
Solutions, answers, and hints for selected problems

Complete solutions of some problems are given. Answers only are given for some
other problems. For still others, only hints or partial solutions are given. Asterisks
in “A Modern Approach to Probability Theory” by Fristedt and Gray identify the
problems that are treated in this supplement.

For Chapter 10

10-5. normal with mean µ1 + µ2 and standard deviation
√
σ2

1 + σ2
2

10-7. x; (1− |x− 1|) ∨ 0

10-11. probability 1
12 at each of the points kπ

6 for −5 ≤ k ≤ 6

10-17. For 0 ≤ k ≤ n,

P ({ω : XN(ω)(ω) = k and N(ω) = n}) = P ({ω : Xn(ω) = k and N(ω) = n})

= P ({ω : Xn(ω) = k})P ({ω : N(ω) = n}) =
[(
n

k

)
pk(1− p)n−k

][
λne−λ

n!

]
.

We sum on n:
(pλ)ke−λ

k!

∞∑
n=k

(λ(1 − p))n−k
(n− k)! =

(pλ)ke−pλ

k!
,

as desired.

10-21. The distribution of a single fair-coin flip is the square convolution root.
If there were a cube convolution root Q, it would, by Problem 19, be supported
by Z

+
. If Q({m}) were positive for some positive m ∈ Z

+
, then P ({3m}) would

also be positive, a contradiction. Thus, it would necessarily be that Q is the delta
distribution δ0, which is certainly not a cube root of P . Therefore P has no cube
root.

10-30.

E(Y ) =
1
γ

(γ1, . . . , γd)

Var(Yi) =
γi(γ − γi)
γ2(γ + 1)

Cov(YiYj) = − γiγj
γ2(γ + 1)

, i 6= j

1
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For the calculations of the above formulas one must avoid the error of treating
the Dirichlet density in (10.4) as a d-dimensional density on the d-dimensional
hypercube.

Here are the details of the calculation of E(Y1Y2) under the assumption that
d ≥ 4. We replace yd by 1 − y1 − · · · − yd−1 and discard the denominator

√
d in

(10.4) in order to obtain a density on a (d − 1)-dimensional hypercube. (In fact,
this replacement is done so often that the result of this displacement is often called
the Dirichlet density.) Implicitly assuming that all variables are positive, setting

D = {(y3, . . . , yd−1) : y3 + · · ·+ yd−1 ≤ 1} ,

and using the abbreviation w = 1− (y3 + . . . yd−1), we obtain

E(Y1Y2) =
Γ(γ)

Γ(γ1) Γ(γ2) Γ(γd)

∫
D

d−1∏
i=3

yγi−1
i

Γ(γi)

·
∫ w

0

yγ2
2

∫ w−y2

0

yγ1
1 (w − y2 − y1)γd−1 dy1 dy2 d(y3, . . . , yd−1) .

We substitute (w − y2)z1 for y1 and then use Problem 34 of Chapter 3 for the
evaluation of the innermost integral to obtain

E(Y1Y2) =
γ1Γ(γ)

Γ(γ2) Γ(γ1 + γd + 1)

·
∫
D

d−1∏
i=3

yγi−1
i

Γ(γi)

∫ w

0

yγ2
2 (w − y2)γ1+γd dy2 d(y3, . . . , yd−1) .

For the evaluation of the inner integral we substitute wz2 for y2; we get

E(Y1Y2) =
γ1γ2Γ(γ)

Γ(γ2 + γ1 + γd + 2)

∫
D

d−1∏
i=3

yγi−1
i

Γ(γi)
wγ2+γ1+γd+1 d(y3, . . . , yd−1) .

By rearranging the constants appropriately we have come to the position of needing
to calculate the integral of a Dirichlet density with parameters γ3, . . . , γd−1, and
γ2 + γ1 + γd + 2. Since the integral of the density of any probability distribution
equals 1 we obtain

E(Y1Y2) =
γ1γ2

γ(γ + 1)
.

Since Y1 + · · ·+Yd is a constant its variance equals 0. On the other hand, from
the formula

Var(Y1 + · · ·+ Yd) =
d∑
j=1

d∑
i=1

Cov(YiYj)

we see that the variance equals the sum of the entries of the covariance matrix. So,
in this case, that sum is 0. But the determinant of any square matrix whose entries
sum to 0 is 0, since a zero row is obtained by subtracting all the other rows from
it.

10-33. Let F denote the desired distribution function. Clearly, F (z) = 0 for z ≤ 0
and F (z) = 1 for z ≥ 1

3 . Let z ∈ (0, 1
3 ). From (10.4), 1− F (z) equals 2/

√
3 times

the area of those ordered triples (z1, z2, z3) satisfying zi > z for i = 1, 2, 3 and
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z1 + z2 + z3 = 1. This is the same as twice the area of those ordered pairs (z1, z2)
such that z1 > z, z2 > z, and 1− z1 − z2 > z. Thus

1− F (z) = 2
∫ 1−2z

z

∫ 1−z−z1

z

dz2 dz1 = 1− 6z + 9z2 .

Therefore F (z) = 6z − 9z2 for 0 < z < 1
3 .

10-36. beta with parameters d− 1 and 2

10-37. The distribution has support [0, 1
2 ] and there the distribution function is

given by
w; 1

4 + 3w2 + 3w log 1
2w .

10-40. Hint: For C1, C2, and C3 convex compact sets, show that

{r1x1 + r2x2 + r3x3 : xi ∈ Ci, ri ≥ 0, r1 + r2 + r3 = 1}
is convex, closed, and a subset of both (C1 ∨ C2) ∨ C3 and C1 ∨ (C2 ∨ C3).

10-43. | sinϕ|, | cosϕ|, | sinϕ| ∨ | cosϕ|

10-47. For all ϕ and −1 ≤ w ≤ 1, the distribution function is

w;

(
π + w

√
1− w2 − arccosw

π

)3

.

10-48. Let A and B be two compact convex sets. Consider two arbitrary members
a1 + b1 and a2 + b2 of A+B, where ai ∈ A and bi ∈ B. Let κ ∈ [0, 1]. Then

κ(a1 + b1) + (1− κ)(a2 + b2) = [κa1 + (1− κ)a2] + [κb1 + (1− κ)b2] ,
which, in view of the fact that A and B are convex, is the sum of a member
κa1 +(1−κ)a2 of A and a member κb1 +(1−κ)b2 of B, and thus is itself a member
of A+B. Thus, convexity is proved.

It remains to prove that A+B is compact. Consider a sequence (an + bn : n =
1, 2, . . . ), where each an ∈ A and each bn ∈ B. The sequence ((an, bn) : n = 1, 2, . . . )
has a subsequence ((ank , bnk) : k = 1, 2, . . . ) that converges to a member (a, b) of
A×B, because A×B is compact. Since summation of coordinates is a continuous
function on A×B, the sequence (ank+bnk) converges to the member a+b of A+B.
Hence, A+B is compact. (By bringing the product space A×B into the argument
we have avoided a proof involving a subsequence of a subsequence.)

10-52. For each ϕ: mean equals 4
√

2
π and variance equals 1 + 2

π −
16
π2


