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. For the last assertion one may for each , view as a probability measure

on ( ([0 ) Ψ) ). Then is the distribution of the Ψ-valued random variable

defined on the probability space ( ([0 ) Ψ) ). Since as

and almost sure (in this case sure) convergence implies convergence in distribution,

as (for each , not just the requested ‘a.s.’).

. (i) for all Ψ, = as 0; (ii) for all Borel Ψ and 0,

the function ( ) is measurable; (iii) for all Borel Ψ, 0, and Ψ,

( ) = ( ) ( )

. Let denote the distribution of the Lévy process at time . Then

( ) = ( + ) ( )

Let denote the distribution of the Lévy process. Then the corresponding Markov

family ( : ) is defined by

( ) = : [ ( + )]

. ( ) = ( ( ) ( )) ( ), in the notation of Example 1 of Chapter 30.

. Suppose that is an equilibrium distribution for . Then

=
( )

!
=

( )

!
=

for converse: Use Problem 16.

. Let be the indicator function of the one-point set and use Theo-

rem 14.

.

( ) = ( + ) + exp[ ( + ) ]

( ) = ( + ) 1 exp[ ( + ) ]

( ) = ( + ) 1 exp[ ( + ) ]

( ) = ( + ) + exp[ ( + ) ]

The limits at of both and are the same: ( + ) , the value the

equilibrium distribution assigns to 0 . The limits at of both and are the

same: ( + ) , the value the equilibrium distribution assigns to 1 .

. The solution to Problem 23 involves applying Theorem 14 to the indicator

functions of one-point sets. When the rates are unbounded, such functions may not

be in the domain of the generator. For example, let the state space be , let the

transition rates have the property that as , and let be the
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indicator function of 0 . Then is not in the domain of the infinitesimal generator

because the limit in the definition does not exist boundedly, and Theorem 14 does not

apply. Nevertheless, it can be shown that (31.12) holds whenever the state space is

countable, even in the case of unbounded rates.

. Let be the largest member of the support of , the initial state, and

the time of the jump. The construction ensures that + (

1) . Therefore, conditioned on , is exponential with mean at least

1 ( + ( 1)( 1)). An inductive argument based on this fact shows that for

each , the distribution function of is bounded above by the distribution function

of the sum of independent exponentially distributed random variables with means

1 , 1 ( ( + 1)), ,1 ( ( + ( 1)( 1)). Such a sum of exponentially

distributed random variables diverges almost surely as by the Kolmogorov

Three-Series Theorem. It follows that a.s. as .

. ( ) = (1 ) , = 0; equilibrium distribution assigns value

(1 ) to ; jump-rate function is

if = 0

if 0 ;

transition probabilities from to 1 equal 1 for 0 and from 0 to 0 equal

(1 ) ; transition rates from to 1 equal for 0 and from 0 to 0

equal (1 ) and all others equal 0

.

( )

( ) if =

( ) if =

( ) if =

0 otherwise

. For Ξ, let be the process defined in the construction with initial state .

The discussion in the paragraph following the proof of Theorem 2 shows that for each

time 0, the function is almost surely a continuous function. It follows

from the Bounded Convergence Theorem that, for any continuous function : Ξ ,

the function ( ) is continuous. Thus, the transition semigroup is Feller.

. Here is one way to make a correct ‘if and only if ’ statement: Let and be

as in the first sentence of Problem 9. The ‘if ’ statement is: If pointwise

as for all , then as , uniformly for in bounded subsets

of [0 ) and for all choices of initial states and such that . The ‘only if ’

statement is: If there exists a function and a state such that ( ) does not

converge to ( ) as , then there exists a time 0 and a sequence of initial

states converging to a state as such that does not converge to

as . (In this second statement, we may take = = for all and let be

any sufficiently small positive time.)
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To prove the ‘if ’ statement, it is enough to show that for any site and any time

0, there exists a nonnegative random variable that is almost surely finite such

that ( ) = ( ) for all and [0 ]. This last statement is a slightly

stronger version of the statement made in the paragraph immediately following the

proof of Theorem 2. To prove this stronger statement, first note that since

for as , each rate in the system with infinitesimal generator converges

uniformly as to the corresponding rate in the system with infinitesimal generator

. Now consider the construction of and using the universal coupling. Let

be as in the statement following the proof of Theorem 2 and let be large enough so

that agrees with at sites in for . We can also choose large enough so

that the rates of at sites in are uniformly as close as we like to the corresponding

rates of when . A simple modification of the proof of Theorem 2 shows that

we can thereby make the probability arbitrarily close to 1 that the processes and

take the same values at at all times in [0 ]. Further details are left to the reader.

