Going Down the Drain

CHAPTER

What have Helianthus annuus and Helix pomatia got in common? First of
all, you probably need to know what these things are. Helianthus annuus
is generally known as the (common) sunflower, while Helix pomatia is
the common or garden French snail that finds its way onto dinner plates
in fancy restaurants all around the world.

We suppose there’s a sense in which both the sunflower and the es-
cargot are edible. The one provides seeds to go in snacks and salads and
edible oil which is used in margarine and for cooking, while the other
provides what some people believe is a delectable source of protein. But
the gastronomic connection is not what we had in mind.

1.1 Constructions

While you're working on that conundrum, try doing something more
practical. In Figure 1 we have a spider web grid for you. You might like
to photocopy or trace it, because we want you to start drawing all over
it. While we're not against defacing books if'it's in a good (mathematical)
cause, you may want to use Figure 1 several more times. It's best to start
with a clean version each time.
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What do you see in Figure 1? There is a series of concentric circles
whose radii are increasing at a constant rate. In fact, the radii are 1, 2, 3,
4, 5, and 6 units, respectively. Then there is a series of straight lines all
of which pass through the central point. The angle between neighboring
pairs of these straight lines is 30°. Actually, you'll notice that these lines
go off to infinity in only one direction. We call such half-rays rays.

Some of you may recognize Figure 1 as polar graph paper but we
won’t worry about that for a moment or two. What we are interested in
is that you go off and find a rectangular piece of cardboard. You'll need a
pencil too. We'll wait here while you go and get them.

Now look at Figure 2. Choose a point Py, anywhere on one of the rays
of Figure 1. Now put the cardboard on your polar graph paper so that one
side touches P;. Then slide the cardboard so that the adjacent side of the
card touches the next ray (see Figure 2(a)). When you've done that, mark
the point on this next ray which is at the corner of the right angle in your
card. Call this new point P,.

When you've got that organized, do the same thing again but this
time start at the point P,. So now one side of the card touches P, and the
adjacent side of the card runs along the next ray around (see Figure 2(b)).
Mark the point where the right angle touches this next ray and call it Ps.
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Once you've got the idea, continue until it's no longer physically pos-
sible to add any more points. Suppose that P, is the last point that you
were able to mark on your copy of Figure 1. Now join the points Py, P,
P53, up to P,, in as smooth a curve as you can manage. You should produce
a spiral similar to the one in Figure 3.

It's worth reflecting for a moment on what you have just done. You
have just been involved in an iterative geometrical procedure which gen-
erates a sequence of points. This means that we perform an operation
on one point (P, here) to get another (P;). We then perform the same
operation again but this time on the new point (P,), to get the next point
(P3). We keep doing this over and over again.

In Chapter 3, you'll see us playing around with Fibonacci and Lucas
numbers. There we will be iterating numbers. Here we are iterating points.
Later on in this chapter, we'll tie up these two ideas.
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In the meantime, we just want to stop for a minute because some of
you may have got a different spiral from the one we've drawn in Figure 3.
Our curve is spiraling inward in a counterclockwise (anticlockwise if you
don’t have a North American) direction. The different spiral that we've
just mentioned would be spiraling in toward the center in a clockwise
fashion!

e ¢ ¢ BREAK

You might like to think for a minute how that could possibly
have happened, given the exquisitely accurate directions that we
described above. e o @

Well, while you were thinking, we have looked back at our iterative
instructions and have discovered that, although we pointed you to Figure
2, we didn't actually say that the ray that the right angle touched had to
be the one in a counterclockwise direction from the ray the point P; was
on. The misinterpretation that we noticed clearly put P, on the ray that
was the next clockwise around from P;. Obviously, this was the work of a
left-handed person!

OK, so things can be done that way. For those of you who followed
the implied counterclockwise direction of Figure 2, have another go, but
this time do it clockwise. And for the people who did it clockwise the first
time, would you mind having a try in the other direction now, please?

e ¢ ¢ BREAK
Can you manage to make your spiral go the other way? e e o

Fine! So now everybody should have two spirals, one with a clockwise
decline and the other with a counterclockwise decline. This left-handed
version we've shown in Figure 4.

