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A straightforward induction proof that

—1\j/2) 2~ \n/2
ota? il n/
jeven

completes the proof. [For n = 0 (the starting value for the induction proof), the left
side equals the probability—namely 1 —that the time of first return to 0 equals some
finite value, and 1 is also the value of the right side when n = 0.]

19-11. 2™ ~0.82

19-27. We need to show that the value of the derivative of the moment generating
function at 0 equals —ab. By definition, the derivative there equals

sinh(av/2u) + sinh(bv/2u) — sinh((a 4 b)v/2u)

7}1{,% usinh((a + b)v/2u)
1 2[sinh(aw) + sinh(bw) — sinh((a + b)w)]
T w0 w? sinh((a + b)w)

Now three applications of the I’Hospital Rule yield the desired result.

For Chapter 20
20-5. E(X)

20-6. Proof of (iv): By the Cauchy-Schwarz Inequality

B(IX = Xo|) = B(X — X,|1) < VE(X - Xa)/E(1?) = \/E((X = X,)?) = 0.
Proof of (iii), using (iv):
limsup E(|X»|) < E(|X]) + limsup E(| X, — X|) = E(|X])
and

E(|X|) < liminf[E(|Xa|) + E(|X — Xnl)]
< liminf E(|X,|) + limsup E(|X — X,|) = liminf E(|X,]|),

from which the desired conclusion follows.

20-15. By the sentence preceding the problem, E(V;) = 0 for each i and E(Z) = E(X).
Hence, E(X — Z) = 0. Our task has become that of showing E((X — Z)Y;) = 0 for
each 7. In view of the fact that each Y; is a linear combination of 1 and the various V;
and that we have already shown that E((X — Z)1) = 0, we can reformulate our task
as that of showing that F(XV;) = E(ZV}) for each j.

From the definition of Z we obtain

E(ZV;) = (X, HE(V;) + i(XM)E(ViVj) = (X, Vj) = E(XVj).

For Chapter 21
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21-3. By Definition 1: Clearly, P(B | G)Ia is a member of L2(Q,G, P). Let Y €
L2(9,G, P). To finish the proof we must show

E([Ians — P(B | G)I4]Y) =0.
That is we must show that
E([Is — P(B|G)][IaY]) =0.

In view of the fact that I4Y is G-measurable, this statement follows from the definition
of P(B | Q).

By Proposition 2: Let X = P(B | G)I4. Condition (i) of Proposition 2 is clearly
satisfied by X. To check condition (ii), let C' € G. Then we must show that

E(XIc)=P(ANnB)NC).
That is, we must show that
E(P(B | G)Ianc) = P(BN(ANCQ)).

In view of the fact that A N C € G, this last statement follows from Proposition 2
applied to P(B | G).

[Comment: Notice the similarity between the two proofs. Proposition 2 says that
the orthogonality condition entailed in Definition 1 need only be checked for indicator
functions of members of G rather than for every member of L2(2, G, P).]

21-5. The right side X of (21.1) is obviously o(C)-measurable. To check the sec-
ond condition in Proposition 2 we only have to consider the four members of o(C).
Obviously E(X1y) =0 = P(ANP). Also,

B(XIe) = %E(Iclc) — P(ANC)
and similarly,
BE(XIee) = %Eu@f@) — P(ANCY).

Finally,
E(XIp)=E(XIc)+ E(XIce)=P(ANC)+ P(ANC)=PANQ).

21-8. (ii)
1 fw +ws+ws+ws=4
% if wr +w2 +ws +ws =2
W~
% ifw +ws+ws+ws=0
l() otherwise
é for the particular given w

(v)
fwi+we+ws+ws=0

otherwise

O =

-

for the particular given w

=
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21-9. The general formula is

1 1 1 1
16> 33N P(AN By s, 54,

i=0 j=0 k=0 1=0

where
Bijri={t: Y1 =2i— 1,902 =25 — 1,903 =2k — 1,¢pa = 21 — 1} .
(i)

1 fwi+wr=2
W~
0 otherwise

0 for the particular given w
(v) same answer as problem 8

21-10. For each positive integer m and almost every w,

P(limsup A, | §)(w) < P( U Ay | g> (w) < Z P(An | G)(w) .

