Solutions, answers, and hints for selected problems

Asterisks in “A Modern Approach to Probability Theory” by Fristedt and Gray
identify the problems that are treated in this supplement. For many of those
problems, complete solutions are given. For the remaining ones, we give hints,
partial solutions, or numerical answers only.

For Chapter 1

1-2. Method 1: By the Binomial Theorem,

zn: (Z) = zn: (Z) "Fh = (1) =2n

k=0 k=0

and, for n > 0,

> (Z)(—l)k => (Z) ")t =1 -1 =0.

k=0

Addition and then division by 2 gives

= n

=2""",

> (1)
k even

The answer for positive n is 2"71/2" = 1/2. The answer for n = 0 is easily seen to

equal 1.

Method 2: For n > 1 consider a sequence of length (n — 1). If it contains an even
number of ‘heads’, adjoin a ‘tails’ to it to obtain a length-n sequence containing an even
number of ‘heads’. If it contains an odd number of ‘heads’; adjoin a ‘heads’ to it to
obtain a length-n sequence containing an even number of ‘heads’. Moreover, all length-
n sequences containing an even number of ‘heads’ are obtained by one of the preceding
two procedures. We have thus established, for n > 1, a one-to-one correspondence
between the set of all length-(n — 1) sequences and the set of those length-n sequences
that contain an even number of ‘heads’. Therefore, there are 2"~ ' length-n sequences
that contain an even number of ‘heads’. To treat the remaining case n = 0, we observe
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that the empty sequence, which is the only length-0 sequence, contains zero ‘heads’.
Since 0 is even, there is 1 length-0 sequence containing an even number of ‘heads’.

1-4. 277

1-10. The thirty-six points to each of which is assigned probability 3—16 are the ordered
pairs (r,g) for 1 <r < 6and 1 < g < 6. The coordinates r and g represent the numbers
showing on the red die and green die, respectively.

1-11. The set consisting of a single sample point, being the intersection of countably
many events A of the form (1.2), is an event. Its probability is no larger than that of
any such A. For each n and each sample point, there is such an A that has probability
27", Thus, the probability of that sample point is no larger than 27", Letting n — oo
we see that the probability of the sample point is 0. The process of flipping a coin until
the first tails occurs terminates in a finite number of steps with probability 1.

1-12. (i) Sum the answer to Problem 4 over odd positive j to obtain 2.

3

(i)

(iii) (Caution: it is common for students to use invalid reasoning in this type of
problem.) We use ‘1’ and ‘0’ to denote heads and tails, respectively. Let S denote the
set of finite sequences s of 1’s and 0’s terminating with 1, containing no subsequence of
the form (1,0,1) or (1,1,1), and having the additional property that if the length of s
is at least two, then the penultimate term in s is 0. For each s € S, let A be the event
consisting of those infinite sequences w that begin with s followed by (0, 1, 1), (0, 1,0),
or (1,0,1) in the next three positions, and let Bs be the event consisting of those w
that begin with s followed by (1,1,1) or (1,1,0) in the next three positions. Note that
each A, and B is a member of £. Clearly 2P(A,) = 3P(Bs).

Let A =|]J,.gAs and B = J,_g Bs. Straightforward set-theoretic arguments show
that A consists of those w in which (1,0, 1) occurs before (1,1,1), B consists of those
w in which (1,1,1) occurs before (1,0,1). By writing A and B as countable unions
of members of £, we have shown that they are events. Note that in each case, these
unions are taken over a family of pairwise disjoint events, from which it follows that

2P(A) =2 P(A) =3 P(B,)=3P(B).

seS seS

Also, A and B are clearly disjoint, so
P(A)+ P(B)=P(AUB)=1—- P(A°N B°).

We will show that P(A° N B¢) = 0, so that the above two equalities become two
equations in the two unknowns P(A) and P(B), the solution of which gives P(A) = 2.

To show that P(A° N B°) = 0 we note that A° N B° is a subset of the event Dy
consisting of those w that begin with a sequence of length 3k having the property that,
for 1 < j < k, the sequence (1, 1,1) does not occur in positions 3j — 2, 3j — 1, 3j. The
number of ways of filling the first 3k positions of w with 1’s and 0’s is 2% = 8*. The
number of ways of doing it so as to obtain a member of Dy, is 7% (7 choices for positions
1,2, 3; 7 choices for positions 4, 5,6 and so forth.). Thus, P(A°NB°) < P(Dy) = (g)k
Now let k — oo to obtain the desired conclusion, P(A° N B¢) = 0.

