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15-16. Hint: The function g given by

< 1 -y
g(U):/O WE x dx

can be evaluated by relating ¢’ (u) to the integral that can be obtained for g(u) by using

c

the substitution y = £ with an appropriate c¢. a = %

1820, ) (522) 77 ()" ) (1 i e P

1-p—¢ pte
2
15-28. supy,. . }’p[sn = 2] - %exp(_hgn(ﬂ)’ — O(n—l/z) as
zZ: z—n even 2rnp(l— np(l—p)
" — oo v/ 2mnp(1—p)

For Chapter 16

16-1. Hint: Use Example 1.

16-6. 0.309 at 0; 0.215 at £1; 0.093 at £2; 0.029 at £3; 0.007 at £4; 0.001 at £5;
0.000 elsewhere (Comment: Using a certain table we found values that did not come
close to summing to 1, so we concluded that either that table has errors or we were
reading it incorrectly. We used another table.)

16-12. Suppose that Qr — @ as k — oco. Fix n and suppose that there exist distri-
butions Ry such that R;"™ = Qx. Let Bk, and i denote the characteristic functions of
Qr and Ry, respectively. Because the family {Qr: k = 1,2,...} is relatively sequen-
tially compact, the family {8x: k = 1,2,...} is equicontinuous at 0, by Theorem 13 of
Chapter 14. Thus there exists some open interval B containing 0 such that Bx(u) # 0
for w € B and all k. So (Problem 7 of Appendix E), ¢r(u) = —logofk(u) is well-
defined for u € B and all k, and the family {¢%: k = 1,2,...} is equicontinuous at 0.
For u € B, vi(u) = exp(—%z/)k(u)). Hence {vx: k= 1,2,...} is equicontinuous at 0.
By Theorem 13 of Chapter 14 the family {Rx: k = 1,2,...} is relatively sequentially
compact, and, therefore, the sequence (Rj) contains a convergent subsequence; let R
denote the limit of such a subsequence. Since the convolution of convergent sequences
converges to the convolution of the limit, R*™™ = @ as desired. [Comment: For fixed n
we only used R;" = Qf for each k, rather than the full strength of infinite divisibil-
ity. If @ is infinitely divisible we can strengthen the conclusion: From the forthcoming
Proposition 3 it follows that 3 is never 0 and therefore that R is the unique distribution
whose characteristic function is exp o( log 08) and moreover, it equals the limit of the
sequence (Rg).]

16-13. By Proposition 1 the product of two infinitely divisible characteristic func-
tions is infinitely divisible. The factors we use are the characteristic function of the
compound Poisson distribution corresponding to v, as in (16.1), and the function

. o?u?
uwexp(z[n— Xdy}u— 5 ),
R\ {0}

known by Problem 9 to be infinitely divisible. The product equals exp o(—1), which
is, therefore, an infinitely divisible characteristic function. For ¢ = 0 and n = f X dv,
the second factor is the function u ~~ 1 and thus we obtain the compound Poisson
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characteristic function corresponding to an arbitrary finite measure v.

16-14. Define v;, 1 < j < 3, by

Write ¢ = 37| 4, where
= [ (1= i) ()
®\{0}
o) = / (1 - &) va(dy)
®\ {0}

() = / (1— &™) s (dy)
&\ {0}
0'27.L2

Ya(u) = iu( —n—v(—o0,—1) + 1/(1,00)) + 3

Then X has the same distribution as ijl X;, where (X;: 1 < j <4) is an indepen-
dent quadruple and, for 1 < j <4, X is infinitely divisible with characteristic function
exp o(—1;). In view of the linearity of expectation, strengthened as in Problem 29 of
Chapter 9 for independent random variables, and the linearity of variance for indepen-
dent random variables, we have thus replaced the original problem by four subsidiary
problems—to show:

E(X1) =0, Var(X1) = / y2 v(dy) ;
[=1,1\{0}
E(Xs) = / y(dy), Var(Xs) = / ¥ v(dy)
(—o00,—1) (—o00,—1)
B(Xs) = / yo(dy), Var(Xs) = [ wldy):
(1,00) 1,00)

(
E(X4) =n+v(—00,—1) —v(l,00), Var(X4)= 2.

(Comments: In defining ¥2 and w3, but not ¥1 we were able to split off the term
involving x. It is important that no assumptions about existence of expectations or
about finiteness of either expectations or variances are being made.)

