Some of Our Own

Reflections

CHAPTER

How should mathematics be done? Of course, the answer to this
question cannot take the form of a set of precise prescriptions which
guarantee, if they are followed, that we will be successful every time we
undertake a piece of mathematics—no such guarantee is ever available,
even for the most expert and talented performers on the mathematical
stage. Nevertheless, we believe it may be helpful to our readers to formu-
late certain principles which can be discussed by them, and which may
prove of practical use in improving their success rate when actually doing
mathematics—and we emphasize that the readers of this book should be
expecting to get a lot of satisfaction from doing mathematics (one of our
principles is that mathematics is something we do, not just something we
read and try to learn).

So we will provide a set of principles here which may be useful to
you. In fact, we provide two sets. The first set of principles is of a general
nature, and refers to the overall approach we should take to doing math-
ematics. The second set of principles is more specific and, we hope, will
be found useful when you are actually involved in some particular piece
of mathematics. For those of you who have a special interest in teaching
mathematics we include a short section on principles of mathematical

pedagogy.
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9. Some of Our Own Reflections

9.1 General Principles

1. Mathematics is only done effectively if the experience is
enjoyable

Certainly, mathematics is a “serious” subject, in the sense that it is
very useful and important. But that does not mean that a mathemati-
cal problem is to be tackled in a spirit of grim earnestness. Let us be
frank—mathematicians are very happy that mathematics is important—
but, for very few mathematicians, is this its prime attraction? We might
say it is the reason why they are paid to do mathematics, but not really
the reason why they do it. They do it because it brings them joy, fulfill-
ment, and excitement; they find it fun even when it is deep, difficult, and
demanding—indeed, this is a large part of its appeal. Our readers may
like to read [1] on this theme.

2. Mathematics usually evolves out of communication between
like-minded people

Mathematics is not, by its nature, a solitary activity; it is only our ob-
session with traditional tests and the determination of (some of) us to
ensure the honesty of our students which have led us to insist so much
on mathematics always being done by students working on their own.
Like any other exciting and engrossing activity, mathematics is some-
thing to be talked about among friends, to be discussed informally, so
that insights and ideas can be shared and developed, and so that many
can enjoy the sense of achievement, even triumph, that the successful
solution of a challenging problem brings. Much of the most important
work that mathematicians do is done at conferences and in the staffroom
over coffee.!

This crucial kind of social mathematical activity requires that we feel
free to chat about mathematical ideas without the restraining necessity
to be absolutely precise—we will have more to say about this later. It is
one of the (many) advantages that human beings have over machines that
they can communicate informally without having to be pedantic. Indeed,

'A great contemporary mathematician, Paul Erdos, has defined a mathematician as a
device for turning coffee into mathematics.
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a stronger statement is broadly true—human beings can only communicate
interesting ideas informally,” while machines can only communicate (with
each other or with human beings) pedantically.

Finally, let us admit that there is a stage, in the solution of a mathe-
matical problem or the successful completion of a piece of mathematical
research, when solitude and silence are essential. The working out of
detail can only be accomplished under really tranquil conditions. But
mathematics is more than the working out of detail.

3. Never be pedantic; sometimes, but by no means always, be
precise

When a new idea is introduced—and especially when a new idea is pre-
sented to students or colleagues—it is necessary to make that idea precise.
If, for example, we want to discuss whether an equation has a solution,
we must specify what kind of numbers we allow. If we want to know
the quotient in a division problem, we need to know if we are referring
to the division algorithm (involving both a quotient and a remainder) or
exact division (involving only a quotient)—or even some other version of
division.

However, once the precise idea has been conveyed, it is no longer
necessary, or desirable, to insist on precision in subsequent discussion.
We benefit, in all our conversations, from informality—without it there
can be no ease of communication, no ready exchange of ideas. If you are
talking to your friends about a dog called Jack, you need, at the outset,
to specify to which “Jack” you are referring; once you've made that clear,
subsequent references can—and should be—simply to “Jack.” We refer to
this refinement of the original principle as the

Principle of Licensed Sloppiness.