(iv) g
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1-14 Let B denote the Borel o-field of R, C the Borel o-field of RT, and
G={BecB:BCR"}.

The goal is to prove C = G.

We first prove that G is a o-field of subsets of RT. Countable unions of members of
B are members of B and unions of subsets of RT are subsets of RT. Hence, G is closed
under countable unions. The complement in R of a member G of G equals R™ N G¢,
where G° denotes the complement in R. This set is clearly a subset of Rt and it is also
a member of B because it is the intersection of two members of B. Therefore, G is a
o-field.

The open subsets of R have the form RT™NO, where O is open in R. Such sets, being
subsets of RT and intersections of two members of B, are members of G. Thus, the
o-field G contains the o-field generated by the collection of these open subsets—namely
C.

To show that G C C we introduce the Borel o-field D of subsets of (—oo,0) with the
relative topology and set

H={CUD:CeC,DeD}.

We can finish the proof by showing that B C H, because C consists of those members
of H which are subsets of RT. It is clear that H is closed under countable unions. The
formula

(CUD)* = ([RNC) U ((—o0,0)\D)

for C CR* and D C (—o0,0) shows that it is closed under complementation. So H is
a o-field. For any open set O € R, the representation

O0=ER"N0O) U ((—0,0)N0O)

represents O as the union of open, and therefore Borel, subsets of the spaces R* and
(—00,0). Thus, the o-field H contains the o-field generated by the collection of open
subsets of R —namely B.

1-16 Hint: It suffices to show that every open set is the union of open boxes having
edges of rational length and centers with rational coordinates.

For Chapter 2

2-2. Let X be a continuous function. For any open B of the target of X, X !(B) is
open by continuity, and thus is an event in the domain of X. Now apply Proposition 3
with £ equal to the collection of open subsets in the target of X.

2-3. Let B be an arbitrary measurable set in the common target of X and Y. We need
to show that
P{w: X(w) € B}) = P({w: Y(w) € B}).

Here is the relevant calculation:
P{w: X(w) € B})
=P{w: X(w) € B, Y(w) = X(w)}) + P{w: X(w) € B, Y(w) # X(w)})
= P{w: X(w) and Y(w) € B, Y(w) = X(w)}).
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In this calculation, we used the fact that the event in the second term of the second
line is contained in a null event. To complete the proof, carry out a similar calculation
with the roles of X and Y reversed.

2-9. By Problem 13 of Chapter 1 and Proposition 3 we only need show that the set
A={w: X(w) <c}is a Borel set for every ¢ (or even just for every rational c). Let
a equal the least upper bound of A. We will prove that every member of the interval
(—o0,a) belongs to A. Suppose w1 < a. Since a is the least upper bound of A, there
exists we € A for which w1 < wz. Then

X(w) € X(w2) <c,

from which it follows that w1 € A. Thus, A is an interval of the form (—oo,a) or
(=00, a] and is, therefore, Borel.

2-12. 3

2-14. The distribution is uniform on the triangle {(v1,v2) : 0 < v1 < v2 < 1}. If B
is a set for which area is defined, the value that the distribution assigns to B is twice
its area, the factor of 2 arising because the triangle has area % To prove that X is a
random variable—Hint: Prove that X is continuous, or, alternatively, avoid the issue
of continuity of a R%valued function by first doing Problem 16 and then using it in
conjunction with a proof that each coordinate function is continuous.

2-19. In case k is divisible by 4, the answer is
LEAPES
k/4

2-21. The Hausdorff distances are 1+2‘6 between the first two; % between the first and

third; 2*—2‘/5 between the second and third.

Otherwise, the answer is 0.

2-22. These are the probabilities: %, %6, ”8—;2.

For Chapter 3

3-3. Fix w. Since F is increasing, every member of {z: F(z) < w} is less than every

member of {z: F(z) > w} and is thus a lower bound of {z: F(z) > w}. Hence Y (w) €of

sup{z: F(z) < w} is a lower bound of {z: F(z) > w}. Therefore Y (w) < X (w).

To prove Y (w) = X (w), suppose, for a proof by contradiction, that Y (w) < X (w),
and consider an z € (Y (w), X (w)). Either F(z) > w contradicting the defining property
of X(w) or F(x) < w contradicting the defining property of Y (w). Thus Y = X, and
we will work with Y in the next paragraph.

Clearly, Y is increasing. Thus, to show left continuity we only need show Y (w—) >
Y (w) for every w. Let § > 0. There exists u > Y (w) — 6 for which F(u) < w. Hence
there exists 7 < w such that F(u) < 7. Therefore

Yw=)>2Y(r) >u>Y(w)—6.
Now let 6 \ 0.
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3-8. Whether a or b is finite or infinite,

Q((a,b)) = / m dz.