The formulas involving X4 are the known formulas for the mean and variance of
a Gaussian random variable. Standard applications of the Dominated Convergence
Theorem, based on bounds from Appendix E, show that w1 has derivatives of all
orders, in particular orders 1 and 2, which may be calculated by differentiating under
the integral sign. Thus,

V() = / (—ige™ + iy) v(dy)
[-1,1\{0}
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and
W) = / e w(dy).
[=1,1\{0}

The first and second derivatives of exp o(—11) exist (because those of 11 do) and equal
the functions —1] - (exp o(—1)) and (=} + (¥1)?) - (exp o(—1))). Inserting u = 0 gives
0 for the first derivative and f[—1 1\{0} y* v(dy) for the second, as desired.

Turning to X3, with the intention of skipping X2 because its treatment is so similar
to that of X3, we note that the desired formulas are obvious in case v3 is the zero
measure and recognize that for other v3 we may use Example 2. In this latter case we
replace v3 by AR where R is a probability measure on (1,00). In terms of the notation
of Example 2 we see that X3 has the same distribution as

Z Yilinrsw
k=1

Using the independence of each pair (Y, M) and monotone convergence we obtain

po) = (f _ vman) UL

k=1

- (/(1 Oo)yR(dy))E(M) = /(1 Oo)yv(dy)-

We go for the second moment rather than directly for the variance (a useful strategy
when monotone convergence is being used):

E(X}) = Z Z E(YxYilipr>pvr)

= 2203 E(Yy)E(Y)P[M > k] + iE(YkQ)P[M > k]

k=2 1=1 k=1

= 2(/ yR(dy)> > (k= 1)P[M > k]
(1,00)

k=2

+ (/ yQR(dy)> > PIM =K.
(1,00)

k=1

The second term in (7.8) is what we want to prove the variance to be, so we only
need prove that the first term equals (E(X3))?. To do this we only need show that
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2y (k—1)P[M > k] = A%, which is a consequence of the following calculation:

Qi(k—l)P[M > Kk zzi i(k—l)P[M:m]
=23 " (k- 1)P[M =m]

=EM*)—E(M)=(X\+X) —A=x%.

16-17. If n = 0 and v is symmetric about 0, the characteristic exponent is real because
the function

y ~ —sinuy +ux(y)

is an odd function for each u. Therefore the corresponding distribution is symmetric
about 0 and its characteristic exponent has the form shown.

For the converse suppose that the characteristic function is real. It follows that the
characteristic exponent is real since it is continuous and equals the real number 0 at 0.
Then

—nu + / (= sinuy +ux(y)) v(dy) = 0
®\{0}

for every u. Another way to get 0 is to replace nn by o = 0 and v by vy defined by
vo(B) = (v(B) + v(—B)). This change, together with no change in o also leaves the
real part of the characteristic exponent unchanged. By the uniqueness of the triples in
Lévy-Khinchin representations (Lemma 11) it follows that n = 0 and v = v9. We are
done since it is obvious that v is symmetric about 0. (Comment: Another approach

is to use the measure ¢ defined in Lemma 7.)

16-20. Let X have a compound Poisson distribution with corresponding Lévy measure
v. Write v = v_ + v, where v_(0,00) = 0 and v4(—00,0) = 0. Then X has the same
distribution as X_ 4+ X4, where (X_, X) is an independent pair of compound Poisson
random variables with corresponding Lévy measures v_ and v, the independence
being a consequence of the factorization of (16.1) induced by v = v_ +v4. If v_ is
not the zero measure, then by Problem 19 there is positive probability that X_ < 0
and X4 = 0 and thus positive probability that X < 0. Therefore, v— must be the zero
measure if P[X > 0] = 1.

16-25. The moment generating functions of a gamma distribution has the form v ~+
(14 2)77. Accordingly, we want to find (§,v) (with v{co} = 0) such that

ylog(1+ 2) = v+ (1—e ") v(dy).
a (0,00)

By letting v — oo we see that the shift £ = 0. Then differentiation of both sides,
with differentiation inside the integral being justified by the Monotone Convergence
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Theorem (or in some other manner), gives

Y —vy
= e v(dy) .
. /(O’Oo) yv(dy)

It is now easy to see that the Lévy measure v has the density y ~ vy~ 'e™*Y with
respect to Lebesgue measure on (0, c0).

16-33. Statement: Let ((£,,vn), n =1,2,...), satisfy: every &, € RT and every v, is
a Lévy measure for RB*. For each n, let @, be the infinitely divisible distribution on
=+ . . .

R corresponding to (&,,vn) via the relation

/ e " Qn(dz) = exp ( —&nv — / (1—e™") Vn(dy)) .
[0,00] (0,00]

Then the sequence (Qn: n =1,2,...) converges to a distribution on R* different from
the delta distribution at oo if and only if there exist £ € RT and a Lévy measure v for
R" for which the following two conditions both hold:

viz,00] = lim v,[z,00] if 0 < z and v{z} = 0;
¢ = lim lim sup (fn + / y Vn(dy))
eNO nooo (0,e]

= lim liminf(£n+ / yun(dy))-
eN0 n—oo (0,¢]

In case these conditions are satisfied the limit of the sequence (Qn: n > 1) is the
infinitely divisible distribution with moment generating function

U~ exp ( —&v— /(O’OO] (1—e™") Z/(dy)) .

