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has a subsequence ((an,,bn,): kK =1,2,...) that converges to a member (a,b) of Ax B,
because A X B is compact. Since summation of coordinates is a continuous function
on A x B, the sequence (an, + bn, ) converges to the member a + b of A + B. Hence,
A+ B is compact. (By bringing the product space A x B into the argument we have
avoided a proof involving a subsequence of a subsequence.)

and variance equals 1 % — %

10-52. For each ¢: mean equals %

For Chapter 11

11-12. The one-point sets {0} and {7} each have probability 2"*37™. The probability
of any measurable B disjoint from each of these one-point sets is the product of ﬁ(l -
2"37™) and the Lebesgue measure of B.

11-13.

P({w: (N(w) — 17SN(W)_1(w)) = (m, k:)}) _ T(k m >qk—mp2m—k

—m

for m < k < 2m and 0 otherwise. E(Sy_1) = 224

T

11-14. for B a Borel subset of RT,
P({w: N(w) =1 =m, Sy()-1(w) € B}) = Q{oc})Q™™ (B);

E(Sn-1) = E(S1; {w: S1(w) < o0})

b
Q({o0})

11-17. Suppose that N is a stopping time. Then, for all n € Z+,
{w: N(w) <n} € Fy,

which for n = 0 is the desired conclusion {w: N(w) = 0} € Fo. Suppose 0 < n < co.
Then
{w: N(w) <n} € Fno1 C Fn.

Therefore,
{w: Nw)=n} ={w: N(w) <n}\{w: Nw) <n} € F,.

We complete the proof in this direction by noting that

{w: N(w) = 00} = {w: N(w) < oo} \ | J{w: N(w) <m}

and that all the events on the right side are members of F.
For the converse we assume that {w: N(w) = n} € F, for all n € 7", Then,
whether n < co or n = oo,

{w: N(w) <n} = U{w: N(w) =m}.

All events on the right are members of F,, because filtrations are increasing. Therefore,
the event on the left is a member of F,,, as desired.
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11-24. Let A € Fp;. Then
AN{w: Nw)<n}=AnN [{w: M(w) < n}N{w: N(w) gn}]
= [Aﬂ{w: M(w) gn}] N{w: N(w) <n},

which, being the intersection of two members of F,,, is a member of F,,. Hence A € Fn.
Therefore Fpr C Fn.

11-28.

1—+/1—4p(1 —p)s?
2(1 —p)s ’
For n finite and even, the probability is 0 that n equals the hitting time of {1}. For

o1(s) = 0<s<1

n = 2m — 1, the hitting time of {1} equals n with probability

1 (2m -1\ . m—1
1- :
2m1< " )p (1-p)

The hitting time of {1} equals co with probability 0 or (1 — 2p)/(1 — p) according as
p> % or not.

Ifp > %, the global supremum equals co with probability 1. If p < %, the global

maximum exists a.s. and is geometrically distributed; the global maximum equals x

with probability 11__2: (ﬁ)z.

11-30. Hint: Use the Stirling Formula.

11-32. Let (Z;: 7 > 1) be a sequence of independent random variables with common
distribution R (as used in the theorem). From the theorem we see that (0,T1,75,...)
is distributed like a random walk with steps Z;. Thus,

PHw: V(w) =k}) = P{{w: Zk(w) =00, Z;(w) < oo for j < k})
= P({w: Ty(w) = oo}) [P(fw: Ti(w) < 0o})]" .

Set k =1 to obtain the first equality in (11.6). The above calculation also shows that
V is geometrically distributed unless P({w: V(w) = oo}) = 1. Thus, it only remains
to prove the second equality in (11.6).

Notice that

V=3 T su=0) -
n=0

Take expected values of both sides to obtain

[e'e]

EWV) =3 Q" ({0}).

n=0

If the right side equals co, then V = oo a.s., for otherwise it would be geometrically
distributed and have finite mean. If the right side is finite, then E(V) < oo, and, so, V
is geometrically distributed and, as for all geometrically distributed random variables

with smallest value 1, E(1V) =P({w: V(w) =1}).

11-40. m!/m™
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11-41. For m = 3, let QQ,, denote the distribution of S,,.

