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(vii) yes; U{0} =1, U{n} = 0 for n odd, U{n} = (’;7;) [p(1 — p)]™/? for n > 2 and

even; measure generating function of U:

s 1+ Z (%k 1) (1 —p)*s™ = + % > (2/2> [~4p(1 — p)s°]"

[1+ (1—4p(1 = p)s*)*];

measure generating function of R:

1-2p(1—p)s* = (1—dp(1-p)s*)"" &
o 2p(1 — p)s? =22

R{n} = 0for n odd, R{n} = %4—2( " )[p(lfp)]”/2 for n even, R{co} = 122=1L [Notice

n/2 pV(1—p)
that the coefficient %4—2 (n’;z) in the formula for R{n}, n even, is the (n/2)"® Catalan
number.]

25-20. for B a set of consecutive integers, P(N(B) > 0) = 1 — p*Z, in notation of
Problem 12

2
25-29. %ﬁf‘_l), where 4 is mean and o (possibly co) is variance

25-36. R{n} = ;2 (*)4™", U{n} = (*")4™"

2n—1\n

25-39. The solution of Problem 28 of Chapter 11 gives the measure generating function
of the waiting time distribution for strict ascending ladder times:

o (s) = 1—4/1—4p(1—p)s? .
2(1—p)s
The measure generating function of the waiting time distribution for weak descending

ladder times can then be obtained from Theorem 22:

_ 1+2(1 —p)s — /1 —4p(1 — p)s?
@ (s) = 5 -

It is straightforward to use the Binomial Theorem to obtain the waiting time distribu-
tions and potential measures corresponding to these two measure generating functions.

The other two types of ladder times can be treated by interchanging p and 1 — p.

For Chapter 26
26-5.

@Qn+1(B) = P[Xn11 € B = E(P([Xyy1 € B] | Fu))

= B (B) = [ 1(B)Qu () = @.T)(B)

E(f o Xuir | F) = / F@)iix, (dy) = (TF) 0 X
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26-19. Let f be the identity function on [0,1]. Clearly f is bounded and measurable.
By Theorem 6, Y is a martingale where

n—1

Y, :Xn—Z(Gf)oXk.

k=0

Solving for X, gives a representation for X in terms of the martingale Y and a previsible
sequence having the value 0 when n = 0. To show that this sequence is increasing,
as required for a Doob decomposition, we only need show that Gf is a nonnegative
function when f is the identity function. The following calculation does this:

Gf(z)=Tf(x) —x=E*(X1) -z >0,
the last equality using the fact that X is a submartingale.

2

26-29. Hint: Reminder: There is one value of x that is not required to satisfy the
difference equation.

26-31. x~e 'y 7 L

26-39. Denote the two states by « and y. By the last part of Problem 38, if one of the
two states is transient so is the other. Now suppose that y is null recurrent; our goal
is to show that x is not positive recurrent.

By the Renewal Theorem the sequence of entries of 7" in position y along the main
diagonal converges to 0 as n — co. We will complete the proof by finding an integer
k and a positive constant ¢ such that the entry in position y along the main diagonal
in 7™ is larger than c times the entry in position z along the main diagonal in T7*
for all n > k, for then it will follow that the sequence of entries in 7"~ % in position z
along the main diagonal will converge to 0 as n — oo, implying that x is not positive
recurrent.

One way to start at y and to then be there again at time n is to first be at state x
at some time r, then be at x again at some time n — k + r, and then be at state y at
time n. By first choosing r and then k appropriately one can make the product of the
probabilities of the first and third of these three tasks a positive constant c.

We omit the part of the solution treating the periodicity issue.

26-43. Suppose that, for some k, all entries of T% are positive. For any states x
and y there is positive probability of being at y at time k if the starting state is z.
Hence, 7z, > 0. Therefore, T is irreducible. Clearly, 7T* = T™%* has only positive
entries for all nonnegative integers m, and thus 1 is the greatest common divisor of the
powers of T for which the upper left entry (or any other diagonal entry) is positive.
Aperiodicity follows.

