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When we collect terms we get nonnegative—in fact, positive—terms, as desired:

( ) =
5

2
+

4 + 60 + 272

3

To get the mean and variance it seems best to work with ( ) in the form originally

given and use the product rule to get the first and second derivatives:

( ) =
16

(2 ) (3 )
+

24

(2 ) (3 )

and

( ) =
48

(2 ) (3 )
+

96

(2 ) (3 )
+

96

(2 ) (3 )

Insertion of 1 for gives

(1) =
7

2
and (1) = 15

Hence, the mean equals and the second moment equals 15 + = . Therefore, the

variance equals = and the standard deviation equals .

Had the problem only been to verify that is a probability generating function, we

could have, while calculating the first and second derivatives, seen that a straightfor-

ward induction proof would show that all derivatives are positive, and an appeal to

Theorem 14 would complete the proof.

. The mean is and thus the variance is undefined. The distribution corre-

sponding to the probability generating function with parameter satisfies ( ) =

1 2 . Also, for 0 = 2 ,

( 2 ) =
2 2 2

1
[ (1 )]

For odd and = 0, ( ) = 0.

. Method 1: Using Problem 4, we get

(lim inf ) =

=

= = lim sup

Method 2: We prove that the indicator functions of the two sets are equal:

= 1 = 1 lim sup

= lim inf (1 ) = lim inf =
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lim sup( ) = (lim sup ) (lim sup ) ;

lim inf( ) = (lim inf ) (lim inf ) ;

lim inf( ) = (lim inf ) (lim sup ) ;

(lim sup ) (lim inf ) lim inf( ) (lim inf ) (lim inf ) ;

(lim inf ) (lim sup ) lim sup( ) (lim sup ) (lim sup ) ;

(lim sup ) (lim sup ) lim sup( ) (lim sup ) (lim inf ) ;

lim inf( ) (lim sup ) (lim inf ) ;

lim sup( ) (lim sup ) (lim sup )

Problem 6 is relevant for this problem, especially the fifth equality given in the problem.

Here are some examples in which the various subset relations given above are strict.

The first and seventh subset relations above are both strict in case = Ω for all

and = or = Ω according as is odd or even. The second, fourth, fifth, and

eighth subset relations are all strict if = for all and = Ω or = Ω

according as is odd or even. The third and sixth subset relations are both strict if

= for all and = Ω or = Ω according as is odd or even.

. The middle inequality is obvious. Using the Continuity of Measure Theorem in

Chapter 6, we have

(lim sup ) =

= lim lim sup ( )

thus establishing the first inequality. For the third inequality, deduce from the first

inequality that (lim sup ) lim sup ( ), which is equivalent to

1 (lim sup ) lim sup[1 ( )]

which itself is equivalent to

(lim sup ) lim inf ( )

By Problem 6, the event in the left side equals lim inf , as desired.

. Let = : ( ) = 1 . By Problem 5, the event = lim sup is

that event that = . The events are pairwise negatively correlated or

uncorrelated, so by the Borel-Cantelli Lemma, ( ) = 1 if ( ) = , and by

the Borel Lemma, ( ) = 0 if ( ) . The proof is now completed by noting

that ( ) = ( ), so that ( ) = ( ), whether finite or infinite.

. Let denote the number of cards and , for = 1 2 , the event that

card is in position . The term of the formula for ( ) in Theorem 6
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consists of the factor ( 1) and terms each of which equals the probability that

each of a particular cards are in a particular positions. This probability equals the

number of ways of placing the remaining cards in the remaining positions,

divided by !. We conclude that

= ( 1)
( )!

!
= ( 1)

1

!

which approaches 1 as .

. Let = : ( ) = ( ) . Suppose that are both members of . Then

( ) = ( ) ( ) = ( ) ( ) = ( )

Thus, is closed under proper differences. Now consider an increasing sequence

( ) of members of . By the Continuity of Measure Theorem, applied to

both and ,

(lim ) = lim ( ) = lim ( ) = (lim )

Hence is closed under limits of increasing sequences, and therefore is a Sierpiński

class. It contains and so, by the Sierpiński Class Theorem it contains ( ), as desired.