For those w for which the sum on the right is finite, that sum can be made arbitrarily
close to 0 by choosing m sufficiently large (depending on w). For such an w the proba-
bility on the far left must equal 0 since it does not depend on m. This completes the
proof of the first of the two assertions in the problem.

21-12. ¢ ~ Y1
21-13. It is possible that the image of V' is not a measurable subset of W.
21-17. v~ v

21-24. With @ denoting the distribution of Y and é, the delta distribution at z, a
conditional distribution is the function

(w, B) ~ Q([X (w),00))éx () (B) + Q(B N (—00, X (w)) .

(Various functions are presented via this notation: one function of two variables, func-
tions of B for various fixed values of w, and functions of w for various fixed values of
B.)

21-25. With @ denoting any fixed distribution [for instance, the (unconditional) dis-
tribution of X and 6. denoting the delta distribution at ¢, a conditional distribution is
go|X|, where

f(=w) f(w) . _
g(w) = Fl=w)+f(w) b—w + F(—w)+f(w) 6w if f(—w)+ f(w) #0
Q if f(—w)+ f(w) =0.
21-30.
yertmon ifX(W) 2t 2>t
(w,z) ~ me_m/)‘ if X(w)<t,0<z<1t

0 otherwise
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21-34. The density is

d—1

(y — 1 —'~~—:Ed,1)%lflefy :Ezi71
Llyeeo sy Ld—1,Y) ~
( ) I(w) 1SS ven

forx; >0,y >x1 4+ -+ xd—1-
Let Y = X1 + -+ 4+ Xg4. A conditional density of (X1,...,X4—1) given o(Y) is

(w, (:El, . ,:Edfl))

x Td— -1 - T4 i—1
(1 Ty T yd(wl))mi Ty 4 474) ﬁ (Y(w))w
F(ya) [Y ()]
for z; > 0,21 + -+ + xa—1 < Y(w) if Y(w) > 0 and ~~ the unconditional density of

(X1,...,Xa-1) f Y(w) <0. [Note the relationship to the Dirichlet distribution which
is described in an optional section of Chapter 10.]

21-44. Let Q consist of the four points corresponding to two independent fair coins.
Let G denote the o-field generated by the first coin and H the o-field generated by the
second coin. By definition, (G,H) is an independent pair and it is clear that (G, H)
consists of all subsets of 2. Thus, any o-field consisting of subsets of € is a sub-o-field
of o(G, H). Let K be the o-field generated by the event that exactly 1 head is flipped.
Given K the conditional probability of any member of G different from () and Q equals
% as does the conditional of any such member of H. But, there is no event that has
1.1 _1

conditional probability given K equal to 5 - 5 = ;.

For Chapter 22

22-10. If X3 were to exist so that (X1, X2, X3) is exchangeable, then, since X1+ X2 =0
with probability 1, it would follow that X1 + X3 = 0 and X2 + X3 = 0 with probability
1. By solving three equations in three unknowns it would then follow that X1 = 0 with
probability 1, a contradiction.

22-11. Hint: Apply E(P(A | G)) = P(A) for various choices for A.

22-14. uniform on the set of those ([n+3:(w)]/2) sequences of £1’s that contain [n +
Sn(w)]/2 1’s and [n— Sp(w)]/2 —1’s. [Comment: The answer does not depend on p.]

22-16. first term equals 1 with probability fiﬁ conditional distribution of second

term given first term: equals 1 with probability ﬁ}il

1 with probability ﬁgﬂ if first term equals 0. distribution of first two terms: equals

(1,1) with probability % and equals (0,0) with probability %
. . afB

and equals (1,0) and (0, 1) each with probability CEG Tewrmy

if first term equals 1 and equals

22-21. By exchangeability, the correlation of I,,, and I, is the same as that of I; and
I if n # m; of course, it equals 1 if n = m.

