Chapter 2
Discrete States and Discrete Observations

2.1 Introduction

In this chapter, we deal with signals denoted by {X;}, k € N in discrete time. These
signals are further restricted to a discrete set and are thus termed discrete-state sig-
nals. They transit between elements in this set with transition probabilities depen-
dent only on the previous state, and so are Markov chains. The transition proba-
bilities are independent of time, and so the Markov chains are said to be homoge-
neous. The Markov chain is not observed directly; rather there is a discrete-time,
finite-state observation process {¥;},k € N, which is a noisy function of the chain.
Consequently, the Markov chain is said to be hidden in the observations.

Our objective is to estimate the state of the chain, given the observations. Our
preference is to achieve such estimation on-line in an optimal recursive manner, us-
ing what we term optimal estimators. The term estimator covers the special cases of
on-line filters, where the estimates are calculated as the measurements are received,
on-line predictors where there is a prediction at a fixed number of discrete time
instants in the future, and on-line smoothers where there is improved estimation
achieved by using a fixed number of future measurements as well as the previous
ones. We also seek recursive filters and smoothers for the number of jumps from
one state to another, for the occupation time of a state, and for a process related to
the observations.

In the first instance, we assume that the equations describing the HMM are
known. However, if this is not the case, it is possible to estimate the parameters
also on-line and so achieve adaptive (or self-tuning) estimators. Unfortunately, it
is usually not practical to achieve optimal adaptive estimators. In seeking practical
suboptimal schemes, a multipass scheme is to update the parameters estimates only
after processing a large data set, perhaps the entire data set. At the end of each pass
through this data set, the parameter estimates are updated, to yield improved pa-
rameter estimates; see, for example, the so-called expectation maximization (EM)
scheme; see Dempster, Laird and Rubin (1977). Our approach requires only a for-
ward pass through the data to achieve parameter updates, in contrast to earlier
so-called forward-backward algorithms of the Baum-Welch type (Baum and Petrie
1966).
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Hidden Markov models have been found useful in many areas of probabilistic
modeling, including speech processing; see Rabiner (1989). We believe our model
is of wide applicability and generality. Many state and observation processes of the
form (2.14) arise in the literature. In addition, certain time-series models can be
approximated by HMMs.

As mentioned in the introduction, one of the fundamental techniques employed
throughout this book is the discrete-time change of measure. This is a version of Gir-
sanov’s Theorem (see Theorem A.1.2). It is developed for the discrete-state HMM
in Section 2.3 of this chapter.

A second basic observation is the idempotent property of the indicator functions
for the state space of the Markov chain. With X one of the unit (column) vectors e;,
1 <i < N, prime denoting transpose, and using the inner product notation (a,b) =
a'b, this idempotent property allows us to write the square XX’ as 2?’:1 (X, e;)eie]
and so obtain closed (finite-dimensional), recursive filters in Sections 2.4-2.9. More
generally, any real function f(X) can be expressed as a linear functional f(X) =
(f,X) where (f,e;) = f(e;) = f;and f = (f1,..., fv). Thus with X = (X, ¢;),

N

. N .
X=X fle)X =Y fix" (1.1)
i=1

For the vector of indicator functions X, note that from the definition of expecta-
tions of a simple random variable, as in Appendix A,

E[(X,e)] =) (ej,ei)P(X=¢;)=P(X =¢)). (1.2)

™=

j=1

Section 2.10 of this chapter discusses similar estimation problems for a discrete-
time, discrete-state hidden Markov model in the case where the noise terms in the
Markov chain X and observation process Y are not independent. A test for indepen-
dence is given. This section may be omitted on a first reading.

2.2 Model

All processes are defined initially on a probability space (Q, % ,P). Below, a new
probability measure P is defined. See Appendix A for related background in proba-
bility theory.

A system is considered whose state is described by a finite-state, homogeneous,
discrete-time Markov chain Xj, k € N. We suppose Xy is given, or its distribution
known. If the state space of X; has N elements it can be identified without loss of
generality, with the set

SX:{el,...7eN}, (21)

where ¢; are unit vectors in R with unity as the ith element and zeros elsewhere.
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Write 9,? = 0 {Xo,...,X;}, for the o-field generated by Xy,...,Xi, and {F}
for the complete filtration generated by the .7, ko; this augments .%, ,? by including all
subsets of events of probability zero. Again, see Appendix A for related background
in probability theory. The Markov property implies here that

P(Xer1 =ej| Fi) =P (X1 =¢j | Xi).

Write
aji = P(Xk+1 =ej | X = 6‘,’), A= (aﬁ) S RNXN 2.2)

so that using the property (1.2), then

E[Xiy1 | ] = E [ X1 | Xi] = AX,. (2.3)

Define
Vir1 = Xiy1 —AXg. (2.4)

So that
Xir1 = AXk + Vi1 (2.5)

This can be referred to as a state equation.
Now observe that taking the conditional expectation and noting that E[AX; |
Xi] = AX;, we have

E[Visr | ] = E[Xip1 — AXy | X ] = AX — AX =0,

so {Vi}, k € N, is a sequence of martingale increments.
The state process X is not observed directly. We suppose there is a function ¢ (., .)
with finite range and we observe the values

Yir1 = (X, wir1), ke N. (2.6)

The wy, in (2.6) are a sequence of independent, identically distributed (i.i.d.) random
variables, with Vj, w; being mutually independent.

{40} will be the o-field on Q generated by Xo, X, ..., Xc and ¥,.... Y, and %
its completion. Also {%0} will be the o-field on Q generated by Yi,...,Y; and %
its completion. Note ¢ C 941 C --- and %, C %1 C ---. The increasing family
of o-fields is called a filtration. A function is gko—measurable if and only if it is a
function of Xy, X1,..., X, Y,..., Y. Similarly, for %0, %. See also Appendix A.

The wy in (2.6) are a sequence of independent, identically distributed (i.i.d.)
random variables, with Vi, w; being mutually independent. The pair of processes
(Xk, Y1),k € N, provides our first, basic example of a hidden Markov model, or
HMM. This term is appropriate because the Markov chain is not observed directly
but, instead, is hidden in the noisy observations Y. In this HMM the time parameter
is discrete and the state spaces of both X and Y are finite (and discrete). Note that
there is a unit delay between the state X at time k and its measurement Y at time
k+ 1. A zero delay observation model is discussed later in this chapter.
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Suppose the range of ¢(.,.) consists of M points. Then we can identify the range
of ¢(.,.) with the set of unit vectors

Sy ={f1,....fu}, fi=1(0,...,1,...,0) € RM, 2.7

where the unit element is the jth element.

We have assumed that ¢(.,.) is independent of the time parameter k, but the
results below are easily extended to the case of a nonhomogeneous chain X and a
time-dependent ¢ (., .).

Now (2.6) implies

Write
C=(ci) eRMN — ci=P(Vip1=fi| X =e) (2.8)
so that 21}’1:1 cij=1landc; >0,1<j<M,1<i<N.We have, therefore,

E[Yis1 | X] = CXi. (2.9)

If Wiy 1 := Y| — CX;, then taking the conditional expectation and noting E [CX |
Xi] = CX; we have
E W1 | %] = E [Yir1 — CXi | Xi]
=CX; —CX; =0,

so Wy is a (P,%;) martingale increment and
Y1 = CXi + Wit 1. (2.10)

Equation (2.10) can be thought of as an observation equation. The case where, given
%, the noise terms Wj, in the observations Y are possibly correlated with the noise
terms V} in the Markov chain will be considered in Section 2.10.

Notation 2.1 Write Yj = (Yi, ;) so Y, = (¥},...,¥M), k € N. For each k € N,
exactly one component is equal to 1, the remainder being 0.

Note Z?il Yk" = 1. Write C;'<+1 = E[Yki+1 | %k] = le\':l cij<ej,Xk> and ¢py1 = (Cliﬂv
..., cfl,) . Then

Cir1 = E [Yip1 | %] = CXi. (2.11)

We shall suppose initially that c}'c >0,1<i< M,‘k € N. (See, however, the con-
struction of P from P in Section 2.3). Note ¥, ¢, = 1, k € N. We shall need the
following result in the sequel.