. The sequences ( : = 1 2 ) and ( ) have the common limit .

By the lemma, the sequences ( ( ) : = 1 2 ) and ( ( ) ( ) ( ) ) have

equal limits. The limit of the second of these numerical sequences is obviously ( ),

so ( ) is also the limit of the first sequence of numbers.

. Every member of is the limit of the sequence ( ). Thus .

It remains to prove that is a field.

The empty set, being a member of , is also a member of . Let . Then

there exists a sequence ( : = 1 2 ) that converges to . By Problem 8 of

Chapter 6, as . Since is a field, each is a member of . Therefore

.

Let and be as in the preceding paragraph and let . There exists a

sequence ( : = 1 2 ) that converges to . By Problem 8 of Chapter 6,

as . Since is a field, for each . Therefore

.

. The probability is 1 (1 ). The correlation between two events

and is easily calculated; it is 0 when = . Similarly, for and . Thus, the

Borel-Cantelli Lemma may be used to calculate the probabilities of the limit supremum
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P A β β >

P ω Y ω

P ω Z ω n n k n <

β β > n

ϕ ϕ π
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gdµ <

gdµ f dµ g dµ f dµ .
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g f

f f

f dµ <

f dµ f dµ

f f n g
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and limit infimum.

(lim inf ) = 1 (lim sup ) = 0

(lim sup ) = 1 if 1 and = 0 if 1

( : ( ) = 1 ) = 1

( : ( ) = ) = (1 ) if

and = 1 or = 0 according as 1 or 1 if =

. Since is in one-to-one measure-preserving correspondence with , we

only need show that the effect of a rotation or translation on corresponds to a

transformation on having Jacobian 1, provided we identify with +2 . It is clear

that rotations about the origin have this property, leaving unchanged and adding a

constant to . Translations also have this property since they leave unchanged and

add cos( ) to , where ( ) is the polar representation of the point to which

the origin is translated.

The measure of the set of lines intersecting a line segment is twice the length of

that line segment.

The measure of the set of lines intersecting a convex polygon is the perimeter of

that polygon.

. The expected value, whether finite or infinite, is twice the length of divided

by 2 . (It can be shown that this value is correct for arbitrary curves contained in

the interior of the circle.)

. Application of the Fatou Lemma to the sequence ( : 1) of nonnegative

measurable functions gives

lim inf ( ) lim inf( ) = ( lim sup ) 0

Since , we may use linearity to obtain

lim sup lim sup 0

Subtraction of followed by multiplication by 1 gives the last two inequalities

in (8.2). The first two inequalities in (8.2) can be obtained in a similar manner using

+ , and the middle inequality in (8.2) is obvious.

Under the additional hypothesis that lim = , the first and last finite quantities

in (8.2) are equal, and therefore all four finite quantities are equal. Thus

and . Applying what we have already proved to the sequence

( : 1), each member of which is bounded by 2 , we obtain

lim = lim = 0 = 0
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. Let denote the indicator function of : ( ) .

( ) = ( ) ( ) 0 as

. By Theorem 14 the assertion to be proved can be stated as:

lim =

where denotes Lebesgue measure on and

( ) =
if 0

0 otherwise

The plan is to use the Dominated Convergence Theorem. Thus we may restrict our

attention to 0 throughout.

We take logarithms of the integrands:

(log )( ) = ( 1) log(1 + )

The Taylor Formula with remainder (or an argument based on the Mean-Value Theo-

rem) shows that (log )( ) lies between

( 1)( )

and

( 1)( + )

both of which approach 2 as . Thus, to complete the proof we only need

find a dominating function having finite integral.

The integrands are nonnegative. It is enough to show, for 1, that ( )

(1 + ) , since this last function of has finite integral on [0 ). Clearly, ( )

(1 + ) ( ), the logarithm of which equals

log(1 + )(7.1)

Differentiation with respect to and writing for gives

log(1 + )
(2 + )

2(1 + )
(7.2)

a function which equals 0 when = 0 and is, by Problem 21, a decreasing function of

. Thus, (7.2) is nonpositive when 0. For 1 [which we may assume without

loss of generality], (7.1) is no larger than the value log(1 + ) it attains when

= 1. The exponential of this value is the desired function (1 + ) . [Comment:

The introduction of the factor (1+ ) in the sentence containing (7.1) was for the

purpose of obtaining a decreasing function of .]