The correlation of I; and I» equals m, which approaches 0 as (zo,y0) —
(00, 00) and approaches 1 as ¢ — oo.

For large (zo,yo0) the knowledge of the color of a fixed number ¢ of balls in the urn
hardly influences the probability that a blue ball will be drawn. For large ¢, the second
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ball drawn is very likely to be of the same color as the first ball since after the first ball
is drawn almost all the balls in the urn will have the same color as the first ball.

22-22. Using the fact that Hn ‘;iﬁ =0if0<a<band 0 <c, we have

P[I,=0forn>m]=E(P[l,=0forn>m|o(Xm,Yn)])

o Y + (n—m—1)c
=F
Xm +Ym+(n—m—1)c

n=m-+1

=E0)=0

for each fixed m. Hence

P(liminf{w: I,(w) =0}) =

U ﬂ {w: In(w) —0})

P m{w:In(w)—O}>
:io:o,

from which it follows that the first event in the problem has probability 1. That the
second event given there also has probability 1 follows by applying the result already
proved to the sequence ((1—1,): n =1,2,...), an application which is seen to be valid
by interchanging the colors of the balls.

22-24. 208 S((n - 1), (m — 1))

m(n—1)

For Chapter 23
23-11. Hint: Use Problem 14 of Chapter 5.

23-17. Let w = (0,1], F the Borel o-field, and P Lebesgue measure. Let X, =
nlo,1/n). Then X, (w) — 0 for every w and E(X,) = 1, so the (unconditional) Domi-
nated Convergence Theorem must not apply. Let

Gg=o( ™ 2" Vim=1,2...).

The random variable Y (w) = L dominates every X, and satisfies E(Y | G)(w) =
2" log 2 for 27™ < w < 27 M~V 1In particular E(Y | §)(w) < oo for every w. Hence
the Conditional Dominated Convergence Theorem applies. We conclude that E(X,, |
G)(w) — 0 for almost every w, a fact that we could have also obtained by directly by
observing that E(X, | §)(w) =0 forn > 2.

23-23. Problem 21 of Chapter 21

23-30. ; (for all b), which is larger than %, the (unconditional) expectation. The
following paragraphs present various ways of looking at the situation.

Fix b. If, before the random experiment begins, it is understood that one will be told
whether or not b is between X and Y, one will clearly want to assign a larger value to

the expectation of Y — X in case b is between X and Y and a smaller value otherwise.
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1

An appropriate weighted average of these two numbers equals 3,

first of these two numbers is larger than %
Knowing that exactly one of two order statistics from the uniform distribution on

so, as expected, the

(0,1) is larger than b gives no reason for biasing one’s estimate for it among the various
values larger than b. Thus, the conditional mean of its excess over b is half the distance
1>t. Similarly the conditional mean of the difference between
b and the smaller of the two order statistics is g. The sum of these two conditional
%, independently of b.

Here is a second method of getting an intuitive feel for the value % Fix the number b.
Pick three iid points Z1, Z2, and Z3 on a circle of circumference 1. Cut the circle at Z;

in order to straighten it into a unit interval with the counterclockwise direction on the

from b to 1 —namely,

expectations is

circle corresponding locally to the direction of increase on the unit interval. Then set
the smaller of Z> and Z3 equal to X and the larger equal to Y. The condition that b be
between X and Y is the condition that as one traverses the circle counterclockwise the
contacts with either Z> or Z3 alternate with the contacts with either Z; or b. Among
such possible arrangements, there is probability % that b lies in the long interval and

Z1 in the short interval determined by Z2 and Z3 and probability % that the opposite

relations hold. So the average length of the interval in which b lies is %

23-33. By Problem 27 and Proposition 6, there exist choices of E(X1Ig | H) and
E(X~Ip | H) such that

E(BE(X" | G)Is | H)(w) = E(BE(X "5 | G) | H)(w) = E(X 15 | H)(w)
and

E(E(X™ [9)p | H)(w) = E(E(X I |9) | H)(w) = BE(X " Ip | H)(w)
for every sample point w. Subtraction gives

E(BE(X" | G)Is | H)(w) — E(E(X™ | G)Is | H)(w)