When a and b are finite this formula is also a formula for Q([a,b]), and similarly for
Q([a,b)) and Q((a,b]) in case a > —oo or b < oo, respectively. Note that the formula
for Q([a, b)) is correct in the special case a = b.

3-12. Explanation for ‘type’ only. Suppose first that Fi and F» are of the same type.
Then there exist random variables X; and X2 of the same type such that F} is the
distribution function of X;. Then F3 is also the distribution function of aX; + b for
some a and b with a > 0. Thus

Fy(z) = Pw:aXi(w)+b<z})=P{w: Xi(w) < (x—b)/a}) = Fi((x — b)/a) .

That is F1 and F> must satisfy (3.2).

Conversely, suppose that F> and Fi satisfy (3.2) for some a and b with a > 0. Let
X1 be a random variable with distribution function Fi. the above calculation then
shows that aX7 + b is a random variable whose distribution function is F>. Therefore
F5 is of the same type as Fi.

3-23. X is symmetric about b if and only if its distribution function F satisfies F(z —
b) =1— F((b— z)-—) for all z.
For the standard Cauchy distribution

F(z) = % + arct:nm _ % 4= arctin(fx)
=1 (5 ) 21 (g D) <1 P,

3-28. A random variable X having the Cauchy distribution of Problem 8 has density

T~ For positive a and real b the continuous density of aX + b is & ~-

1
ATy
m(a®+(@=b)%)"

The density of the uniform distribution with support [a,b] is ;- on the interval
[a,b] and 0 elsewhere.

3-30.

o0
- — o0
/ ae” Cdxr = —e “z|0 =1
0

Pw:2< X(w)<3})=e 2 —e ™%

median = o~ " log 2

3-33. g(z) = 55 [f (Vo) + f(=Va)] if > 0 and g(z) =0 if 2 < 0.
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L(y+1) :/ uwe " du = —/ u’ de "
0 0

:/ v e du = AT (7).
0

3-34. (i)

(ii) An easy calculation gives I'(1) = 0!. For an induction proof assume that I'(y) =
(v — 1)! for some positive integer v. By part (i),

T(vy+1) =T(y) =y - DY ="

Note that the last step in the above calculation is valid for v = 1. That this step be
valid is one of the motivations for the definition 0! = 1.

(i)
F(%):/ u_l/Qe_“du:/ \/56_”2/2600,
0 0

which, by Example 1 and symmetry, equals /7. Now use mathematical induction.

(iv)
L(a)'(B) = /00 /°° w0 e () qu do
o Jo

:/ / (w—v)* e dwdv

0 v

:/ / (w—v)* e ™ du dw
o Jo

oo 1
:/ / w1 — 2)* P e da dw,
o Jo

the interchange of order of integration being valid, according to a result from advanced
calculus, because the integrand is continuous and nonnegative. (The validity of the
interchange in integration order is also a consequence of the Fubini Theorem, to be
proved in Chapter 9.) The last expression is the product of the two desired integrals.

3-40. Hint: For b=1 and = > 0,
PHw: —logX(w)<z})=PHw: X(w)>e “)=1—-¢",
the standard exponential distribution function.

3-41. Denote the three distribution functions by G;, i = 2,3,4. For each i, G;(y) =0
when y < 0 and =1 when y > 2. For 0 <y < 2:

For Chapter 4
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4-7. n?p? 4 npq (notation of Problem 39 of Chapter 3)
4-8.7/2

4-9. For this problem, denote the expectation operator according to Definition 1 by Es
and the expectation operator according to Definition 5 by E,. Let X be nonnegative
and simple. Thus, Fs(X) and E,(X) are meaningful. Since X qualifies as an appro-
priate Z in the definition E,(X) = sup, Es(Z), we see that E,(X) > Es(X). On the
other hand, Lemma 4 implies that for all simple Z < X, Es(Z) < Es(X), from which
it follows immediately that E,(X) < Es(X).

4-10. The random variable X defined by X(w) = 1, defined on the probability
space ((0,1], B, P), where P denotes Lebesgue measure, has expected value co. This is
seen by calculating F(X,) for simple random variables X,, < X defined by X,(w) =

([X(@)]) An.