. The absolute value of the integral is bounded by

2 max log 1 + max

where each maximum is over those for which . Apply the Mean-Value

Theorem to the logarithmic function, standard methods of differential calculus to the

function , and the Stirling Formula to !. (Note: If one works with the
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product of the maximum of the function and the maximum of the function

one does not get an inequality that is sharp enough to give the desired

conclusion.)

. Define a -finite measure by

( ) =

where denotes Lebesgue measure on , so that is the density of with respect to

Lebesgue measure. In particular,

(( ]) = ( )

for all . By an appropriate version of the Fundamental Theorem of Calculus,

(( ]) = ( ) ( ) = ( )

for all . Thus, and agree on intervals of the form ( ]. By the Uniqueness

Theorem, they are the same measure.

. Ω and Ω each have six members, Ω has 36 members. Each of , , and

has 2 = 64 members. has 2 members and has 64 members.

. 1 lim [1 ( + )] and . The example = shows

that one may not just set = 0 in the first of the two answers.

. exponential with mean ( + )

. Fix ( ) for . For each such there are disjoint members ,

1 , of such that

=

Hence,

= =

= = ( )

= ( ) = ( )

(Contrast this proof with the proof of Proposition 3.)

. For each event , let

= : ( ) = ( ) ( )
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Clearly each is closed under proper differences. By continuity of measure it is also

closed under monotone limits and, hence, it is a Sierpiński class.

Denote the two members of by 1 and 2. By hypothesis, for each .

By the Sierpiński Class Theorem, ( ) for each . Therefore for

each ( ). Another application of the Sierpiński Class Theorem gives ( )

for every ( ), which is the desired conclusion.

. The criterion is that for each finite subsequence ( ),

( ) = ( ) ( )

. Let us first confirm the appropriateness of the hint. Because the proposition

treats and symmetrically, we only need prove the first of the two assertions in

the proposition. To do that we need to show that : ( ) for every

measurable in the target of and every . Suppose that we show that the -valued

function ( )( ) is measurable. Then it will follow that the inverse image

of 1 of this function is measurable. Since this inverse image equals : ( ) ,

the assertion in the hint is correct.

Since is measurable, any function of the form , where is a measurable

subset of the target of , is the indicator function of some measurable set .

Thus, our task has become that of showing that ( ) is measurable for each

such .

Let denote the collection of sets Ψ Θ such that ( ) is measurable

for each fixed . This class contains all measurable rectangles, and the class of

all measurable rectangles is closed under finite intersections. Since differences and

monotone limits of measurable functions are measurable, the Sierpiński Class Theorem

implies that contains the indicator functions of all sets in , as desired.

. The independence of and is equivalent to the distribution of ( ) being

a product measure . By the Fubini Theorem,

( ) = ( ) ( )

= ( ) ( ) = ( ) ( )

Thus we may apply the Fubini Theorem again:

( ) = ( ) ( )

= ( ) ( ) = ( ) ( )

. The crux of the matter is to show that, in the presence of independence,

the existence of ( + ) implies the existence of both ( ) and ( ) and, moreover,

it is not the case that one of ( ) and ( ) equals and the other equals .

.
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. Method 1: The left side divided by the right side equals

Both numerator and denominator approach 0 as ; so we use the l’Hospital Rule.

After differentiating we multiply throughout by . The result is that we need to

calculate the limit of
1

1

The limit equals 1, as desired.

Method 2: Let 0. For ,

1

2

1

2
1 +

1 +

2

The expression between the two inequality signs is equal to the right side of (9.12). (The

motivation behind these calculations is to replace the integrand by a slightly different

integrand that has a simple antiderivative. One way to discover such an integrand is

to try integration by parts along a few different paths, and, then, if, for one of these

paths, the new integral is small compared with the original integral, combine it with

the original integral. Of course, Method 1 is simple and straightforward, but it depends

on being given the asymptotic formula in advance.)