But what we would dearly like to know is: Why is the spiral heading for
the center? What are the alternatives? The points Py, P;, etc., could spiral
in to the center, they could keep the same distance from the center, they
could spiral away from the center, or they could exhibit erratic, exotic
behavior not yet described in the pages of this magnum opus.

e ¢ ¢ BREAK
Why do the points spiral in? e e @

Before we start our erudicious explanation, you must write down a
quick reason of your own. Nothing too elaborate, mind. Something like
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“the hypotenuse of a right-angled triangle is longer than either of the
other sides” will do. In fact, if that's what you wrote, then you're on top
of the game. That's exactly what's going on. Look at the counterclockwise
iteration shown in Figure 5(a) and let C be the center of the polar graph
paper. Then you'll see that ACP; P, is right-angled at P,. The hypotenuse
of this triangle is CP;. So clearly CP, < CP;. This means that the point P,
is closer to the center C than P;. Hence the points go spiraling in as we
move in a counterclockwise direction.

For the left-handed among us, the clockwise situation is dealt with in
Figure 5(b). Of course, we haven’t yet used all of the information available
from the precise rules of the construction.
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Now when you're on a good thing, stick to it. We'll just vary the itera-
tion slightly. Take your card and a pair of scissors and cut off a right angle
as shown in Figure 6. Make the angle o any size you want. Keep one part
of the card to use straightaway. Call this part A, and the other part B, and
put B aside somewhere. We won't need it for the moment but we will use
it later on.

Now get hold of another copy of Figure 1 and use the A part of your
card to go through the iterative process described above, all over again.
The only difference now is that this time the angle o goes where the right
angle went before. If you take an arbitrary point P; in any ray, and have
one side of the card touching P; and the neighboring side of the card along
the next ray, then P, is at the vertex of the angle «. You should be able to
see how to continue from here. It's the same old routine.

e ¢ ¢ BREAK

The big question now is: “What sort of a curve did you get when
you put a smooth curve through the points P, P, ...?” Did you get
another spiral? Did it spiral in or not? Did it stay a constant distance
from the center? Did it exhibit some exotic, erotic behavior? If so,
what sort of behavior? e e e

So what happened? First of all, we'll assume that you all adopted the
Figure 2 approach so that P, was counterclockwise from P; and so on.
(Perhaps there is still the odd person who went the other way!) We've
listed some possible outcomes in Figure 7. Which, if any, did you get?

The thing that interests us is that we can get any of the shapes in
Figure 7! Those with some other sort of erratic behavior should go back
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to the drawing board. The answer is definitely one of the curves in Figure
7, as we will now show.

Perhaps a diagram like Figure 5 will be of some help. We may be able
to sort it all out with a simple right-angled triangle. Except when we look
at Figure 8 there don't appear to be any right-angled triangles!

How can we compare CP; and CP,? Is it possible that CP; could be
bigger than CP, for some value of a? Could CP; actually equal CP,? We
know already that if @« = 90°, then CP; is smaller than CP, so that ought
to be a possibility too.

Ah! Ts that the clue? What do we know about the relative sizes of sides
and their opposite angles? Surely the bigger side is opposite the bigger
angle. So if the angle at P, is bigger than the angle at P;, then CP; is bigger
than CP;,.

Now if the angle at P, is « (as we know it is), then 180° — 30° — « is
the angle at P;. So whether the iterative curve spirals in or out, depends
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on whether « is bigger or smaller than 150° — «! So when is @ bigger than
150° — a?

Now o > 150° — «,
is equivalent to 2a > 150°,
or a > 75°.

