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ω N ω n ω N ω m .

has a subsequence (( ) : = 1 2 ) that converges to a member ( ) of ,

because is compact. Since summation of coordinates is a continuous function

on , the sequence ( + ) converges to the member + of + . Hence,

+ is compact. (By bringing the product space into the argument we have

avoided a proof involving a subsequence of a subsequence.)

. For each : mean equals and variance equals 1 +

. The one-point sets 0 and each have probability 2 3 . The probability

of any measurable disjoint from each of these one-point sets is the product of (1

2 3 ) and the Lebesgue measure of .

.

: ( ) 1 ( ) = ( ) =

for 2 and 0 otherwise. ( ) =

. for a Borel subset of ,

: ( ) 1 = ( ) = ( ) ( ) ;

( ) =
1

( )
( ; : ( ) )

. Suppose that is a stopping time. Then, for all ,

: ( )

which for = 0 is the desired conclusion : ( ) = 0 . Suppose 0 .

Then

: ( )

Therefore,

: ( ) = = : ( ) : ( )

We complete the proof in this direction by noting that

: ( ) = = : ( ) : ( )

and that all the events on the right side are members of .

For the converse we assume that : ( ) = for all . Then,

whether or = ,

: ( ) = : ( ) =

All events on the right are members of because filtrations are increasing. Therefore,

the event on the left is a member of , as desired.
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x

Z j
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Z
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P ω T ω P ω T ω < .

k

V P ω V ω

V I .

E V Q .

V

E V < V

P ω V ω

m /m

. Let . Then

: ( ) = : ( ) : ( )

= : ( ) : ( )

which, being the intersection of two members of , is a member of . Hence .

Therefore .

.

( ) =
1 1 4 (1 )

2(1 )
0 1

For finite and even, the probability is 0 that equals the hitting time of 1 . For

= 2 1, the hitting time of 1 equals with probability

1

2 1

2 1
(1 )

The hitting time of 1 equals with probability 0 or (1 2 ) (1 ) according as

or not.

If , the global supremum equals with probability 1. If , the global

maximum exists a.s. and is geometrically distributed; the global maximum equals

with probability ( ) .

. Use the Stirling Formula.

. Let ( : 1) be a sequence of independent random variables with common

distribution (as used in the theorem). From the theorem we see that (0 )

is distributed like a random walk with steps . Thus,

( : ( ) = ) = ( : ( ) = ( ) for )

= ( : ( ) = ) ( : ( ) )

Set = 1 to obtain the first equality in (11.6). The above calculation also shows that

is geometrically distributed unless ( : ( ) = ) = 1. Thus, it only remains

to prove the second equality in (11.6).

Notice that

=

Take expected values of both sides to obtain

( ) = ( 0 )

If the right side equals , then = a.s., for otherwise it would be geometrically

distributed and have finite mean. If the right side is finite, then ( ) , and, so,

is geometrically distributed and, as for all geometrically distributed random variables

with smallest value 1, = ( : ( ) = 1 ).

. !
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c
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c
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c
G y dy ,

E X

. For = 3, let denote the distribution of .

( ) =
(1 + 3 ) if is even

0 if is odd

( 1 ) = ( 2 ) = ( 3 ) =
0 if is even

(1 + 3 ) if is odd

( 1 2 ) = ( 1 3 ) = ( 2 3 ) =
(1 3 ) if is even

0 if is odd

( 1 2 3 ) =
0 if is even

(1 3 ) if is odd

. probability that is hit at time or sooner: [1 ( ) ] ; probability that

1 2 is hit at the positive time :

( ) 1 ( ) 1 ( ) ;

probability that hitting time of 1 1 equals : (2 2) (2 1)

. For 1 the distribution of assigns equal probability to each one-point

event. The sequence is an independent sequence of random variables. For 1, the

probability that the first return time to 0 equals is ( )(1 ) , where is the

number of members of the group.

. (ii) Let = . Then ( ) ( ) for each and .

Since ( ) and ( ) ( ) for every for which ( ) is finite, the

Dominated Convergence Theorem applies to give ( ) ( ). Since and

have identical distributions, and also have identical distributions and hence the

same expected value. Therefore ( ) ( ).