16-41. limiting distribution: two-sided Poisson supported by set of integral multiples
of ¢; characteristic exponent: u ~+ 1 — cos cu.

16-42. limit exists; corresponding triple: (0,1, v), where v has support {—1,1} and
v{—1} = v{1} = $; characteristic exponent of the limit (not requested in the problem)

1S
2

u
uw?—klfcosu.

16-50. Hint: Fix u and let € > 0. By (E.2) and (E.3) of Appendix E and Lemma 20, the
characteristic functions By, and corresponding characteristic exponents 9y, satisfy

(1= Brn(u) < () < (1+2) (1= Brn(u)
for all sufficiently large n (depending on u) and all k& < n.

16-54. uan condition satisfied so Theorem 25 applicable; u ~ e~ 1°82)¥

16-59. (@ exists and characterized by triple (0,0,v), where %(y) = % vV 0;
Q{0 =e/?
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‘ =

16-68. limit exists; (0,
representation

log 2,0) is corresponding triple for its Lévy-Khinchin

S

2

For Chapter 17

17-3. slowly varying if ¢ < 1; regularly varying of index 1 if ¢ = 1; not regularly
varying if ¢ > 1

17-9. Hint: Find a bound for

/ Is|? R(ds) .
(zk’2k+1]u[_2k+17_2k)

17-15. 1

17-17. 3 + L arctan(ytan Z2) in case o € (0,1) U (1,2]; 2 + L arctan £ with § = oo
or = —oo according as & > 0 or £ < 0 in case a = 1; maximum value is 1 A i
17-29. in no domain of attraction

17-31. characteristic exponent of limiting distribution is u ~+ k4,3 [u|*/3;

— 3/2, /
Uy ~ 33/4 627/128 n3/4 e (3/4) logn

and ¢, = 0.

17-38. in domain of attraction of stable distribution with & =1 and v = 1; in domain
of strict attraction of 61

For Chapter 18

18-5. Hint: Identify C[0,00) in a natural way with a closed subset of

oo

®C[n,n—|— 1].

n=0

18-8. Let g be a continuous bounded R-valued function on T. Then goh is a continuous
bounded R-valued function on ¥. Therefore

lim [ gdR, = lim /(goh)dQn:/(goh)dQ:/ng.
o o o

n— oo n— oo
e

18-15. We first prove a related assertion—namely, the one obtained by replacing the
hypothesis that A is open by the hypothesis that A is closed, in which case A is itself
a Polish space by Proposition 3. If Q(A) = 0, this modified assertion (and also the
original assertion) is clear, so assume that Q(A) > 0. For B a Borel subset of the Polish
space A let
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Clearly R is a probability measure. Let ¢ > 0. Corollary 18, applied to the Polish
space A, shows that there exists a compact set K in the Polish space A such that
R(K) > 1 — ¢ and, thus,

QIK) > (1-2)Q(A) 2 Q(A) — €.

The observation that, by Proposition 1 of Appendix C, K is compact in the Polish
space ¥ completes the proof of the modification of the original assertion.

We return to the original assertion by now assuming that A is open in . We will
prove that for every § > 0, there exists a subset C of A that is closed in ¥ and satisfies
Q(C) > Q(A) — 6. An application to C of the assertion proved above for closed sets
then completes the proof.

Let S be a countable dense set in W. It is easy to see that S N A is a countable
subset of A which, since A is open, is dense in A. For each x € SN A, let B, denote the
closed ball centered at x whose radius is half the distance from = to A°. It is easy to
check that A = Uz csna Bz- Replacing this union with a finite union over some finite
subset of SN A gives a closed set, a closed set whose Q-measure can, by continuity of
measure, be chosen arbitrarily close to Q(A), thus completing the proof.

Comment: The closed balls in the last paragraph of the proof need not be compact;
this possibility is one reason the proof is so lengthy. Another reason is that an open
subset of a Polish space is not necessarily a Polish space because it may not be complete.
Thus, an intermediate result involving a closed subset is useful.