The hypothesis in the ‘only if ’ statement implies that there exists a site such that

at least one of the rates at for the process with infinitesimal generator is not the

pointwise limit as of the corresponding rates for the processes with infinitesimal

generators . It follows that there exist arbitrarily large integers and a state such

that the process with infinitesimal generator and initial state will not behave

the same at the site as the process with infinitesimal generator and initial state ,

at least for short time periods. Once again, the details are left to the reader.

. (This problem is incorrectly stated in the book. The statement is not true for

the contact process with threshold birth rates. Also, a stronger statement is proved for

the contact process with sexual reproduction in Problem 12. So the problem should

only be done for the contact process of Example 2.) For finite sets , let

( ) = ( )

Direct calculation shows that if is a state with only finitely many occupied sites, then

( ) (1 ) ( )(7.22)

provided is chosen large enough to include all such that ( ) = 1.

Let be a state with only finitely many occupied sites, and let ( ) be the in-

teracting particle system with initial state and infinitesimal generator . For each

finite set , define a random time by

= inf 0: ( ) = 1 for some

Also, let

= inf 0: = 0̄

Since the interacting particle system is a solution to the martingale problem for , it

follows from (7.22) and the Optional Sampling Theorem that for any time 0,

( ( )) ( ) (1 ) ( )
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Since 1, the integrand on the right side is bounded above by (1 ) for all ,

so

( ( )) ( ) (1 ) ( )

from which it follows immediately that

( ) ( 1) ( )

We leave it to the reader to check that a.s. as . Thus, after first letting

and then letting , we have by the Monotone Convergence Theorem that

( ) ( 1) ( )

Since has only finitely many occupied sites, the left side of this inequality is finite.

It follows that has finite expectation, and hence that is finite almost surely, as

desired.

. It is easily checked that for each site , the process ( ( ) 0) is a pure-jump

Markov process with state space 0 1 , transition rates = 1 and = 2 , and

initial state 0. It follows from Problem 25 of Chapter 31 that

[ ( ) = 1] 2

By the Borel Lemma, ( ) is finite a.s. Thus, for any fixed time , the number of

occupied sites at time is finite a.s.

For the second part of the problem, we fix (0 ). We know from the previous

part of the problem that at any given time there are infinitely many vacant sites.

Since the birth rates are all equal to 1 at vacant sites, it is not hard to show that, with

probability 1, infinitely many births occur during every time interval of positive length.

In particular, infinitely many births occur with probability 1 during the time interval

(0 ). Let

= min 0: there is a birth at during (0 )

Let be the time of the first birth at and the time of the first death at .

We now proceed by induction. We assume that random sites have been

defined for some 1, with corresponding random times and ,

where for each = 2 , is the time of the first birth at after time , and

is the time of the first death at after time . Note that .

As part of the induction, we also assume that . This assumption

implies that the time interval ( ) has positive length, so the following

random site is almost surely defined:

= min 0: there is a birth at during ( )

Let be the time of the first birth at after time , and the time

of the first death at after time . Note that our construction ensures that

, as required by the assumption made in the inductive step.

Let = lim . Our construction of shows that is defined almost surely,

and that when it is defined, . This construction also shows that ( ) = 1 for

all = 1 2 . Our construction of the process ( ) shows that, with probability 1,

at most one death can occur at time , so infinitely many sites are occupied at time

, as desired.
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. ( ) = if ( ) = 0; ( ) = ( ) ; other rates are 0

. There is an error in Example 8: in order for the if and only if statement at the

end of the example to be true, one must assume that the death rate is bounded away

from zero. Under that additional assumption, a solution to Problem 24 (with arbitrary

finite range ) can be made as follows. First do the problem for the case in which the

initial state satisfies the property that ( ) = 0 for all sites to the right of some site

. Deduce that can be chosen so that the probability is arbitrarily close to 1 that

the sites to the right of remain vacant for all time. Prove similar statements for

the case in which the initial state satisfies ( ) = 0 for all to the left of some site .

Use these facts to show that 0 can be chosen so that if the initial state satisfies

( ) = 0 for , then the probability is at least that 0̄ as .

Having chosen such a , use the assumption on the death rates to show that for any

initial state, the process almost surely spends an infinite amount of time in states

for which ( ) = 0 for . Use the strong Markov property to complete the

proof.

. Let ( : 0) denote the minimal filtration of the Wiener process .

Square both sides of (33.1) and then take expectations. Six terms result on the right

side. The following calculation shows that one of them is equal to 0:

( )( ) = ( )( )

= ( ) ( ) = 0

Similarly,

( ) ( )( ) = 0

The following calculation is relevant for another of the six terms:

[ ( )] ( ) = [ ( )] ( )

= [ ( )] ( ) = [ ( )]

. yes

. ( ) = +

. Equation (33.18) is to be interpreted as an almost sure statement. In the

following, we assume that the relevant properties of the Itô integral have been extended

to allow for integrands like sgn( ).