Those of you who had cut your card so that a« was bigger than 75°
found that your curve spiraled in because CP, < CP;. Those of you who
had o smaller than 75° has a spiral going out (CP, > CP;). And one of you
may have fluked a circle by taking « exactly equal to 75°.

o curve

bigger than 75° spiral in
equal to 75° circle

smaller than 75° spiral out

It's actually interesting to play around with « very close to 75° and see
how long it takes for your spirals to move away from the circle.

e ¢ ¢ BREAK

Instead of using the A part of the card with the angle «, try using
the angle 90° — o from the B part (see B in Figure 6). Is there
any connection between the A and B curves? What about a right-
handed A curve and a left-handed B curve? It's worth looking at
Figure 1 again too. There we had rays that were 30° apart. What
happens if you repeat the card construction with rays that are only
10° apart? What is the critical value of « for this case? e e @

If you use a 10° gap between rays you'll find it much easier to get a
smooth curve than in the 30° case. However, it all takes a bit longer and
you will have to be more careful with your construction because small
€rrors mount up.
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1.2 Cobwebs

We've drawn the cobweb of Figure 1 for you again in Figure 9(a). Compare
it to the rectangular grid of Figure 9(b). In Figure 9(b) we've put in the x-
and y-axes. You're probably used to this. It's easy to locate a point in the
plane using the x- and y-coordinates. Anything that's x units horizontally
away from the origin O and y units vertically away from O, is given the
coordinates (¥, y). The streets of many North American cities are laid out
on such a rectangular grid, perhaps with the x-axis called Main Street
and the y-axis called State Street. It makes it very easy to find your way
around.

On the other hand, if you are a spider and you have just captured a
particularly delicious Musca domestica, what you'll probably do is park
it for a while to let it mature. Of course, you would like to remember
where the Musca domestica is for future gastronomic purposes. It doesn't
make any sense to superimpose a rectangular grid on your cobweb. Why
not use what you've got directly? You've got a polar graph situation, why
not use polar coordinates? A fairly simple approach, using the web of
Figure 9(a), would be to say, well, the Musca domestica is 15 units (proba-
bly centimeters but we won't bother to specify them precisely) from the
center C and 60° around from the window ledge. (We're assuming here
that the ledge has a ray that you, as the spider, are particularly fond of
and that you have decided to use this as your reference point.) All you
now have to do is to store the polar coordinates of the point M as (15, 60°)
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in your brain next to the Musca domestica and you’ll know exactly where
your next meal is coming from.

In Figure 10 we've shown the position of the Musca domestica as M.
We also notice that you've gathered a few other interesting specimens
in your web. For instance, there is a Diptera culicidae at D (reference
(20, 150°)) and a poor Bombus bombus at B = (25, 300°).

But there is one thing that you need to know straightaway. The more
educated spiders amongst you use radians for angle measurement rather
than degrees. This came aboutbecause you realized that when you walked
once around your web one unit out from C, you actually traveled 27 units.
So you thought of this as having turned through an angle of 27 radians.
So, for spiders, 27 radians equals 360°. This means that 180° = x radians,
that 30° = £ radians, and so on.

e ¢ ¢ BREAK

Locate the positions of the Diptera culicidae and the Bombus bombus
using polar coordinates (7, 8), where r is the distance from C and
0 in radians is the angle turned through, starting from the ledge
already mentioned. e o @
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Actually when you think about it, the place where the Musca domes-
tica is stored cannot only be described as (15, ), but also as (15, Z), and
(15, 137”), and indeed (15, 3+ Znn), for any value of n, positive or nega-
tive! So unlike Cartesian coordinates, polar coordinates are not uniquely
defined. It's always going to be possible to monkey around with the angle
part to the tune of multiples of 2. Now it’s possibly a minor complication
that there is more than one way to locate every point, but it does seem
to be an easier way to locate objects on your web than using Cartesian
coordinates. You never know, there may be some other advantages. Who
knows?

Now if you were a particularly intelligent spider, you might be inter-
ested in the card construction of the last section. What's more, you might
even start to draw spirals on your web. If you could manage a colored
thread, then, no doubt, insects would be attracted from miles around
you, and you and your descendants would therefore have an evolution-
ary advantage over the rest of your species. You might even take over the
world eventually. We can just imagine huge webs, with colored spirals,
attracting members of the species homo sapiens to their doom in droves.

But as you know, being a spider, it’s a little hard to carry a card and
pencils around with you to mark out the position of the next point in the
spiral. It would be much easier to know the location of the next point so
that you could lay out your colored spiral thread in that direction.