Lemma 2.2 With diag(z) denoting the diagonal matrix with vector z on its diago-
nal, we have
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Vk+1Vkl+1 = diag (AXk) + diag (Vk+1) — A diag XkA/

—AXi Vi — Vi1 (AXy) (2.12)
and
(Vir1) = E [Viga Vi1 | Zi]
= E [Vi1Vi | X
= diag (AX;) — A diag X; A’ (2.13)
Proof From (2.4)

X1 X1 = AXi (AX) +AXiVig g + Vi (AXe) + Vi1 Vi .-

However, Xi 1 X[, | = diag (X;;1) = diag (AX;) + diag (Vi1). Equation (2.12) fol-
lows. The terms on the right side of (2.12) involving V| are martingale increments;
conditioning on X we see

(Vi1) = E [Vir1Vigy | Xi ] = diag (AX;) — A diag X3 A',

Similarly, we can show that
(Werr) == E [Went Wiy | %] = diag (CX;) — C diag X, C'.

In summary then, we have the following state space signal model for a Markov chain
hidden in noise with discrete measurements.
Discrete HMM The discrete HMM under P has the state space equations

Xir1 = AXg + Viy,

(2.14)
Yir1 = CXi + Wiy, keN,

where X;, € Sx, Y € Sy, A and C are matrices of transition probabilities given in
(2.2) and (2.8). The entries satisfy

M=
=

I
u’—‘

a;i >0, (2.15)

~.
Il
-

Mz
D
I

Cji > 0. (216)

~.
Il

Vi and Wy are martingale increments satisfying
E[Ven | Fi]=0,  E[Wen [%] =0,

(Vie1) := E [Viga Vi1 | Xi ] = diag (AX) — A diag X; A,
(Wert) := E [Wi1 Wiy, | Xi | = diag (CX;) — C diag X, C'.
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2.3 Change of Measure

The idea of introducing new probability measures, as outlined in the previous chap-
ter, is now discussed for the observation process Y. This measure change concept is
the key to many of the results in this and the following chapters.

We assume, for this measure change, c; >0,1<i<M,{ecN.This assumption,
in effect, is that given any ¥, the observation noise is such that there is a nonzero
probability that Yk" 41 > 0 for all i. This assumption is later relaxed to achieve the
main results of this section. Define

M M—l
M=Z< ; )<Y€7fi>a (3.1)

i=1 \ Cp

and .
Ar =[] (3.2)

(=1

Note that YZ =1 for only one i at each ¢, and Yé" = 0 otherwise, so that A, is merely
the product of unity terms and one nonunity term. Consequently, since A; is a non-
linear function of Y, then property (1.1) tells us that A, = A (¥;) = XM, ¥{ /Mci.

Lemma 3.1 With the above definitions
E[ A1 | %] =1. (3.3)

Proof Applying the properties (1.1) and (1.2),

M
1
E[Mi1 | %) =E 2 - kl+1 Y,
l*lMc;<+1
_if l P(Yi=1%)
= } =
M= iy
| A R
= 2 G =1
M = iy

Here as in many places, we interchange expectations and summations, for a simple
random variable. This is permitted, of course, by a special case of Fubini’s Theorem;
see Loeve (1978) and Appendix A. ]

We now define a new probability measure_ﬁ on (Q,\/7, %) by putting the re-
striction of the Radon-Nikodym derivative dP/dP to the o-field % equal to Ay.
Thus

dP
—| =A. 34
apl, k 34



2.3 Change of Measure 21

[The existence of P follows from Kolmogorov’s Extension Theorem (Kolmogorov
1933)]; see also Appendix A. This means that, for any set B € ¥,

P(B) = /B AcdP.

Equivalently, for any %;-measurable random variable ¢

Elo)= [oaP= [ ar= [onar=EIngl, (3

where E and E denote expectations under P and P, respectively. In the discrete-
state case under consideration, dP/dP reduces to the ratio P/P and the integrations
reduce to sums. This equation exhibits the basic idea of the change of measure; for
most of the results in this book a big challenge is to determine the appropriate forms
for A and A. It is not straightforward to give insight into this process other than to
illustrate by examples and present hindsight proofs. Perhaps the measure changes
of Chapter 3 are the most transparent, and more discussion is given for these.

We now give a conditional form of Bayes’ Theorem which is fundamental for the
results that follow. The result relates conditional expectations under two different
measures. Recall that ¢ is integrable if E |¢| < oo. First we shall consider a simple
case.

Consider the experiment of throwing a die. The set of outcomes is Q = {1,2,
...,6}. Suppose the die is not necessarily balanced, so that the probability of i show-
ingisP(i)=pi, p1+--+ps=1.

The o-field .# associated with this experiment is the collection of all subsets of
Q, including the empty set ¢. The sets in .7 are the events. (See also Appendix A.)
The probability of the event “odd number,” for instance, is P{1,3,5} = p; + p3+ ps.
Consider the sub-o-field ¢ of .% defined by ¥ = {Q, ¢,{1,3,5},{2,4,6}}.

Now suppose ¢ is a real random variable on (Q,.%), that is, ¢ (i) € R for i =
1,2,...,6. The mean, or expected, value of ¢ is then E [¢] = 2,-621 o (i) pi.

The conditional expected value of ¢, given 4, E[¢ | ¢ ], is then a function which
is constant on the smallest, nonempty sets of ¢. That is,

N O0()p1+¢(3)p3+0(5)ps .
E[¢|9](i) = st e , ifi € {1,3,5},
N 0(2)p2+¢(4)pa+0(6)ps .
E[¢|9]() = D2+ pat po , ifie{2,4,6}

We note that y = E[¢ | 4] can be considered a function on (Q,.%) and that then
E[E[¢ | 9] = E[o).

Suppose we now rebalance the die by introducing weights A (i) on the different
faces. Note that A is itself, therefore, a random variable on (Q,.7).

Write p; = A (i) pi=P(i),i=1,...,6, for the new balance proportion assigned to
the ith face. Then, because P is to be a probability measure, E [A] = D) + -+ Pg =

A(M)pr+-+A(6)ps=1.
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We have the following expressions:

E[A|9](i)
_OMAM)Pp1+9B)AB) P+ (5)A(S)ps itie{1,35)
P1+p3—+ps , T
E[A|9](i)
_9(2)AQ2)p2+ 9 (4)A(4) ps+ 9 (6)A(6) ps ifi € {2,4,6}
P2+ p4a+pe 7 T
Similarly,
E[A|9](0) = A1) p1+AB3)p3+A(S)ps ific{1,3,5)
P1+p3+ps ) T
E[A|9] () < AOPFADPEAO L iy 6
D2+ pa+pe

However, with E denoting expectation under the new probability P:

Elo|9]() = 2P 1;ﬂ(pi+3;¢<) o ifie{1,3,5),

Consequently, E[¢ | 9] =E[A¢ | 9] /E[A|9].
We now prove this result in full generality. For background on conditional ex-
pectation see Elliott (1982b).

Theorem 3.2 (Conditional Bayes Theorem) Suppose (Q,. %, P) is a probability
space and 4 C .F is a sub-o-field. Suppose P is another probability measure abso-
lutely continuous with respect to P and with Radon-Nikodym derivative dP/dP = A.
Then if ¢ is any P integrable random variable

E[A9 9]
E[A]9]

and W =0 otherwise.

E[¢0|9]=w where y= EA|¥9]>0

Proof Suppose B is any set in ¢. We must show

(A9 ]9,
JEt0 1910 = | S
Define y = E[A¢ |9]/E[A|9] if E[A|9] > 0 and y = 0 otherwise. Then
E[¢|Y9]=y _ B B
Suppose A is any set in ¢. We must show [, E[¢ | 4 |dP = [, ydP. Write G =
{w:E[A]9]=0},s0G€¥.Then [(E[A|9]dP=0= [;AdPand A >0 as.
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So either P(G) = 0, or the restriction of A to G is 0 a.s. In either case, A = 0 a.s.
on G.

