10 SOLUTIONS, ANSWERS, AND HINTS FOR SELECTED PROBLEMS

When we collect terms we get nonnegative—in fact, positive—terms, as desired:

kE—5 4k 4+ 60k + 272
Qk}) = ok—1 + 3k+3

To get the mean and variance it seems best to work with p(s) in the form originally
given and use the product rule to get the first and second derivatives:

() = 16 N 24
PR = 2 —spBB—s? T 2-92@B—9)

and
48 96 96

P = i T 2—spBos T @—sPB sy

Insertion of 1 for s gives

p/(l):g and p"(1)=15.

Hence, the mean equals % and the second moment equals 15 + g = % Therefore, the
variance equals % — 47? = % and the standard deviation equals g

Had the problem only been to verify that p is a probability generating function, we
could have, while calculating the first and second derivatives, seen that a straightfor-
ward induction proof would show that all derivatives are positive, and an appeal to

Theorem 14 would complete the proof.

5-33. The mean is co and thus the variance is undefined. The distribution ), corre-
sponding to the probability generating function with parameter p satisfies Qp({o0}) =
|1 —2p|. Also, for 0 < k = 2m < oo,

2m — 2
m—1

Qp({2m}) = % ( ) [p(1—p)]™.

For k odd and k£ =0, Q»({k}) = 0.

For Chapter 6

6-6. Method 1: Using Problem 4, we get

(liminf A,)° = (U

Method 2: We prove that the indicator functions of the two sets are equal:

Tim sup 4n)e = 1 — Nimsup A, = 1 — limsup{/a,}

= hmmf{(l — IAn)} = llmlnf{IA%} = Ilim inf A¢ -
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6-8.

limsup(A, U By,) = (limsup A,) U (limsup By) ;

lz;lci;f(An N B,) = (1£n:igf An)N (hnxgngn) :

llnliﬁf(A” \ Bn) = (linnlgf An)\ (limsup By);

(imsup A,) U (lilnlioréf B,) 2 hnnlioréf(A” UB,) 2 (linnligf An) U (li:nzgf Bn);
(lg;?ogo;An) N (lim sup By,) C limsup(A, N By) C (limsup A,) N (limsup By) ;

(limsup 4,) \ (lfr;;p B,)C lfr;;p(An \ Bn) C (li;ﬁso:p An)\ (lgl:l;r; B,);
T T IL:IEO;}(An A By) C (li:nﬁso:p An) A (linnlgf By);
limsup(4, A By) 2 (li:nﬁso:p An) A (limsup By) .

Problem 6 is relevant for this problem, especially the fifth equality given in the problem.

Here are some examples in which the various subset relations given above are strict.
The first and seventh subset relations above are both strict in case B, = 0 C  for all
n and A, = @ or = Q according as n is odd or even. The second, fourth, fifth, and
eighth subset relations are all strict if A, = B for alln and A, =0 C Q or = Q
according as n is odd or even. The third and sixth subset relations are both strict if
A, = B, for alln and A, = 0 C Q or = Q according as n is odd or even.

6-9. The middle inequality is obvious. Using the Continuity of Measure Theorem in
Chapter 6, we have

P(limsup A,) = P(ﬁ G Am>

n=1m=n

= lim P( U Am> > limsup P(A4,),

n—oo n—oo
m=n

thus establishing the first inequality. For the third inequality, deduce from the first
inequality that P(limsup Aj,) > limsup P(Aj,), which is equivalent to
1— P((limsupA,‘i)c) > limsup[l — P(4,)],
which itself is equivalent to
P((limsupA,'i)c) < liminf P(A4,).

By Problem 6, the event in the left side equals liminf A,,, as desired.

6-13. Let A, = {w: X,,(w) = 1}. By Problem 5, the event A = limsup,, A, is
that event that Zn X, = oco. The events A, are pairwise negatively correlated or
uncorrelated, so by the Borel-Cantelli Lemma, P(A) = 1if > P(A,) = oo, and by

the Borel Lemma, P(A) =0if Y P(An) < oo. The proof is now completed by noting
that P(A,) = E(X,), so that y P(A,) = E(3_ Xn), whether finite or infinite.