For the converse suppose that T is irreducible and aperiodic. The sequence of num-
bers in a fixed diagonal position of T°, 7%, T2, ... is an aperiodic potential sequence,
which, by Lemma 18 of Chapter 25, contains only finitely many zero terms. Thus,
there exists an integer m such that all diagonal entries of T™ are positive. Hence, all
diagonal entries of T™ are positive for n > m. Since T is irreducible, there is, for each
x and y, an integer k., such that the entry in row x and column y of T%=¥ is positive.
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Let k = m 4 max{k.,}. Since 7% can be obtained by multiplying 7%=¥ by a power of
T at least as large as m, the entry in row & and column y of T* is positive. Thus, all
entries of T" are positive, as desired.

26-52. starting state of interest denoted by 0; probabilities of absorption at the ab-
sorbing states —2 and —1, respectively:

> 92k—1 > 22k
kz—o (3 - 22k—1 1)(3- 22k 1) and Z - 22k 3 - 22k+1 1)

probability of no absorption: 1/3

26-55. We can introduce infinitely many extra transient states in order to obtain a
birth-death sequence. The transition distributions u, are given by

uz{x—l}:%/\l

pef{x+1} = b;x\/().

From Problem 54 we see the relevance of the following product:

x

H b=zt1 v/ _ (b) .
b A1 T

The number r as defined in Problem 54 can now be calculated:

£0)-20)-

The equilibrium distribution @ for the Ehrenfest urn sequence is given by

Q{x}—;(z), 0<z<b.

For Chapter 27
27-2. u denotes De Finetti measure; for i = 1,2,3, pu{y:} =
yi{6 —i} = 3

27-4. De Finetti measure equals delta measure at uniform distribution on {z € Z: 1 <
x <12}

1 —
3, where y; {1} =

27-6. Yes. By letting p; equal the value assigned to the one-point set {i} by a proba-
bility measure on {1, 2, 3,4}, the probability measure itself is represented by an ordered
4-tuple (p1,p2,ps,ps) The De Finetti measure assigns probability

=13 t0 (1,0,0,0) and to each of the other 3 permutations thereof;

5 to (3, i 0,0) and to each of the other 11 permutations thereof;

155 to (3,3, 1,0) and to each of the other 11 permutations thereof;

555 t0 (3, 3,0,0) and to each of the other 5 permutations thereof;
o1 o (5o i)
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27-10. p denotes De Finetti measure; u{m/n} = P[Z1 + -+ + Z, = m].

27-15. P[X1 = X5 = 1] = P[X1 = X5 = 0] = 2=
P[X;=—-Xo=1=P[X; =—-Xo=—-1] =

12(:71)

27-31. a+ the numbers of 1’s, 8 + the number of 0’s

27-32. conditional distribution of (Y, X;m41, Xm+2) has density with respect to p x
v X 7, where v denotes counting measure on {0, 1}; density is

p(X1+~~+Xm+21+Zz) (1 _ p)(m+2)7(X1+--~+Xm+21+22) .

f[O,l] (X1t +Xm) (1 — ;p)m—(X1+"~+Xm) H(dx) ’

(p7 21722) ~

integration in p and 22 gives conditional density with respect to v of Xy 41:

Sy PXTH A (1 p)(mAD=Caat Xm 21 )

Z1 ~=
Sy wXH ) (1L — )= (Xat4Xm) pu(dr)

multiplication by z1 and integration in z; give the conditional expectation of Xp,11:

Jigy PP (1 T Gt )y (dp)

f[o’l] Xt F+Xm) (1 — g)m—a++Xm) y(dx)

which equals
X1+ + X +1
m+ 2

in case p is the standard uniform distribution.

27-39. density of each of X; and Xo: = ~~ %e‘z + ie‘z/z; density of (X1, X2):
(z1,22) ~ i(e‘zl_”/z + 6_12_11/2); De Finetti measure assigns probability 1 to the
set of uniform two-point distributions, the density of the two points being {y1,y2} ~
%(6—91—92/2 + e—yz—yl/?)7 0<y1 <yo.