18-24. Let w € R%. By the Classical Central Limit Theorem,
ooy Xk — . Xi) — nE((w, X
<w, Dy Xk ”N> _ 2 (W, Xk) — nE((w, X1)) 2, ..
Vn Vn

where Z,, is a normally distributed R-valued random variable having mean 0 and
variance Var{w, X1). By the Cramér-Wold Device,

22:1 Xi —np
\/ﬁ

such that (w,Z) has the same distribution as Z,, for each w € R% and so we may
redefine Z,, to actually equal (w, Z). Since each Z,, is normally distributed, Z itself is,

D
— some Z

by definition, normally distributed.
Let w = (0,...,0,1,0,...), where 1 is in the jth position. Then Z,, = Z;, and hence
E(Z;) = 0. Also,
Var Z; = Var Z,, = Var(w, X1),

which equals the variance of the jth coordinate of X;. Therefore the mean vector of
Z is the zero vector and the diagonal members of the covariance matrix of Z are the
diagonal members of 3.

Now let w = (0,...,0,1,0,...,0,1,0,...,0), where 1 is in both the ;" and k'
positions. Then Z,, = Z; + Z), and so

Var(w, X1) = Var(Z,) = Var(Z;) + Var(Z) + 2 Cov(Z;, Zx,) .

The left side is the sum of the variances of the jth and k' coordinates of X and twice

the covariance of the jth and k' coordinates. By the preceding paragraph the sum of
the variances of the j* and k' coordinates of X, equals the sum Var(Z;) + Var(Zy).
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Thus twice the covariance of those two coordinates of X; must equal 2 Cov(Z;, Zy).
Therefore the off-diagonal members of the covariance matrix of Z are the off-diagonal
members of 3.

18-26. Hint: Prove that ((A:)¢). C A°.

18-29. first part: 12 A1

For Chapter 19

19-4. The function ¢t ~+ ¢ is monotone (and therefore of bounded variation) on [0, 1]
and, for each w, the function W(w, -) is continuous. Hence (see Appendix D), we may
use integration by parts to rewrite the given functional as

x(l)—/ tdm(t):/ (1—t)dz(t),
0 0

which in turn is the limit of Riemann-Stieltjes sums:

k

Under Wiener measure, this sum is the sum of k£ independent normally distributed

random variables each of which has mean 0 and the i*® of which has variance (1— i)Q %
Therefore the Riemann-Stieltjes sum itself is normally distributed with mean 0 and

variance

=1

This variance is a Riemann sum for the Riemann integral

1
2
/(17t) dt = 3.
0

By Problem 8 of Chapter 14 we see that the answer to the problem is: Gaussian with

mean 0 and variance %

19-8. We treat the case m = n; the case m = 0 is similar. Following along the lines of
the argument in the text, but using the fact that K(x) =1 is possible if T'(z) > 1 and
impossible if z(1) < 0, we obtain

Qn({z: K(z)=1})

! 1 (i\1[ (n—j) 1 — 1
2].2_2“(3‘/2)21'((11;‘)/2)2@ 9 52 = (a/2>

jeven ]even

which, because of Lemma 12, equals

1/fn\._, 1 <<= 1 i1

_ 2 _ - . .

2(n/2) *3 Z jl(j/2> 2i
Jj=n
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A straightforward induction proof that

—1\j/2) 2~ \n/2
ota? il n/
jeven

completes the proof. [For n = 0 (the starting value for the induction proof), the left
side equals the probability—namely 1 —that the time of first return to 0 equals some
finite value, and 1 is also the value of the right side when n = 0.]

19-11. 2™ ~0.82

19-27. We need to show that the value of the derivative of the moment generating
function at 0 equals —ab. By definition, the derivative there equals

sinh(av/2u) + sinh(bv/2u) — sinh((a 4 b)v/2u)

7}1{,% usinh((a + b)v/2u)
1 2[sinh(aw) + sinh(bw) — sinh((a + b)w)]
T w0 w? sinh((a + b)w)

Now three applications of the I’Hospital Rule yield the desired result.

For Chapter 20
20-5. E(X)

20-6. Proof of (iv): By the Cauchy-Schwarz Inequality

B(IX = Xo|) = B(X — X,|1) < VE(X - Xa)/E(1?) = \/E((X = X,)?) = 0.
Proof of (iii), using (iv):
limsup E(|X»|) < E(|X]) + limsup E(| X, — X|) = E(|X])
and

E(|X|) < liminf[E(|Xa|) + E(|X — Xnl)]
< liminf E(|X,|) + limsup E(|X — X,|) = liminf E(|X,]|),

from which the desired conclusion follows.

20-15. By the sentence preceding the problem, E(V;) = 0 for each i and E(Z) = E(X).
Hence, E(X — Z) = 0. Our task has become that of showing E((X — Z)Y;) = 0 for
each 7. In view of the fact that each Y; is a linear combination of 1 and the various V;
and that we have already shown that E((X — Z)1) = 0, we can reformulate our task
as that of showing that F(XV;) = E(ZV}) for each j.

From the definition of Z we obtain

E(ZV;) = (X, HE(V;) + i(XM)E(ViVj) = (X, Vj) = E(XVj).

For Chapter 21