The big question then is, given the first point P;, what is the location
of the point P,? Let's make life easier for you and put P; at (5, 0) and use
rays that are % radians (or 30°) apart.

e ¢ ¢ BREAK

We'll also use the first card construction, where the card has a right
angle at the corner as shown in Figure 11. If P, is at (5, 0), where
isP,?eee

The coordinates of P, have to be found, right? Now we know that P,
is on the % ray. So P, = (V, %) All we have to do is to find r. But ACP; P,
is a right-angled triangle. We know all the angles in this triangle (after
all, P,CP, = %, so CP1P; = %). So we only need use a bit of trigonometry

to see that g—f,f = COS % Therefore, CP, = SCOS% = %g ~ 4.3. So P, is

approximately (4.3, Z).

11
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Using the same method, your spiderness could calculate the positions
of'a whole collection of points P, P,, and so on. You could do this forever if
you liked, though this might delay the colored spiral thread manufacture
and your inheritance of the Earth.

But maybe you could find a formula which would give you all these
points in one fell swoop. What a savings that would be! What a colossal
evolutionary advantage. Soon spiders of all genera would be at your door
for the rule that would provide the key to everlasting lashings of fast food,
fully self-delivered to the table.

Before you get too many dreams of arachnidic grandeur you'd better
find an equation for the spiral. What you need to be able to do is to find
a relation between r and ¢ so that any point with coordinate (v, ¥) lies
on the spiral and no other points do. First, of course, we must find the
relation satisfied by all the points P,,.

Let’s have a look at the situation in Figure 12. This supposes that
we know P, = (¥, ¥,) and we want to find Py,1 = (Tn+1, On+1). Once
again, of course, ¥,,1 = ¥, + %. So it’s easy enough to find the angle
part of the coordinate. But we have another right-angled triangle here.
So CP,,.; = CP, cos % This means that r,.; = 7, cos % In other words,
Pni1 = (rncosZ, o, + Z).

Now that’s all very well, and we know that you are only a spider, but
if you want to get on in this world you are probably going to have to find
an equation linking r and ¢ for the general point (7, ©#). All you've been
able to do is to give us an iterative relation between the coordinates of P,
and Py, 1.

Forget about that for a minute and let’s see what we can work out. If we
add % to the angle every time we move on, then P, = (71,0), P, = (VZ, %),
Py = (r3, Z), and so on. So the angle part of P,.,1 should be just a multiple
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of §. Probably P, = (rn+1, %) Check that out to make sure it's OK. It
is, s0 ¥y 41 = .

So can we calculate the distance from C in the same way? Let's tackle
it the same way. We know that P, = (5,%,) and P, = (V‘/Tg, 192). From

what we know about the way P,, and P, ,; are related

3 3 3\ 3
P; = ((5£) (i)’ﬁ%), P, = <5<£> ’194)’
2 2 2
J—g);l, Dy 1). This means that we can

2
at last give the complete polar coordinates for P,, .. They are (5(‘/75)}1, %”)
But how do we get a formula linking » and ¢ for the general point (7, )?

Let’s think what's going on for a minute. Suppose we let r = 5(*/7§)n and

¥ = 4. Now both of these last equations have an n in them. What if we
eliminate n? Won't we then have a relation between r and ¢, satisfied by
the coordinates of all points P,,?

Well, & = 5F, son = %. Substituting for n in the r equation gives

and so on. In general then, P,,,; = (5(

60
r = S(Lg) = . What a mess! Let's write it out large to see if it looks any

2
better
r=>5 <£> B (1)

It certainly is a mess but it does seem correct. After all, the points P, all
satisfy it. The other points on the spiral are just what we get by smoothing

between the P, points. As well as that, we can easily see that as ¥ gets
V3

larger r gets smaller. This is because - is less than 1. As t approaches

13
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V3

infinity (T)t approaches zero. This means that » will approach zero as
¥ gets larger and larger. So this curve will definitely spiral in as we've
already seen.

Young arachnid, we think you're on a winner here. You'll get so many
insects in your new colored spiral web that you'll be able to sell them to
all the spiders in the neighborhood. Just think of it. Arachdonalds! Selling
fries and juicy Big Arachs!