27-47. conditional distribution of reciprocal of mean of Y given (X1, ..., X, ) is gamma
with main parameter m + 1 and scaling parameter 1 + Z;n:l X;

27-52. The stick-breaking random walk breaks a stick into random pieces in such a
way that, say, the sizes of the first three pieces determines how much of the stick is left
for pieces 4, 5, ..., to share but gives no information about the relative sizes of these
pieces. Certain information about (Xi,..., X,») might, for example, give information
about the sizes of pieces 1, 2, and 3, without giving information about the relative sizes
of the remaining pieces. (Comment: The authors of this book find this explanation to
be neither complete nor satisfactory, but it is the best that they could do.)

27-55. The formula is trivial when k = 0; it is 1 = 1/1. Assume it is true for k and
multiply both sides by
C+ Vappy
d )
k+ Zi:l Vi

where ¢ equals the number of z;, j < k, for which z; = zx41. The result follows.

P[X}H_l = Tk+1 | X1 ::El,...,Xk ::Ek] =
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For Chapter 28
28-4. It suffices to prove that

P[(Xm7Xm+k7 s 7Xm+(d71)k) S A]

7.12
( ) = P[(Xm+k,Xm+2k,...,Xm+dk) S A]

for every positive integer d and every Borel set A C ¥¢, where ¥ denotes the common
target of the X;. Set

€ grt@-Dk+L, (

B = {(96079017 cee 7:17m+(d—1)k) Tmy Tmtky .- 7:17m+(d—1)k) S A}-

Then the left side of (7.12) equals

P[(Xo0,X1,..., Xpya-1)x) € Bl
and the right side equals

P[( Xk, Xkt1,- - Xmtar) € B].
These are equal by Problem 3.

28-6. Hint: From the given sequence obtain the desired joint distributions of every finite
set of random variables. Use this information to construct a sequence (Yo, Y-1,Y_2,...)
using Theorem 3 of Chapter 22. Then treat (..., Y_2,Y_1,Y)) as a single random object
and use it as the first member of a random sequence to be constructed using Theorem 3
of Chapter 22 again, with the next members being Y1, Ya,. ...

28-21. Let A be an set for which R(A) # S(A). By Problem 18,
(Ia,IaoT, IAOTQ, o)

is ergodic. By the Birkhoff Ergodic Theorem the sequence
1 n—1
(*ZIAOT]CZ n:1,2,...)
n
k=0

converges to R(A) with R-probability 1 and also to S(A) with S-probability 1. Since
S(A) # R(A), these two events are disjoint, and thus the mutual singularity is estab-
lished.

28-23. Suppose first that a is rational, say p/q in lowest terms with ¢ positive. Then

the following set is easily seen to be shift-invariant and have Lebesgue measure %:

{fzel0,):zelf, 2’;1'1) for some p}.

Now suppose that a is irrational. Rotation through angle 27a generates a shift
transformation on [0,1)°°. It is clear that any shift-invariant distribution is determined
by the initial distribution on [0, 1), but it may be that some choices for that distribution
do not yield a shift-invariant measure on [0,1)*°. In fact, we will prove that the only
initial distribution that does yield a shift-invariant measure on [0,1)° is Lebesgue
measure.

For every n € Z" and ‘left-closed, right-open subinterval’ J of [0,1), possibly with
‘wrap-around’; any shift-invariant measure assigns the same value to J and the interval
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Jnae obtained by adding na to each endpoint of J mod n. For any left-closed, right-
open interval K having the same length as J, a sequence (nx € Z1: k=1,2,...) can
be chosen so that

K= 1lim Ju,q.

k—oo
Hence all open intervals having the same length have the same measure, and there-
fore the only initial distribution that yields a shift-invariant distribution is Lebesgue
measure.

Since there is only one shift-invariant distribution, that distribution is extremal
and by Theorem 4, therefore ergodic. The Weyl Equidistribution Theorem is then an
immediate consequence of the Birkhoff Ergodic Theorem.

28-25. Q{i}T(i, 5)

28-28. Suppose that X is strongly mixing and consider any A € 7. For each n there
exists By such that A =7""(By). As n — oo,

Q(A) = [QUA)?| = |Q(AN T (By)) = Q(A)Q(r™"(Bn))|
= |QANT"(Bn)) - Q(A)Q(By)| — 0.

