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Solutions, answers, and hints for selected problems

Asterisks in “A Modern Approach to Probability Theory” by Fristedt and Gray

identify the problems that are treated in this supplement. For many of those

problems, complete solutions are given. For the remaining ones, we give hints,

partial solutions, or numerical answers only.

. Method 1: By the Binomial Theorem,

= 1 1 = (1 + 1) = 2

and, for 0,

( 1) = 1 ( 1) = (1 1) = 0

Addition and then division by 2 gives

= 2

The answer for positive is 2 2 = 1 2. The answer for = 0 is easily seen to

equal 1.

Method 2: For 1 consider a sequence of length ( 1). If it contains an even

number of ‘heads’, adjoin a ‘tails’ to it to obtain a length- sequence containing an even

number of ‘heads’. If it contains an odd number of ‘heads’, adjoin a ‘heads’ to it to

obtain a length- sequence containing an even number of ‘heads’. Moreover, all length-

sequences containing an even number of ‘heads’ are obtained by one of the preceding

two procedures. We have thus established, for 1, a one-to-one correspondence

between the set of all length-( 1) sequences and the set of those length- sequences

that contain an even number of ‘heads’. Therefore, there are 2 length- sequences

that contain an even number of ‘heads’. To treat the remaining case = 0, we observe
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that the empty sequence, which is the only length-0 sequence, contains zero ‘heads’.

Since 0 is even, there is 1 length-0 sequence containing an even number of ‘heads’.

. 2

. The thirty-six points to each of which is assigned probability are the ordered

pairs ( ) for 1 6 and 1 6. The coordinates and represent the numbers

showing on the red die and green die, respectively.

. The set consisting of a single sample point, being the intersection of countably

many events of the form (1.2), is an event. Its probability is no larger than that of

any such . For each and each sample point, there is such an that has probability

2 . Thus, the probability of that sample point is no larger than 2 . Letting

we see that the probability of the sample point is 0. The process of flipping a coin until

the first tails occurs terminates in a finite number of steps with probability 1.

. (i) Sum the answer to Problem 4 over odd positive to obtain .

(ii)

(iii) (Caution: it is common for students to use invalid reasoning in this type of

problem.) We use ‘1’ and ‘0’ to denote heads and tails, respectively. Let denote the

set of finite sequences of 1’s and 0’s terminating with 1, containing no subsequence of

the form (1 0 1) or (1 1 1), and having the additional property that if the length of

is at least two, then the penultimate term in is 0. For each , let be the event

consisting of those infinite sequences that begin with followed by (0 1 1), (0 1 0),

or (1 0 1) in the next three positions, and let be the event consisting of those

that begin with followed by (1 1 1) or (1 1 0) in the next three positions. Note that

each and is a member of . Clearly 2 ( ) = 3 ( ).

Let = and = . Straightforward set-theoretic arguments show

that consists of those in which (1 0 1) occurs before (1 1 1), consists of those

in which (1 1 1) occurs before (1 0 1). By writing and as countable unions

of members of , we have shown that they are events. Note that in each case, these

unions are taken over a family of pairwise disjoint events, from which it follows that

2 ( ) = 2 ( ) = 3 ( ) = 3 ( )

Also, and are clearly disjoint, so

( ) + ( ) = ( ) = 1 ( )

We will show that ( ) = 0, so that the above two equalities become two

equations in the two unknowns ( ) and ( ), the solution of which gives ( ) = .

To show that ( ) = 0 we note that is a subset of the event

consisting of those that begin with a sequence of length 3 having the property that,

for 1 , the sequence (1 1 1) does not occur in positions 3 2, 3 1, 3 . The

number of ways of filling the first 3 positions of with 1’s and 0’s is 2 = 8 . The

number of ways of doing it so as to obtain a member of is 7 (7 choices for positions

1 2 3; 7 choices for positions 4 5 6 and so forth.). Thus, ( ) ( ) = ( ) .

Now let to obtain the desired conclusion, ( ) = 0.

(iv)
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Let denote the Borel -field of , the Borel -field of , and

= :

The goal is to prove = .

We first prove that is a -field of subsets of . Countable unions of members of

are members of and unions of subsets of are subsets of . Hence, is closed

under countable unions. The complement in of a member of equals ,

where denotes the complement in . This set is clearly a subset of and it is also

a member of because it is the intersection of two members of . Therefore, is a

-field.

The open subsets of have the form , where is open in . Such sets, being

subsets of and intersections of two members of , are members of . Thus, the

-field contains the -field generated by the collection of these open subsets—namely

.