. = 2 log

. 0

. If + for every positive , then ; hence, the infimum that one would

naturally place in (9.13), where the minimum appears, is attained and, therefore, the

minimum exists. As in the right side of (9.13) is increased, the set described there

becomes smaller or stays constant and, therefore, its minimum becomes larger or stays

constant. So (9.14) is true. The function # : has a jump of size

# : = , possibly 0, at each . But the size of this jump equals the number of

different values for the integer that yield this value of for the minimum in the right

side of (9.13). Thus, (9.15) is true. The image of consists of all for which

. For such a the cardinality of its inverse image equals

!

( !)

where denotes the number of coordinates of which equal , including itself.

To prove continuous it suffices to prove that each of its coordinate functions is

uniformly continuous. Let 0. Suppose that and are members of for which

. Then

: : +



 

 

 

√

[( ) ][ ]
∑

−

−

−

−
−

− ∞ − −

For Chapter 10

( )

( )

( ) ( )

1

( 1)
( )

2

2

1

2

2 1

1 2
2
1

2
2

1
12 6

( )

=

9-49

9-51

9-52

9-53

9-57

10-5

10-7

10-11

10-17

i i

d
j

i
d

j

d
j

d
j

d

z

ζ z
ζ z

z
m

γ

γ

kπ

N ω n

n
k n k

n λ

k λ

n k

n k k pλ

18 SOLUTIONS, ANSWERS, AND HINTS FOR SELECTED PROBLEMS

{ ≤ } ≥ ⇒ { ≤ } ≥

{ ≤ } ≥

≤

{ }

−
−

∞ ≤ ∞ ≤

− − −

↘

| |

− | − | ∨

− ≤ ≤
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n
.
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/

E X z E X z > X < z

X
ζ z ζ z ζ z

ζ z
z > .

X m /m z

θ
γ

γ
θ .
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k
,

Hence

# : = # : +

Since [ ( )] is the smallest for which the left side is true, we have

# : [ ( )] +

Therefore, [ ( )] [ ( )] + . The roles of and may be interchanged to

complete the proof.

. The density is ! on the set of points in [0 1] whose coordinates are in increasing

order, and 0 elsewhere.

. For = 1 2 ,

( : ( ) = ) =
( + 1)!

Also, ( ) = 1. The support of the distribution of is [0 1] and its density there

is (1 ) .

. 1 16

. ( ) = if 2; ( ) = if 2. Var( ) = if 2 3;

Var( ) =
( 2) ( ) [ ( 1)]

( )
if 3

The probability that is divisible by equals 1 which approaches as 1.

. The distribution of the polar angle has density

Γ(2 )

4 [Γ( )]
sin 2

The norm is a nonnegative random variable the square of which has a gamma distri-

bution with parameter 2 .

. normal with mean + and standard deviation +

. (1 1 ) 0

. probability at each of the points for 5 6

. For 0 ,

( : ( ) = and ( ) = ) = ( : ( ) = and ( ) = )

= ( : ( ) = ) ( : ( ) = ) = (1 )
!

We sum on :

( )

!

( (1 ))

( )!
=

( )

!
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0
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Y
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E Y Y d
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d
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E Y Y
γ

γ γ γ

y

γ

y y w y y dy dy d y , . . . , y .
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wz y

E Y Y
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γ γ γ

y

γ
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as desired.

. The distribution of a single fair-coin flip is the square convolution root. If there

were a cube convolution root , it would, by Problem 19, be supported by . If

( ) were positive for some positive , then ( 3 ) would also be positive,

a contradiction. Thus, it would necessarily be that is the delta distribution , which

is certainly not a cube root of . Therefore has no cube root.

.

( ) =
1
( )

Var( ) =
( )

( + 1)

Cov( ) =
( + 1)

=

For the calculations of the above formulas one must avoid the error of treating the

Dirichlet density in (10.4) as a -dimensional density on the -dimensional hypercube.

Here are the details of the calculation of ( ) under the assumption that 4.

We replace by 1 and discard the denominator in (10.4) in order

to obtain a density on a ( 1)-dimensional hypercube. (In fact, this replacement is

done so often that the result of this displacement is often called the Dirichlet density.)