Therefore Q(A), being a solution of ’Q(A) - [Q(A)ﬂ =0, equals 0 or 1, as desired.
For the converse we assume that 7 is 0-1 trivial and fix a member A of H. Then
for all B € H and all positive integers n,

|QANT(B) = QA)Q(B)| = |Eq (Ial,—n(5) — QA L —n(s)) |
= ’EQ([Q(A | Hn) — Q(A)] Iffn(B))’
(7.13) < Eq(|QA | Ha) —Q(A)])
where Fg denotes expectation based on the distribution ¢ and
Hn={r""(C): C € H}.

To finish the proof we only need show that (7.13) approaches 0 as n — oo, the unifor-
mity in B resulting from the fact that (7.13) does not depend on B. By the Bounded
Convergence Theorem, we only need show

lim [Q(A | Ha) — Q(A)] =0.

n— oo

By the Reverse Martingale Convergence Theorem, this limit does exist and equals
Q(A | T) — Q(A), a random variable which has mean 0 and which, since 7 is 0-1
trivial, is a.s. constant. Therefore it must equal 0 a.s. as desired.

28-30. For each positive integer [, we say that a path (xo,...,zn) is l-restricted if every
point on the path lies between the vertical line through the point zo — ({,0) and the
vertical line through the point z,+(I,0). Define a collection of random variables (Zﬁ) n)
in terms of [-restricted paths in a manner that is analogous to the way in which the
collection (Zp, ) was defined. It is easy to use the independe?ce of the random variables

(T,,y) to see that for positive integers k, [, the sequence (Zr(le,(n-&-l)k: n=1,23,...)1s

mixing (in fact strongly mixing). It is also easy to see that for each fixed k,

; ) _ —
llingo P[an,(n+1)k = Znk,(n+1k] = 1,
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uniformly in n. We leave it to the reader to conclude from this last fact that the se-
quence (Zpg (nt1)e: m =1,2,3,...) is mixing (and hence ergodic) for each k.

28-45. Let X denote a stationary Gaussian sequence with correlation function (m,n) ~
p'™~ " The result is obvious if p = £1, so we assume |p| < 1. Following the hint, the
conditional distribution of X, given (Xo, X1,...,Xn—1) is Gaussian with a constant
variance and mean

1 p Pt Xn—1

n—2
P 1 P Xn_2

(7.14) (p P2 p”) : .
pn—l pn—2 1 XO

Since the first matrix is a row matrix that is a multiple of the first column of the matrix
whose inverse is in the formula, the matrix product (7.14) is some multiple of X,_1,
and this is all that is needed to show that X is Markov.

For Chapter 29

29-5. Let 7 =) 7" 7;.

P[X{l}:k]z(kl)((rvs_—ﬁ)
PIX{1} =k, X{2} =1 = () () (527)

()

PIX{1) = b, (2} = 1, x{3) = m] = () (DG CLEE)

()

29-8. P[X(B) = z] = #B-"#B 2 (") ' < z < r. Thus the distribution of X (B)

is binomial with parameters #2

n

and r.

29-13. Let (Vn: n > 0) be a renewal sequence. Define a random measure X on ZT by
X{n} =V,. Clearly X is a point process and its intensity measure equals the potential
measure of the renewal sequence.

29-18. We use the formula for the probability that a Poisson random variable equals
0. For v > 0,
PV >v] =P[X({0,1,...,v—1})=0]=¢"".

Then
PV =0v]=P[V>0v]-PV>w+1)]=e"—e @ =(1-c1e".

29-23. Write

Yu{o}={0=Yo<Yi<Ya<...},
and let (Sp = 0,51,S52,...) be a random walk having exponentially distributed steps
with mean ¢~ !. For an arbitrary positive integer n we will show that (Y1,...,Y,) and
(S1,...,5n) have the same distribution, thereby finishing the proof. We will verify that
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the distribution of each of these random vectors has the same density with respect to
n-dimensional Lebesgue measure—namely,

c"e” Y H0<yr < < yYn
0 otherwise .

