
Solutions, answers, and hints for selected problems

Complete solutions of some problems are given. Answers only are given for some
other problems. For still others, only hints or partial solutions are given. Asterisks
in “A Modern Approach to Probability Theory” by Fristedt and Gray identify the
problems that are treated in this supplement.

For Chapter 24

24-2. The ‘if’ part is obvious. For the proof of ‘only if’ fix n. The inequality in the
problem is obviously true with equality in case m = 0 and it is true by definition if
m = 1. To complete an inductive proof, let m > 1 and assume that

E(Xn+(m−1) | Fn) ≥ Xn a.s.

Since Fn ⊆ Fn+(m−1),

E
(
Xn+m | Fn

)
= E

(
E(Xn+m | Fn+(m−1)) | Fn

)
≥ E

(
Xn+(m−1) | Fn

)
≥ Xn a.s.

24-8. We treat the real and imaginary parts simultaneously. LetFn = σ(S0, . . . , Sn)
and denote the steps of the random walk by X1, X2, . . . . Then

E(Yn+1 | Fn) =
1

(ϕ(u))n+1
E
(
eiuSneiuXn+1 | Fn

)
=

1
(ϕ(u))n+1

eiuSnE
(
eiuXn+1 | Fn

)
=

1
(ϕ(u))n

eiuSn = Yn .

[Remark: We have proved that the real and imaginary parts of (Yn : n = 0, 1, . . . )
are martingales with respect to the minimal filtration for the random walk, which
may possibly contain larger σ-fields than the corresponding σ-fields in the minimal
filtration for the sequence (Yn).]

24-10. Proof of uniqueness: Suppose that conditions (i)-(iv) of the proposition
hold as stated and that they also hold with some sequences Z and U in place of Y
and V , respectively. By subtraction

Zn − Yn = Vn − Un .
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Thus Zn − Yn is Fn−1-measurable, and, hence,

Zn − Yn = E
(
(Zn − Yn) | Fn−1

)
= Zn−1 − Yn−1 .

This fact combined with Z0−Y0 = 0, a consequence of U0 = V0 = 0, gives Zn = Yn,
and therefore Un = Vn for every n.

24-11. Let Fn = σ(S0, . . . , Sn). Then

E
(
(S 2
n+1 − S 2

n ) | Fn
)

= E
(
(Sn+1 − Sn)2 | Fn

)
+ 2E

(
(Sn+1 − Sn)Sn | Fn

)
≥ 0 + 2SnE

(
(Sn+1 − Sn) | Fn

)
= 0 ,

as desired. [Remark: See the remark in the solution of Problem 8.] Vn = nVar(S1).

24-20. Hint: |Xn|I[T>n] = XnI[T>n] ≤ XT I[T>n] ≤ XT

24-23. Hint: Use two relevant previous results; do not do any hard work.

24-26. The sequence (Xn : n ≥ 0), being uniformly bounded, is uniformly inte-
grable. By Theorem 12 and the Optional Sampling Theorem, E(XT ) ≤ E(X0) =
f0; Clearly E(XT ) ≥ g P [XT = g]. Hence f0 ≥ g P [XT = g], as desired.

24-33.

E([STn − 1
2Tn]

2) = Var(S1)E(Tn) = 2−1[1− 2−n]↗ 2−1 = E([ST − 1
2T ]2)

Var(STn) = 2−n[1− 2−n]↘ 0 = Var(ST )

E
(
Var(STn | Tn)

)
= 2−(n+1) ↘ 0 = E

(
Var(ST | T )

)
For n > 1, Var(STn) < E(S1)E(Tn), thus highlighting the importance of the as-
sumption in Theorem 15 of mean 0 for the steps.

24-41. Suppose that X is a uniformly integrable martingale. By the theorem it
has an almost sure limit Y = X∞ such that (Xn : n ∈ Z+) is both a submartingale
and a supermartingale—that is, a martingale. Hence E(Y | Fn) = Xn. Moreover,
Y is F∞-measurable, so E(Y | F∞) = Y .

For the converse, suppose that Y has finite expectation and

Xn = E(Y | Fn)
for each n ∈ Z+. Take expectations of both sides to obtain E(Xn) = E(Y ), which
is finite. For k < n,

E
(
Xn | Fk

)
= E

(
E(Y | Fn) | Fk

)
= E

(
Y | Fk

)
= Xk .

Therefore with X∞ = Y , (Xn : n ∈ Z
+
) is a martingale with respect to the filtration

(Gn : n ∈ Z
+

), where Gn = Fn for n <∞ and

G∞ = σ(Y,F∞) .

To prove that {Xn : n ∈ Z+} is uniformly integrable we let An,r = [|Xn| > r]
and note that, for any m > 0,

E
(
|Xn| ; An,r

)
= E

(
|E(Y

∣∣ Fn)| ; An,r) ≤ E(E(|Y |
∣∣ Fn) ; An,r

)
= E

(
|Y | ; An,r

)
≤ mP (An,r) + E(|Y | ; [|Y | > m]) .
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Since, by dominated convergence, the second term approaches 0 as m→∞, we can
finish the proof of uniform integrability by showing that P (Bn,r) +P (Cn,r)→ 0 as
r→∞ uniformly in n, where Bn,r = [Xn > r] and Cn,r = [Xn < −r]. That this is
so follows from

P (Bn,r) ≤
1
r
E(Xn ; Bn,r) =

1
r
E(Y ; Bn,r) ≤

1
r
E(|Y |) ,

P (Cn,r) ≤ −
1
r
E(Xn ; Cn,r) = −1

r
E(Y ; Cn,r) ≤

1
r
E(|Y |) ,

and the observation that E(|Y |) is a finite number independent of r and n. From
the theorem (X1, X2, . . . ) has an L1 and a.s. limit Z that is F∞ measurable.

To prove that Z = E(Y | F∞) we only need show that E((Z − Y ) ; D) = 0 for
every D ∈ F∞. For D ∈ Fn we have

E((Z − Y ) ; D) = E
(
E((Z − Y ) ; D | Fn)

)
= E

(
IDE((Z − Y ) | Fn)

)
= E(

(
ID(Xn −Xn)

)
= 0 ,

where ID denotes the indicator function of D. Thus the desired equality is true for
all D ∈ ∪∞n=0Fn, a collection that is closed under finite intersections, contains the
entire probability space Ω, and generates F∞. By linearity of expectation the set
of D for which E((Y − Z) ; D) = 0 is closed under proper differences, and, since
Y and Z both have means, dominated convergence shows that it is closed under
monotone limits. An appeal to the Sierpiński Class Theorem completes the proof.

24-42. The martingale (Vn : n ∈ Z+), being bounded, is obviously uniformly inte-
grable. Hence, limVn exists; call this limiting proportion of blue balls V∞. From
the fact that the martingale property is preserved when V∞ is adjoined to the se-
quence (Vn : n ∈ Z+), we conclude that the expected limiting proportion of blue
balls conditioned on the contents of the urn at any particular time is the proportion
of blue balls in the urn at that time.

24-45. Let Y be a (−∞, 0]-valued random variable for which E(Y ) = −∞. Let
Xn = Y ∨ (−n). Then Xn(ω) → Y (ω) for every ω. For n = 0, 1, 2, . . . , let
Gn = σ(Y ). Then (Gn : n = 0, 1, 2, . . . ) is a reverse filtration to which (Xn : n =
0, 1, 2, . . . ) is adapted. Clearly E(Xn) > −∞ for every n. The inequality

E(Xn | Gn+1) = Xn ≥ Xn+1

shows that (X0, X1, . . . ) is a reverse submartingale.