Our readers may find many examples of this principle in the earlier
chapters of this book.

They may also be interested in the following logical consequence of
the statement of the principle in its original form.

*Unfortunately, when we communicate our results in research journals we are
compelled to write very formally.
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Corollary. Precision and pedantry are different things.

4. Elementary arithmetic goes from question to answer; but gen-
uine mathematics also, and importantly, goes from answer to
question?

What we mean to imply by this slogan is that a false picture of the
true nature of mathematics in action is conveyed by our earliest con-
tact with elementary arithmetic, when we are given addition, subtraction,
multiplication, or division problems to do, and have to provide exactly cor-
rect answers to score maximum points. The questions are uninteresting
(and completely standard); and they are not our questions. We pro-
vide the equally uninteresting answers by carrying out an uninteresting
algorithm.

In genuine mathematical activity answers suggest new questions, so
that, in an important sense, mathematical work is never complete. Tt
is, moreover, to be thought of as investigation and inquiry rather than
the mere execution of mechanical processes. Here again we see a vital
difference between human beings and machines—and we see that ele-
mentary arithmetic is fit for machines and not for human beings! Our
readers should find many examples of this principle in action in the
earlier chapters of this book.

5. Algorithms are first resorts for machines, but last resorts for
human beings

Consider the problem 31 x 29. A calculating machine tackles this problem
by recognizing it as a multiplication problem involving the product of two
positive integers and applies its programmed algorithm for solving such
problems. The intelligent human being may reason as follows:

31 x 29 = (30 + 1)(30 — 1) = 30> —1 = 900 — 1 = 899.

(But he, or she, probably does these steps mentally.) For the human being
this is a great gain in simplicity, and hence a significant saving of time and

*The perceptive reader may object that there had to be a question in the first place to
generate the answer. We would respond that “In the beginning there was elementary
arithmetic.”
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effort, compared with the standard hand-algorithm for multiplication; for
the machine it would be absurd to look for a short cut, when it can do the
routine calculation in a flash.

Thus the natural procedures of machines and human beings when
faced with an arithmetical or algebraic problem are diametrically op-
posed. The machine identifies the problem as belonging to a certain class,
and then applies an algorithm suitable for solving any problem in that
class. Intelligent human beings look for special features of the problem
which make it possible to avoid the use of a universal algorithm, that is,
to employ a short cut.

Students need to understand why the traditional algorithms work, but
it is absurd to drill them so that they can use them ever more accurately
and faster. For the machine will always be much more accurate and much
faster.

6. Use particular but not special cases

This principle has many applications, both in teaching mathematics and
in doing mathematics. When we want to think about a mathematical sit-
uation, it is usually a good idea to think about examples of this situation
which are particular but typical. For example, if we are asked for the sum
of the coefficients in the binomial expansion of (1 + x)", we might look
at the casesn = 3, n = 4. Then

(1 +x)°=1+3x+3x* +x°, 1+3+3+1=38,
(1 +x)* =1+ 4x + 6x* + 4x° + &%, 1+4+6+4+1=16.

We might well be led to the conjecture that, in general, the sum of the
coefficients is 2"*; and our experiments with (1 +x)3, (1 +x)* should suggest
to us how to prove this conjecture. Notice that we do not experiment with
(1 + x)% the case n = 0 is too special.

The technique is, as we have said, a very good way of detecting
patterns, and hence of generating conjectures. It is also a useful tool
in understanding mathematical statements and arguments, and thus in
explaining them to others. Of course, in testing conjectures already for-
mulated, special cases may be used—but particular, nonspecial cases are
usually more reliable indicators.

7. Geometry plays a special role in mathematics
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We really have in mind here geometry at the secondary and undergrad-
uate levels. We claim that it is a serious mistake to regard geometry as
just one more topic in mathematics, like algebra, trigonometry, differ-
ential calculus, and so on. In fact, geometry and algebra, the two most
important aspects of mathematics at these levels, play essentially com-
plementary roles. Geometry is a source of questions, algebra is a source of
answers. Geometry provides ideas, inspiration, insight; algebra provides
clarification and systematic solution.