. Let denote the distribution function of . Then

( : ( ) 2 ) = [1 (2 )]

1

2
[1 (2 )]

=
1

2
[1 (2 )]

=
1

4
[1 ( )]

which, by Corollary 20 of Chapter 4, equals , since ( ) = . By the Borel-

Cantelli Lemma, (12.1) is true.
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To prove (12.2) we note that if ( ) 2 , then ( ) or ( )

from which it follows that

( )

2

( )

2 1 2

From (12.1) we see that, for almost every , this inequality happens for infinitely many

. Hence, 0 is the probability of the event consisting of those for which ( )

converges to a number having absolute value less than . Now let through a

countable sequence to conclude that (12.2) is true.

. ( ) = ( ) = 2 . An application of the Strong Law of Large

Numbers to the sequence defined by log = log gives

lim
log

= (log ) = log = 1 a.s.

Since almost sure convergence implies convergence in probability, we conclude that, for

any 0,

lim ( : ) = 1

Thus, with high probability ( ) is very large for large . There is some small

probability that is not only much larger than , but even much larger than 2 ,

and it is the contribution of this small probability to the expected value that makes

( ) much larger (in the sense of quotients, not differences) than the typical values of

. The random variable represents the length of the stick that has been obtained

by starting with a stick of length 1 and breaking off pieces from the stick, the length

of the piece kept (or the piece broken off) at the stage being uniformly distributed

on (0 ).

. (1 + )(1 ), (1 + )(1 ) ,

(1 )

1 +

(1 + + )(1 )

1 + 2

. Let and 0. (We are only interested in exchangeable but the

first part of the argument does not use exchangeability.) By Lemma 18 of Chapter 9,

there exists an integer and a measurable subset of Ψ such that ( ) ,

where

= Ψ

Define a permutation of 0 by

( ) =

+ if

if 2

if 2

Let ˆ denote the corresponding permutation of Ω.

It is easy to check the following set-theoretic relation:

ˆ( ) ˆ( ) ˆ( ) ˆ( )
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ε P C P π C
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P π B π A P π B A P B A < ε .

ε

P A π A < P B π B ε

A A π A A B

π B

P B π B P B P π B P B .

P B < P A ε

P A < P A ε ε P A ε ε .

P A P A < ε ε .

ε P A P A

σ σ

σ

σ

P ω X ω > /n /n <

ω X ω /n n

X ω ω

b Y

P ω X ω > b
E X

b bn
.

Y X E Y

Y E Y bE Y bE X
b

n
.

X

Hence

ˆ( ) + ˆ( ) + ˆ( ) ˆ( )(7.3)

The first term on the right side of (7.3) is less than . Since ( ) = (ˆ( )) for any

,

ˆ( ) ˆ( ) = ˆ( ) =

Thus the third term on the right side of (7.3) is also less than . Therefore

ˆ( ) ˆ( ) + 2(7.4)

Now assume that is exchangeable. Then ˆ( ) = . Also, it is clear that

and ˆ( ) are independent, and so

( ˆ( )) = ( ) (ˆ( )) = [ ( )]

Another easily obtained fact is that ( ) ( )+ . From (7.4), we therefore obtain

( ) ( ) + + 2 [ ( )] + 4 +

Algebraic manipulations give

( )[1 ( )] 4 +

Let 0 to obtain ( )[1 ( )] = 0, as desired.

. (i) exchangeable but not tail, (ii) exchangeable and tail, (iii) neither exchange-

able nor tail (but the Hewitt-Savage 0-1 Law can still be used to prove that the given

event has probability 0 or 1) [Comment: the tail -field is a sub- -field of the ex-

changeable -field, so there is no random-walk example of an event that is tail but not

exchangeable. This observation does not mean that the Kolmogorov 0-1 Law is a corol-

lary of the Hewitt-Savage 0-1 Law, because there are settings where the Kolmogorov

0-1 Law applies and it is not even meaningful to speak of the exchangeable -field.]

. ( : ( ) 1 ) (1 ) . By the Borel Lemma, for al-

most every , ( ) (1 ) for all but finitely many . By the comparison test for

numerical series, ( ) converges (in fact, absolutely) for such .