1.3 Consolidation

The work of the last section has, of course, only opened up a can of
worms. What equation would we get if we had used rays which were only
75 apart? What equation would we find for cards which have corner angles
a equal to 4F, ZZ I and especially 22? How could we explain the right-
handed and left-handed versions of all the spirals? There are clearly a lot
of mathematical questions that are still unresolved here, not to mention
the sunflower-escargot conundrum.

Now we have been looking for a relation between r and ¢, starting
from curves that we knew something about. We certainly knew how to
construct them. Why don’t we turn the questions around and look at (7, ¥)
relations to see what curves they produce? It's probably a good idea to start
with something simple. We'll then say goodbye to you and let you explore
to your heart’s content.

So what could be simpler than r = k, a constant? In such a curve, the
points are always a constant distance from the origin. Hence they must
lie on a circle, center C.

Another simple equation that needs to be dealt with is ¥ = k. Any
point on the graph of this relation is always the same fixed angle from the
initial direction. Hence we get a straight line which starts at C and heads
off to infinity. Notice that we get a ray, not a complete line through C.

Another simple equation is r = . What does the spider web graph
of this relation look like? Well, there are at least three ways to go about
answering that question. We could plot lots of points and join them all
up, or we could use a graphing calculator, or we could think about what
could happen.



1.3. Consolidation

FIGURE 1.13
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See if you can make any progress with the graph whose polar
equationisr = 2 e e e

If you've plotted points you may have found that they disappeared off
your web pretty quickly. We hope that you changed your scale so that
you were able to get points whose values of # was larger than 2.

Is there very much to say about r = 9? As ¢ increases so does 7. So
the curve formed by the points (7, ), where » = ¥, must spiral out from
the center. It'll have to look like the curve in Figure 13.

Normally in polar coordinates, we only allow r to be positive or zero.
After all, it is the distance of the point from the pole. However, in some
books you will see r being allowed to be negative. We won't though, be-
cause we have an aversion to negative distances. Of course, ¥ is generally
allowed to be any real number but, for any particular relation, we only
allow those values of ¥ which make r > 0. Naturally, the point with
coordinates (7, ¥) is the same as the point with coordinates (v, ¥ + 2x).

Getting back to relations between r and ¢}, the next obvious things to
try are the linear relations—things like » = md + ¢, where m and ¢ are
fixed real numbers.

e ¢ ¢« BREAK

Why don’t you see what sort of curves have equation

r = mv¥ + ¢? You may need to use a combination of point-plotting
and thinking. But thinking is always preferable if there’s a choice.
You might like to try the special cases m = 0 andc = 0. e e @

15
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You've probably realized by now that all the relations with m positive
give spirals. Since we allow ¥ to be negative, the spirals start at = —,
because r can’t be negative, that is, we require ¥ > —=. We already know
that if m = 0, we get a circle of radius ¢. For m negative, we require
¥ < ——. All of these situations are shown in Figure 14.

Let's have a little deeper look into a special case of these linear
spirals. So let r = 2. The polar curve with this equation is given in
Figure 15.

The interesting thing that we want to point out here is the constant
nature of this curve. Look what happens every time it crosses the initial
line.

TABLE 1. r = 29.

|9 |0 |2n |47 | 67 | 87 |

vy | 0| 4m | 8r | 12m | 167

From the table you can see that the value of r increases each time
by 4m. But the same thing happens no matter what ray we look at. As
the curve spirals out, every time it crosses a fixed ray, it is 47 further
out than the last time. To see this constant increase for r, take any ray,
¥ = 1, say. When the curve crosses that ray again, 9 has increased
by 27 to ¥; + 27. At the first crossing, r; = 2¢; and at the second r, =
2(% + 2m) = 204 + 4m. Clearly, the difference between r; and r; is 47. And
that constant difference applies no matter which ray the curve crosses.