To check that this is the correct density for (Y1,...,Y,) we integrate it over a set of
the form H?zl[ui,vi), where

O=v<uw <vi<uz < <uUp <vp=00.

We get
n—1 n—1
o Ctm HC D= i) = (HC = ui)e —C(vl—u1)> (H —(ui—vi1)>
i=1 i=1 i=1
n—1
(HP #(Y 0 [ui, v:)) 1) (HP #(Y N [vio1, ui)) —0]>
i=1
PlY; € [us,v;) for 1 <i <n],
as desired.
We know that the density of ((S1 —So), (S2 —S1), ..., (Sn —S1)) is

n —cxT; .
- ce " ifeach x; >0
(1, Tn) ~ Hl:l ! e
0 otherwise .

We can get the density of (S1,...,S») by using the linear transformation yr = x1 +
-+ x, 1 <k <n, the Jacobian of which equals 1. The result is the desired density
(7.15).

29-24. Hint: One approach is to start with sequences U and V having the desired
properties and then use Problem 23 to show that {(Un,Vy): n=1,2,...} is a Poisson
point process with intensity measure A X p.

29-26. ¢ °
29-29. T,
29-34. Ly (i) for r =15 b~ L[S0 [0(&)] T [T, h(j) for r =n —1
29-39. h ~~ exp(f Z¢€W(1 — h(z/;))), where VU is the countable set

29-43. The probability generating functional of X 4+ Y is

h o~ E(H[h(w)](x+y)({¢})) — E(H[h(iﬁ)]x(w})[h(zp)]y({’”}))
AS

YET
E( [H [h(w)]X(w})} [H [h(qp)]Y(W})} )

Pew Ppew

B [T ) o T] mw ),

pew PET
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which is the product of the probability generating functionals of X and Y.

29-50. Suppose that X, P X asn — oo; that is, Q. — @, where @, and ) denote
the distributions of X,, and X, respectively. Let h be in the domain of the probability
generating functional of @ (and thus of each Q). Assume first that h is bounded below
by a positive constant. Then the function

T~ /log(l/h) dm

is continuous, and thus the same is true for the function
(7.16) 7 e J 08O/ A

For this latter function it is straightforward to remove the assumption that h be
bounded below by a positive constant (of course, using the conventions oo -0 = 0
and e”*° = 0). That

/e—flog(l/h) dr dQn — /e—flog(l/h) dr dQ

follows from the continuity of the function (7.16). That the limiting probability gener-
ating functional has the property described in the theorem is a consequence of Propo-
sition 16 which says that all probability generating functionals have a more general
property.

For the converse suppose that § is the limit of a sequence of probability generating
functionals corresponding to a sequence (Qn: n = 1,2,...) of distributions of point
processes in a locally compact Polish space W, and that § satisfies the condition in
the theorem. Let C' be any compact subset of ¥. By using Lemma 1 one can show
that there exists a compact set B such that every point of C' is an interior point of B
and that therefore there exists a continuous [(1 — X), 1]-valued function h, such that
hm(¥) =1— L for ¢ € C and hm (¢) =1 for ¢ € B

Let € > 0 Since §(hm) — 1 as m — oo, we can fix m so that for all n

QuiminC) <2} 2 | [T 1D Quam)

{r: m@)<2) )
>1-5- / [ ()7 Qu ()
{m: n(C)>z} ¥

>1-5—(1- 1),

which is larger than 1 — ¢ for sufficiently large z. By Theorem 19, every subsequence
of (Q») has a convergent subsequence. By the first paragraph of this proof, § is
the probability generating functional of every subsequential limit. By Theorem 14 all
subsequential limits are identical. Therefore, the sequence (@) itself converges to a
limit whose probability generating functional is §.

