Solutions, answers, and hints for selected problems

Complete solutions of some problems are given. Answers only are given for some
other problems. For still others, only hints or partial solutions are given. Asterisks
in “A Modern Approach to Probability Theory” by Fristedt and Gray identify the
problems that are treated in this supplement.

For Chapter 16
16-1. Hint: Use Example 1.

16-6. 0.309 at 0; 0.215 at +1; 0.093 at +2; 0.029 at +3; 0.007 at £4; 0.001 at
+5; 0.000 elsewhere (Comment: Using a certain table we found values that did not
come close to summing to 1, so we concluded that either that table has errors or
we were reading it incorrectly. We used another table.)

16-12. Suppose that Qr — @ as k — oco. Fix n and suppose that there exist
distributions Ry such that R/ = Q. Let B, and 7; denote the characteris-
tic functions of Qj and Ry, respectively. Because the family {Qx: k = 1,2,...}
is relatively sequentially compact, the family {8x: k = 1,2,...} is equicontinu-
ous at 0, by Theorem 13 of Chapter 14. Thus there exists some open interval B
containing 0 such that 8;(u) # 0 for v € B and all k. So (Problem 7 of Appen-
dix E), ¢5(u) = —logofk(u) is well-defined for u € B and all k, and the family
{tr: k = 1,2,...} is equicontinuous at 0. For u € B, v,(u) = exp(—%wk(u)).
Hence {v;: k = 1,2,...} is equicontinuous at 0. By Theorem 13 of Chapter 14
the family {Ry: k = 1,2,...} is relatively sequentially compact, and, therefore, the
sequence (Ry) contains a convergent subsequence; let R denote the limit of such a
subsequence. Since the convolution of convergent sequences converges to the con-
volution of the limit, R** = @ as desired. [Comment: For fixed n we only used
R;™ = Qi for each k, rather than the full strength of infinite divisibility. If @ is
infinitely divisible we can strengthen the conclusion: From the forthcoming Propo-
sition 3 it follows that 3 is never 0 and therefore that R is the unique distribution
whose characteristic function is exp O(% log o) and moreover, it equals the limit of
the sequence (Ry).]

16-13. By Proposition 1 the product of two infinitely divisible characteristic func-
tions is infinitely divisible. The factors we use are the characteristic function of the
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compound Poisson distribution corresponding to v, as in (16.1), and the function

uvexp(z’[n—/R\{o}XdV}u—

known by Problem 9 to be infinitely divisible. The product equals exp o(—1), which
is, therefore, an infinitely divisible characteristic function. For ¢ = 0 and n =
[ x dv, the second factor is the function u ~ 1 and thus we obtain the compound
Poisson characteristic function corresponding to an arbitrary finite measure v.

o2u? )
)

16-14. Define v;, 1 < j < 3, by
1 (B) = Z/(B Nn[-1, 1]) ;
v2(B) =v(BN (o0, —1));
v3(B) =v(BN(1,00)) .
Write ¢ = Z?Zl ¥, where

Y1 (u) = /R\{o}(l — et zuy) V1 (dy) ;
Yo (u) = /R\{o}(l — ewy) va(dy);

P3(u) = /R\{O}(l — e’“y) v3(dy);

o2u?

2

Then X has the same distribution as E?Zl X, where (X;:1 < j < 4)is an
independent quadruple and, for 1 < j < 4, X; is infinitely divisible with charac-
teristic function expo(—1;). In view of the linearity of expectation, strengthened
as in Problem 29 of Chapter 9 for independent random variables, and the linearity
of variance for independent random variables, we have thus replaced the original
problem by four subsidiary problems—to show:

Pa(u) = zu( —n—v(—o0,—1)+ V(l,oo)) +

E(X:)=0, Var(X;) = / y> v(dy);
[-1,1\{0}

B = [ yvid), Varta) = [yt uldy)s

(_001_1)
B = [ yuldy), Var(xa) = [ i uldy);
(1,00) (1,00)
E(X4) =n+v(—00,—1) —v(l,00), Var(Xy)=o?.

(Comments: In defining 19 and 13, but not 11 we were able to split off the term
involving x. It is important that no assumptions about existence of expectations
or about finiteness of either expectations or variances are being made.)

The formulas involving X, are the known formulas for the mean and variance of
a Gaussian random variable. Standard applications of the Dominated Convergence
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Theorem, based on bounds from Appendix E, show that i, has derivatives of all
orders, in particular orders 1 and 2, which may be calculated by differentiating
under the integral sign. Thus,

%wzf (—iye™ 1+ iy) v(dy)
[=1,1]\{0}

and

fwz/ YR b (dy)
[—1,1]\{0}

The first and second derivatives of exp o(—11) exist (because those of 11 do) and
equal the functions — - (expo(—11)) and (—9{ + (¥])?) - (exp o(—1)). Inserting
u = 0 gives 0 for the first derivative and f[—Ll]\{O} y?v(dy) for the second, as
desired.