11+ 37("=D) if n is even

Qn({0h) = {0 if n is odd

Qn({{1}}) = @u({{2}}) = Qu({{3}}) = {

0 if n is even
1(14+37™) ifnis odd

Qu(H{1,2}}) = Qu({{L3}) = Qu({{2.31}) = {3 o) e

if n is even

0
Qn({{L 273}}) = { (1 o 3—(”_1)) if n is odd

1
4

11-42. probability that {0} is hit at time n or sooner: [1 — (3)"]™; probability that
{{1,2,...,k}} is hit at the positive time n < co:

n n\m—k n—1\m—~k
G- == s
probability that hitting time of {1,...,m — 1} equals co: (2™ —2)/(2™ — 1)

11-45. For n > 1 the distribution of S,, assigns equal probability to each one-point
event. The sequence S is an independent sequence of random variables. For n > 1, the
probability that the first return time to 0 equals n is (£)(1 — 2)""', where m is the
number of members of the group.

For Chapter 12

12-10. (ii) Let Z, = Xil{u: |x, (w)|<n}- Then |Z,(w)| < |X1(w)| for each n and w.
Since E(|X1]) < oo and Z,(w) — Xi(w) for every w for which X;(w) is finite, the
Dominated Convergence Theorem applies to give E(Z,) — E(X1). Since X; and X,
have identical distributions, Z,, and Y,, also have identical distributions and hence the
same expected value. Therefore E(Y,,) — E(X1).

12-16. Let G denote the distribution function of | X;|. Then

D P{{w: [Xam(w)| > 2em}) = > [1 - G(2em)]

m=1 m=1

1 0 2¢(m—+1)
> = _
Z 50 Z/Q 1 - G(2cz)|dz

m=1 cm

- %/Q [l — G(2cx)] da
1 (e o)

= 1.2
4c? J, .2

[1-Gyldy,

which, by Corollary 20 of Chapter 4, equals oo, since E(]X1]) = co. By the Borel-
Cantelli Lemma, (12.1) is true.
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To prove (12.2) we note that if | Xom (w)| > 2cm, then |Som (w)| > em or |S2m—1(w)| >
c¢m from which it follows that
’SZm(W) ’ v ’ SZm—l(w) ’

s €
2m 2m — 1 ’

2

From (12.1) we see that, for almost every w, this inequality happens for infinitely many
m. Hence, 0 is the probability of the event consisting of those w for which Sy, (w)/n

converges to a number having absolute value less than $. Now let ¢ — oo through a

countable sequence to conclude that (12.2) is true.

12-17. E(Sn) = [[,_, E(Xx) = 27". An application of the Strong Law of Large
Numbers to the sequence defined by log S, = ZZ:1 log X1 gives

lim

n— oo

log S, !
% = E(log X1) :/ logzdz = —1 a.s.
0

Since almost sure convergence implies convergence in probability, we conclude that, for
any € > 0,
lim P({w: e 9" <5, <=9 =1,

Thus, with high probability E(S,)/S, is very large for large n. There is some small
probability that S, is not only much larger than e~ ", but even much larger than 27",
and it is the contribution of this small probability to the expected value that makes
E(Sy) much larger (in the sense of quotients, not differences) than the typical values of
Sn. The random variable S,, represents the length of the stick that has been obtained
by starting with a stick of length 1 and breaking off n pieces from the stick, the length
of the piece kept (or the piece broken off) at the n'® stage being uniformly distributed
on (O, Sn—l)-

12-19. (1+p)(1 —p), (1 +p)(1 —p)?,

(1-p?  (A+p-p’+p*-p )1 -p)
l—p+p?’ 1 —p? +2p% —p?

12-27. Let A € ®2°:1 G and € > 0. (We are only interested in exchangeable A but the
first part of the argument does not use exchangeability.) By Lemma 18 of Chapter 9,
there exists an integer p and a measurable subset D of []? _, W such that P(AAB) < e,
where

Define a permutation 7 of Z*\ {0} by

n+p ifn<p
mn)=<n—p ifp<n<2p
n if 2p<n.