Now G ={w: E[A|¥]>0}.Suppose A € 4; then A = BUC where B=ANG*
and C = AN G. Further,

/AE[(M%]dF:/Aq)dI_’:/A(pAdP
- /B OAdP + /C OAdP. (3.6)

Of course, A=0a.s.on C C G, so

/C¢AdP: 0= /deﬁ, 3.7)

by definition.
Now

E(A9|9],
/B"’d s E[AD] °

2l [AMJ]
AN

Elne 4]

SAFANE)

E[Ad)lg]}
E[A]Y]

E IBA

LE[A|Y]

E
E[IRE[A¢ |9 ]|
E [IsA9)].

That is i
/ ApdP = / wdP. (3.8)
B B

From (3.6), adding (3.7) and (3.8) we see that
/A¢dP+/A¢dP:/A¢dP
c B A
~ [El¢|9)aP~ [ yaP,
A A

and the result follows. U

A sequence { ¢} is said to be ¥-adapted if ¢, is G-measurable for every k.
Applying Theorem 3.2 result to the P and P of (3.4) we have the following:
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Lemma 3.3 [f {¢} is a 9-adapted integrable sequence of random variables, then

E[Arox | %]

Lemma 3.4 Under P, {Y,}, k €N, is a sequence of i.i.d. random variables each
having the uniform distribution that assigns probability ﬁ to each point f;, 1 <i <
M, in its range space.

Proof With E denoting expectation under P, using Lemma 3.1, Theorem 3.2 and
properties (1.1) and (1.2), then

p(ykj-i-l =1 |gk) =E[(Yes1. fi) | %]
E [Ajsr (Yes1, i) | %]
E A1 | %]

_ AkE [)uk+1 <Yk+l7fj> |gk]
AE [ M1 | %]

=E [)Lk+1 <Yk+17fj> |gk]

M 1 YIZ+1
E H < f ) <Yk+lafj>

im1 \Mciiy

lﬂ et
=F —\Y.,.Y/ Y
A\ e, ket 1kt

1
_ |gk

i el

1 ol 1 -
P(Y 1)
Cor1 = 1= )
M, M
a quantity independent of & which finishes the proof. (I

Now note that E [Xi11 | %] = E [Ax11Xe1 | %] /E [ A1 | %] = E[ M1 Xiq |
%] = AX;. so that under P, X remains a Markov chain with transition matrix A.

A Reverse Measure Change
What we wish to do now is start with a probability measure P on (L, \/;r_; %) such
that

1. the process X is a finite-state Markov chain with transition matrix A and
2. {Y+}, k € N, is a sequence of i.i.d. random variables and

_ ; . 1
P(rl, = 11%) =F(}, = 1) =
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Suppose C=(cji), 1 <j<M, 1<i<N is a matrix such that ¢;; > 0 and
Z —1Cji= 1.
We shall now construct a new measure P on (Q,\/;_;%,) such that under P,
(2.14) still holds and E [Yi41 | %] = CX;. We again write
Crr1 = CXy

and cf{H = {ckr1, fi) = (CXy, f7), so that

M .
Y i = 1. (3.9)
i=1

The construction of P from P is inverse to that of P from P. Write

- M Ly
=[] (mc)", LeN, (3.10)

and .
A= ]2 (3.11)
=1
Lemma 3.5 With the above definitions
E[Ai1 | %] = 1. (3.12)

Proof Following the proof of Lemma 3.5

E [Tt 9] - [M (el )" |s4k]

i=1

M:

MY ci P (Yki+1 =1 ‘ gk)

1

_ MZ Ciett ch+1 —1,

O

This time set 4
P _
dP %,

[The existence of P follows from Kolmogorov’s Extension Theorem (Kolmogorov
1933); see also Appendix A.]

Lemma 3.6 Under P,
EYi1 | %] = CX;.



26 2 Discrete States and Discrete Observations
Proof Using Theorem 3.2 and the now familiar properties (1.1) and (1.2), then

P(Y=11%) = E[(Yir1.fy) | %]

_ E [ A1 Y, fi) | %]
E Aot 9]

(case A # 0)
_ E[Tun (Y1 ) | %]
FMHI |gk]

_ [ﬁwc;; D B 1) %]
ME [,

Yk+laf] ‘gk:| Ck+1

— 0
In case Agy; = 0 we take 0 =1, and the result follows. O

2.4 Unnormalized Estimates and Bayes’ Formula

Recall our discrete HMM of Section 2.2; recall also that % is the complete o-field
generated by knowledge of Y1,...,Y; and % is the complete o-field generated by
knowledge of Xy, X1,...,X; and Y1,...,Y;. We suppose there is a probability P on
(Q,V_1%,) such that, under P, X1 = AXg + Vi1, where Vy is a (P,%) martin-
gale increment. That is, E [Vii1 | %] = 0 and the {¥;} are iid. with P(Y/ =1) =
ﬁ, and the Y, are conditionally independent of Vj, given %, under both P and P. We
also have via the double expectation property listed in Appendix A,

E[Vipr | D] =

E[E [Vis1 | % %] | %]
E[E

[E [Vier | %] | @i | =0. (4.1)

The measure P is then defined using (3.13). Recall from Lemma 3.3 that for a
%-adapted sequence {¢y},

E [ Ao | %]

— 4.2
HIAEA @2

E[¢| %] =

Remark 4.1 This identity indicates why the unnormalized conditional expectation
E [Avdr | % ] is investigated.
|
Write gy (e,), 1 <r <N, k € N, for the unnormalized, conditional probability
distribution such that

E [Kk (Xk,er) | @k] =qr (er)-
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Note that an alternative standard notation for this unnormalized conditional distri-
bution is ¢; this is used in later chapters for a related distribution.
Now YV | (X;,e:) =1, 50

N
A 2<Xk7 >|g/k

i=1

Y ax(ei) =E =E[Ac| %]

Therefore, from (4.2) the normalized conditional probability distribution

pr(er) = E[(Xy,er) | %]
is given by
dk (er)
-
> =19k (ej )
To conclude this section with a basic example we obtain a recursive expression for
qx- Recursive estimates for more general processes will be obtained in Section 2.5.

Pk (6,) =

Notation 4.2 To simplify the notation we write ¢; (V) = M), clYk

Theorem 4.3 For k € Nand 1 < r < N, the recursive filter for the unnormalized
estimates of the states is given by

“Ikﬂ :AdiagC(Yk+1)"]k~‘ 4.3)

Proof Using the independence assumptions under P and the fact that 21}’:1 <Xk, e j> =
1, as well as properties (1.1) and (1.2), we have

qi(er) = F[<Xk+17er>xk+l | %H]

M i
(AXi + Vi, e) A | (MC;;H)YHI
i=1

%H]

M
(AXg,er) A H (CXy, i) "“

%—&-1]

[because Vi is a martingale increment with (4.1) holding]

I
<
M=

E [(Xi.ej)arihi | i ] HC e

~.
Il
—_

T M YA+1
.E [(Xeepparihe| 2] [T e
i=1

I
<
M=

~.
Il

(because yy is i.i.d. under P)

—Mqu e; ar]Hc k“.
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Using Notation 4.2 the result follows. O

Remark 4.4 This unnormalized recursion is a discrete-time form of Zakai’s Theorem
(Zakai 1969). This recursion is linear.

]
2.5 A General Unnormalized Recursive Filter
We continue to work under measure P so that
X1 = AXe + Viy 5.1)
and the Y are independent random variables, uniformly distributed over f1,..., fa.

Notation 5.1 If {H;}, k € N, is any integrable sequence of random variables we
shall write o
% (Hi) = E [AcHi | %] . (5.2)

Note this makes sense for vector processes H.

Using Lemma 3.3 we see that

(5.3)

Consequently ¥ (Hy) is an unnormalized conditional expectation of H given %.
We shall take y (Xo) = E [Xo]; this provides the initial value for later recursions.