(7.9) =E(XIp | H)(w)

for every w for which the right side of (7.9) [that is, the right side of (23.9)] exists. At
such an w at least one of the two terms on the left side is finite.
We will focus on

AL B(E(XT | G)Is | H)(w) < oo}
For each w € A,
/ z Z(w,dz) < oo,
[0,00]

where Z is the conditional distribution of E(X™ | G)I5. So E(Z(-,{o0})I4) = 0. From
the definition of conditional probability we then obtain

P({w: [B(XT | G)Ip](w) =00} N A) =0.
Therefore the left side of (7.9) can be rewritten as

(7.10) E([E(X"G6)—E(X™ | 9)ls | H)(w)
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for almost every w for which the right side of (7.9) is less than co. Similarly, this can
be done for almost every w for which the right side of (7.10) is greater than —oo, in
particular for almost every w for which the right side of (7.9) equals oco.

The upshot is that for almost every w for which the right side of (7.9) exists, the
left side of (7.9) can be rewritten as (7.10) in which the inside difference between two
conditional expectations is not of the form oo — co. Therefore linearity of conditional
expectation may be used to complete the proof.

23-42. Hint: Apply the Conditional Chebyshev Inequality and then take (uncondi-

tional) expectations of both sides.

For Chapter 24

24-2. The ‘if’ part is obvious. For the proof of ‘only if’ fix n. The inequality in the
problem is obviously true with equality in case m = 0 and it is true by definition if
m = 1. To complete an inductive proof, let m > 1 and assume that

E(Xan(mfl) | fn) > X, a.s.
Since F,, C _7—'n+<m,1)7

E(Xn+m | -7:11) (E(Xn+m | fn+(m71)) | ‘7:”)

=F
> E(Xnpm-1) | Fn) = X, as.

24-8. We treat the real and imaginary parts simultaneously. Let F, = o(So,...,Sn)

and denote the steps of the random walk by X1, Xo,.... Then
1 Sy _tuXy
E(Yn+1 |-7:n): WE(Q e +1 |fn)
1 iuSy uXy,
= e B F)
_ 1 eiuSn _ Yn )

(p(w))"

[Remark: We have proved that the real and imaginary parts of (Yn.: n = 0,1,...)
are martingales with respect to the minimal filtration for the random walk, which may
possibly contain larger o-fields than the corresponding o-fields in the minimal filtration
for the sequence (Y3).]

24-10. Proof of uniqueness: Suppose that conditions (i)-(iv) of the proposition hold
as stated and that they also hold with some sequences Z and U in place of Y and V,
respectively. By subtraction

I —Yn=Vo, —U,.
Thus Z, — Y, is Fn—1-measurable, and, hence,
Zn—Yn =E((Zn—Yn) | Fac1) = Zn1— Y 1.

This fact combined with Zy — Yo = 0, a consequence of Uy = Vy = 0, gives Z,, = Ya,
and therefore U,, = V,, for every n.
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24-11. Let F, = (S0, ..., Sn). Then
E((Si11 = 82) | Fu) = E((Snt1 = Sa)® | Fu) +2E((Sn41 = Sn)Sn | Fn)
>0+ 28, E((Snt1 — Sn) | Fn) =0,
as desired. [Remark: See the remark in the solution of Problem 8.] V;, = nVar(S1).
24-20. Hint: | X, I = Xnlron < Xolgpsn < Xr
24-23. Hint: Use two relevant previous results; do not do any hard work.

24-26. The sequence (X, : n > 0), being uniformly bounded, is uniformly integrable.
By Theorem 12 and the Optional Sampling Theorem, E(Xr) < E(Xo) = fo; Clearly
E(Xr) > g P[X1 = g]. Hence fo > g P[X1 = g], as desired.

24-33.
E([St, — iTn)?) = Var(S1)E(T) =27 ' [1 - 27" /27" = E([Sr — 3T]°)
Var(St,,) = 27"[1—27"] \, 0 = Var(Sr)
E(Var(Sr, | Tn)) =2 " N 0 = B(Var(Sr | T))

For n > 1, Var(St, ) < E(S1)E(T%), thus highlighting the importance of the assump-
tion in Theorem 15 of mean 0 for the steps.