Let 7 denote the corresponding permutation of €2.
It is easy to check the following set-theoretic relation:

AN#(A) C[AAB]JU[BN#(B)] U [#(B) A #(A)].
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Hence
(7.3) P(AN#(A)) < P(AA B) + P(BN#(B)) + P(#(B) A#(A)).
The first term on the right side of (7.3) is less than e. Since P(C) = P(#(C)) for any
ce®., .6,
P(#(B) A#(A)) =P(#(BAA)=P(BAA) <e.
Thus the third term on the right side of (7.3) is also less than e. Therefore
(7.4) P(An#(A)) < P(BN#(B)) +2¢

Now assume that A is exchangeable. Then AN #(A) = A. Also, it is clear that B
and 7(B) are independent, and so

P(BN#(B)) = P(B)P(#(B)) = [P(B)].
Another easily obtained fact is that P(B) < P(A)+e¢. From (7.4), we therefore obtain
P(A) < (P(A) + &) +2¢ < [P(A)) + 4e + 2.
Algebraic manipulations give
P(A)[1 — P(A)] < 4e +&°.
Let € \, 0 to obtain P(A)[1 — P(A)] =0, as desired.

12-30. (i) exchangeable but not tail, (ii) exchangeable and tail, (iii) neither exchange-
able nor tail (but the Hewitt-Savage 0-1 Law can still be used to prove that the given
event has probability 0 or 1) [Comment: the tail o-field is a sub-o-field of the ex-
changeable o-field, so there is no random-walk example of an event that is tail but not
exchangeable. This observation does not mean that the Kolmogorov 0-1 Law is a corol-
lary of the Hewitt-Savage 0-1 Law, because there are settings where the Kolmogorov
0-1 Law applies and it is not even meaningful to speak of the exchangeable o-field.]

12-35. Y P({w: |Xn(w)| > 1/n*}) < > (1/n*) < co. By the Borel Lemma, for al-
most every w, | X, (w)| < (1/n?) for all but finitely many n. By the comparison test for
numerical series, Y X, (w) converges (in fact, absolutely) for such w.

12-40. by the Three-Series Theorem: Let b be any positive number, and define Y,, as
in the theorem. By the Markov Inequality,
E(X») 1

P{w: Xn(w) >b}) < R

Thus the series (12.8) converges. Since 0 < Y, < X,, 0 < E(Y,) < ,712 Hence, the
series (12.9) converges. Also,

b

n2

Var(Y,) < E(Y;?) < bE(Y,) < bE(X,

~

Thus the series (12.10) converges. Therefore, > X, converges a.s. (Notice that this
proof did not use the fact that the random variables are geometrically distributed.)
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by Corollary 26: The distribution of X,, is geometric with parameter (n? 4+ 1)7*.
Thus the variance is (n? + 1)/n* < 2/n%. The series of these terms converges, as does
the series of expectations. An appeal to Corollary 26 finishes the proof.

by Monotone Convergence Theorem: E(} X,) = > F(Xn) < co. A random
variable with finite expectation is finite a.s. Therefore, > X, is finite a.s. (Notice that
for this proof, as for the proof by the Three-Series Theorem, the geometric nature of
the distributions was not used.)

12-41. Y ¢k < o0

12-45. One place it breaks down is very early in the proof where the statement
Y oney Xe(w) # 3000 Xk(w) is replaced by the statement » ¢ Xi(w) # 0. These

two statements are equivalent if the state space is RY, but if the state space is B itis
possible for the first of these two statements to be false, with both sums equal to oo,
and the second to be true.

For Chapter 13

13-15. if and only if the supports of the two uniform distributions have the same
length

2
13-19. k£ — ﬁp‘k‘; vV o~ %. [p is the parameter of the (unsymmetrized)
geometric distribution.]

13-30. mean equals > .~ k™" and variance equals >, k>
13-34. Hint: Let
<1
fa)= [ e
o 'LL2 _|_ y2

and find a simple formula for f” + u?f.

2 a—+va? —b? I
a2 — b2 b

13-48.

13-72. yes

For Chapter 14

14-2. At any = where both F and G are continuous, F(z) = G(x). The set of points
where I is discontinuous is countable because F' is monotone. The same is true for
G. The set D of points where both F' and G are continuous, and thus equal, is dense,
because it has a countable complement. For any y € IR, there exists a decreasing
sequence (Z1,Z2,...) in D such that zx \, y as k /" co. The right continuity of F' and
G and the equality F'(zr) = G(x) for each k then yield F(y) = G(y).