Now suppose {H;}, k € N, is an integrable (scalar) sequence. With AHj, | =
Hyi1 — Hy, Hiy = Hy + AHp4, then

Yert (His1) = E [Aes1Hi | Zsr | +E [ Ay 1AHgsy | P |-

Consider the first term on the right. Then, using the now familiar properties (1.1)
and (1.2),

E[AwiiHe | %n | =E [Kkaka \ @kﬁ}

M .
ANHMT(CXe, £) 501
i=1

E

@k-&-l‘|

Il
M=
|

_ M i
[AeHi (Xe.e;) | %] MT et
i=1

~.
I

I
M=

Cj (Yk+1) <')/k (Hka) ,ej> .

~.
Il
=



2.5 A General Unnormalized Recursive Filter 29

In this way the estimate for }j,1 (Hi+1) introduces ¥, (HyXy). A technical trick is
to investigate the recursion for Y11 (Hi+1Xx+1)- A similar discussion to that above
then introduces the term ¥ (HiXiX}); this can be written SN (n (HiXy) ,ei) eiel.
Therefore, the estimates for Y. | (Hgy1Xky1) can be recursively expressed in terms
of Y (HiXx) (together with other terms). Writing 1 for the vector (1,1,...,1)" € RN
we see (X;, 1) =YV | (X,e;) =1, 50

(% (HiXi) , 1) = % (Hi (Xx, 1)) = % (Hy) - (5.4)

Consequently, the unnormalized estimate Y (Hy) is obtained by summing the com-
ponents of ¥ (HyX; ). Furthermore, taking H; = 1 in (5.4) we see

N
%(1) = (0 (X),1) =E [Ac | %] = Y qi(ei)
=

using the notation of Section 2.4. Therefore, the normalizing factor y (1) in (5.3) is
obtained by summing the components of ¥ (X ).

We now make the above observations precise by considering a more specific,
though general, process H.

Suppose, for k > 1, Hy is a scalar process of the form

k+1

Hir = ) (00 + (B, Vo) + (80, Ys)
=1

= Hi+ 01+ Brg 1, Vir1) + (1, Y1) - (5.5)

Here V) = Xy — AXy_1 and oy, By, & are ¥-predictable processes of appropriate
dimensions, that is, oy, By, Oy are 4,1 measurable, oy is scalar, f; is N-dimensional,
and 0y is M-dimensional.

Notation 5.2 For any process ¢, k € N, write
Yinde (Om) = E [ AcOmXic | %] . (5.6)

Theorem 5.3 For 1 < j <M write c; = Ce, (Clj, . 7ch)/for the jth column of
C=(cij) and aj =Ae; = (ayj, ... ,aN_,) for the jth column of A = (a;;). Then

Yer1k+1 (Hes1)
N

¢ Y1) { (Ve (H) + Yer 1k (@1 + (81, Yer1)) s €5 ) aj
j=1

+ [diag(aj) —a;d}| E [ (MXe,€j) B | %]} (5.7)
Proof

Yer1,k+1 (His1)
= E [ Xy 1Hip 1Akt | %t |
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= E[(AXi +Vir1) (Hi+ 01 + (Brs 1, Viern) + (81, Ya1)
X Kljkﬂ | %H]

= E[((He+ 0s1 + (81, Yiw 1)) AXp + (V1) Brt1)
X NeAii | %+1]7

{because, as in Lemma 2.2,

F[XkaHVkHVk/H |%]
= E[E[Kkzk+]Vk+]V]!+l |XO)X1)"'7X]C5%} | %]
= E[(AhectVern) | %4}

i Ve ) E[ (Hy+ 01 + (8ks1, Yer1)) 4

HMZ

+ (Vir1) Bert) A (Xise) | Zr ]

Finally, because the Y are i.i.d. this final conditioning is the same as conditioning
on %;. Using Lemma 2.2 and Notation 5.2 the desired result follows. (I

2.6 States, Transitions, and Occupation Times

Estimators for the State

Take Hyoy =Hy=op=1, =0, £>1, B =0,¢{>0and 6, =0, £ > 0.
Applying Theorem 5.3 we have again the unnormalized filter Equation (4.3) for
= (qr(e1),...,qx (en)) in vector form:

N
qk+1 = ch(Yk+l)<CIk7ej>aj~ 6.1)
=

with normalized form
Pe=ar{ai, 1) (6.2)

This form is similar to that given by Astrom (1965) and Stratonovich (1960). We
can also obtain a recursive form for the unnormalized conditional expectation of
<Xm,ep> given %1, m < k+ 1. This is the unnormalized smoother. For this we
take Hyy = Hy = (Xim,ep), m<k+1, 1 <p <N, oy =0, By =0 and & = 0.
Applying Theorem 5.3 we have

N

E [Aji1t(Xmsep) | Zhr | = z Y1) Yonge ((Xmsep)) €j) aj. (6.3)
j:
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We see that Equation (6.3) is indeed a recursion in k; this is why we consider HyXj.
Taking the inner product with 1 and using Notation 5.1 gives the smoothed, unnor-
malized estimate

W ((Xmsep)) = E [A(Xmsep) | %]

Estimators for the Number of Jumps

The number of jumps from state e, to state e, in time k is given by

k

krs = Z <X5717er> <X€,€s> .
(=1

Using Xy = AX,—1 +V, this is

I
M=

k
(Xi-1,e) (AX—1, e5) 2 Xo—1,er) (Vi,es)

~
Il
—_

Il
M»

<X£,1,€|r> asr"’ 2 <X€7176r> <Vf7eS> .
(=1

~
Il

Applying Theorem 5.3 with Hyyy = #[%,, Hy =0, oy = (X;_1,e;)as, Br =
(Xy-1,er)es, & = 0 we have

YVi+1,k+1 (/kril)
= MZ (HC Hl) {<7kk )+ ek (Kiser)ar) ) aj

+ [diag (a;) —a;d}]

XE [(RiXire)) (Xioer) e | %1}
N

2 (HC k“) (Ve () se5) a

Qky er (HC k“) [asrar +esdiag (ar) —€s (aralr)]

that is, using Notation 4.2,

N
Vet 1k+1 (/kril) = zcj (Yk+l)<yk~,k(/km)vej>aj
=1 6.4)

+cr (Yk+l) <Qk, er> Asr€s.
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Together with the recursive Equation (6.1) for g; we have in (6.4) a recursive estima-
tor for ¥ x ( il ) Taking its inner product with 1, that is, summing its components,
we obtain % (_Z) =E [ A 27 | %]

Taking Hyoy = Hpy = 27, 00 =0,{>m, By =0,>0,0=0,¢>0, and
applying Theorem 5.3 we obtain for k > m, the unnormalized smoothed estimate
E [ A1 ZiXiet | Derr |

N

Yk ( 2 Y1) (Y (20 s€j) aj. (6.5)

Again, by considering the product _#,°X; a recursive form has been obtained.
Taking the inner product with 1 gives the smoothed unnormalized estimate

E[A 2 | %]

Estimators for the Occupation Time

The number of occasions up to time k for which the Markov chain X has been in

statee,, 1 <r<N,is
k+1

ﬁ]:.t,_] = Z <X€71;er>'
(=1

Taking Hyy1 = O}, Hy =0, oy = (Xy_1,e,), Br = 0, 6, = 0 and applying Theo-
rem 5.3 we have

N M
Yertpr1 (Oppy) = MZ Hcg’?+1 ((nx (67),¢))

That is

N
Yerrhs1 (O111) = 2, ¢j Yerr) Nk (OF) se) a;

Jj=1

+cr (Yiy1) (qx-er) ar- (6.6)

Together with (6.1) for g; this equation gives a recursive expression for ¥ x (@2)
Taking the inner product with 1 gives yk (ﬁ,ﬁ) =E[0] | %]. For the related
smoother take k > m, Hy.| = H, = O}, oy =0, By =0, 6 = 0 and apply Theo-
rem 5.3 to obtain

=z

Vg1 ( 2 Y1) Yk (O,) ej) aj. 6.7)




2.7 Parameter Reestimation 33

Estimators for State to Observation Transitions

In estimating the parameters of our model in the next section we shall require esti-
mates and smoothers of the process

k
Z Xo-1,er) (Yo, f)

which counts the number of times up to time k that the observation process is in
state f; given the Markov chain at the preceding time is in state e¢,, 1 <r <N,
1 <5 <M. Taking Hyy1 = 7", Ho =0, oy =0, By =0, & = (X;_1,e,) fy and
applying Theorem 5.3

Terrirt (Z51) = MZHC b (e (F) ve)

j=li=

+ (Yer (Xiser) (Yier1, £3) s €5)) @

That is, using Notation 4.2,

N
Vet (T51) = D ¢j Yert) (Vi () sej) a;
=1

+M<Qk7er> <Yk+l ;fs) CsrQy.