6-15. Let n denote the number of cards and C,,, for m = 1,2,... n, the event that

h
card m is in position m. The " term of the formula for P(|JCm) in Theorem 6
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consists of the factor (—1)""* and (’Z) terms each of which equals the probability that
each of a particular ¢ cards are in a particular 7 positions. This probability equals the
number of ways of placing the remaining n — ¢ cards in the remaining n — ¢ positions,
divided by n!. We conclude that

P( U C’m) _ Z(il)ﬁ—l (?) (”;!i)! _ Z(il)ﬂ—l% 7

which approaches 1 —e™! as n — oo.

For Chapter 7
7-3. Let D= {A: P(A) = Q(A)}. Suppose that A C B are both members of D. Then

P(B\ A)=P(B) - P(A) =Q(B) —Q(A) = Q(B\ 4).

Thus, D is closed under proper differences. Now consider an increasing sequence
(A1, Az, ...) of members of D. By the Continuity of Measure Theorem, applied to
both P and @,

P(lim A,) = lim P(A,) = limQ(A,) = Q(lim A,) .

Hence D is closed under limits of increasing sequences, and therefore D is a Sierpinski
class. It contains £ and so, by the Sierpiriski Class Theorem it contains o(€), as desired.

7-10. The sequences (An,:n =1,2,...) and (A, A, A,...) have the common limit A.
By the lemma, the sequences (R(A,): n=1,2,...) and (R(A), R(A), R(A),...) have
equal limits. The limit of the second of these numerical sequences is obviously R(A),
so R(A) is also the limit of the first sequence of numbers.

7-11. Every member A of £ is the limit of the sequence (A4, A, A,...). Thus £ C &;.
It remains to prove that & is a field.

The empty set, being a member of £, is also a member of £&1. Let B € £ . Then
there exists a sequence (B, € £:n =1,2,...) that converges to B. By Problem 8 of
Chapter 6, By, — B as n — oo. Since £ is a field, each By, is a member of £. Therefore
B¢ e &;.

Let B and B, be as in the preceding paragraph and let C € £. There exists a
sequence (Cp, € £:n = 1,2,...) that converges to C. By Problem 8 of Chapter 6,
B,UC, - BUC as n — oo. Since € is a field, B, UC,, € &£ for each n. Therefore
BUC €é.

7-17. The probability is 1 — Hi:z(l — k7P). The correlation between two events A,
and A, is easily calculated; it is 0 when n # m. Similarly, for A%, and Aj,. Thus, the
Borel-Cantelli Lemma may be used to calculate the probabilities of the limit supremum
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and limit infimum.

P(liminf A,) =1 — P(limsup 4;,) =0
P(limsupA,)=1iff<1land =0if 8> 1
Pw: Y(w)=1}) =1

P({w: Zw)=np)=n"" J[ A=k ifn<oo
k=n+1
and =1 or =0 accordingas f<lor f>1ifn=oc

7-24. Since £ is in one-to-one measure-preserving correspondence with S C R?, we
only need show that the effect of a rotation or translation on £ corresponds to a
transformation on R? having Jacobian 1, provided we identify ¢ with ¢+ 2m. It is clear
that rotations about the origin have this property, leaving s unchanged and adding a
constant to ¢. Translations also have this property since they leave ¢ unchanged and
add —rcos(¢p — 0) to s, where (r,0) is the polar representation of the point to which
the origin is translated.

7-25 The measure of the set of lines intersecting a line segment is twice the length of
that line segment.

7-26 The measure of the set of lines intersecting a convex polygon is the perimeter of
that polygon.

7-29. The expected value, whether finite or infinite, is twice the length of D divided
by 27r. (It can be shown that this value is correct for arbitrary curves D contained in
the interior of the circle.)

For Chapter 8

8-8. Application of the Fatou Lemma to the sequence (g — fn: n > 1) of nonnegative
measurable functions gives

liminf/(gffn) dp > /liminf(gffn) dp = /(g —limsup fn)du > 0.

Since f gdp < oo, we may use linearity to obtain

/gdpflimsup/fnd,uz/gd,uf/limsupfnd,uEO.

Subtraction of f g dp followed by multiplication by —1 gives the last two inequalities
in (8.2). The first two inequalities in (8.2) can be obtained in a similar manner using
g + fn, and the middle inequality in (8.2) is obvious.

Under the additional hypothesis that lim f, = f, the first and last finite quantities
in (8.2) are equal, and therefore all four finite quantities are equal. Thus f [fldp <
oo and f fndy — f fdu. Applying what we have already proved to the sequence
(If = fnl: n > 1), each member of which is bounded by 2g, we obtain

lim/|fffn|du:/(lim|fffn|)d,u:/Odp:O.
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8-12. Let I; . denote the indicator function of {w: |X¢(w)| > c}.