Thus it is particularly absurd to teach geometry and algebra in sep-
arate watertight compartments, as is so often done in the United States.
Geometry without algebra leaves the student with questions without an-
swers, and hence creates frustration; algebra without geometry provides
the student with answers to questions nobody would ask, and hence
creates boredom and disillusion. Together, however, they form the ba-
sis of a very rich curriculum, involving both discrete and continuous
mathematics.

Some may argue that there are methods in geometry (while not dis-
puting that method is the characteristic of algebra). By “in geometry”
they mean “in synthetic geometry” and refer to the method of proof by
exploiting symmetry, similar triangles, properties of the circle, etc. Of
course, it is true that one does exploit these key ideas in any form of geo-
metrical reasoning, but, practically always, one needs a clever trick—for
example, an ingenious construction—to complete the argument by “Eu-
clidean” means. Roughly speaking, each geometrical problem, if solved
by purely geometric methods, requires its own special idea. And none of
us is bright enough to function, in any aspect of our lives, with such an
enormous idea-to-problem ratio; we have to make a good idea go a long
way. Fortunately, in mathematics, it does! So remember

All Good Ideas in Mathematics Show Up
in a
Variety of Mathematical and Real-World Contexts
8. Symmetry is a pervasive idea in mathematics

It is not only in geometry that we should look for opportunities to ex-
ploit symmetry—though the importance of the idea of symmetry in
understanding geometrical situations and solving geometrical problems
cannot be overemphasized. Symmetry also plays a very important role
in algebra—-consider, for example, the problem of determining the coeffi-
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cient of @b’ in the binomial expansion of (a + b)'°; whatever the answer
is, considerations of symmetry show that the coefficient of a’bh® must
be the same. You will find symmetry much exploited in Chapters 5 and
6. You will also find it playing a very significant role in Chapter 4, both
in the geometrical and in the number-theoretical topics of that chapter.
We doubt, indeed, if it is absent from any chapter. Our recommendation
is—always look for symmetry.

There are, of course, many other characteristic properties of mathe-
matics, but we will not go into detail about them here. We might mention
two such properties, however. First, we often know something can be
done without knowing how to do it. There’s a wonderful example of this
in Chapter 4 where we quote Gauss’s discovery of which regular con-
vex polygons can be constructed with straightedge and compass; but his
argument gives no rule for carrying out the constructions. There is an-
other example in Chapter 2, where we show that every residue modulo
m, which is prime to m, has an order—but our proof provides no means
of calculating the order. A second property characteristic of mathematics
is that new concepts are introduced to help us to obtain results about
already familiar concepts, but play no part in the statement of those re-
sults. There are lovely examples of this in Chapter 3, where we introduce
certain irrational numbers @ and B in order to establish identities connect-
ing Fibonacci and Lucas numbers, which are, of course, integers; and in
Chapter 6 where we use pseudo-Eulerian coefficients, just introduced, to
prove identities relating binomial coefficients.

However, rather than listing these characteristic properties of math-
ematics systematically, we prefer to turn to certain more specific
principles. Of course, the distinction between these and the principles
above, which we have called “general”, it not absolute. The reader should
think of the principles above as relating more to the general strategy of
doing mathematics, while those that follow relate more to the tactics to
be used in trying to solve a particular problem.

9.2 Specific Principles

1. Use appropriate notation, and make it as simple as possible
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It is obviously important to use good and clear definitions in thinking
about a mathematical problem. But it is remarkable the extent to which
we can simplify our thinking by using the appropriate notation. Consider,
for example, the summation notation where

1+2+3+---+n

is replaced by the more concise expression

n
2
i=1

which is read “the sum from i = 1 to n of'i.” This notation obviously sim-
plifies algebraic expressions; and, where we may even regard the range
of the summation as understood and omit it, we achieve further valuable
simplification.