Together with Equation (6.1) for g; we have a recursive expression for ¥ x (Z(”) .
To obtain the related smoother take k+ 1 > m, Hy 1 = Hy = 7%, ay =0, By = 0,
0¢ = 0 and apply Theorem 5.3 to obtain

N

Ydit (T05) = X, ¢j Y1) (Vi (F7°) sej) a. (6.9)
=

This is recursive in k.

Remark 6.1 Note the similar form of the recursions (6.1), (6.4), (6.6), and (6.8).
|

2.7 Parameter Reestimation

In this section we show how, using the expectation maximization (EM) algorithm,
the parameters of the model can be estimated. In fact, it is a conditional pseudo
log-likelihood that is maximized, and the new parameters are expressed in terms
of the recursive estimates obtained in Section 2.6. We begin by describing the EM
algorithm.
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The basic idea behind the EM algorithm is as follows (Baum and Petrie 1966).
Let {Py, 6 € O} be a family of probability measures on a measurable space (Q,.%)
all absolutely continuous with respect to a fixed probability measure Py and let % C
% . The likelihood function for computing an estimate of the parameter 6 based on
the information available in % is

and the maximum likelihood estimate (MLE) is defined by

6 c argmax L (9).
0co
The reasoning is that the most likely value of the parameter 0 is the one that maxi-
mizes this conditional expectation of the density.
In general, the MLE is difficult to compute directly, and the EM algorithm pro-
vides an iterative approximation method:

Step 1. Set p =0 and choose 6o.
Step 2. (E-step) Set 0% = 6, and compute Q (-, 6*), where

®\ dPG
0(0,0") =Ep- [1og 1P

o*

Step 3. (M-step) Find
6,1 € argmaxQ(6,0%).
0co
Step 4. Replace p by p+ 1 and repeat beginning with Step 2 until a stopping
criterion is satisfied.

The sequence generated {ép, p> O} gives nondecreasing values of the likelihood
function to a local maximum of the likelihood function: it follows from Jensen’s
Inequality, see Appendix A, that

logL(ép+1) lOgL( )>Q( 1,0 )7

with equality if épH = ép. We call Q(6,6*) a conditional pseudo-log-likelihood.
Finding a set of parameters which gives a (local) maximum of the expected log-
likelihood function gives an optimal estimate.

Our model (2.14) is determined by the set of parameters

0:=(aji, 1 <i,j <N, cji, 1<j<M,1<i<N)

which are also subject to the constraints (2.15) and (2.16). Suppose our model is
determined by such a set 8 and we wish to determine a new set

0=(a;(k), 1<i,j<N,¢;(k),1<j<M,1<i<N)
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which maximizes the conditional pseudo-log-likelihoods defined below. Recall .%;
is the complete o-field generated by Xo, X1, ..., X. Consider first the parameters a ;.
To replace the parameters a;; by d;; (k) in the Markov chain X we define

k (N 14

ag (k

Ac=T1 ( > {ﬂ} <Xz,es><iner)> :
(=1 \rs=1 Asr

In case aj; = 0, take @;;(k) = 0 and d;(k) /a; = 0. Set

dp,
dPy

= A
7,

To justify this we establish the following result.

Lemma 7.1 Under the probability measure Py and assuming Xy = e,, then
Eg[(Xit1,e5) | Fi] = agr (k).
Proof

E[(Xii1,65) Ari1 | Fi]
E[Ais1 | Fi]

Ey[(Xis1.65) | Fi] =

Qsr (k
£ [e s 2]

E[ [%0] (Xin,en) | 7]

Asr

(isr(k)a
dsr

N dsr(K)

r=1"a, %sr

= dy (k) .

Sr

g

Notation 7.2 For any process ¢y, k € N, write ¢ = E ¢y | %] for its ¥ -optional
projection. In discrete time this conditioning defines the % -optional projection.

Theorem 7.3 The new estimates of the parameter 4, (k) given the observations up
to time k are given, when defined, by

. 7rs Yk( krs)
ag (k) = 2k~ WLIE) (7.1)
O T @)

We take g to be 0.
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Proof

k
logA; = Z Xy, e5) (Xp_1,er) [logdy, (k) —logay,]

where R (a) is independent of d. Therefore,

N
ElogAe | %) =Y #logay (k)+R(a). (7.2)

rs=1

Now the dy, (k) must also satisfy the analog of (2.15)

N
Y ag (k) =1. (7.3)
s=1
Observe that N
Y Ar=0; (7.4)
s=1
and in conditional form N
Sy A8 =6 (7.5)
s=1

We wish, therefore, to choose the dg, (k) to maximize (7.2) subject to the constraint
(7.3). Write A for the Lagrange multiplier and put

rs=1

N N
i,4) = 3, Fitogay (k) +R(a) +2 (2%(/()—1).
s=1

Differentiating in A and dy, (k), and equating the derivatives to 0, we have the opti-
mum choice of dj, (k) is given by the equations

1 rs .
i +A=0, (7.6)

N
Y ag (k) = 1. (1.7)
s=1

From (7.5)—(7.7) we see that A = — ﬁ/ﬁ so the optimum choice of dg, (k), 1 <s,r <N
is

4= 2 - L),
4 % (%)
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Note that the unnormalized conditional expectations in (7.8) are given by the

inner product with 1 of (6.4) and (6.6).

Consider now the parameters c;; in the matrix C. To replace the parameters c,,

by & (k) we must now consider the Radon-Nikodym derivative

(S S [0 s,

(=1 \r=1s=1

By analogy with Lemma 3.1 we introduce a new probability by setting

dp,
dP |y,

= Ay

Then Eé [<Yk+1 7fs> ‘ X = er] =Cy (k)
Then

E [logAk | ?!/k} = Z Z "logésr (k) +R(c),

where R (c) is independent of & Now the &, (k) must also satisfy

Observe that

and conditional form

(7.9)

(7.10)

(7.11)

We wish, therefore, to choose the &, (k) to maximize (7.9) subject to the constraint

(7.11). Following the same procedure as above we obtain:

Theorem 7.4 The maximum log likelihood estimates of the parameters s (k) given

the observation up to time k are given, when defined, by

_ (%)
PG

We take g to be 0.

(7.12)

Together with the estimates for ¥ (9,(” given by the inner product with 1 of Equa-
tion (6.8) and the estimates for Y (ﬁ}: given by taking the inner product with 1
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of Equation (6.6) we can determine the optimal choice for &, (k), 1 <s <M —1,
1 < r < N. However, Z?’il ér (k) = 1 for each r, so the remaining ¢y, (k) can also
be found.

Remarks 7.5 The revised parameters d, (k), és (k) determined by (7.8) and (7.12)
give new probability measures for the model. The quantities ( BZA ) Ye (Z{’ § ),
Ye (ﬁ,:) can then be reestimated using the new parameters and perhaps new data,

together with smoothing equations.
|

2.8 Recursive Parameter Estimation

In Section 2.7 we obtained estimates for the a;; and the c;;. However, these are not
recursive, that is, the estimate at time k is not expressed as the estimate at time
(k—1) plus a correction based on new information. In this section we derive recur-
sive estimates for the parameters. Unfortunately, these recursions are not in general
finite-dimensional. Recall our discrete HMM signal model (2.14) is parametrized in
terms of aj;, cj;. Let us collect these parameters into a parameter vector 6, so that
we can write A = A(0), C = C(0). Suppose that 6 is not known a priori. Let us
estimate 6 in a recursive manner, given the observations %;. We assume that 6 will
take values in some set © € R”.