You probably also managed to show that the same thing happened for
any polar curve of the form

r = mi + c. (2)
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FIGURE 1.15

The argument is the same. At the ray & = ¥, we get r; = m; + ¢ at first.
The next time past this ray & = ¢, + 2w and r, = m($, + 27) + c. So the
difference between the two values of r is

rp— 1 = (M + m2n + ¢)— (md + ¢) = 2nm.

Again, a constant increase. Again, the same increase occurs for every ray.
Such curves are known as Archimedean spirals (see [2] and [3], for
example).

e ¢ ¢ BREAK
Can you think where you might have seen Archimedean spirals?
o000

If you have a non-zero constant ¢, in your Archimedean spiral, see (2),
the curve looks as if it might follow the surface of some sort of material
on a roll—dress material, for instance. But this isn't quite right. Mate-
rial certainly winds around the roll adding a constant width once every
time round. However, the start isn’t quite right. On the other hand, if the
constant is zero, the spiral above is just the kind of curve you get when
you roll a length of something tightly up onto itself. Tape measures are
sometimes rolled this way.

Now when we're dealing with Cartesian coordinates, polynomial rela-
tions give some interesting curves. But if we allow, say, r = 9% + 21 + 2,
then we find we don’t get anything very exciting—just more spirals. So
we'll try something different.

e ¢ ¢ BREAK
What do you think the polar curve with equation r = sin ¢ looks
like? Have a guess and then try to sketch it. e @ @

17
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FIGURE 1.16

Before we do r = sind, let’s have a look at v = cos®. In fact, we'll
show it in Figure 16. It's a circle, with center at (3, 0) and radius 1. How
does that come about?

If you can’t see how we got this, draw up a table of values. You should
find that as ¥ goes from 0 to 7,  goes from 1 to 0. There are no values
for r with © between 7 and 37”, but from 37” to 27, r increases from 0 to 1
and the circle is completed. (If you take increasing values of ¢ from here,
you just go round the circle again and again with suitable gaps every =«
radians, in the same way that you do from ¢ = 0 to 2x). Alternatively,
there is a straightforward proof using Cartesian coordinates. Starting with
r = cos®, multiply both sides by 7 to get r* = rcos . Since x = rcos ¥
and y = rsin®, we then see that x> + y> = x. Completing the square
gives (x — %)Z + y? = 1. Do you recognize this as a circle?

If you're still worried about r = sin®, you should now be able to
show that it too is a circle. This one, though, has center at (1 Z) in polar

212
coordinates and again the radius is %

e ¢ ¢« BREAK

Actually, there is an easy way of obtaining the graph of r = sin ¢
from that of r = cos¥. Recall that cos(% — 19) = sin ¥? How does
that help you sketch r = sin¢#? What is the effect on the curve
r = cos? of changing ¥ to 7 — 7 e e e

Looking at trigonometric functions opens up floodgates. You should
find a lot of interesting shapes of the form r = cos2#, r = cos 3%, and so
on. Something like r = 1 — sin ¢ is interesting too. If you're hooked on
these polar curves, we suggest you try to graph a few more of them.

If we can remind you of your spider days in the previous section,
remember that we came up with a Iﬁ)olar equation of the form r = ka’.
(In actual fact k was 5 and a was “/7§ ". Now this curve has an interesting
property. Look at the values of r for two values of 9.
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Ifo =%, 11 = ka” and if & = 0, 1, = ka®.
“So what?” we hear you ask. OK, so take the ratio 7, : ;. Then

)
&) ka Tt

€)

8l ka’

So here’s the insight. If we take any two values of ¢ which differ by a
given amount ((¥, — ) is constant), the resulting ratio Z—f is the same,
no matter where you are on the spiral. Because of this property, curves
with polar equation r = ka” are called equiangular spirals (for more
details see [2] and [3]).

The property also means that, in some sense, the curve is self-similar.
The distance from the origin increases by the same amount (by the same
ratio) for every constant angle that the spiral goes through. Every section
of the spiral is then a replication of the previous section. Zooming in (or
out) on the spiral you see the same shape. Hence the spiral is much like
a fractal (see Chapter 8).

