectation operator E 4z,
2.7.

2, is defined as in Section

Suppose {X,,t =0, £1,...} is a stationary process with mean zero and auto-
covariance function y(-) which is absolutely summable (i.e. Y 72 _, [p(h)]| < o).
Define f to be the function,

1 & .
JA) = Y yhe ™, —m<i<m,
h=—o©

and show that y(h) = [, e™*f (1) dA.

(@) If feL*([—n,n]), prove the Riemann-Lebesgue lemma: {f,e,> -0 as
h — oo, where ¢, was defined by (2.8.2).

(b) If fe L*([ — ,=]) has a continuous derivative f(x) and f(n) = f(— =), show
that {f,e,> = (ih) ' {f",e,> and hence that h{f,e,> — 0 as h - co. Show
also that Y _|<{f,e,>| < oo and conclude that S,f (see Section 2.8)
converges uniformly to f.

Show that the space /> (Example 2.9.1) is a separable Hilbert space.

If »# is any Hilbert space with orthonormal basis {e,,n = 1,2,...}, show that
the mapping defined by Th = {<h,e,)}, he #, is an isomorphism of »# onto [%.

2.25.* Prove that .#(Z) (see Definition 2.7.3) is closed.
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