14-4. We will first show that Q,{z} — 2;e > for each z € Z*. The factor e * arises
as the limit of (1 — 2)". The factor A” already appears in the formula for Q,{z}, and
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x! appears there implicitly as part of the binomial coefficient. To finish this part of the
proof we need to show

lim L(l—i)*zzl.

n—oo (n — x)In® n

The second factor obviously has the limit 1 and the first factor can be written as

[1e-5

which also has limit 1.
We will finish the proof by showing that

Jm S Qu) =3 e
z<y z<y

for every y € R. On the left side the limit and summation can be interchanged because
the summation has only finitely many nonzero terms. The desired equality then follows
from the preceding paragraph.

This problem could also be done by using Proposition 8 which appears later in
Chapter 14.

14-6. standard gamma distributions. For x > 0,

1 i 1 =~
lim —— W le™du=1— [lim —— | [lim / W e du) .
™o T'(7) /O [w\o F(v)] [w\o . ]
The first limit in the product of two limits equals 0 and by the Dominated Convergence

Theorem, the second limit equals f:o uw e du < oo, a dominating function being
(u™' vV 1)e ™. We conclude that

I A,
lim—/ w e du =1
o T'() J,
for z > 0 from which convergence to the delta distribution at 0 follows (despite the
fact that we did not obtain convergence to 1 at = = 0).

14-10. Fix £ > 0 and r > 0. We want to show

lma)
, 1\r (1)) I T
A 2 G 0 5) ‘rm/o wle T du,

which is equivalent to

|ma]
, 1\r (1)) R T
(7-5) Jim Zk_l(a) ) _F(r)/o wleTdu,

because the term i, obtained by setting k = 0, approaches 0 as m — co.
The sum on the left side of (7.5) can be written as

/Ozgm(mdu,
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where

m kr—1k!

T TT
(1) = (ﬁ) 1%(1—i)k ifk—1<mu<kfork=12,...,|mx|
0 otherwise;

and the right side can be written as

where

The plan is to show that gm(u) — g(u) as m — oo for each u in the interval (0, z)
and to find a function h that has finite integral and dominates each ¢,,, for then the
desired conclusion will follow immediately from the Dominated Convergence Theorem.
We will consider the three factors in g,, separately. It is important to keep in mind
that k depends on u and m and that in particular, k — oo as m — oo for each fixed
u € (0,2), as this dependence is not explicit in the notation.

It is clear that (%)T_l — w7t for u € (0,z). In case r < 1, (%)T_l <u™t In
case r > 1, (%)T_l < 2”71, Thus, we have constructed one factor of what we hope

will be the dominating function h: u"~! "1 in case
r> 1.

The second factor in gm (u) equals

in case r < 1 and the constant x

1 L(r+k)

D(r) k—'T(k—1) "
We use the Stirling Formula to obtain the limit:
1 lim I(r+k)
T'(r) sk—oo k" 1T(k+ 1)

V2r(r + k)”'k_% e~ (r k)
3 e~ (k1)

= im
L(r) k—oo fr=1 /27 (k 4 1)k+

e—(r—l) . rar—1 r—1y-1/2 r—1\k+1

:Wkllnio(“r%) () ()
1

=t

The second factor in gm(u) is thus bounded as a function of k, the bound possibly
depending on r. Such a constant bound will be the second factor we will use in con-
structing the dominating function h.

For the third factor in g (u) we observe that

) (1= )" <= ) s - )™

from which it follows that
1\% —u
(1 - —) —e .
m
Moreover, (7.6) and the inequality (1 — L)™ < e~ " imply that e~
function for the third factor in g, (u).

“ is a dominating
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Our candidate for a dominating function h(u) having finite integral is a constant
multiple of ©"te % in case r < 1 and a constant multiple of e in case r > 1. Both
these function have finite integral on the interval [0, z], as desired.

For r = 0, each @, is the delta distribution at 0, and, therefore, limy oo Rm

equals this delta distribution.

14-14. Let G denote the standard Gumbel distribution function defined in Problem 13.
Fora>0and beR,

Gax +0b) = e T e ,
where c = e % > 0.