Let

=
1

2
( )

so that for each ,

sgn( ) = ( ) = lim ( ) i.p.
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In the notation of the example,

( ) = ( ) ( )

(see (33.16)).

Using Theorem 4 and the fact that ( + ) 2 + 2 for real numbers and ,

we have

( ( ) ( ))

2 ( ( )) + 2 (sgn( ) ( ))

It follows that for any bounded Borel set ,

lim ( ( ) ( )) = 0

By the Fubini Theorem,

lim ( ) ( ) = 0 i.p.

A simple application of the Cauchy-Schwarz Inequality then gives

( ) = lim ( ) i.p.(7.23)

Now suppose that is a bounded interval in . Let

( ) =
1

2
( )

Clearly we have 0 1 and pointwise as 0, where is 1 on the interior

of , 1 2 at the endpoints of , and 0 elsewhere. By Dominated Convergence, applied

to (7.23), we have

( ) = ( ) a.s.

It is easy to deduce from this equation that

( ) = ( ) a.s.

A standard argument using the Sierpiński Class Theorem shows that this last equation

is valid for all Borel sets , as claimed.

. For , let denote the solution of (33.19) with initial state , and let

( 0) denote the corresponding transition semigroup. Since ( ) = ( ),

the Bounded Convergence Theorem implies that it is enough to show that for each

0 and , lim = a.s. In the proof of Theorem 7 it is shown

that each random variable is the limit in probability of random variables as

0. From the definitions it is apparent that is almost surely a continuous

function for each 0. Thus, it is enough to show that

lim sup = 0(7.24)
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Noting that the estimates used in the proof of Theorem 7 do not depend on the initial

value , we see that, with minor modifications, the argument in that proof can be used

to give (7.24).

. = ∆ for sufficiently nice functions : . For bounded continuous

functions having bounded continuous first, second, and third partial derivatives, this

fact can be proved by direct computation, using the second degree Taylor polynomial

approximation of with remainder.

. The derivative 1 cos is positive for 2 0 and also for 0

2 . A theorem of calculus says that a continuous function on a closed interval that

has a positive derivative at all interior points of that interval is strictly increasing on

the closed interval. Therefore the given function is strictly increasing on the interval

[ 2 0] and on the interval [0 2 ]. By the preceding problem it is strictly increasing

on the interval [ 2 2 ]. (Notice that the argument can be extended to prove that the

given function is strictly increasing on .)

. Proof that a closed subset of a compact set is compact. Let be a closed

subset of a compact set , and let be an open covering of . Consider ,

the collection obtained by adjoining the complement of to the collection . This

collection is an open covering of . It contains a finite subcovering of . The members

of in this finite subcovering of constitute a finite subcovering (from ) of .

. The ‘only if ’ part is trivial. We will prove the contrapositive of the ‘if part’,

so suppose that the sequence does not converge to . Then there exists 0 and

an infinite subsequence ( : = 1 2 ) of ( ) such that ( ) for all .

No further subsequence of this subsequence can converge to because the distance

between and every member of that further subsequence would be greater than .

. Suppose that . Case 1, : Every neighborhood of contains a

member of —namely itself. If some neighborhood did not contain a member of

, then would be a member an open subset of that neighborhood which itself would

be a subset of . Hence would belong to the interior of and thus not to .

Case 2, : Now we must show that every neighborhood of contains a member

of . If there were some neighborhood lying entirely inside , there would be an

open subset of that neighborhood containing and having the same property. The

complement of that open set would be a closed set containing and thus containing

the closure of . Therefore would not belong to .

For the converse suppose that every neighborhood of contains at least one point

of and least one point in . First we observe that cannot be a member of the

interior of , for, if it were, this interior would be a neighborhood of that contains

no member of . To finish the proof we must show that belongs to the closure of



R

∗

′

m

m m

3
11

Hint:

For Appendix D

C-6

C-9

C-10

C-14

D-1

D-2

D-14

∞ ∞
−∞ −∞

O
∞

∞

∞ ∞

∞

∈ O ⊂
∩ ∈ O O

O

∈
| |

−

− ∨ ∨ − ∧ ∧

−

68 SOLUTIONS, ANSWERS, AND HINTS FOR SELECTED PROBLEMS

B B x

B

a, b b < b a, b

a > a a, b a, b

a b a, a

C

C

O

O O

,

,

O

O A A O

f

g

f fg

f m x a, b

f x > m x x

x

x f x

x f x f

f

δ > x

f x f x f x > δ f x f x f x .

y

x f y f y

. If it did not, the complement of the closure of would be a neighborhood of

containing no point of , which is a contradiction.