24-41. Suppose that X is a uniformly integrable martingale. By the theorem it has
an almost sure limit Y = X, such that (X,: n € Z+) is both a submartingale and
a supermartingale—that is, a martingale. Hence E(Y | F,) = X,. Moreover, Y is
Foo-measurable, so E(Y | Foo) =Y.

For the converse, suppose that Y has finite expectation and

X, = E(Y | Fa)

for each n € Z*. Take expectations of both sides to obtain E(X,) = E(Y), which is
finite. For k < n,

E(Xn | Fx) =E(E(Y | Fa) | Fx) = E(Y | Fr) = Xx.

Therefore with Xoo =Y, (Xn:n € Z+) is a martingale with respect to the filtration
(Gn:m € Z+), where G,, = F,, for n < oo and

Goo = (Y, Foo) .

To prove that {X,: n € Z1} is uniformly integrable we let A, , = [|X,| > r] and
note that, for any m > 0,

E(IXul; Anr) = E(IE(Y | Fo)l; Anr) < E(E(Y] | Fn); An.y)
= E(|Y|; Anyr) SmP(Any) + E(Y]; [[Y] > m]).

Since, by dominated convergence, the second term approaches 0 as m — oo, we can
finish the proof of uniform integrability by showing that P(Bn,r) + P(Chn,») — 0 as
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r — oo uniformly in n, where Bn,» = [X, > r] and Cpn,» = [Xn < —7]. That this is so
follows from

P(Buy) < 2E(Xu: Buy) = 2E(Y; Buy) < 2E(Y)),
T T T

1 1 1
P(Cor) € T B(Xo; Cu) = = B(Y; Coy) < SE(Y]),
and the observation that F(|Y]) is a finite number independent of r and n. From the
theorem (X1, X2,...) has an Ly and a.s. limit Z that is Foo measurable.
To prove that Z = E(Y | Fo) we only need show that E((Z—Y); D) = 0 for every

D e Fs. For D € F,, we have

E(Z-Y); D)=E(E(Z-Y); D|F.))
=E(IpE(Z-Y) | Fa)) = E((Ip(Xn — Xa)) =0,

where I'p denotes the indicator function of D. Thus the desired equality is true for all
D € U;ZyFn, a collection that is closed under finite intersections, contains the entire
probability space €2, and generates Fo. By linearity of expectation the set of D for
which E((Y — Z); D) =0 is closed under proper differences, and, since Y and Z both
have means, dominated convergence shows that it is closed under monotone limits. An
appeal to the Sierpinski Class Theorem completes the proof.

24-42. The martingale (V;,: n € Z ™), being bounded, is obviously uniformly integrable.
Hence, lim V,, exists; call this limiting proportion of blue balls V. From the fact that
the martingale property is preserved when Va, is adjoined to the sequence (V,: n € Z™1),
we conclude that the expected limiting proportion of blue balls conditioned on the
contents of the urn at any particular time is the proportion of blue balls in the urn at
that time.

24-45. Let Y be a (—oo,0]-valued random variable for which E(Y) = —oco. Let
Xn =Y V (—n). Then X, (w) — Y (w) for every w. For n =0,1,2,..., let G, = o(Y).
Then (Gn:n = 0,1,2,...) is a reverse filtration to which (X,:n = 0,1,2,...) is
adapted. Clearly E(X,) > —oo for every n. The inequality

E(Xn | gn+1) = Xn 2 Xn+1

shows that (Xo, X1,...) is a reverse submartingale.