For Chapter 30

30-1. Ij24(1/n),00) Tight-continuous; pointwise limit I(3 o) not right-continuous at 2.
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30-10. The moment generating function is

. E(eiuyt) _ E(exp(—u Z xX((O,t] X {:c})))

z€[0,00]
(7.17) _E< H [euz]X{(S,z)}> ]
s€(0,t]
z€[0,00]

uzT

For calculating (7.17), we may replace (0,¢] by [0,¢] . The function (s,z) ~+ e “ is
a continuous function on the compact set [0,t] x [0, 00], taking the value 0 at (s, 00)
if u > 0 and the value 1 there if u = 0. Therefore we may apply Proposition 15 of
Chapter 29 to conclude that (7.17) equals

exp (- /[ PR IS Qs )

= exp(fmf /[O’Oo](l —e ") Q(dx)) .

We could have treated the problem as a single-variable problem by working with
the Poisson point process X, the restriction of X to (0,¢] x [0, 00].

In view of Remark 1, @ might be a probability measure on (0, 0c], which is not
compact. We could handle this setting, by adjoining 0 to (0, o] and specifying Q{0} =
0, or by approximating x ~ e~ “* by continuous functions that equal 1 for small x.

It is not possible to treat characteristic functions by adjoining oo to R in order
to obtain compactness, because one will then lose continuity. Approximation of the
functions  ~ €**® by functions that are continuous everywhere and constant for large
z is a method that works. By then going to the limit one obtains the characteristic

function of Y;:
U~ exp(fﬁt/ (1—e™7) Q(dx)) .
[0,00]

30-13. 1 — ¢ty
30-16. Set
R,(B) = R({v € D*[0,1]: yv € B}),
and let 0 =ty <t1 <tz <--- <tq=1. The proof relies on showing that
PlZsy, — Zy, , <b; for 1 <13 <d]
7.18 ~
(7.18) = / R,({z € DT[0,1]: 20, — 21, , <bi for 1 <i<d})ae ¥ dy
(0,00)

for positive numbers b;.
The left side of (7.18) equals

d b; a(fi—ti—l) 0'(ti—ti,1)—1 o—ab;
I/ |
! 0 Tt —tiz1)

d b; 9'(75«;—751'—1)—1 e—abi
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The right side of (7.18) equals
=~ bz —a
/ R({v e DV[0,1]: vy, — vy, , < — for 1 <i < d})ae” Y dy.
Y
0

From Problem 15, we can rewrite this expression in terms of a Dirichlet distribution:

/ F ey (L= pr == pay) O
@ | 0<pi<bi/y,i<(d—1) / €
O<1—ppl—‘“3pd—1§bd/y 0 [(ta —ta-1)
(7.20) d—1  (t;—ti—1)—1
L m dydpdfl . dpl .
For 1<i<d-—1,let 6; = yp;, and also let g = y(1 — p1 — -+ — pa—1). The Jacobian

. R I P
of this transformation is “irfa=1.6a) _
d(p1sesPd—15Y)

(7.20) into (7.19), as desired.

y?™1; hence this change of variables turns

30-25. negative binomial with parameters 1/(1 + E(Yl)) and TE(Z1)

30-31. (iii): Let € > 0, and denote the distribution of Z: by Q:. Then for et < 1,

(1 B 6_1)P[Zt >et] < / (1 - e—z/(st)) Q:(dx)

(et,00)

<1-—exp (ft/ (1 — e_y/(st)) Z/(dy))
(0,1]
< t/ (1 — efy/(st)) Z/(dy))
(0,1]

(7.21) < 671/ yv(dy) + t/ v(dy) .
(0,et] (et,1]

The first term in (7.21) goes to 0 as ¢ \, 0. To treat the second term, let 6 > 0 and
choose r € (0,1) so that f(o . sv(ds) < 6. Then as t \, 0,

t/ v(dy) < / sv(ds) + tv(r,1] — sv(ds) < 6.
(et,1] (et,r] (0,7]

Since ¢ is an arbitrary positive number, it follows that

lim t/ v(dy) =0,
™NO (et,1]

as desired. Hint: for (vi): For any ¢ € (0, 1] there exists a nonnegative integer n such

that ¢t > 27" and
Zy

2otz
PR
30-32. The carelessness might be ignoring the term ‘almost’ in the phrase ‘ a.s.’.

30-35. in case o < 1, 0 or oo according as 8 < i or § > é; in case a = 1, 0 if and
only if # < 1, and oo if and only if > 1