E(|X¢|1ic) = B(IXe|'  PLie| XeP) < ¢ PE(Xe)P) < ¢ Pk — 0 as ¢ — oo.

8-22. By Theorem 14 the assertion to be proved can be stated as:

lim /Gwd)\:/ﬁd)\,
y— 00

where A\ denotes Lebesgue measure on R and

—1)2/2 if >0
0(v) = e if v>
0 otherwise .

The plan is to use the Dominated Convergence Theorem. Thus we may restrict our
attention to v > 0 throughout.
We take logarithms of the integrands:

(log o 0,)(v) = (v — 1)log(1+ vy~ /%) —vy'/2.

The Taylor Formula with remainder (or an argument based on the Mean-Value Theo-
rem) shows that (logo 6)(v) lies between

(v =Dy 2 = 3Py =0y

and
(v =)oy = 3oy + 20y 7%2) gt /2
both of which approach —v? /2 as ¥ — oo. Thus, to complete the proof we only need
find a dominating function having finite integral.
The integrands 6, are nonnegative. It is enough to show, for v > 1, that 6,(z) <
(1 +wv)e™?, since this last function of v has finite integral on [0, 00). Clearly, 6 (v) <
(1 + vy~ ?)0,(v), the logarithm of which equals

(7.1) ylog(1 4 vy~ M%) — /2,

Differentiation with respect to v and writing = for Uy_l/ 2 gives
z(2+4 x)
21 +=x)’

a function which equals 0 when = 0 and is, by Problem 21, a decreasing function of
z. Thus, (7.2) is nonpositive when = > 0. For v > 1 [which we may assume without
loss of generality], (7.1) is no larger than the value log(l + v) — v it attains when

(7.2) log(1 4+ x) —

v = 1. The exponential of this value is the desired function (1 + v)e™". [Comment:
The introduction of the factor (14 vy~%/?) in the sentence containing (7.1) was for the
purpose of obtaining a decreasing function of ~.]

8-26. Hint: The absolute value of the integral is bounded by

xr—n

2wmax|log(l +

ax(z"e "),
o) max(e"e™)

where each maximum is over those x for which |z — n| < v/n2. Apply the Mean-Value
Theorem to the logarithmic function, standard methods of differential calculus to the
, and the Stirling Formula to n!. (Note: If one works with the

function © ~ z"e™"
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product of the maximum of the function x ~ z" and the maximum of the function
x ~+ e ¥ one does not get an inequality that is sharp enough to give the desired
conclusion.)

8-35. Define a o-finite measure v by

u(A)z/AfdA,

where )\ denotes Lebesgue measure on R, so that f is the density of v with respect to
Lebesgue measure. In particular,

v((a,b) = / f(@) do

for all @ < b. By an appropriate version of the Fundamental Theorem of Calculus,

u((a,B)) = F(b) — Fla) = / £ (@) do

for all @ < b. Thus, u and v agree on intervals of the form (a,b]. By the Uniqueness
Theorem, they are the same measure.

For Chapter 9

9-1. Q1 and 2 each have six members, 2 has 36 members. Each of Fi, G1, F2 and
G- has 26 = 64 members. F has 2°¢ members and R has 64> members.

9-6. x ~ 1—limeo[],[1—Fn(z+e)] and [ [, Fn. The example Fp, = I|(1/5),00) shows
that one may not just set € = 0 in the first of the two answers.

9-7. exponential with mean A A2/(A1 + A2)

9-10. Fix Bi € o(&) for k € K. For each such k there are disjoint members Ay s,
1 <1 <rg, of & such that
Tk
By =] Ax.i.
i=1

Hence,

P(F“ﬁ)—P(FﬂﬁAm>—P< U (]AMJ

keEK keK i=1 (i <rp: k€EK) kEK

DN (AETS D S | EXES

(ig<rp:keK) keEK (ig<rg:keK)keK
Tk
= [1 > Pan =[] P50
keEK i=1 keK

(Contrast this proof with the proof of Proposition 3.)

9-14. For each event B, let

Dy ={D: P(DN B) = P(D) P(B)}.
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Clearly each Dp is closed under proper differences. By continuity of measure it is also
closed under monotone limits and, hence, it is a Sierpinski class.