14-16. For any real constant x,

oo

ZP[XH>C]:OO.

n=1

By the Borel-Cantelli Lemma, M, — oo a.s. as n — oo and, hence,

{w: lim [M,(w) —logn] exists and > m}
is a tail event of the sequence (X: k =1,2,...) for every m. By the Kolmogorov 0-1
Law, the almost sure limit of (M, — logn) must equal a constant if it exists. On the
other hand, by the preceding problem the almost sure limit, if it exists, must have a
Gumbel distribution. Therefore, the almost sure limit does not exist.

The sequence does not converge in probability, for if it did, there would be a sub-
sequence that converges almost surely and the argument of the preceding paragraph
would show that the distribution of the limit would have to be a delta distribution
rather than a Gumbel distribution.

The preceding problem does imply that

7Mnflogn i>O as n — oo
logn
and, therefore, that
Mn
logn

— 1 in probability as n — co.

In Example 6 of Chapter 9 the stronger conclusion of almost sure convergence was
obtained using calculations not needed for either this or the preceding problem.

14-22. Weibull: mean = —I'(1+ 1), variance = I'(1+ 2) — [['(1 4 2)]?; Fréchet: mean
is finite if and only if & > 1 in which case it equals I'(1 — é), variance is finite if and
only if & > 2 in which case it equals I'(1 — 2) — [['(1 — 1)

14-35. Q. {0} =1-1, Q. {n’} =1

n

14-37. We need to show

lim Q.(—o0,z] = €=
2N\, 1 C
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for all positive finite . That is, we must show
L/ (G 5)

. 1 1 c—1
ll\,m1 (2) Z k= ¢

k=1

We may replace ﬁ by z — 1 because the ratio of these two functions approaches
1 as z \\ 1 (as may be checked by bounding the sum that defines the Riemann zeta
function by formulas involving integrals). We can bound the above sum by using:

/idz< i<1—|—/ id,z;
.z k> L T

1 1 1 1 1
()<Y < o (U )

Replace m by Lcl/(z_l)xj, multiply by z — 1, and let z \, 1 to obtain the desired limit
1-—1

that is,

14-44. Since |Bn(u)| < 1 for every u and n, we only need show that 1 —R(Bn(u)) — 0
for each w. This will follow from the hypothesis in the lemma and the inequality

1-%(6(2u) < 41 - R(B(w))],

which we will now prove to be valid for all characteristic functions [3.
Using the positive definiteness of 8 we have
+ 8(0—0)z121 + B(u—0)z122 + B(2u — 0)z123
+ B(0 —u)z2Z1 + B(u — u)z222 + B(2u — u)z2Z3
+ B(0 — 2u)z3z1 + B(u — 2u)2z322 + B(2u — 2u)2323 > 0.

Setting z1 = 1, 22 = —2, z3 = 1, noting that 8(—v) = B(v), and using 5(0) = 1, we
obtain

6 — 8%(B(w)) + 2%(B(2u)) >0,
from which follows

8[1-%(B(w)] >2[1-R(B(2uw))],

as desired. (Notice that the characteristic function of the standard normal distribution

shows that 4 is the smallest possible constant for the inequality proved above, but it
does not resolve the issue of whether < can be replaced by < for u # 0.)

14-48. The probability generating function pp » of Qp,» is given by
rf T T T T -7
por(s) =D (1-p) (m >p s"=(1-p)"(1—ps)".
=0

Clearly, (p,7) ~ pp,r(s) is a continuous function on
{lp,r):0<p<1,r>0}

for each fixed s, so the same is true of the function (p,r) ~+ Qp.r.
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14-49. Example 1. The moment generating function of @, is

= 1\ -k iy _ 1 1 _ 1
1;:0(1+n) € 77’[,—'—1 1_6;:i" n(l_efu/n_ki)’

which, as n — 0o, approaches, pointwise, the function u ~~ the moment generating

=1
function of the exponential distribution. An appeal to Theorem 19 finishes the proof.

14-52. Let V be the constant random variable 3 and let V,, be normally distributed
with mean 3 and variance n=2. Let b, = 3 and an = n~*. Then (Vs — by)/an is
normally distributed with mean 0 and variance 1 for every n even though a, — 0 as
n — oo.