Let us now write ¥ for the complete o-field generated by knowledge of Xy, X,
vy Xiy Y1, ., Yy, together with 6. Again %, will be the complete o-field generated
by knowledge of Y1, ..., Y;. With this enlarged ¥, the results of Sections 2.2 and 2.3
still hold. We suppose there is a probability P on (Q x ©,\/7_; %) such that, under
P, the {Y;} are iid. with P(Y/ = 1) = 1, and X1 = AXg + Viy1, where V is a
(F, %k) martingale increment. Write g;, (8),1 <r<N,keN, for an unnormalized,
conditional density such that

E [Ac(Xirer)1(0 € d0) | 2] = g} (0)d0.

Where d0 is Lebesgue measure on © € R”.

Here, I (A) is the indicator function of the set A, that is, the function that is 1 on
A and 0 otherwise. The existence of g}, (0) will be discussed below. Equalities in the
variable 6 can be interpreted almost surely.

The normalized conditional density p}, (), such that

P (0)d0 = E[(Xi,e,)1(0 € dO) | %],
is then given by

1 C) N
PO = S T
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We suppose an initial distribution pg (.) = (p} (.),...,pY (.)) is given. This is further
discussed in Remark 8.2. A recursive expression for g (6) is now obtained:

Theorem 8.1 For k € N, and 1 < r < N, then the recursive estimates of an unnor-
malized joint conditional distribution of X, and 0 are given by

i1 (8) = ay () diag (qx (0)) () (Yir1)- (8.1)

Proof Suppose g is any real-valued Borel function on ©. Then

F[<Xk+]7er>g(6)xk+l | %H]
= [ dir ()5 ) (82)

E

M
(AXi +Vir1,e0) 8 (0) Ak Y, M (CXi, i) (Yey1, i) ‘ D1 ]
pay

ME | (AX,e,) g (6) A

Mz

1

(CXi f) (V1. £ | %1]

M=

M .
— — Y}
E [<Xk7es>arsg(6)Ak | %} I Icisk+1
1 i=1

M

A

N M yi
:M/@Zamqi(u)g(u)duncis“'. (8.3)
s=1 i=1

As g is arbitrary, from (8.2) and (8.3) we see

N M
r -M s Vi
9k+1 (u) = 2 Arsqy (u) Hcis .

s=1 i=1
Using Notation 4.2 the result follows. O

Compared with Theorem 4.3 the new feature of Theorem 8.1 is that it updates
recursively the estimate of the parameter.

Remark 8.2 Suppose © = (my,...,7y), where ; = P (Xo = ;) is the initial distribu-
tion for Xo and 4 (6) is the prior density for 6. Then

and the updated estimates are given by (8.1).
]

If the prior information about X is that, say, Xy = e;, then the dynamics of X,
(2.4) will move the state around and the estimate is given by (8.1). If the prior in-
formation about 0 is that 0 takes a particular value, then 4 (6) (or a factor of &)
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is a delta function at this value. No noise or dynamics enters into 60, so the equa-
tions (8.1) just continue to give the delta function at this value. This is exactly to be
expected. The prior distribution / taken for 8 must represent the a priori information
about 0; it is not an initial guess for the value of 6.

Time-varying dynamics for 8 could be incorporated in our model. Possibly
Or 1 =Ag O+ via1, where vy is the noise term. However, the problem then arises
of estimating the terms of the matrix Ag.

Finally, we note the equations (8.1) are really just a family of equations para-
metrized by 6. In particular, if 6 can take one of finitely many values 0y, 6,
...,0, we obtain p equations (8.1) for each possible 6;. The prior for 6 is then
just a distribution over 6y,...,0,.

2.9 Quantized Observations

Suppose now the signal process {x;} is of the form
Xy 1 = AX+ Vg1,

where x; e R4, A = (aji) is ad x d matrix and {v,}, £ € N, is a sequence of i.i.d. ran-
dom variables with density function y. (Time-varying densities or nonlinear equa-
tions for the signal can be considered.) We suppose xo, or its distribution, is known.
The observation process is again denoted by Y;, £ € N. However, the observations
are quantized, so that the range space of Y is finite. Here, also, we shall identify the
range of ¥, with the unit vectors f1,..., fu, f; = (0,...,1,...,0)" € R, for some M.
Again suppose some parameters 6 € © in the model are not known. Write % for
the complete o-field generated by xg,x1,...,x, Y1,..., Y and 6; &% is the complete
o-field generated by Yi,..., Y. If ¥/ = (Y, fi), 1 <i < M, then ¥, = (¥/,...,YM)’
and ¥, ¥/ = 1. Write

A =E[Ye /i) |%1] =P(Ye=fi | 91 ).
We shall suppose
PYy=fi|%1)=P(Yo=filx—1), 1<i<M,LeN.

In this case we write ¢} (x,—1). Suppose ¢/, (x;_1) >0, 1 <i <M, ¢ € N. Write

- k M 1
M=l (izl [Mcz (xm} m’f”) |

Defining P by setting B
dp
dp

= Ak
e
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gives a measure such that

EL00f) | 91] =5,

Suppose the parameter 6 takes values in RY and is random and unknown.
Suppose we start with a measure P on (Q xR \/7, %) such that

B0 f) |91 = o

and x4 = Axg + vy 1. Write

_ﬁ<z e (e 1)]<Ye,ﬁ->>-

[Note this no longer requires c;'c 41 () >0.]

Introduce P by putting
dpP

dPly,

= A

Suppose f is any Borel function on R and g is any Borel function on ©, and write
qr (z,0) for an unnormalized conditional density such that

E[Add (xp €dz)1(0 €dO) | %] = qi(z,0)dzd6.

Then

E[f(ur1)8(0)Acs1 | Zhsr] //f ) i1 (§,u)dEdA (u). ©.1)

The right-hand side is also equal to

= ME

M .
F(Axi+vi1) g (0) A [ et (00) %41 | Zsy ]
i=1

- [[f rcensco [l

Write £ = Az+v, so v =& — Az. The above is

v (v) qi (z,u)dvdzdA (u).

=M///f(5) (Hck+1 k*‘)w(é—Az)qk(z,u)dzdgd/m(u). 9.2)

Comparing (9.1) and (9.2) and denoting
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M

it (Yer1,2) =M Y chyy (2) (Yeyr, i)
i=1

we have the following result:

Theorem 9.1 The recursive estimate of an unnormalized joint conditional density
of the signal x and the parameter 0 satisfies:

@t (G0 = [ ext (. 2) W (E ~ A9 () dz.

Example

In Kulhavy (1990) the following simple situation is considered. Suppose 8 € R is
unknown. {v¢}, £ € N, is a sequence of i.i.d. N (07 02) random variables. The real
line is partitioned into M disjoint intervals,

I = (—e,00), b =[00,00),....0n—1 = [0ar—2,0m—1) , Ipg = [Op1,20) .

The signal process is x; = 6 + vy, £ € N. The observation process Y, is an M-
dimensional unit vector such that ¥; = 1 if x; € I;. Then

=P(Y,=1|%_)
:P(YZZI|9)=P(OC,'_1SYZ<O£Z'|9)

-0
= (2no? ) / exp (—x*/20%)dx
o 1—6
—d(0), 1<i<M.

