
Solutions, answers, and hints for selected problems

Complete solutions of some problems are given. Answers only are given for some
other problems. For still others, only hints or partial solutions are given. Asterisks
in “A Modern Approach to Probability Theory” by Fristedt and Gray identify the
problems that are treated in this supplement.

For Chapter 14

14-2. At any x where both F and G are continuous, F (x) = G(x). The set of
points where F is discontinuous is countable because F is monotone. The same
is true for G. The set D of points where both F and G are continuous, and thus
equal, is dense, because it has a countable complement. For any y ∈ R, there
exists a decreasing sequence (x1, x2, . . . ) in D such that xk ↘ y as k ↗ ∞. The
right continuity of F and G and the equality F (xk) = G(xk) for each k then yield
F (y) = G(y).

14-4. We will first show that Qn{x} → λx

x! e
−λ for each x ∈ Z+. The factor e−λ

arises as the limit of (1 − λ
n )n. The factor λx already appears in the formula for

Qn{x}, and x! appears there implicitly as part of the binomial coefficient. To finish
this part of the proof we need to show

lim
n→∞

n!
(n− x)!nx

(
1− λ

n

)−x = 1 .

The second factor obviously has the limit 1 and the first factor can be written as

x−1∏
k=0

(
1− k

n

)
which also has limit 1.

We will finish the proof by showing that

lim
n→∞

∑
x≤y

Qn(x) =
∑
x≤y

λx

x!
e−λ

for every y ∈ R. On the left side the limit and summation can be interchanged
because the summation has only finitely many nonzero terms. The desired equality
then follows from the preceding paragraph.

This problem could also be done by using Proposition 8 which appears later in
Chapter 14.
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14-6. standard gamma distributions. For x > 0,

lim
γ↘0

1
Γ(γ)

∫ x

0

uγ−1e−u du = 1−
[
lim
γ↘0

1
Γ(γ)

][
lim
γ↘0

∫ ∞
x

uγ−1e−u du
]
.

The first limit in the product of two limits equals 0 and by the Dominated Conver-
gence Theorem, the second limit equals

∫∞
x u−1e−u du <∞, a dominating function

being (u−1 ∨ 1)e−u. We conclude that

lim
γ↘0

1
Γ(γ)

∫ x

0

uγ−1e−u du = 1

for x > 0 from which convergence to the delta distribution at 0 follows (despite the
fact that we did not obtain convergence to 1 at x = 0).

14-10. Fix x ≥ 0 and r > 0. We want to show

lim
m→∞

bmxc∑
k=0

( 1
m

)r (r)↑k
k!
(
1− 1

m

)k =
1

Γ(r)

∫ x

0

ur−1e−u du ,

which is equivalent to

lim
m→∞

bmxc∑
k=1

( 1
m

)r (r)↑k
k!
(
1− 1

m

)k =
1

Γ(r)

∫ x

0

ur−1e−u du , (0.1)

because the term 1
m , obtained by setting k = 0, approaches 0 as m→∞.

The sum on the left side of (7.5) can be written as∫ x

0

gm(u) du ,

where

gm(u) =

{(
k
m

)r−1 (r)↑
k

kr−1 k!

(
1− 1

m

)k if k − 1 < mu ≤ k for k = 1, 2, . . . , bmxc
0 otherwise ;

and the right side can be written as∫ x

0

g(u) du ,

where
g(u) =

1
Γ(r)

ur−1e−u .

The plan is to show that gm(u) → g(u) as m → ∞ for each u in the in-
terval (0, x) and to find a function h that has finite integral and dominates each
gm, for then the desired conclusion will follow immediately from the Dominated
Convergence Theorem. We will consider the three factors in gm separately. It is
important to keep in mind that k depends on u and m and that in particular,
k → ∞ as m → ∞ for each fixed u ∈ (0, x), as this dependence is not explicit in
the notation.

It is clear that
(
k
m

)r−1 → ur−1 for u ∈ (0, x). In case r ≤ 1,
(
k
m

)r−1 ≤ ur−1.
In case r > 1,

(
k
m

)r−1 ≤ xr−1. Thus, we have constructed one factor of what we
hope will be the dominating function h: ur−1 in case r ≤ 1 and the constant xr−1

in case r > 1.
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The second factor in gm(u) equals

1
Γ(r)

Γ(r + k)
kr−1 Γ(k − 1)

.

We use the Stirling Formula to obtain the limit:

1
Γ(r)

lim
k→∞

Γ(r + k)
kr−1 Γ(k + 1)

=
1

Γ(r)
lim
k→∞

√
2π(r + k)r+k−

1
2 e−(r+k)

kr−1
√

2π (k + 1)k+ 1
2 e−(k+1)

=
e−(r−1)

Γ(r)
lim
k→∞

(
1 +

r

k

)r−1 (1 +
r − 1
k + 1

)−1/2 (1 +
r − 1
k + 1

)k+1

=
1

Γ(r)
.

The second factor in gm(u) is thus bounded as a function of k, the bound possibly
depending on r. Such a constant bound will be the second factor we will use in
constructing the dominating function h.

For the third factor in gm(u) we observe that(
1− 1

m

)mu+1
<
(
1− 1

m

)k ≤ (1− 1
m

)mu
, (0.2)

from which it follows that (
1− 1

m

)k → e−u .

