Solutions, answers, and hints for selected problems

Complete solutions of some problems are given. Answers only are given for some
other problems. For still others, only hints or partial solutions are given. Asterisks
in “A Modern Approach to Probability Theory” by Fristedt and Gray identify the
problems that are treated in this supplement.

For Chapter 18

18-5. Hint: Identify CJ[0,00) in a natural way with a closed subset of
(oo}
® Cln,n+1].
n=0

18-8. Let g be a continuous bounded R-valued function on Y. Then go h is a
continuous bounded R-valued function on ¥. Therefore

lim gdR, = lim /(gOh)dQn:/(QOh)dQ:/ng.
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18-15. We first prove a related assertion—namely, the one obtained by replacing
the hypothesis that A is open by the hypothesis that A is closed, in which case A
is itself a Polish space by Proposition 3. If Q(A) = 0, this modified assertion (and
also the original assertion) is clear, so assume that Q(A) > 0. For B a Borel subset
of the Polish space A let
LY
Q(A)
Clearly R is a probability measure. Let € > 0. Corollary 18, applied to the Polish
space A, shows that there exists a compact set K in the Polish space A such that

R(K) > 1 — ¢ and, thus,

QUE) > (1 2)Q(A) > Q(A) — <.
The observation that, by Proposition 1 of Appendix C, K is compact in the Polish
space ¥ completes the proof of the modification of the original assertion.

We return to the original assertion by now assuming that A is open in ¥. We
will prove that for every § > 0, there exists a subset C' of A that is closed in ¥ and
satisfies Q(C) > Q(A) — 0. An application to C of the assertion proved above for
closed sets then completes the proof.

Let S be a countable dense set in W. It is easy to see that SN A is a countable
subset of A which, since A is open, is dense in A. For each x € SN A, let B, denote
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the closed ball centered at x whose radius is half the distance from x to A¢. It is
easy to check that A = J,gn4 Be. Replacing this union with a finite union over
some finite subset of S N A gives a closed set, a closed set whose (Q-measure can,
by continuity of measure, be chosen arbitrarily close to Q(A), thus completing the
proof.

Comment: The closed balls in the last paragraph of the proof need not be
compact; this possibility is one reason the proof is so lengthy. Another reason is
that an open subset of a Polish space is not necessarily a Polish space because it
may not be complete. Thus, an intermediate result involving a closed subset is
useful.

18-24. Let w € RY. By the Classical Central Limit Theorem,

(1, Zher X =ity _ Vo, X0) — nEl(0.X0) 2,
) \/ﬁ \/ﬁ w

where Z,, is a normally distributed R-valued random variable having mean 0 and

variance Var(w, X1). By the Cramér-Wold Device,
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such that (w, Z) has the same distribution as Z,, for each w € R4, and so we may
redefine Z,, to actually equal (w, Z). Since each Z,, is normally distributed, Z itself
is, by definition, normally distributed.

Let w = (0,...,0,1,0,...), where 1 is in the j' position. Then Z,, = Z;, and
hence E(Z;) = 0. Also,

Var Z; = Var Z,, = Var(w, X1),

which equals the variance of the j*" coordinate of X;. Therefore the mean vector
of Z is the zero vector and the diagonal members of the covariance matrix of Z are
the diagonal members of X.

Now let w = (0,...,0,1,0,...,0,1,0,...,0), where 1 is in both the j** and kI
positions. Then Z,, = Z; + Zj, and so

Var(w, X1) = Var(Z,,) = Var(Z;) + Var(Z) + 2 Cov(Z;, Zy) .

" and k' coordinates of X; and

The left side is the sum of the variances of the j%
twice the covariance of the j*" and k*® coordinates. By the preceding paragraph
the sum of the variances of the j* and k" coordinates of X; equals the sum
Var(Z;) + Var(Z). Thus twice the covariance of those two coordinates of X; must
equal 2Cov(Z;, Zi). Therefore the off-diagonal members of the covariance matrix

of Z are the off-diagonal members of 3.
18-26. Hint: Prove that ((A4:)¢). C A°.
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