Good notation also often results in reducing the strain on our overbur-
dened memories. For example, in considering polynomials it is usually
much better to use the notation

g + ax + apx> + -+ + apx"
rather than a notation which begins
a+bx+cx’+ -

(What is then the coefficient of x¥"?) To take this point further, in dis-
cussing the product of two polynomials (compare the discussion of the
third principle, below), it is very nice to write the general rule in the form

(Z anx”) (Z bnxn> = Z cnX”,

where ¢, = ), _, abs.

Let us see what we have achieved. First, by adopting the summation
notation ), we have been free to write only one typical term to denote a
general polynomial. Second, by adopting the convention thata, = 0ifthe
term x" doesn’t occur, we have not had to worry about the degree of the
polynomial; and, since we have a coefficient for each n, we also don’t have
to stipulate the limits of the summation. Third, the rule for calculating
¢, becomes completely general and does not have to take account of the
degrees of the polynomials being multiplied. Just compare the resulting
simplicity with how we would have to state the rule for multiplying a
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cubic polynomial by a quadratic polynomial* in the “bad old notation.”
Our polynomials would be

ag + a1 x + azXZ, bo + le + bzXZ + b3X3.

(This notation is not at all as bad as that found in many algebra texts!)
and the rule would be

(ao + X + ax*) (Do + Dix + box® + b3x®) = ¢ + C1x + X% + c3x° + ¢y + c5x°,
where

co = aobo

¢, = agby + a1bg

C; = apgby + a1by + azby

¢c3 = agbs + a1by + azb; (remember a; = 0)

¢4 = a1by + azb;

Cs = dybs.
And even then we would only have a rule for multiplying a cubic by a
quadratic, whereas our statementc, = ) .. ._, a,bsis completely general
and even applies to the multiplication of power series.

As another example of good notation, consider the study of quadratic

equations. Such an equation is usually presented as ax? + bx + ¢ = 0 with
solutions

—b + +/b? — 4ac
X = :
2a
How much better to take the general equation as

ax’* + 2bx +¢c = 0

with solutions

_ —b+b?%—ac

a

X

Compare the two formulae, for example, when you want to solve the
equation

x> —10x + 16 = 0.

*You may view this argument as an application of our General Principle 6.
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Those of you who have already become familiar with the quadratic
formula in its first form may decide the effort to change is not worthwhile.
We would not argue with that—but you should look out for trouble when
you come to study quadratic forms later.

Similarly, the general equation of a circle should be given as

Yy + 28+ 2fy+c=0

so that the center is (—g, —f) and the radius /g + f? — ¢; yet many texts
in the United States give the equation of a circle as x> + y*> + ax+ by +¢ = 0,

so that the center is (—%, —g), and the radius %«/az + b?—4c. UGH!

There is one small price to pay for adopting good notation. Over the
course of an entire book, we must often use the same symbol to refer to
quite different mathematical objects. We cannot reserve the symbol Fj
for the kth Fibonacci number if we want also to talk about the kth Fermat
number and about a sequence {Fy} of geometric figures converging to the
fractal F'. We depend—as we do in everyday life—on the context to make
clear which meaning the symbol has. Thus, in ordinary conversation, if
somebody says “Can Jack join us on our picnic?,” it is presumably clear
to which Jack she refers. There are not enough names for us to be able to
reserve a unique name for each human being—and there are not enough
letters, even if we vary the alphabet and the font, to reserve a unique
symbol for each mathematical concept. Thus the fear of repetition should
never deter us from adopting the best notation.

2. Be optimistic!

This may strike the reader as banal—surely one should always be opti-
mistic in facing any of life’s problems. But we have a special application
of this principle to mathematics in mind. When you are trying to prove
something in algebra, assume that you are making progress, and keep in
mind what you are trying to prove. Suppose, for example, that we wish to

prove that
z nm + 1\?
SRS
r=1 2
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We argue by induction (the formula is clearly correct for n = 1) and find
ourselves needing to show that

2 2
<n(n2+ 1)) v+ 1)3 _ ((n + 1)2(71 + 2)) ' o

At this stage we should not just “slog out” the LHS of (9.1). We should note
that we are hoping it will equal the RHS, so we take out the factor (”T”)Z,

present in all three terms of (1), getting, for the LHS,

n+ 1\ 2
(2 )(n + 4n + 4); (2)

and this plainly equals the RHS.