. by the Three-Series Theorem: Let be any positive number, and define as

in the theorem. By the Markov Inequality,

( : ( ) )
( )

=
1

Thus the series (12.8) converges. Since 0 , 0 ( ) . Hence, the

series (12.9) converges. Also,

Var( ) ( ) ( ) ( ) =

Thus the series (12.10) converges. Therefore, converges a.s. (Notice that this

proof did not use the fact that the random variables are geometrically distributed.)
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by Corollary 26: The distribution of is geometric with parameter ( + 1) .

Thus the variance is ( + 1) 2 . The series of these terms converges, as does

the series of expectations. An appeal to Corollary 26 finishes the proof.

by Monotone Convergence Theorem: ( ) = ( ) . A random

variable with finite expectation is finite a.s. Therefore, is finite a.s. (Notice that

for this proof, as for the proof by the Three-Series Theorem, the geometric nature of

the distributions was not used.)

.

. One place it breaks down is very early in the proof where the statement

( ) = ( ) is replaced by the statement ( ) = 0. These

two statements are equivalent if the state space is , but if the state space is it is

possible for the first of these two statements to be false, with both sums equal to ,

and the second to be true.

. if and only if the supports of the two uniform distributions have the same

length

. ; . [ is the parameter of the (unsymmetrized)

geometric distribution.]

. mean equals and variance equals

. Let

( ) =
1

+

and find a simple formula for + .

.

2

. yes

. At any where both and are continuous, ( ) = ( ). The set of points

where is discontinuous is countable because is monotone. The same is true for

. The set of points where both and are continuous, and thus equal, is dense,

because it has a countable complement. For any , there exists a decreasing

sequence ( ) in such that as . The right continuity of and

and the equality ( ) = ( ) for each then yield ( ) = ( ).

. We will first show that for each . The factor arises

as the limit of (1 ) . The factor already appears in the formula for , and
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! appears there implicitly as part of the binomial coefficient. To finish this part of the

proof we need to show

lim
!

( )!
1 = 1

The second factor obviously has the limit 1 and the first factor can be written as

1

which also has limit 1.

We will finish the proof by showing that

lim ( ) =
!

for every . On the left side the limit and summation can be interchanged because

the summation has only finitely many nonzero terms. The desired equality then follows

from the preceding paragraph.

This problem could also be done by using Proposition 8 which appears later in

Chapter 14.

. standard gamma distributions. For 0,

lim
1

Γ( )
= 1 lim

1

Γ( )
lim

The first limit in the product of two limits equals 0 and by the Dominated Convergence

Theorem, the second limit equals , a dominating function being

( 1) . We conclude that

lim
1

Γ( )
= 1

for 0 from which convergence to the delta distribution at 0 follows (despite the

fact that we did not obtain convergence to 1 at = 0).

. Fix 0 and 0. We want to show

lim
1 ( )

!
1

1
=

1

Γ( )

which is equivalent to

lim
1 ( )

!
1

1
=

1

Γ( )
(7.5)

because the term , obtained by setting = 0, approaches 0 as .

The sum on the left side of (7.5) can be written as

( )
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where

( ) =
1 if 1 for = 1 2

0 otherwise ;

and the right side can be written as

( )

where

( ) =
1

Γ( )

The plan is to show that ( ) ( ) as for each in the interval (0 )

and to find a function that has finite integral and dominates each , for then the

desired conclusion will follow immediately from the Dominated Convergence Theorem.

We will consider the three factors in separately. It is important to keep in mind

that depends on and and that in particular, as for each fixed

(0 ), as this dependence is not explicit in the notation.

It is clear that for (0 ). In case 1, . In

case 1, . Thus, we have constructed one factor of what we hope

will be the dominating function : in case 1 and the constant in case

1.

The second factor in ( ) equals

1

Γ( )

Γ( + )

Γ( 1)

We use the Stirling Formula to obtain the limit:

1

Γ( )
lim

Γ( + )

Γ( + 1)

=
1

Γ( )
lim

2 ( + )

2 ( + 1)

=
Γ( )

lim 1 + 1 +
1

+ 1
1 +

1

+ 1

=
1

Γ( )

The second factor in ( ) is thus bounded as a function of , the bound possibly

depending on . Such a constant bound will be the second factor we will use in con-

structing the dominating function .