Moreover, (7.6) and the inequality (1− 1
m )m < e−1 imply that e−u is a dominating

function for the third factor in gm(u).
Our candidate for a dominating function h(u) having finite integral is a constant

multiple of ur−1e−u in case r ≤ 1 and a constant multiple of e−u in case r > 1.
Both these function have finite integral on the interval [0, x], as desired.

For r = 0, each Qp,r is the delta distribution at 0, and, therefore, limm→∞Rm
equals this delta distribution.

14-14. Let G denote the standard Gumbel distribution function defined in Prob-
lem 13. For a > 0 and b ∈ R,

G(ax+ b) = e−e
−(ax+b)

= e−ce
−ax

,

where c = e−b > 0.

14-16. For any real constant x,
∞∑
n=1

P [Xn > c] =∞ .

By the Borel-Cantelli Lemma, Mn →∞ a.s. as n→∞ and, hence,

{ω : lim
n→∞

[Mn(ω)− logn] exists and > m}

is a tail event of the sequence (Xk : k = 1, 2, . . . ) for every m. By the Kolmogorov
0-1 Law, the almost sure limit of (Mn− logn) must equal a constant if it exists. On
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the other hand, by the preceding problem the almost sure limit, if it exists, must
have a Gumbel distribution. Therefore, the almost sure limit does not exist.

The sequence does not converge in probability, for if it did, there would be
a subsequence that converges almost surely and the argument of the preceding
paragraph would show that the distribution of the limit would have to be a delta
distribution rather than a Gumbel distribution.

The preceding problem does imply that

Mn − logn
logn

D−→ 0 as n→∞

and, therefore, that

Mn

logn
→ 1 in probability as n→∞ .

In Example 6 of Chapter 9 the stronger conclusion of almost sure convergence was
obtained using calculations not needed for either this or the preceding problem.

14-22. Weibull: mean = −Γ(1 + 1
α ), variance = Γ(1 + 2

α )− [Γ(1 + 1
α )]2 ; Fréchet:

mean is finite if and only if α > 1 in which case it equals Γ(1− 1
α ), variance is finite

if and only if α > 2 in which case it equals Γ(1− 2
α )− [Γ(1− 1

α )]2

14-35. Qn{0} = 1− 1
n , Qn{n2} = 1

n

14-37. We need to show

lim
z↘1

Qz(−∞, x] =
c− 1
c

for all positive finite x. That is, we must show

lim
z↘1

1
ζ(z)

bc1/(z−1)xc∑
k=1

1
kz

=
c− 1
c

.

We may replace 1
ζ(z) by z−1 because the ratio of these two functions approaches

1 as z ↘ 1 (as may be checked by bounding the sum that defines the Riemann zeta
function by formulas involving integrals). We can bound the above sum by using:∫ m

1

1
xz

dz <

m∑
k=1

1
kz

< 1 +
∫ m

1

1
xz

dz ;

that is,
1

z − 1
(
1− 1

mz−1

)
<

m∑
k=1

1
kz

< 1 +
1

z − 1
(
1− 1

mz−1

)
;

Replace m by bc1/(z−1)xc, multiply by z − 1, and let z ↘ 1 to obtain the desired
limit 1− 1

c .

14-44. Since |βn(u)| ≤ 1 for every u and n, we only need show that 1−R(βn(u))→ 0
for each u. This will follow from the hypothesis in the lemma and the inequality

1− R
(
β(2u)

)
≤ 4
[
1− R

(
β(u)

)]
,

which we will now prove to be valid for all characteristic functions β.
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Using the positive definiteness of β we have

+ β(0 − 0)z1z̄1 + β(u − 0)z1z̄2 + β(2u− 0)z1z̄3

+ β(0 − u)z2z̄1 + β(u − u)z2z̄2 + β(2u− u)z2z̄3

+ β(0− 2u)z3z̄1 + β(u− 2u)z3z̄2 + β(2u− 2u)z3z̄3 ≥ 0 .

Setting z1 = 1, z2 = −2, z3 = 1, noting that β(−v) = β(v), and using β(0) = 1, we
obtain

6− 8R
(
β(u)

)
+ 2R

(
β(2u)

)
≥ 0 ,

from which follows
8
[
1− R

(
β(u)

)]
≥ 2
[
1− R

(
β(2u)

)]
,

as desired. (Notice that the characteristic function of the standard normal distribu-
tion shows that 4 is the smallest possible constant for the inequality proved above,
but it does not resolve the issue of whether ≤ can be replaced by < for u 6= 0.)

14-48. The probability generating function ρp,r of Qp,r is given by

ρp,r(s) =
∞∑
x=0

(1− p)r
(
−r
x

)
pxsx = (1− p)r(1− ps)−r .

Clearly, (p, r); ρp,r(s) is a continuous function on

{(p, r) : 0 ≤ p < 1 , r ≥ 0}
for each fixed s, so the same is true of the function (p, r); Qp,r.

14-49. Example 1. The moment generating function of Qn is

u;
1

n+ 1

∞∑
k=0

(
1 +

1
n

)−k
e−uk/n =

1
n+ 1

· 1

1− e−u/n

1+ 1
n

=
1

n
(
1− e−u/n + 1

n

) ,
which, as n → ∞, approaches, pointwise, the function u ; 1

u+1 , the moment
generating function of the exponential distribution. An appeal to Theorem 19
finishes the proof.

14-52. Let V be the constant random variable 3 and let Vn be normally distributed
with mean 3 and variance n−2. Let bn = 3 and an = n−1. Then (Vn − bn)/an is
normally distributed with mean 0 and variance 1 for every n even though an → 0
as n→∞.