Turning to X3, with the intention of skipping X, because its treatment is so
similar to that of X3, we note that the desired formulas are obvious in case v3 is
the zero measure and recognize that for other v3 we may use Example 2. In this
latter case we replace vs by AR where R is a probability measure on (1,00). In
terms of the notation of Example 2 we see that X3 has the same distribution as

o0
ZYkI[Mzk] ;
k=1

Using the independence of each pair (Y, M) and monotone convergence we obtain

We go for the second moment rather than directly for the variance (a useful strategy
when monotone convergence is being used):

oo

oo
E(X3) = Z Z E(YiYilinmswvy)
k=1 1=1

The second term in (7.8) is what we want to prove the variance to be, so we only
need prove that the first term equals (E(X3))2. To do this we only need show that



4 SOLUTIONS, ANSWERS, AND HINTS FOR SELECTED PROBLEMS

257 ,(k—1)P[M > k] = A2, which is a consequence of the following calculation:

(k — 1)P[M = m]

[M]8
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Qi(k —1)P[M > k] =2
k=2
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M?)—E(M)= (M +X) - A=\,
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16-17. If n = 0 and v is symmetric about 0, the characteristic exponent is real
because the function

Y~ —sinuy + ux(y)

is an odd function for each u. Therefore the corresponding distribution is symmetric
about 0 and its characteristic exponent has the form shown.

For the converse suppose that the characteristic function is real. It follows that
the characteristic exponent is real since it is continuous and equals the real number
0 at 0. Then

—nu+ / (—sinuy + ux(y)) v(dy) =0
R\{0}

for every u. Another way to get 0 is to replace n by g = 0 and v by vy defined
by vo(B) = 3(v(B) + v(—B)). This change, together with no change in o also
leaves the real part of the characteristic exponent unchanged. By the uniqueness of
the triples in Lévy-Khinchin representations (Lemma 11) it follows that n = 0 and
v = 1y. We are done since it is obvious that v is symmetric about 0. (Comment:

Another approach is to use the measure ¢ defined in Lemma 7.)

16-20. Let X have a compound Poisson distribution with corresponding Lévy
measure v. Write v = v_ + v, where v_(0,00) = 0 and vy(—00,0) = 0. Then
X has the same distribution as X_ + X, where (X_, X ) is an independent pair
of compound Poisson random variables with corresponding Lévy measures v_ and
v4, the independence being a consequence of the factorization of (16.1) induced by
v =v_ +vs. If v_ is not the zero measure, then by Problem 19 there is positive
probability that X_ < 0 and X, = 0 and thus positive probability that X < 0.
Therefore, v_ must be the zero measure if P[X > 0] = 1.

16-25. The moment generating functions of a gamma distribution has the form
v~ (14 2)77. Accordingly, we want to find (£,v) (with v{oo} = 0) such that

v —owy,
fylog(l—l—a)—fv—i—/(o,oo)(l—e Y)v(dy) .

By letting v — 0o we see that the shift £ = 0. Then differentiation of both sides,
with differentiation inside the integral being justified by the Monotone Convergence
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Theorem (or in some other manner), gives

gl / —vy
= e Yyuv(dy).
a+v  J(0,0)

It is now easy to see that the Lévy measure v has the density y ~» vy~ 'e~™® with
respect to Lebesgue measure on (0, 00).

16-33. Statement: Let ((&,,vn), n=1,2,...), satisfy: every &, € RT and every v,

is a Lévy measure for R'. For each n, let @, be the infinitely divisible distribution
=+ . . .

on R corresponding to (§,,v,) via the relation

/[Om] e~ Qn(dx) = exp ( —&v — /(O,w](l — ) l/n(dy)) .

Then the sequence (Q,: n = 1,2,...) converges to a distribution on R different
from the delta distribution at co if and only if there exist £ € R* and a Lévy
measure v for R for which the following two conditions both hold:

v[z,o00] = nhj& vplz,00] i 0 <z and v{z} =0;

= lim I n+/ o (d
¢=lim lmsup(é (Oﬁ]yv ( y))

n— oo

= lim lim inf (En + /( ] Y Vn(dy)) .
0,e

eN,0 n—oo

In case these conditions are satisfied the limit of the sequence (@, : n > 1) is the
infinitely divisible distribution with moment generating function

v ~> exp ( —&v— /(0 (I1—e") V(dy)) .

16-41. limiting distribution: two-sided Poisson supported by set of integral multi-
ples of ¢; characteristic exponent: u ~» 1 — cos cu.

,09]

16-42. limit exists; corresponding triple: (0,1,v), where v has support {—1,1}
and v{—1} = v{1} = I; characteristic exponent of the limit (not requested in the

2
problem) is
2
u
Clasdiry +1—cosu.

16-50. Hint: Fix v and let ¢ > 0. By (E.2) and (E.3) of Appendix E and Lemma 20,
the characteristic functions 3, and corresponding characteristic exponents 1y,
satisfy

(1= Brn(w) < Prn(u) < (14e)(1 = Brn(u))
for all sufficiently large n (depending on u) and all k& < n.

16-54. uan condition satisfied so Theorem 25 applicable; u ~» e~ (1082)¢

16-59. @ exists and characterized by triple (0,0,v), where %(y) = % V 0;
Q{0y = ¢/
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16-68. limit exists; (0, ﬁ\/log 2,0) is corresponding triple for its Lévy-Khinchin
representation