For the third factor in ( ) we observe that

1
1

1
1

1
1

(7.6)

from which it follows that

1
1

Moreover, (7.6) and the inequality (1 ) imply that is a dominating

function for the third factor in ( ).
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Our candidate for a dominating function ( ) having finite integral is a constant

multiple of in case 1 and a constant multiple of in case 1. Both

these function have finite integral on the interval [0 ], as desired.

For = 0, each is the delta distribution at 0, and, therefore, lim

equals this delta distribution.

. Let denote the standard Gumbel distribution function defined in Problem 13.

For 0 and ,

( + ) = =

where = 0.

. For any real constant ,

[ ] =

By the Borel-Cantelli Lemma, a.s. as and, hence,

: lim [ ( ) log ] exists and

is a tail event of the sequence ( : = 1 2 ) for every . By the Kolmogorov 0-1

Law, the almost sure limit of ( log ) must equal a constant if it exists. On the

other hand, by the preceding problem the almost sure limit, if it exists, must have a

Gumbel distribution. Therefore, the almost sure limit does not exist.

The sequence does not converge in probability, for if it did, there would be a sub-

sequence that converges almost surely and the argument of the preceding paragraph

would show that the distribution of the limit would have to be a delta distribution

rather than a Gumbel distribution.

The preceding problem does imply that

log

log
0 as

and, therefore, that

log
1 in probability as

In Example 6 of Chapter 9 the stronger conclusion of almost sure convergence was

obtained using calculations not needed for either this or the preceding problem.

. Weibull: mean = Γ(1+ ), variance = Γ(1+ ) [Γ(1+ )] ; Fréchet: mean

is finite if and only if 1 in which case it equals Γ(1 ), variance is finite if and

only if 2 in which case it equals Γ(1 ) [Γ(1 )]

. 0 = 1 , =

. We need to show

lim ( ] =
1
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for all positive finite . That is, we must show

lim
1

( )

1
=

1

We may replace by 1 because the ratio of these two functions approaches

1 as 1 (as may be checked by bounding the sum that defines the Riemann zeta

function by formulas involving integrals). We can bound the above sum by using:

1 1
1 +

1
;

that is,

1

1
1

1 1
1 +

1

1
1

1
;

Replace by , multiply by 1, and let 1 to obtain the desired limit

1 .

. Since ( ) 1 for every and , we only need show that 1 ( ( )) 0

for each . This will follow from the hypothesis in the lemma and the inequality

1 (2 ) 4 1 ( )

which we will now prove to be valid for all characteristic functions .

Using the positive definiteness of we have

+ (0 0) ¯ + ( 0) ¯ + (2 0) ¯

+ (0 ) ¯ + ( ) ¯ + (2 ) ¯

+ (0 2 ) ¯ + ( 2 ) ¯ + (2 2 ) ¯ 0

Setting = 1, = 2, = 1, noting that ( ) = ( ), and using (0) = 1, we

obtain

6 8 ( ) + 2 (2 ) 0

from which follows

8 1 ( ) 2 1 (2 )

as desired. (Notice that the characteristic function of the standard normal distribution

shows that 4 is the smallest possible constant for the inequality proved above, but it

does not resolve the issue of whether can be replaced by for = 0.)

. The probability generating function of is given by

( ) = (1 ) = (1 ) (1 )

Clearly, ( ) ( ) is a continuous function on

( ) : 0 1 0

for each fixed , so the same is true of the function ( ) .



1

−u/n

n

 

 

 

 

For Chapter 15

∞
− −

−

− −

∞ ∞ −

∞

∞

− −

∞

∑( ) ( )

∑ ∑

( )
∑

∏[ ( )]

∑

∑

·
− −

→ ∞

−
→

→∞

| | ≤

{ } | |

−

→ ∞
−

−

14-49

14-52

15-1

15-6

15-9

15-14

=0 1+

1

1
+1

2 1

=1 =1

=1

=1

=1

+1 +1

=1

sin

SOLUTIONS, ANSWERS, AND HINTS FOR SELECTED PROBLEMS 31

n

k

k uk/n

e u/n
n

u

n

n n n n n

n

k k k
k

k

k k k

k k

k

k k k

n
n

k k

n
n n n

n n n n

k k

v
v

Q

u
n n

e
n n e

,

n u

V V

n b a n V b /a

n a

n

X

X

v
v v v

.