To show that we introduce the Borel -field of subsets of ( 0) with the

relative topology and set

= :

We can finish the proof by showing that , because consists of those members

of which are subsets of . It is clear that is closed under countable unions. The

formula

( ) = ( ) (( 0) )

for and ( 0) shows that it is closed under complementation. So is

a -field. For any open set , the representation

= ( ) (( 0) )

represents as the union of open, and therefore Borel, subsets of the spaces and

( 0). Thus, the -field contains the -field generated by the collection of open

subsets of —namely .

It suffices to show that every open set is the union of open boxes having

edges of rational length and centers with rational coordinates.

. Let be a continuous function. For any open of the target of , ( ) is

open by continuity, and thus is an event in the domain of . Now apply Proposition 3

with equal to the collection of open subsets in the target of .

. Let be an arbitrary measurable set in the common target of and . We need

to show that

( : ( ) ) = ( : ( ) )

Here is the relevant calculation:

( : ( ) )

= ( : ( ) ( ) = ( ) ) + ( : ( ) ( ) = ( ) )

= ( : ( ) and ( ) ( ) = ( ) )
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x F x < ω x F x ω Y ω X ω

Y ω X ω Y ω < X ω

x Y ω ,X ω F x ω

X ω F x < ω Y ω Y X

Y

Y Y ω

Y ω ω δ > u > Y ω δ F u < ω

τ < ω F u < τ

Y ω Y τ u > Y ω δ .

δ

In this calculation, we used the fact that the event in the second term of the second

line is contained in a null event. To complete the proof, carry out a similar calculation

with the roles of and reversed.

. By Problem 13 of Chapter 1 and Proposition 3 we only need show that the set

= : ( ) is a Borel set for every (or even just for every rational ). Let

equal the least upper bound of . We will prove that every member of the interval

( ) belongs to . Suppose . Since is the least upper bound of , there

exists for which . Then

( ) ( )

from which it follows that . Thus, is an interval of the form ( ) or

( ] and is, therefore, Borel.

.

. The distribution is uniform on the triangle ( ) : 0 1 . If

is a set for which area is defined, the value that the distribution assigns to is twice

its area, the factor of 2 arising because the triangle has area . To prove that is a

random variable— Prove that is continuous, or, alternatively, avoid the issue

of continuity of a -valued function by first doing Problem 16 and then using it in

conjunction with a proof that each coordinate function is continuous.

. In case is divisible by 4, the answer is

2

4
2

Otherwise, the answer is 0.

. The Hausdorff distances are between the first two; between the first and

third; between the second and third.

. These are the probabilities: , , .

. Fix . Since is increasing, every member of : ( ) is less than every

member of : ( ) and is thus a lower bound of : ( ) . Hence ( ) =

sup : ( ) is a lower bound of : ( ) . Therefore ( ) ( ).

To prove ( ) = ( ), suppose, for a proof by contradiction, that ( ) ( ),

and consider an ( ( ) ( )). Either ( ) contradicting the defining property

of ( ) or ( ) contradicting the defining property of ( ). Thus = , and

we will work with in the next paragraph.

Clearly, is increasing. Thus, to show left continuity we only need show ( )

( ) for every . Let 0. There exists ( ) for which ( ) . Hence

there exists such that ( ) . Therefore

( ) ( ) ( )

Now let 0.
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a b

Q a, b
π x

dx .

a b Q a, b

Q a, b Q a, b a > b <

Q a, b a b

F F

X X F

X F aX b

a b a >

F x P ω aX ω b x P ω X ω x b /a F x b /a .

F F

F F a b a >

X F

aX b F

F F

X b F F x

b F b x x

F x
x

π

x

π
x

π

x

π
F x .

X

x a b aX b x

a, b

a, b

ae dx e

P ω X ω e e

a

g x f x f x x > g x x

. Whether or is finite or infinite,

(( )) =
1

(1 + )

When and are finite this formula is also a formula for ([ ]), and similarly for

([ )) and (( ]) in case or , respectively. Note that the formula

for ([ ]) is correct in the special case = .

. Explanation for ‘type’ only. Suppose first that and are of the same type.

Then there exist random variables and of the same type such that is the

distribution function of . Then is also the distribution function of + for

some and with 0. Thus

( ) = ( : ( ) + ) = ( : ( ) ( ) ) = (( ) )

That is and must satisfy (3.2).

Conversely, suppose that and satisfy (3.2) for some and with 0. Let

be a random variable with distribution function . the above calculation then

shows that + is a random variable whose distribution function is . Therefore

is of the same type as .

. is symmetric about if and only if its distribution function satisfies (

) = 1 (( ) ) for all .

For the standard Cauchy distribution

( ) =
1

2
+

arctan
=

1

2
+

arctan( )

= 1
1

2
+

arctan( )
= 1

1

2
+

arctan(( ) )
= 1 (( ) )

. A random variable having the Cauchy distribution of Problem 8 has density

. For positive and real the continuous density of + is

.