Measure P is now introduced. Write gy (0) for the unnormalized conditional density
such that

E[Add (6 € d6) | %] = q(8) do.
Then, for an arbitrary Borel function g,

E[g(0)Runt | %er] = [ g auar ()2

= ME | g(6

M .
VALY, chyr (8) Yesr, fi) | %+1‘|
=1

M
A) [ X i (A) <Yk+1afi>] qr(A)dA.
i=1
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We, therefore, have the following recursion formula for the unnormalized condi-
tional density of 6:

M .
Grs1(A) = (Hc;;H (WH) ar (7). (9.3)
i=1

The conditional density of 6 given % is then

am
M) = EaE

2.10 The Dependent Case

The situation considered in this section, (which may be omitted on a first reading),
is that of a hidden Markov Model for which the “noise” terms in the state and obser-
vation processes are possibly dependent. An elementary prototype of this situation,
for which the observation process is a single point process, is discussed in Segall
(1976b). The filtrations {.%}, {%} and {#;} are as defined in Section 1.2. The
semimartingale form of the Markov chain is, as in Section 2.2,

Xir1 = AXy + Vi1, keN,

where V; is an {.%;} martingale increment, aj; = P (X1 =€ | Xy =¢;) and A =
(aji). Again the Markov chain is not observed directly; rather we suppose there is
a finite-state observation process Y. The relation between X and Y can be given as
P(Yk+1 = fr | %k) :P(Yk+1 = fr |Xk) so that

Yip1 = CXp + Wiy, keN,
where Wy is an {%} martingale increment, cj; = P (Y| = fj | Xx = ¢;) and C =
(cji). We initially assume c ; positive for | <i<Nand1< j<M.
However, the noise, or martingale increment, terms V; and W;, are not indepen-
dent. In fact, the joint distribution of Y} and X} is supposed, given by
Yk+1Xl£+1 =SXk + i1, keN,

where S = (s,j;) denotes a MN x N matrix, or tensor, mapping R" into R¥ x RV
and

Srji:P(Ykar,szej|Xk_1=€,') ISFSM,ISZ',]'SN.

Again T’y 1 is a martingale increment, so E [T11 | %] = 0.
If the terms are independent

SX; = CX; (AXy)' .
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In this dependent case, recursive estimates are derived for the state of the chain,
the number of jumps from one state to another, the occupation time of the chain
in any state, the number of transitions of the observation process into a particular
state, and the number of joint transitions of the chain and the observation process.
Using the expectation maximization algorithm optimal estimates are obtained for
the elements aj;, c¢j; and s,;; of the matrices A, C, and S, respectively. Our model
is again, therefore, adaptive or “self-tuning.” In the independent case our results
specialize to those of Section 2.5.

Dependent Dynamics

We shall suppose
P(Yiri=fr Xev1=¢ | %) =P (Yy1 = fr, Xiy1 = €j | Xi) (10.1)
and write
srji=P(Yiy1 = fr. Xay1 =¢j | Xx = ei), 1<r<M,1<ij<N.

Then S = (s,j;) denotes a MN x N matrix, or tensor, mapping RY into RM x RV,
From this hypothesis we have immediately:

YeriX{ =SXe+Teyr,  keN, (10.2)
where T, 1 is a (P,%),RY x RN martingale increment.

Remark 10.1 Our model, therefore, involves the three sets of parameters (a;;), (c,i),
and (syji).

|
Write 1 = (1,1,..., 1)/ for the vector, in RY or RY according to context, all
components of which are 1.
Lemma 10.2 For 1 € RM, then
(1,8X) = AX;. (10.3)
For1 € RN, then
(8Xy,1) = CX;. (10.4)

Proof In each case (1,T}) and (I't, 1) are martingale increments. Taking the inner
product of (10.2) with 1 the left side is, respectively, either <l, Vi1 X[ n 1> = X} or
(Yes1X(1,1) = Yiy1. Therefore, the result follows from the unique decompositions
of the special semimartingales X; and Y. (]
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In contrast to the independent situation, we have here P [Xk+1 =ej | Zi, @it } =
P[Xi+1 =e¢j | Xk, %+1]. This is not, in general, equal to P [X;1| = ¢; | Xi| so that
knowledge of %, or in particular Y}, now gives extra information about Xj.

Write

(recall the c,; are positive). We then have the following:
Lemma 10.3 With A the N x (N x M) matrix (otjiy), 1 <i,j <N, 1 <r<M,
Xip1 = A (XY 0) + Vi,
where
E[Vk+1 \ﬁk,%ﬂ} ~0. (10.5)
Proof
P X1 =ej| Xi = e, Vi1 = fr]

_ Py = fr X1 =€ | Xk = ei
PlYip1 = fr | Xk = ei]

= Sri o
==
With A = (ajir), 1 < i, j <N, 1 <r <M, we define V; by putting
X1 =A (XY i) +Vig- (10.6)
Then
E[VkJrl | 33/(7%“} =E[Xps1 | T, %1 | — A (XiY{)

=A(XY{,) —A(XY{,)=0.

O
In summary then, we have the following.
Dependent Discrete HMM The dependent discrete HMM is
Xir1 =A (XY ) + Vier
(ki) (10.7)
Yir1 = CXg + Wi, k€N,

where X; € Sy, Y € Sy, A and C are matrices of transition probabilities given in
Lemmas 10.3 and (2.8). The entries of A satisfy
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N

2 ojir =1, ojir > 0. (10.8)
J=1

Vj is a martingale increment satisfying
E[Vkﬂ | yka@k-ﬁ-l} =0.

Next, we derive filters and smoothers for various processes.

The State Process

We shall be working under a probability measure P as discussed in Sections 2.3

and 2.4, so that the observation process is a sequence of i.i.d. random variables,

uniformly distributed over the set of standard unit vectors {f1,..., fir } of RM.
Here Ay is as defined in Section 2.3. Using Bayes’ Theorem we see that

P[Xp1 = ¢j | Fi, %] = E [ (Xir1.€)) | T, Derr |
E

[ (Xir1,€5) Mevt | T, Py |
E[ N1 | %, % |

_ A1 E [ (Xir1s€)) | T, Pt |
Ay

=P[Xip1=¢j| T, %s1]

= P[Xir1=¢j | X, Vi1 ]

Therefore under P, the process X satisfies (10.7). Write g, k € N, for the unnormal-
ized conditional probability distribution such that

E[NXi | 2] = G-
Also write
A (ejf,/) =0 jr = (OCljr,OCer, . ,OCer) and Sp.j = (srlj7 . 7SrNj) .

Lemma 10.4 A recursive formula for gy is given by

M N
Ger1 =M Y, Y {Gej) Yisr, fr) srj = MSGYy, . (10.9)
r=1j=1
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Proof
G = E [KkJrleH | Zhes1 ]

AkH (CXie, f) 5 E [Xiyr | PPt ] | %+11

\

>
>
,’:]a

|
=

(M (CXy, f))" k+|AXkYk+1 ‘ %JA}

—

[

<
Mz
M= ]

(Grrej) Yerts fr)crjolr

‘
Il
_
~.
Il
=

<quej> <Yk+17fr> Sr.j

[
=l
= =
Kocy I
t —_

I
SO
Mz
M=

O

Remark 10.5 If the noise terms in the state X and observation Y are independent,
then

SXi = E [Yi1 Xi1 | %)
= CXk (AX;)'

2 Xk7

where ¢; = Ce; and q; = Ae;.

A General Recursive Filter

Suppose Hj is a scalar ¢-adapted process such that Hy is %y measurable. With
AHp = Hiqq _Ek,_HkJr] = Hi + AHy ;. For any g—adapted process @, k € N,
write ik (0m) = E [ AkmXk | Z]. Then

Ve vt (Hiyr)
=E [ A tHiXir1 | % | +E [ A1 AHg1 Xt | D ]

[
=E [KkaA (Xe¥{i1) Ak | %4—1} +E [ A1 AH 1 Xir | Zerr |

M N
=My 2<7kk Hy).ej) (Yerr, fr) srj

,q
I

~.
Il

+E [ A1 AH 1 Xiey 1 | Dt |
= MST/](J( (Hk) Yk,+1 +E [Xk+1AHk+1Xk+1 | %+1} . (10.10)
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For the smoother at time m < k+ 1, we have

Ymk-&-l MZ Z<Ymk ej> Yk+lafr>srj
r=1j=
= MSTnic (Hn) Vi, - (10.11)

Remark 10.6 The use of the product Hyy X+ and H, X, is explained in Sec-
tion 2.5. Specializing (10.10) and (10.11), estimates and smoothers for various pro-
cesses of interest are now obtained.

|

The State Process

Here Hy1 = Hyp = 1 and AHj,1 = 0. Denoting .« (1) by gx we have from (10.10)
and (10.11)

Jir1 = MSGY] (10.12)

which we have already obtained in Lemma 10.4. For m < k+ 1 we have the
smoothed estimate

Tt (X ep)) = MSTe (X €p)) Y11 (10.13)
The Number of Jumps
Here Hy, 1 = 7, = =Yk (X— 1,eq> (Xu,ep) and AHi 1 = (Xi,ep) X (Xit1,€q).

