Solutions, answers, and hints for selected problems

Complete solutions of some problems are given. Answers only are given for some
other problems. For still others, only hints or partial solutions are given. Asterisks
in “A Modern Approach to Probability Theory” by Fristedt and Gray identify the
problems that are treated in this supplement.

For Chapter 8

8-8. Application of the Fatou Lemma to the sequence (g— f,,: n > 1) of nonnegative
measurable functions gives

liminf/(g— fn)du > /hminf(g— fn)du = /(g —limsup f,)dp > 0.

Since [ gdu < oo, we may use linearity to obtain

/gdpflimsup/fnduz/gdu—/limsupfnduzo.

Subtraction of [ g du followed by multiplication by —1 gives the last two inequalities
in (8.2). The first two inequalities in (8.2) can be obtained in a similar manner using
g + fn, and the middle inequality in (8.2) is obvious.

Under the additional hypothesis that lim f,, = f, the first and last finite quan-
tities in (8.2) are equal, and therefore all four finite quantities are equal. Thus
J1fldu < oo and [ fnduw — [ fdu. Applying what we have already proved to the
sequence (|f — fn|: n > 1), each member of which is bounded by 2g, we obtain

i [ 1~ fuldu= [ (7 = ful)du = [0du=0.

8-12. Let I; . denote the indicator function of {w: | X (w)| > c}.
E(|1X|Ii.c) = E(| X" PLo| Xt |P) < PE(|XiP) < ¢V Pk — 0 as ¢ — 0.

8-22. By Theorem 14 the assertion to be proved can be stated as:

lim /Gvd)\z/ed)\,
y—00

where A denotes Lebesgue measure on R and
{e‘”z/ 2 ifv>0

0 otherwise.



2 SOLUTIONS, ANSWERS, AND HINTS FOR SELECTED PROBLEMS

The plan is to use the Dominated Convergence Theorem. Thus we may restrict our
attention to v > 0 throughout.
We take logarithms of the integrands:

(log o 6)(v) = (v — 1) log(1 + vy~ /%) —vy?/2.

The Taylor Formula with remainder (or an argument based on the Mean-Value
Theorem) shows that (logo6,)(v) lies between

(v = Doy V2 = JoPy7h) — oy
and
(v = D)(oy™ V2 = o2y 4 3oty 2) —oy/2
both of which approach —v%/2 as ¥ — oo. Thus, to complete the proof we only
need find a dominating function having finite integral.
The integrands ¢, are nonnegative. It is enough to show, for v > 1, that

(x) < (14wv)e~?, since this last function of v has finite integral on [0, 00). Clearly,
(v) < (1 +vy~12)0,(v), the logarithm of which equals

ylog(1 + vy~ 1/2) —uyt/2, (0.1)

0,
0,

Differentiation with respect to v and writing « for vy~1/2 gives
z(2 4 z)

2(1+2)’

a function which equals 0 when = = 0 and is, by Problem 21, a decreasing function

of . Thus, (7.2) is nonpositive when = > 0. For v > 1 [which we may assume
without loss of generality], (7.1) is no larger than the value log(1+ v) — v it attains

log(1+z) — (0.2)

when v = 1. The exponential of this value is the desired function (1 4 v)e™".
[Comment: The introduction of the factor (1 +vy~/2) in the sentence containing
(7.1) was for the purpose of obtaining a decreasing function of ~.]

8-26. Hint: The absolute value of the integral is bounded by
2V/n? max|1og(1 + m) } max (z"e "),
n

where each maximum is over those z for which |z — n| < V/n2. Apply the Mean-
Value Theorem to the logarithmic function, standard methods of differential calcu-
, and the Stirling Formula to n!. (Note: If one works
with the product of the maximum of the function z ~» z™ and the maximum of the
one does not get an inequality that is sharp enough to give the
desired conclusion.)

lus to the function z ~» z™e™*

function z ~ e~ %

8-35. Define a o-finite measure v by

v4) = [ fan,

where A denotes Lebesgue measure on R, so that f is the density of v with respect
to Lebesgue measure. In particular,

b
v((a,b]) = / /() de
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for all @ < b. By an appropriate version of the Fundamental Theorem of Calculus,

b
(e ) = Fb) - Fla) = [ f(o)do

for all @ < b. Thus, p and v agree on intervals of the form (a, b]. By the Uniqueness
Theorem, they are the same measure.