Denote the two members of L by 1 and 2. By hypothesis, £&1 C Dp for each B € &;.
By the Sierpiriski Class Theorem, o(&1) C Dp for each B € &;. Therefore &2 C Dy for
each A € ¢(&1). Another application of the Sierpinski Class Theorem gives o(£2) C Da
for every A € o(&1), which is the desired conclusion.

9-15. The criterion is that for each finite subsequence (Ag,, ..., As,),

P(AklﬂﬁAkn):P(Akl)P(Akn)

9-23. Let us first confirm the appropriateness of the hint. Because the proposition
treats « and y symmetrically, we only need prove the first of the two assertions in
the proposition. To do that we need to show that {z: f(z,y) € B} € G for every
measurable B in the target of f and every y. Suppose that we show that the R-valued
function z ~ (Ip o f)(x,y) is measurable. Then it will follow that the inverse image
of {1} of this function is measurable. Since this inverse image equals {z: f(z,y) € B},
the assertion in the hint is correct.

Since f is measurable, any function of the form Ip o f, where B is a measurable
subset of the target of f, is the indicator function of some measurable set A € G x H.
Thus, our task has become that of showing that & ~ Ia(x,y) is measurable for each
such A.

Let C denote the collection of sets A C ¥ x © such that z ~ I4(z,y) is measurable
for each fixed y. This class C contains all measurable rectangles, and the class of
all measurable rectangles is closed under finite intersections. Since differences and
monotone limits of measurable functions are measurable, the Sierpiriski Class Theorem
implies that C contains the indicator functions of all sets in G x H, as desired.

9-27. The independence of X and Y is equivalent to the distribution of (X,Y) being
a product measure Q1 X Q2. By the Fubini Theorem,

B(XY) = / ( / 12| Iy Qz(dy)> Q1 (da)

:/leE(IYl)Qz(d-’v):E(IXI)E(IYI)<OO-

Thus we may apply the Fubini Theorem again:

B(XY) = / ( / :cy@zwy)) Q1 (dx)

= / 2B(Y)Qa(dz) = E(X) B(Y).

9-29. Hint: The crux of the matter is to show that, in the presence of independence,
the existence of E(X +Y") implies the existence of both E(X) and E(Y') and, moreover,
it is not the case that one of E(X) and E(Y) equals co and the other equals —oo.

2
9-33. 2
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9-41. Method 1: The left side divided by the right side equals

foo e w127 gy

Je 000000
0'2.'1)_16_12/202

Both numerator and denominator approach 0 as x — o0; so we use the ’Hospital Rule.

After differentiating we multiply throughout by ¢**/27®  The result is that we need to

calculate the limit of
-1

—o2rx—2 1"
The limit equals 1, as desired.
Method 2: Let § > 0. For =z > 0'/\/3,

1 —u?/202 d
V2ro? ‘ “

O'

2 /6 2
—u?/2
2e“/"du

\/ 27‘(’0’2 / (
1+6 < —u?/202
< 5ot /z e du

The expression between the two inequality signs is equal to the right side of (9.12). (The

motivation behind these calculations is to replace the integrand by a slightly different
integrand that has a simple antiderivative. One way to discover such an integrand is
to try integration by parts along a few different paths, and, then, if, for one of these
paths, the new integral is small compared with the original integral, combine it with
the original integral. Of course, Method 1 is simple and straightforward, but it depends
on being given the asymptotic formula in advance.)

9-42. a, = /202logn

9-45. 0

9-47. If x; < v+ for every positive 6, then x; < v; hence, the infimum that one would
naturally place in (9.13), where the minimum appears, is attained and, therefore, the
minimum exists. As j in the right side of (9.13) is increased, the set described there
becomes smaller or stays constant and, therefore, its minimum becomes larger or stays
constant. So (9.14) is true. The function v ~~ #{i: ; < v} has a jump of size
#{i: x; = v}, possibly 0, at each v. But the size of this jump equals the number of
different values for the integer j that yield this value of v for the minimum in the right
side of (9.13). Thus, (9.15) is true. The image of x(¥ consists of all y € R? for which
y1 < y2 < --- < yq. For such a y the cardinality of its inverse image equals

d!
T, (@) /4

where d; denotes the number of coordinates of y which equal y;, including y; itself.