X

v
v v v

.

n , , Q

X

Q m m m < .

m
<
m

.

n X

,

,

.

. Example 1. The moment generating function of is

1

+ 1
1 +

1
=

1

+ 1

1

1
=

1

1 +

which, as , approaches, pointwise, the function , the moment generating

function of the exponential distribution. An appeal to Theorem 19 finishes the proof.

. Let be the constant random variable 3 and let be normally distributed

with mean 3 and variance . Let = 3 and = . Then ( ) is

normally distributed with mean 0 and variance 1 for every even though 0 as

.

. 5 6 = 1. Hence the series converges absolutely a.s. and

therefore, it converges a.s., in probability, and in distribution; this is true without the

independence assumption. The remainder of this solution, which concerns the limiting

distribution and its characteristic function does use the independence assumption. The

characteristic function of is the function

1

3
cos

6
+ cos

3

6
+ cos

5

6

Therefore the characteristic function of is the function

1

3
cos

6
+ cos

3

6
+ cos

5

6
(7.7)

A direct simplification of this formula is not easy, so we will obtain the distribution by

a method that does not rely on characteristic functions.

Calculations for = 1 2 3 lead to the conjecture that the distribution of

is given by

6 = 6 for odd, 6

This is easily proved by induction once it is noted that

6
+

5

6

+ 2

6

5

6

Then it is easy to let to conclude that the distribution of is the

uniform distribution on ( 1 1).

A sidelight: we have proved that the infinite product (7.7) equals the characteristic

function of the uniform distribution on ( 1 1) —namely .

. 0 10

. are not (except for the delta distribution at 0 in case one regards it as a degenerate

Poisson distribution)

. strict type consisting of positive constants (note: negative constants constitute

another strict type)
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. The function given by

( ) =
1

can be evaluated by relating ( ) to the integral that can be obtained for ( ) by using

the substitution = with an appropriate . =

. (i) (ii) 1 +

. sup [ = ] exp = as

. Use Example 1.

. 0 309 at 0; 0 215 at 1; 0 093 at 2; 0 029 at 3; 0 007 at 4; 0 001 at 5;

0 000 elsewhere (Comment: Using a certain table we found values that did not come

close to summing to 1, so we concluded that either that table has errors or we were

reading it incorrectly. We used another table.)

. Suppose that as . Fix and suppose that there exist distri-

butions such that = . Let , and denote the characteristic functions of

and , respectively. Because the family : = 1 2 is relatively sequen-

tially compact, the family : = 1 2 is equicontinuous at 0, by Theorem 13 of

Chapter 14. Thus there exists some open interval containing 0 such that ( ) = 0

for and all . So (Problem 7 of Appendix E), ( ) = log ( ) is well-

defined for and all , and the family : = 1 2 is equicontinuous at 0.

For , ( ) = exp ( ) . Hence : = 1 2 is equicontinuous at 0.

By Theorem 13 of Chapter 14 the family : = 1 2 is relatively sequentially

compact, and, therefore, the sequence ( ) contains a convergent subsequence; let

denote the limit of such a subsequence. Since the convolution of convergent sequences

converges to the convolution of the limit, = as desired. [Comment: For fixed

we only used = for each , rather than the full strength of infinite divisibil-

ity. If is infinitely divisible we can strengthen the conclusion: From the forthcoming

Proposition 3 it follows that is never 0 and therefore that is the unique distribution

whose characteristic function is exp ( log ) and moreover, it equals the limit of the

sequence ( ).]

. By Proposition 1 the product of two infinitely divisible characteristic func-

tions is infinitely divisible. The factors we use are the characteristic function of the

compound Poisson distribution corresponding to , as in (16.1), and the function

exp
2

known by Problem 9 to be infinitely divisible. The product equals exp ( ), which

is, therefore, an infinitely divisible characteristic function. For = 0 and = ,

the second factor is the function 1 and thus we obtain the compound Poisson