1.4 Fibonacci Strikes

We have constructed spirals with cards on cobwebs but there are other
methods of construction. Take your favorite sequence—the Fibonacci se-
quencel, 1,2 3,5, 8,13, 21,...comestomind (see Chapter 3)—and use a
polar grid with rays at angles of § for a start. When ¢ = 0,letr = F; = 1.
When ¢ = &, letr = F, = 1. Keep going so that when & = ng, v = Fy1.

e ¢ ¢ BREAK

Plot the Fibonacci points as indicated above and draw a smooth
curve between them. You should get a respectable spiral. Check it
out.eee

You have probably ended up with something like the graph of Figure
17. Actually, with a little work, you can give a relation between r and
for this curve. Have a go and see what you come up with.

But you don't have to use the Fibonacci sequence. Something like 1,
2,4,8,16,32,...0r1, 4,9, 16, 25, ..., will give you a spiral too.
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FIGURE 1.17

e ¢ ¢ BREAK
Experiment with different sequences of numbers and see what
your spirals look like. e @ @

Just to wrap this one up, let’s find the relation between r and ¥ for the
curve formed from 1, 2, 4, 8, 16, .... Using rays § apart, when ¢ = ng,
r must be 2"1. Sor = 2571 = %(2%) It looks as if we've ended up
with another equiangular spiral. Did you get an equiangular spiral for

the Fibonacci curve?

e ¢ ¢ BREAK
Use the Binet formula (see Chapter 3) to express the Fibonacci
curve by an equation in polar coordinates. e @ @

1.5 Dénouement

We started off this chapter asking what there is in common between the
sunflower and the snail. The answer is that the seeds of the sunflower
and the shell of the snail both exhibit a spiral structure. If you look at the
snail’s shell, you'll see a clear spiral. What may not be obvious, at first, is
that the spiral is equiangular. “The whorls continually increase in breadth
and do so in a steady and unchanging ratio” (see [1, Volume 2, p. 753]).

The same kind of behavior is to be found in the Nautilus shell and in
many other shells, too. But it is not to be found in sunflowers. Instead,
sunflowers exhibit the Fibonacci spiral behavior. This is illustrated in
Figure 18.

In this chapter we have only skimmed the surface of the study of
spirals and polar curves. There is a lot more out there to investigate. You
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FIGURE 1.18

might actually like to do some of that investigating. If you do, don't forget
about three-dimensional spirals. The common or garden helix not only
occurs in circular staircases and in bed-springs but also seems to have
something to do with DNA too. But what on earth is an Archimedean
screw?

Oh! It’s suddenly occurred to us that we haven't mentioned drains and
that was in the title of the chapter. What'’s the path traced out by a fleck
of fat as it goes down the drain? And does it matter whether the fat is in
Sydney, Southampton, or Seattle?

e ¢ ¢ FINAL BREAK
Here are a few problems for you to try out your new skills on.

1. In Section 1, when using the card construction of a spiral we found
that 75° (or %) was a critical angle. Would the same angle be critical
if the angle between the rays was changed?

2. Draw four equally spaced equiangular spirals on a piece of card. Pin
the point C to the center of a turntable. What effect do you get when
the turntable rotates?

3. Consider the polar curve whose equation is r = sin®#. What would
happen if ¢ were allowed to be negative?

4. Find the polar equation for the circle, center (a, «) and radius b. [Hint:
First get the Cartesian equation.] e e e
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Answers

1. Suppose the angle between rays is ¢. Then the critical case occurs
when m — 9% — @ = «. Hence the critical value of « is %(n — 9), which
certainly depends on the angle ¢ between the rays.

2. You should get an interesting optical effect.
3. You get the same circle again and again.

4. In Cartesian coordinates the center is (a cos«, a sin «) and the radius
is b. So the equation is

(x —acosa)® + (y — asina)® = b2
Simplifying, this becomes
x* + y* — 2xacosa — 2yasina = b* — a*.
Converting to polar coordinates, we obtain
r? — 2racos® cosa — 2rasin ¥ sina = b* — a?,
or
r? — 2racos(® — a) = b* — a’.

The moral is that, when dealing with circles whose centers are
not at the origin, it's easier to use Cartesian coordinates than polar
coordinates.
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