You will find that when you have reached the stage of applying this
principle automatically you will be much more confident about your
ability to do mathematics successfully—such confidence is crucial.

There is, however, one other sense (at least) in which optimism is
a valuable principle when one is actually making mathematics, that is,
making conjectures and trying to prove them; and we feel we should men-
tion it explicitly. One should be as ambitious as possible! This means that
one should test the validity of strong rather than weak statements, and
one should formulate conjectures in their most general (but reasonable)
form. There are many examples of this aspect of optimism in Chapter 4.
Thus we hope to find a means of constructing arbitrarily good approxima-
tion to any regular convex polygon, or even to any regular star polygon.
Then, when we try to determine which convex polygons can be folded
by the 2-period folding procedures, we quickly decide to look at rational
numbers %, for any integer t > 2, instead of merely the numbers
2;51 emerging from our paper-folding activities. The resulting gains, in
both cases, are immense—not only do we get better results, but we find
ourselves inventing new and fruitful concepts.

3. Employ reorganization as an algebraic technique

A simple example of such reorganization may be seen in the strategy of
factorizing the polynomial x* + 4. Polynomials are usually organized, as in
this case, by powers of the indeterminate x. However, factorization is often
achieved by exhibiting the expression as a difference of two squares. We
recognize x* + 4 as consisting of two “parts” of the expression for (x* + 2)%.
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Thus we reorganize the expression by writing
X d = (A 4 -4
and hence achieve the factorization
4 2 2
X'+ 4= (X +2x + 2)(x"—2x + 2).

(Let us insert here a small anecdote. At the meeting of the New
Zealand Association of Mathematics Teachers in Christchurch, New
Zealand, in September, 1993, which all three authors attended, the ques-
tion was going around—Can you show that n* + 4 (where n is a positive
integer) is only prime if n = 1? It is clear that this fact follows from the
factorization of x* + 4 above. For this factorization shows that n* + 4 is not
prime unless the smaller factor of n* + 4, namely, n?> — 2n + 2, is equal
to 1. But the equation n?> — 2n + 2 = 1, with n a positive integer, has the
single solutionn = 1.)

4. Look for conceptual proofs

Conceptual proofs are not only almost always simpler than algebraic
proofs; by their very nature, they also almost always give us better in-
sight into the reason why a statement is true. An algebraic proof may
compel belief in the truth of the statement being proved; but, so often,
it does not convey the genuine understanding which makes the student
confident in using the result. Let us give a couple of examples.

We claim that if you multiply together r consecutive positive integers,
the result is divisible by r! Here's a proof. Let the integers be n, n — 1,

n—2,...,n—v + 1, with n > r (this is perfectly general). Now
nn—-1---m—-r+1) (n
7! S\ )

n
the binomial coefficient. Since (V) may be viewed as the number of

ways of selecting r objects from n objects, it is, by its nature, an integer.
This completes the proof. A purely arithmetical proof could have been
given; but such a proof could not have been described, as this proof may
fairly be described, as an explanation.
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As a second example, also involving binomial coefficients, consider
the Pascal Identity

() = o

This could be proved by using the formula in the previous paragraph for
and “slogging it out”; but you would not then be any the wiser as

to why (3) is true. Instead, you could consider (n + 1) objects of which
one is marked. A selection of r of these objects might, or might not, con-

n
tain the marked object. We claim that 1 of the selections contain

n
the marked object and . do not. (Do you see why?) This observation

achieves a conceptual proof. Certainly there are also available arithmeti-
cal and algebraic proofs; all three types of proof are given in Chapter
6. In this case, the arithmetical and algebraic proofs have the advantage
that they are easily extended to the case where n is any real number
(while r remains a positive integer). However, while the arithmetical
proof continues to provide no insight, the algebraic proof shows how the
Pascal Identity may be viewed conceptually in an entirely different light,
namely, as a special case of the rule for multiplying power series. Thus
the conceptual viewpoint once again triumphs!