To prove X(d) continuous it suffices to prove that each of its coordinate functions is
uniformly continuous. Let € > 0. Suppose that = and w are members of R¢ for which
|z —w| < e. Then

{i:z; <v} C{i:w; <v+e}.
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Hence
#liiz <v}>j=#{i:w; <v+e}>7j.
Since [x?(x)]; is the smallest v for which the left side is true, we have
#i:wi < V(@);+e} 25
Therefore, [x? (w)]; < [x¥(x)]; + . The roles of # and w may be interchanged to

complete the proof.

9-49. The density is d! on the set of points in [0, 1]% whose coordinates are in increasing
order, and 0 elsewhere.

9-51. Forn=1,2,...,

n

(n+1)!°

Also, E(N) = e — 1. The support of the distribution of Z is [0, 1] and its density there
is 2 ~ (1 —2)e! 2.

P({w: N(w) = n}) =

9-52. 1/16
9-53. E(X) =00 if 2 < 2; B(X) = Cf(;)l) if 2> 2 Var(X)=o0if 2< 2 < 3;
((z=2)¢(x) — [Cz =1 .
Var(X) = if z > 3.
) (=7
The probability that X is divisible by m equals 1/m?* which approaches % as z "\, 1.

9-57. The distribution of the polar angle has density

I'(2y) in2g|271!
e

The norm is a nonnegative random variable the square of which has a gamma distri-
bution with parameter 2.
For Chapter 10
10-5. normal with mean p1 + p2 and standard deviation \/cm
10-7.  ~ (1— |z —1]) VO
10-11. probability {5 at each of the points £* for —5 <k <6

10-17. For 0 < k < n,

P({w: Xn()(w) =k and N(w) =n}) = P{w: Xn(w) =k and N(w) = n})

n_—A\
— P({w: Xu(w) = k) P(fw: N() = n}) = [(Z)ml p)"—k] [A] |

n!

We sum on n:

Ve o AL —p)" 7 (pA)Fe ™
(p)k! Z(( p)) (pA)
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as desired.

10-21. The distribution of a single fair-coin flip is the square convolution root. If there
were a cube convolution root @, it would, by Problem 19, be supported by ARBT:
Q({m}) were positive for some positive m € 7", then P({3m}) would also be positive,
a contradiction. Thus, it would necessarily be that @ is the delta distribution ép, which
is certainly not a cube root of P. Therefore P has no cube root.

10-30.
1
E(Y) = ;(717---77«1)
Yi(y — i)
Var(V;) = ————2
() 7Oy +1)
YiVi S
Cov(ViYV;)=—————, i
( ]) 72(’Y+1) 7{]

For the calculations of the above formulas one must avoid the error of treating the
Dirichlet density in (10.4) as a d-dimensional density on the d-dimensional hypercube.

Here are the details of the calculation of E(Y1Y2) under the assumption that d > 4.
We replace yq by 1 —y1 —- - - — ya_1 and discard the denominator v/d in (10.4) in order
to obtain a density on a (d — 1)-dimensional hypercube. (In fact, this replacement is
done so often that the result of this displacement is often called the Dirichlet density.)
Implicitly assuming that all variables are positive, setting

D={(ys,.--,ya-1):ys + -+ ya1 < 1},

and using the abbreviation w =1 — (y3 + ...y4—1), we obtain

d—

_ () rul
PO = 1 T e T ) /DH ()

w w—ys
/ ygz/ Y (w—y2 —y1)"  dyr dy2 d(ys, . .. Y1) -
0 0

We substitute (w—y2)z1 for y1 and then use Problem 34 of Chapter 3 for the evaluation
of the innermost integral to obtain

_ 1I(v)
EWiYz) = L(y2)T(y1 +7a+1)

d—1
w/D

— L i—1
For the evaluation of the inner integral we substitute wzs for y2; we get

Yi b
II (v / Yo (w—y2)" 4 dya d(ys, ... ya-1) -
i=3 i) Jo

d—1 .. _q
1172l (7) /H?ﬂl 1 +yg+1
E(Yllfg) = 177,0’YZ 717 d(yg,...,yd_l).
Pz +m+ya+2) Jpo2 T

By rearranging the constants appropriately we have come to the position of needing
to calculate the integral of a Dirichlet density with parameters ~s,...,va—1, and v2 +



20 SOLUTIONS, ANSWERS, AND HINTS FOR SELECTED PROBLEMS

Y1 + va + 2. Since the integral of the density of any probability distribution equals 1
we obtain

Y1772
E(V1Ys) = 1172
(1Y) y(y+1)

Since Y1 + -+ - + Yy is a constant its variance equals 0. On the other hand, from the
formula

d d
Var(Yi + -+ Ya) = Y ) Cov(V;Y))
j=1 i=1
we see that the variance equals the sum of the entries of the covariance matrix. So, in
this case, that sum is 0. But the determinant of any square matrix whose entries sum
to 0 is 0, since a zero row is obtained by subtracting all the other rows from it.