Implicitly assuming that all variables are positive, setting

= ( ): + + 1

and using the abbreviation = 1 ( + ), we obtain

( ) =
Γ( )

Γ( ) Γ( ) Γ( ) Γ( )

( ) ( )

We substitute ( ) for and then use Problem 34 of Chapter 3 for the evaluation

of the innermost integral to obtain

( ) =
Γ( )

Γ( ) Γ( + + 1)

Γ( )
( ) ( )

For the evaluation of the inner integral we substitute for ; we get

( ) =
Γ( )

Γ( + + + 2) Γ( )
( )

By rearranging the constants appropriately we have come to the position of needing

to calculate the integral of a Dirichlet density with parameters , and +



1

 

 

− − −
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z , z z > z

z > z z z > z

F z dz dz z z .

F z z z < z <

d

,

w w w .

C C C

r x r x r x x C , r , r r r

C C C C C C

ϕ ϕ ϕ ϕ

ϕ w

w
π w w w

π
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κ a b κ a b κa κ a κb κ b ,

A B κa

κ a A κb κ b B A B
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, , . . . a A b B a , b n , , . . .

+ + 2. Since the integral of the density of any probability distribution equals 1

we obtain

( ) =
( + 1)

Since + + is a constant its variance equals 0. On the other hand, from the

formula

Var( + + ) = Cov( )

we see that the variance equals the sum of the entries of the covariance matrix. So, in

this case, that sum is 0. But the determinant of any square matrix whose entries sum

to 0 is 0, since a zero row is obtained by subtracting all the other rows from it.

. Let denote the desired distribution function. Clearly, ( ) = 0 for 0 and

( ) = 1 for . Let (0 ). From (10.4), 1 ( ) equals 2 3 times the area

of those ordered triples ( ) satisfying for = 1 2 3 and + + = 1.

This is the same as twice the area of those ordered pairs ( ) such that ,

, and 1 . Thus

1 ( ) = 2 = 1 6 + 9

Therefore ( ) = 6 9 for 0 .

. beta with parameters 1 and 2

. The distribution has support [0 ] and there the distribution function is given

by

+ 3 + 3 log

. For , , and convex compact sets, show that

+ + : 0 + + = 1

is convex, closed, and a subset of both ( ) and ( ).

. sin , cos , sin cos

. For all and 1 1, the distribution function is

+ 1 arccos

. Let and be two compact convex sets. Consider two arbitrary members

+ and + of + , where and . Let [0 1]. Then

( + ) + (1 )( + ) = [ + (1 ) ] + [ + (1 ) ]

which, in view of the fact that and are convex, is the sum of a member + (1

) of and a member + (1 ) of , and thus is itself a member of + .

Thus, convexity is proved.

It remains to prove that + is compact. Consider a sequence ( + : =

1 2 ), where each and each . The sequence (( ) : = 1 2 )
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has a subsequence (( ) : = 1 2 ) that converges to a member ( ) of ,

because is compact. Since summation of coordinates is a continuous function

on , the sequence ( + ) converges to the member + of + . Hence,

+ is compact. (By bringing the product space into the argument we have

avoided a proof involving a subsequence of a subsequence.)

. For each : mean equals and variance equals 1 +

. The one-point sets 0 and each have probability 2 3 . The probability

of any measurable disjoint from each of these one-point sets is the product of (1

2 3 ) and the Lebesgue measure of .

.

: ( ) 1 ( ) = ( ) =

for 2 and 0 otherwise. ( ) =

. for a Borel subset of ,

: ( ) 1 = ( ) = ( ) ( ) ;

( ) =
1

( )
( ; : ( ) )

. Suppose that is a stopping time. Then, for all ,

: ( )

which for = 0 is the desired conclusion : ( ) = 0 . Suppose 0 .

Then

: ( )

Therefore,

: ( ) = = : ( ) : ( )

We complete the proof in this direction by noting that

: ( ) = = : ( ) : ( )

and that all the events on the right side are members of .

For the converse we assume that : ( ) = for all . Then,

whether or = ,

: ( ) = : ( ) =

All events on the right are members of because filtrations are increasing. Therefore,

the event on the left is a member of , as desired.