The density of the uniform distribution with support [ ] is on the interval

[ ] and 0 elsewhere.

.

= = 1

( : 2 ( ) 3 ) =

median = log 2

. ( ) = [ ( ) + ( )] if 0 and ( ) = 0 if 0.
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γ u e du u de

γu e du γ γ .

γ

γ γ

γ γ γ γ γ γ .

γ

u e du e dv ,

π

α β u v e dudv

w v v e dw dv

w v v e dv dw

w x x e dx dw ,

b x

P ω X ω x P ω X ω e e ,

G i , , i G y

y < y y <

G y

G y

G y .

. (i)

Γ( + 1) = =

= = Γ( )

(ii) An easy calculation gives Γ(1) = 0!. For an induction proof assume that Γ( ) =

( 1)! for some positive integer . By part (i),

Γ( + 1) = Γ( ) = [( 1)!] = !

Note that the last step in the above calculation is valid for = 1. That this step be

valid is one of the motivations for the definition 0! = 1.

(iii)

Γ( ) = = 2

which, by Example 1 and symmetry, equals . Now use mathematical induction.

(iv)

Γ( )Γ( ) =

= ( )

= ( )

= (1 )

the interchange of order of integration being valid, according to a result from advanced

calculus, because the integrand is continuous and nonnegative. (The validity of the

interchange in integration order is also a consequence of the Fubini Theorem, to be

proved in Chapter 9.) The last expression is the product of the two desired integrals.

. For = 1 and 0,

( : log ( ) ) = ( : ( ) ) = 1

the standard exponential distribution function.

. Denote the three distribution functions by , = 2 3 4. For each , ( ) = 0

when 0 and = 1 when 2. For 0 2:

( ) = 1 1 ;

( ) = arcsin ;

( ) =
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. + (notation of Problem 39 of Chapter 3)

. 7 2

. For this problem, denote the expectation operator according to Definition 1 by

and the expectation operator according to Definition 5 by . Let be nonnegative

and simple. Thus, ( ) and ( ) are meaningful. Since qualifies as an appro-

priate in the definition ( ) = sup ( ), we see that ( ) ( ). On the

other hand, Lemma 4 implies that for all simple , ( ) ( ), from which

it follows immediately that ( ) ( ).

. The random variable defined by ( ) = , defined on the probability

space ((0 1] ), where denotes Lebesgue measure, has expected value . This is

seen by calculating ( ) for simple random variables defined by ( ) =

( ( ) ) .

. We treat the case = = 1. The following calculation based on the definition

of expectation for nonnegative random variables and the linearity of the expectation

for simple random variables shows that ( ) + ( ) ( + ):

( ) + ( )

= sup ( ) : and simple + sup ( ) : and simple

= sup ( ) + ( ): and simple

= sup ( + ): and simple

sup ( ) : + and simple = ( + )

To prove the opposite inequality, let be a simple random variable such that

+ . By the construction given in the proof of Lemma 13 of Chapter 2, we can find

sequences ( : = 1 2 ) and ( : = 1 2 ) of simple random variables such

that for all and all ,

( )
1

2
( ) ( ) and

( )
1

2
( ) ( )

It is easily checked that + 1 2 for max ( ) : Ω . Thus

sup ( ) + sup ( ) ( )

and the desired inequality ( ) + ( ) ( + ) now follows from the definition

of expected value.

. For this problem, denote the expectation operators according to Definition 1,

Definition 5, and Definition 8 by , , and , respectively. Let be simple (but

not necessarily nonnegative). We use (4.1):

=
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Since : 1 is a partition,

=

and

=

For these nonnegative simple random variables we have, using Problem 9, that

( ) = ( ) = ( )

and

( ) = ( ) = ( )

By these formulas and Definition 8,

( ) = ( ) ( ) = ( ) = ( )

. The case where ( ) = + is easily treated, so we assume ( ) is finite and,

therefore, ( : ( ) = ) = 0. Accordingly, except for belonging to some

null set, we may define ( ) = ( ) ( ) and ( ) = ( ) ( ). For in

the null set we set ( ) = ( ) = 0. Applying the Monotone Convergence Theorem

to the sequence ( ), we deduce that ( ) ( ) as . It follows, by

property (iii) of Theorem 9, that

lim ( ) ( )

Since ( ) is finite we may apply property (i) of Theorem 9 to conclude

lim [ ( ) ( )] ( ) ( )

Now add ( ) to both sides.

. ( ) = , ( ) = (notation of Problem 11 of Chapter 3)

( ) = , ( ) = + (notation of Problem 37 of Chapter 3)

The distributions of and are identical. By Theorem 15 they have the

same mean. By properties (i) and (ii) of Theorem 9, these equal numbers are ( )

and ( ). It follows that ( ) = .