. Avoid doing work similar to that needed for the preceding problem.

. [ ), both open and closed whether or = ; ( ], neither open nor

closed whether or = ; [ ] closed but not open; ( ) open but not

closed whether and are finite or infinite; [ ] is only compact interval

. Closure under arbitrary unions: clearly yes if all sets in the union belong to ;

if one of the sets in the union contains and has a complement that is a compact

subset of Ω, the union will contain and have a complement that is closed subset

of the compact subset of Ω. An appeal to Proposition 1 completes this portion of

the proof.

Closure under finite intersections: clearly yes if one of the sets in the intersection does

not contain ; if all do contain , then so does the intersection and the complement of

the intersection is the union of a finite number of compact subsets of Ω. The definition

of compactness shows that a finite union of compact sets is compact.

Compactness: An open covering must have at least one set that contains . Take

any such set . The remaining sets in the open covering cover the compact complement

of . Thus there is a finite subcovering of this complement. Adjoin to this finite

subcovering to obtain a finite subcovering of Ω .

. The closed interval [0 1] of with the usual topology is not open in that topol-

ogy, but it is an open subset of the topological space [0 1] with the relative topology.

Now assume that Ψ and that Ψ is open in the relative topology on Ψ.

Then = Ψ for some . Hence, , the intersection of two members of , is

itself a member of .

. 30

.

. According to Theorem 4 we only need prove that is Riemann-Stieltjes inte-

grable with respect to , and for doing that, Proposition 2 says that we only need prove

that is bounded and is Riemann integrable.

Suppose that is unbounded. For each there exists [ ] such that

( ) . Let denote a limit of a subsequence of ( ). It cannot be that

infinitely many members of the subsequence equal . If infinitely many members are

larger than , then ( +) does not exist. If infinitely many members are smaller than

, then ( ) does not exist. Therefore the assumption that is unbounded leads to

a contradiction, and hence is bounded.

For future use we show that for each 0, there exists only finitely many such

that

( ) ( ) ( +) + ( ) ( ) ( +)

If there were infinitely many, then at the limit of a convergence sequence of distinct

such , either ( +) or ( ) would fail to exist.
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x J ,

f y f x < x < y J ,

f y f x < x > y J .
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a, b J J

a, b a, b

J a, b P
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x

f x f x f x > f x f x f x ,

q K a, b

x s

f x g x x a, b P a, b

K P

P P fg P

K ε/

ε/ P

ε

ε

fg

λ

λ λ λ .

β λ λ λ

λ λ λ

λ λ λ λ

λ λ ,

Turning to the proof of Riemann integrability of , we let 0. For each [ ]

let be an open interval in [ ] such that

( ) ( +) if

( ) ( ) if

(Reminder: Intervals in [ ] including the endpoint or can be open in the relative

topology of [ ]. Alternatively, we could have let and be open intervals in

containing members outside the interval [ ].) Since [ ] is compact there exists a

finite collection of intervals whose union equals [ ]. Let be the point partition of

[ ] consisting of the endpoints of the intervals in this finite collection and the points

midway between two consecutive endpoints.

For each point for which

( ) ( ) ( +) + ( ) ( ) ( +)

of which there are only finitely many—say —introduce a close interval [ ]

containing as an interior point and having length less than , where denotes

the supremum of ( ) ( ) for [ ]. Let denote the point partition of [ ]

obtained by adjoining the endpoints of each such to .

Consider any refinement of . For any Riemann sum of corresponding to ,

the total contribution arising from intervals lying in the various is less than 4.

The contributions to any two such Riemann sums arising from other intervals differ by

less than 3 4. Thus any two Riemann sums of any refinement of differ by less than

.

Now a straightforward argument using a sequence of refinements corresponding to

a decreasing sequence ( ) gives a Cauchy sequence of Riemann sums. Then the above

argument can be used again to show that the limit of this Cauchy sequence is the value

of the Riemann integral, and thus in particular, that the Riemann integral of exists.

Comment: For those whose definition of Riemann integrals involves upper and lower

integrals and sums rather than Riemann sums, the above argument can be shortened

a bit. We have not adopted the ‘upper-lower’ approach because it does not generalize

nicely to the Riemann-Stieltjes setting.

. We consider the real part of exp :

( exp ) = (exp ) (cos )

Using the Product Rule and Chain Rule for -valued functions we obtain

( ) = (exp ) ( ) (cos )

(exp ) (sin ) ( )

= ( ) ( exp ) ( ) ( exp )

= (exp )

as desired. We omit the similar calculation relevant for the imaginary part.

. no