10-33. Let F denote the desired distribution function. Clearly, F/(z) = 0 for z < 0 and
F(z)=1for z > §. Let 2 € (0, ). From (10.4), 1 — F(z2) equals 2/v/3 times the area
of those ordered triples (z1, 22, 23) satisfying z; > z for s = 1,2,3 and 21 + 22 + 23 = 1.
This is the same as twice the area of those ordered pairs (z1,22) such that z1 > z,
zo > z,and 1 — z1 — z2 > z. Thus

1—-2z 1—z—2zp
17F(z):2/ / dzodzi =1 — 624 92°.

Therefore F(z) = 6z — 92% for 0 < z < 3
10-36. beta with parameters d — 1 and 2

10-37. The distribution has support [0, 1] and there the distribution function is given
by
1 2 1
w ~ 3 + 3w” + 3wlog 5 .
10-40. Hint: For Ci, (2, and C3 convex compact sets, show that
{riz1 + roxs + rszs: x; € Ci,r; > 0,11 + 12 + 73 = 1}

is convex, closed, and a subset of both (C1 V C3) VvV Cs and C1 V (Cs V Cs).
10-43. |sinp|, |cosp|, | sing| V | cos ¢|

10-47. For all ¢ and —1 < w < 1, the distribution function is

(W—Fw\/l — w? zaurccosmw)3
W ~

™

10-48. Let A and B be two compact convex sets. Consider two arbitrary members
a1+ b1 and a2 + b2 of A+ B, where a; € A and b; € B. Let k € [0,1]. Then

n(al —+ bl) —+ (1 — Ifi)(ag + bg) = [Fial =+ (1 — Fi)ag] —+ [Iibl + (1 — Ii)bg] s

which, in view of the fact that A and B are convex, is the sum of a member ka1 + (1 —
k)az of A and a member kb1 + (1 — k)ba of B, and thus is itself a member of A + B.
Thus, convexity is proved.

It remains to prove that A 4+ B is compact. Consider a sequence (an + bn:n =
1,2,...), where each a, € A and each b, € B. The sequence ((an,bn): n =1,2,...)
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has a subsequence ((an,,bn,): kK =1,2,...) that converges to a member (a,b) of Ax B,
because A X B is compact. Since summation of coordinates is a continuous function
on A x B, the sequence (an, + bn, ) converges to the member a + b of A + B. Hence,
A+ B is compact. (By bringing the product space A x B into the argument we have
avoided a proof involving a subsequence of a subsequence.)

and variance equals 1 % — %

10-52. For each ¢: mean equals %

For Chapter 11

11-12. The one-point sets {0} and {7} each have probability 2"*37™. The probability
of any measurable B disjoint from each of these one-point sets is the product of ﬁ(l -
2"37™) and the Lebesgue measure of B.

11-13.

P({w: (N(w) — 17SN(W)_1(w)) = (m, k:)}) _ T(k m >qk—mp2m—k

—m

for m < k < 2m and 0 otherwise. E(Sy_1) = 224

T

11-14. for B a Borel subset of RT,
P({w: N(w) =1 =m, Sy()-1(w) € B}) = Q{oc})Q™™ (B);

E(Sn-1) = E(S1; {w: S1(w) < o0})

b
Q({o0})

11-17. Suppose that N is a stopping time. Then, for all n € Z+,
{w: N(w) <n} € Fy,

which for n = 0 is the desired conclusion {w: N(w) = 0} € Fo. Suppose 0 < n < co.
Then
{w: N(w) <n} € Fno1 C Fn.

Therefore,
{w: Nw)=n} ={w: N(w) <n}\{w: Nw) <n} € F,.

We complete the proof in this direction by noting that

{w: N(w) = 00} = {w: N(w) < oo} \ | J{w: N(w) <m}

and that all the events on the right side are members of F.
For the converse we assume that {w: N(w) = n} € F, for all n € 7", Then,
whether n < co or n = oo,

{w: N(w) <n} = U{w: N(w) =m}.

All events on the right are members of F,, because filtrations are increasing. Therefore,
the event on the left is a member of F,,, as desired.