. (notation of Example 1 of Chapter 3)

. For standard beta distributions (that is, beta distributions with support [0 1]),

the answer is (notation of Example 3 of Chapter 3).

. ( ) = 1 , (exp ) = if 1 and = if 1

. ( ) = ( ) = , ( ) = , ( ) =
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X X X X

aX b, cY d ac X,Y

ϕ

X E X ϕ X X E X ϕ E X .

X, ϕ X E X E X ϕ X E ϕ X

E X E X ϕ X

E X E X ϕ E X .

E X

n
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Q Q ρ
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/
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s <
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. Var( ) = Var( ) = , Var( ) = , Var( ) =

. Cov( + + ) = Cov( )

. An inequality, based on the fact that is increasing will be useful:

[ ( )] ( ) [ ( )] ( ( ))

The following calculation then completes the proof:

Cov( ) = [ ( )][ ( )]

= [ ( )] ( )

[ ( )] ( ( )) = 0

(A slightly longer, but possibly more transparent proof, consists of first reducing the

problem to the case where ( ) = 0 and then using the above argument for that

special case.)

. For Example 2 of Chapter 4, the answer is 1; for Problem 18 of Chapter 4, the

answer is 0 or 1 according as is odd or even.

. (0 0) = (1 1) = (2 2) = (3 3) = 1, (1 0) = (2 0) = (3 0) = 0, (2 1) =

1, (3 1) = 2, (3 2) = 3, ( ) = 0 for ; (0 0) = (1 1) = (2 2) =

(3 3) = 1, (1 0) = (2 0) = (3 0) = 0, (2 1) = (3 1) = 1, (3 2) = 3,

( ) = 0 for

. (1 ) = 1. Thus, if is the probability generating function of a distribution

, then ( ) = 0. To both show that is a probability generating function and

calculate ( ) for each we rewrite ( ) using partial fractions:

( ) =
24

2
+

8

(2 )
+

24

3
+

16

(3 )
+

8

(3 )

=
12

1 ( 2)
+

2

(1 ( 2))
+

8

1 ( 3)
+

16 9

(1 ( 3))
+

8 27

(1 ( 3))

The first two of the last five functions are equal to their power series for 2 and the

last three for 3. So we can expand in power series and collect coefficients to get a

power series for ( ) that can be differentiated term-by-term to obtain the derivatives

of ( ). Thus, we only need to show that the coefficients are nonnegative in order to

conclude that ( ) is a probability generating function, and then the coefficients are

the values ( ).

Formulas for the geometric series and its derivatives give

( ) = 12 ( ) + 2 ( + 1)( ) + 8 ( )

+ ( + 1)( ) + ( + 1)( + 2)( )
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For Chapter 6
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∞ ∞
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c
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10 SOLUTIONS, ANSWERS, AND HINTS FOR SELECTED PROBLEMS

Q k
k k k

.

ρ s

ρ s
s s s s

ρ s
s s s s s s

.

s

ρ ρ .

ρ

Q

p Q

p < k m <

Q m
m

m

m
p p .

k k Q k

A A

A

A A .

I I I

I I I .

1

2

+3

3 3 2 4

4 3 3 4 2 5

7
2

7
2

37
2

74
4

49
4

25
4

5
2

=1 =

=1 =

=1 =

(lim sup ) lim sup

lim inf

When we collect terms we get nonnegative—in fact, positive—terms, as desired:

( ) =
5

2
+

4 + 60 + 272

3

To get the mean and variance it seems best to work with ( ) in the form originally

given and use the product rule to get the first and second derivatives:

( ) =
16

(2 ) (3 )
+

24

(2 ) (3 )

and

( ) =
48

(2 ) (3 )
+

96

(2 ) (3 )
+

96

(2 ) (3 )

Insertion of 1 for gives

(1) =
7

2
and (1) = 15

Hence, the mean equals and the second moment equals 15 + = . Therefore, the

variance equals = and the standard deviation equals .

Had the problem only been to verify that is a probability generating function, we

could have, while calculating the first and second derivatives, seen that a straightfor-

ward induction proof would show that all derivatives are positive, and an appeal to

Theorem 14 would complete the proof.

. The mean is and thus the variance is undefined. The distribution corre-

sponding to the probability generating function with parameter satisfies ( ) =

1 2 . Also, for 0 = 2 ,

( 2 ) =
2 2 2

1
[ (1 )]

For odd and = 0, ( ) = 0.

. Method 1: Using Problem 4, we get

(lim inf ) =

=

= = lim sup

Method 2: We prove that the indicator functions of the two sets are equal:

= 1 = 1 lim sup

= lim inf (1 ) = lim inf =