Substitution of these quantities in (10.10) and (10.11) gives the estimates and
smoothers for the number of jumps:

Vet 1k+1 (/kpfl) =M (Sf’lsk (/kpq) Yk/—H + <‘7k’€p> <Yk+1vs'qp>eq) (10.14)

and for m < k+ 1 we have the smoothed estimate

Tnir1 (I07) = MSTuse (F0) Y1 (10.15)

The Occupation Time

Here Hy | = k+1 Zﬁﬂ <Xn,e,,> and AHy | = <Xk,e,,>. Using again (10.10) and
(10.11) we have the estimates

Tesrhe1 (OF)) =M (STa (OF) Y1+ (Grrep) (Yir1,5-p)) 5 (10.16)
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where <Yk+1,s..p> = Z’rv[:l (Ye+1, fr) Sr.p» and the smoothers for m < k+ 1

?m,kJrl (ﬁp) MSYmk( )Yk+1 (1017)

The Process Related to the Observations

Here Hy1 = 77 = X171 (Xi-1,¢p) (Y. fy) and Ay = (Xiep) (Yir1, ). Again,
substitution in (10.10) and (10.11) gives

Testar (T8 =M (STei () Vi + (s ep) Y1, fs) Ss.p) (10.18)

and for m < k+ 1 we have the smoothed estimate

Tnks1 () = MSTui (T0°) Y4 (10.19)

The Joint Transition

In the dependent situation a new feature is the joint transition probabilities. Here
Hpp1 = ktf; 2k+1 (Yo, fr) <Xéaeq> <XZ laep> and AHy 1 = (YViy 1, /1) <Xk+1a€q> X
<Xk, e p> Estimates and smoothers for the joint transitions are obtained using again
(10.10) and (10.11). These are:

Terrirt (L) =M (STex (L) Yicr + (Grrep) Vi, fi) sigpeq) | (10.20)

and

Tkt (L) = MSTi (LP) Yy 1. (10.21)

Parameter Estimation
Our hidden Markov model is described by the equations:

Xiy1 = AXg + Vi
Yir1 = CXp +Wip
Yk+1X]é+1 =SX; + Tk, keN.

The parameters in the model are, therefore, given in a set

0 = {ai,1 <i,j <N;
cjiiy | <j<M, 1<i<N;
srji, L<r <M, léi,jSN}.
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These satisfy

N M
Yaji=1, D=1, Zzw—l (10.22)

j=1 j=1 r=1j=

Suppose such a set 6 is given and we wish to determine a new set § = {(a;i (k)),
(¢ji (k)),($,ji (k))} which maximizes the log-likelihood function defined below.
Consider the parameters (s, i 1 <r<M,1<14,j< N). To replace the joint tran-
sitions s,j; by §,ji (k) consider the Radon-Nikodym derivatives

A

dP |:§rji (k)} (Yo fr) (Xe,e) (Xe—1.€i)
1

Srji (k)

Therefore

M N .. A
|%]:2§;%M%QMHWQL (10.23)
where R (s) is independent of §. Now observe that

ZZXW 0. (10.24)
r=1j=

Conditioning (10.24) on %; we have:
ZZXW o. (10.25)

r=1j=

Now the §,j; (k) must also satisfy:

N
ZH (10.26)

||M§

We wish, therefore, to choose the §,j; (k) to maximize the conditional log-likelihood
(10.23) subject to the constraint (10.26). Write A for the Lagrange multiplier and
put

z z i” 10gsr,, s)+A <Z ZS”, ) .
r=1i,j=1 r=1j=

Equating the derivatives of F in §,;; (k) and A to zero we have that the optimum
choice of §,j; (k) is given, when defined, by
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20 _w(4)

S | (1027)
o, w(G)

$rji (k) =

Similarly, as in Section 2.7 the optimal choice for d;; (k) and ¢;; (k) given the obser-
vations are, respectively, when defined

~ 1]
di (k) = Y"( £ ) (10.28)
! % (6})
and
- ij
& (k) = y"(y’? ) (10.29)
% (4})

Remark 10.7 We have found recursive expressions for #%(0}), %(Z"), %( 7.)
and %(7;”). The revised parameters 8 = ((@;;(k)), (¢;i(k)), (3-ji(k))), are then de-
termined by (10.27), (10.28), and (10.29). This procedure can be iterated and an
increasing sequence of likelihood ratios obtained.

|

A Test for Independence

Taking inner products with 1 € RV, (10.16) and (10.20) provide estimates for % (&} )
and ¥ (.,fkr J l) , respectively; an optimal estimate for §j; (k) is then obtained from
(10.27). However, if the noise terms in the state X and observation Y are independent

we have
SX; = C diag X, A'.

Taking X = e; and considering
(Sei, fre);) = (Cei, fr) (Aeire)
we see that if the noise terms are independent:
Spji = Crilji

for 1 <r<M,1<i,j<N.If the noise terms are independent nk(/k”), }’ch(ﬁli),
and Y4 (Z;") are given in Section 2.6. Taking inner products with 1 € RV gives

estimates for y; (/k”), %(0)), and (ﬂkij), and substituting in (10.28) and (10.29)
gives estimates for d;; (k) and ¢;; (k). Consequently, a test for independence is to
check whether

8 ji (k) =Gy (k) -Aji (k) :
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Modification of our model and this test will give other tests for independence. For
example, by enlarging the state space, so the state at time & is in fact (Xp11,Xx) a
test can be devised to check whether either the process X; is Markov, or (Xi1,Xx)
is Markov, in a hidden Markov model situation. Alternatively, models can be con-
sidered where X; | and Y;,; depend also on Y.

2.11 Problems and Notes

Problems

1. Show that Ay defined in Section 2.3 is a (P,%)-martingale, and A defined in
Section 2.7 is a (P,%)-martingale.

2. Fill in the details in the proof of Theorem 5.3.

3. Write Pm.k (er) =F [<Xm,€r>xk | @k} s Km,k:H]Z’:m ¥, and ﬁmk (er) = E[Xm+27k |
Xin = er,%]. Show that B,, ; satisfies the following backward recursive equation

N M i
Yl
ﬁm,k (er) =M z Hdi4m+2ﬁn1,k (e[) Pre
(=1i=1

and Bk (-) = Bu—1 () = 1. Then verify that:

M i
P (€r) = G (er) By (er) [T i7",

i=1

where gy, (+) is given recursively by (4.3).

4. Prove Theorem 7.4.

5. It is pointed out in Section 2.10 that alternatively, the transitions at time k of
the processes X and Y could also depend on Y;_;. Describe the dynamics of this
model and define a new probability measure under which the observed process
Y is a sequence of i.i.d. random variables uniformly distributed.

6. Using a “double change of measure” changing both processes X and Y into i.i.d.
uniform random variables, rederive the recursions of Sections 2.4 to 2.6.

Notes

Hidden Markov models, HMMs, have found applications in many areas. The survey
by Rabiner (1989) describes their role in speech processing. Stratonovich (1960) de-
scribes some similar models in Stratonovich (1960). The results of Astrém (1965)
are obtained using Bayes’ rule, and the recursion he obtained is related to Theo-
rem 4.3.
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The expectation maximization, EM, algorithm was first introduced by Baum and
Petrie (1966) and further developed by Dempster et al. (1977).

Our formulation, in terms of filters which estimate the number of jumps from
one state to another ¢, the occupation time &, and the J process, avoids use of
the forward-backward algorithm and does not require so much memory. However,
it requires a larger number of calculations that can be done in parallel.

Related contributions can be found in Boel (1976) and Segall (1976b). The latter
discusses only a single counting observation process. Boel has considered multidi-
mensional point processes, but has not introduced Zakai equations or the change of
measure.

The continuous-time versions of these results are presented in Chapters 7 and 8.
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