For Chapter 25

25-1. Define a random sequence T by 7o = 0 and (25.1). Fix a finite sequence
(z1,...,Zr+s) such that z, = 1 and let p denote the number of 1’s in this sequence.
Define a finite sequence (o, t1,...,tp) by to = 0 and

ty = inf{m >th_1: Tm = 1} .
Then the probability on the left side of (25.2) equals

P[Tk—Tk_lztk—tk_l for1<k<p

7.11
(7.11) and Tpy1 —Tp > 1+ s —tp],
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and, since ¢ty = r for some k, the probability on the right side of (25.2) equals

P[Tk — Tx—1 =ty — tx—1 for k for which tx < 7”]
. P[Tk — Ti—1 = tr — tx—1 for k < p for which tx > r
and Tpy1 —Tp > 1+ s —tp).

If T is a random walk, then this product equals (7.11), and so (25.2) holds.
For the converse assume that (25.2) holds. Hint: To prove that T is a random walk
use Proposition 3 of Chapter 11.

25-5. Since the measure generating function of R** is o* we have

Z U{n}s" = Z Z R*{n}s" = Z Z R*{n}s"
n=0 n=0 k=0 k=0 n=0

oo . B 1

for0 <s< 1.

25-8. The function s ~ 14 s?/4(1 — s) is the measure generating function of the given
sequence. Setting this function equal to 1/(1 —¢) gives the formula o(s) = s*(2 —s) 2.
To show that the given sequence is a potential sequence, we only need show that ¢ as
just calculated is the measure generating function of some probability distribution on
zZ" \ {0}. We will do this by expanding in a power series and checking that all the
coefficients are positive, that the coefficient of s is 0, and that ¢(1—) < 1. Provided
that all the checks are affirmative we will at the same time get a formula for the waiting
time distribution R.

Clearly ¢(1—) = 1, so if it develops that there is a corresponding waiting time
distribution R, then R{co} = 0. By the Binomial Theorem,

Therefore R{n} = (n —1)27" forn =1,2,3,....

25-14. Hint: Problem 13 may be useful.

25-15. (ii). yes; U{0} =1, U{1} = p, U{n} = p? for n > 2; R{co} =0,
AT — A\ ATt nt
T el -p) T,

Ay — Ao A — Ao

where A+ = 1 [1 —pt/(1-p)(Q+ 3p)] (It may be of some interest that each R{n}

is a polynomial function of p.)

(v) no, unless p = 3

R{n} =p
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(vii) yes; U{0} =1, U{n} = 0 for n odd, U{n} = (’;7;) [p(1 — p)]™/? for n > 2 and

even; measure generating function of U:

s 1+ Z (%k 1) (1 —p)*s™ = + % > (2/2> [~4p(1 — p)s°]"

[1+ (1—4p(1 = p)s*)*];

measure generating function of R:

1-2p(1—p)s* = (1—dp(1-p)s*)"" &
o 2p(1 — p)s? =22

R{n} = 0for n odd, R{n} = %4—2( " )[p(lfp)]”/2 for n even, R{co} = 122=1L [Notice

n/2 pV(1—p)
that the coefficient %4—2 (n’;z) in the formula for R{n}, n even, is the (n/2)"® Catalan
number.]

25-20. for B a set of consecutive integers, P(N(B) > 0) = 1 — p*Z, in notation of
Problem 12

2
25-29. %ﬁf‘_l), where 4 is mean and o (possibly co) is variance

25-36. R{n} = ;2 (*)4™", U{n} = (*")4™"

2n—1\n

25-39. The solution of Problem 28 of Chapter 11 gives the measure generating function
of the waiting time distribution for strict ascending ladder times:

o (s) = 1—4/1—4p(1—p)s? .
2(1—p)s
The measure generating function of the waiting time distribution for weak descending

ladder times can then be obtained from Theorem 22:

_ 1+2(1 —p)s — /1 —4p(1 — p)s?
@ (s) = 5 -

It is straightforward to use the Binomial Theorem to obtain the waiting time distribu-
tions and potential measures corresponding to these two measure generating functions.

The other two types of ladder times can be treated by interchanging p and 1 — p.

For Chapter 26
26-5.

@Qn+1(B) = P[Xn11 € B = E(P([Xyy1 € B] | Fu))

= B (B) = [ 1(B)Qu () = @.T)(B)

E(f o Xuir | F) = / F@)iix, (dy) = (TF) 0 X