You should not think that conceptual proofs are always combinatorial.
There are other kinds of conceptual proof, which some might label ab-
stract, but which we prefer to characterize as noncomputational. Chapter 2,
though it is all about numbers, is full of such conceptual proofs; among
the advantages we get from using them one should especially mention
the aesthetic satisfaction they bring.

Conceptual proofs also serve in the solution of geometrical problems,
though, frequently, such nonanalytic proofs are hard to find. But the geo-
metrical viewpoint may often provide the crucial insight into the strategy
for proving a mathematical assertion which has no obvious geometrical
content.
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9.3 Appendix: Principles of Mathematical
Pedagogy

We have included this Appendix because we invisage that our text may
be read by actual and prospective teachers of mathematics. However, we
very much hope that all our readers will find it useful.

It is clear that any principle for doing mathematics effectively will
imply a principle of sound mathematical pedagogy; and it cannot be nec-
essary for us, writing for readers of this book, to be explicit about how each
principle we have enunciated translates into a pedagogical principle. It is
surely sufficient to enunciate a very general but rather controversial

Basic Principle of Mathematical Instruction

Mathematics should be taught so that students have a chance of
comprehending how and why mathematics is done by those
who do it successfully.

However, we believe that there are certain pedagogical principles
which do not follow directly from principles about doing mathematics—
or, at least, from those principles which we have explicitly identified.
With the understanding that we offer the following list tentatively as a
basis for discussion, that we do not claim that it is complete, and that,
emphatically, we do not claim any special insight as teachers, we append
here a brief'list of such principles.

P;. Inculcate a dynamic approach. Mathematics is something to be
done, not merely something to be learnt, and certainly not something
simply to be committed to memory.

P,. Often adopt a historical approach. Make it plain that, over the cen-
turies, mathematics has been something which intelligent adults have
chosen to do. Moreover, the mathematical syllabus was not engraved on
the tablets Moses brought down from Mount Sinai. No piece of mathemat-
ics has always existed. Each piece has been invented in response to some
stimulus, some need; and the best pieces have continued to be used.

P;. Recognize the utility of mathematics, but do not underesti-
mate the power of mathematics itself to attract students. Thus,
applications should be used, both as justification and as inspiration for
mathematical ideas; but one should not always insist on dealing exten-
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sively with applications in presenting a mathematical topic.> We should
remember that mathematics has its own natural internal dynamic which
should guide its development and sequencing, so that it is often philo-
sophically correct, as well as pedagogically sound, to “stay with the
mathematics.”

P,. Insist on the proper, and only the proper, use and design of tests
and other evaluation instruments. Tests are unacceptable unless they
contribute to the learning process. Students must never be asked to do
mathematics under conditions which no mathematician would tolerate;
it follows, of course, that their ability to do mathematics must not be
assessed by subjecting them to artificial conditions and restraints. As a
minimal requirement, tests must be designed so as not to endanger the
crucial relationship between teacher and student.
For further thoughts on tests, the reader may like to consult [2].

Ps. Where there are at least two different ways of looking at a prob-
lem, discuss at least two. Different students look at problems and ideas
in different ways. What is clear to one may be far less clear to another,
without this being a reflection of their overall mathematical ability. In par-
ticular, some students (and mathematicians) visualize discretely, others
continuously. By giving attention to more than one approach, the teacher
gives more students the chance to benefit, and enhances the prospect of
new connections being made in the students’ understanding.

In the context of this principle it is particularly important to insist that
one must never cut short an explanation or exposition in order to com-
plete an unrealistically inflated syllabus. Alas, how often have we heard
a colleague say words to the effect, “I did not really expect the students to
understand, but they will need the technique in their physics course next
term!” There is no merit in the teacher completing the syllabus unless
the students complete it too!

*We cannot support the concept, prevalent in the United States, of a ‘problem-driven’
curriculum, that is, a curriculum in which mathematical items are introduced as and
when they are needed to solve problems coming from outside mathematics.
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