For Chapter 15

15-1. > "7 | Xk| <5572, 67% = 1. Hence the series converges absolutely a.s. and
therefore, it converges a.s., in probability, and in distribution; this is true without the
independence assumption. The remainder of this solution, which concerns the limiting
distribution and its characteristic function does use the independence assumption. The
characteristic function of X}, is the function

v L (cos + cos — v -+ co 5”)
3\ ¢k 6k 6

Therefore the characteristic function of 220:1 X is the function

(7.7) v~ H[ (cos— + cos zk + cos ZZ)] .

A direct simplification of this formula is not easy, so we will obtain the distribution by
a method that does not rely on characteristic functions.

Calculations for n = 1,2,3 lead to the conjecture that the distribution @, of
> r_y Xk is given by

Qrn{m6™ "} =6"" for m odd, |m| < 6"

This is easily proved by induction once it is noted that

m 5 m+ 2 5

6n + 6n+1 < 6™ - 6n+1 :

Then it is easy to let n — oo to conclude that the distribution of 220:1 X}, is the
uniform distribution on (—1,1).
A sidelight: we have proved that the infinite product (7.7) equals the characteristic

function of the uniform distribution on (—1,1) —namely $2¢.

15-6. 0.10

15-9. are not (except for the delta distribution at 0 in case one regards it as a degenerate
Poisson distribution)

15-14. strict type consisting of positive constants (note: negative constants constitute
another strict type)
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15-16. Hint: The function g given by

< 1 -y
g(U):/O WE x dx

can be evaluated by relating ¢’ (u) to the integral that can be obtained for g(u) by using

c

the substitution y = £ with an appropriate c¢. a = %

1820, ) (522) 77 ()" ) (1 i e P

1-p—¢ pte
2
15-28. supy,. . }’p[sn = 2] - %exp(_hgn(ﬂ)’ — O(n—l/z) as
zZ: z—n even 2rnp(l— np(l—p)
" — oo v/ 2mnp(1—p)

For Chapter 16

16-1. Hint: Use Example 1.

16-6. 0.309 at 0; 0.215 at £1; 0.093 at £2; 0.029 at £3; 0.007 at £4; 0.001 at £5;
0.000 elsewhere (Comment: Using a certain table we found values that did not come
close to summing to 1, so we concluded that either that table has errors or we were
reading it incorrectly. We used another table.)

16-12. Suppose that Qr — @ as k — oco. Fix n and suppose that there exist distri-
butions Ry such that R;"™ = Qx. Let Bk, and i denote the characteristic functions of
Qr and Ry, respectively. Because the family {Qr: k = 1,2,...} is relatively sequen-
tially compact, the family {8x: k = 1,2,...} is equicontinuous at 0, by Theorem 13 of
Chapter 14. Thus there exists some open interval B containing 0 such that Bx(u) # 0
for w € B and all k. So (Problem 7 of Appendix E), ¢r(u) = —logofk(u) is well-
defined for u € B and all k, and the family {¢%: k = 1,2,...} is equicontinuous at 0.
For u € B, vi(u) = exp(—%z/)k(u)). Hence {vx: k= 1,2,...} is equicontinuous at 0.
By Theorem 13 of Chapter 14 the family {Rx: k = 1,2,...} is relatively sequentially
compact, and, therefore, the sequence (Rj) contains a convergent subsequence; let R
denote the limit of such a subsequence. Since the convolution of convergent sequences
converges to the convolution of the limit, R*™™ = @ as desired. [Comment: For fixed n
we only used R;" = Qf for each k, rather than the full strength of infinite divisibil-
ity. If @ is infinitely divisible we can strengthen the conclusion: From the forthcoming
Proposition 3 it follows that 3 is never 0 and therefore that R is the unique distribution
whose characteristic function is exp o( log 08) and moreover, it equals the limit of the
sequence (Rg).]

16-13. By Proposition 1 the product of two infinitely divisible characteristic func-
tions is infinitely divisible. The factors we use are the characteristic function of the
compound Poisson distribution corresponding to v, as in (16.1), and the function

. o?u?
uwexp(z[n— Xdy}u— 5 ),
R\ {0}

known by Problem 9 to be infinitely divisible. The product equals exp o(—1), which
is, therefore, an infinitely divisible characteristic function. For ¢ = 0 and n = f X dv,
the second factor is the function u ~~ 1 and thus we obtain the compound Poisson