4-11. We treat the case a = b = 1. The following calculation based on the definition
of expectation for nonnegative random variables and the linearity of the expectation
for simple random variables shows that E(X)+ E(Y) < E(X +Y):

E(X)+ E(Y)
=sup{F(X"): X' < X and X' simple} +sup{E(Y"): Y' <Y and Y’ simple}
=sup{E(XY+ E(Y’'): X' < X,Y' <Y and X', Y’ simple}

(X
=sup{E(X'+Y'): X' < X,Y' <Y and X', Y’ simple}
<sup{E(Z): Z< X +Y and Z simple} = E(X +Y).

To prove the opposite inequality, let Z be a simple random variable such that Z <
X +Y. By the construction given in the proof of Lemma 13 of Chapter 2, we can find
sequences (X,:n =1,2,...) and (Yn: n =1,2,...) of simple random variables such
that for all w and all n,

X(@)An— £ < Xo(w) < X(w) and
Y(w)An— - <Yp(w) <Y (w).
It is easily checked that X, + Y, > Z —1/2" for n > max{Z(w): w € 2}. Thus

sup B(X.,) + sup E(Y,) > B(Z),

and the desired inequality E(X) + E(Y) > E(X 4+Y) now follows from the definition
of expected value.

4-14. For this problem, denote the expectation operators according to Definition 1,
Definition 5, and Definition 8 by Fs, E,, and Ey, respectively. Let X be simple (but
not necessarily nonnegative). We use (4.1):

X = ZC]'ICj .
j=1
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Since {C; : 1 < j < n} is a partition,

Xt=3" ol

jicj >0

XT== > ¢le,.

jic; <0

and

For these nonnegative simple random variables we have, using Problem 9, that
Ep(X1) = BJ(XT) = > ¢;P(Cy)
jicj >0

and

jic; <0

By these formulas and Definition 8,

Eo(X) = Ep(XT) ~ Ep(X7) = ich(Cj) = E(X).

4-21. The case where F(X1) = 400 is easily treated, so we assume FE(X1) is finite and,
therefore, P({w : |X1(w)| = }) = 0. Accordingly, except for w belonging to some
null set, we may define Y, (w) = X, (w) — X1(w) and Y (w) = X(w) — X1(w). For w in
the null set we set Y, (w) = Y (w) = 0. Applying the Monotone Convergence Theorem
to the sequence (Y1,Y2,...), we deduce that E(Y,) — E(Y) as n — oo. It follows, by
property (iii) of Theorem 9, that

lim E(anXl) HE(X*Xl).

n— oo

Since F(X1) is finite we may apply property (i) of Theorem 9 to conclude
lim [E(X,) — E(X1)] — BE(X) — E(X1).

n— oo

Now add F(X1) to both sides.

4-22. BE(X)= 2 EB(X? = ?1(1_:?22 (notation of Problem 11 of Chapter 3)

4-23 E(X) = A, E(X?) = XA+ )\? (notation of Problem 37 of Chapter 3)
4-26 The distributions of X —b and b — X are identical. By Theorem 15 they have the

same mean. By properties (i) and (ii) of Theorem 9, these equal numbers are E(X) —b
and b — E(X). It follows that F(X) = b.

4-29. b (notation of Example 1 of Chapter 3)

4-30. For standard beta distributions (that is, beta distributions with support [0, 1]),

the answer is 95 (notation of Example 3 of Chapter 3).

4-31. E(X) = 1/k, E(expoX)=ocif k<land = 2 if k> 1

4-35. B(X1) = B(Xs) = 1, BE(X2) = §, B(X4) = 5
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For Chapter 5

5-7. Var(X;) = Var(X3) = 258 Var(X,) = 32;3”2, Var(Xy) = 2
5-13. Cov(aX + b,cY +d) = acCov(X,Y)
5-14. An inequality, based on the fact that ¢ is increasing will be useful:
(X = E(X)](poX) = [X - E(X)]p(E(X)).
The following calculation then completes the proof:
Cov(X, 9o X)=E([X — E(X)][po X — E(po X)))
= E([X — E(X)](po X))
> B(IX - B(X)] p(E(X))) = 0.
(A slightly longer, but possibly more transparent proof, consists of first reducing the

problem to the case where E(X) = 0 and then using the above argument for that
special case.)

5-17. For Example 2 of Chapter 4, the answer is 1; for Problem 18 of Chapter 4, the
answer is 0 or 1 according as n is odd or even.

5-29. 5(0,0) = s(1,1) = 5(2,2) = 5(3,3) = 1, s(1,0) = 5(2,0) = 5(3,0) = 0, 5(2,1) =
-1, s(3,1) = 2, s(3,2) = =3, s(n,k) = 0 for k > n; S(0,0) = S(1,1) = S(2,2) =
S(3,3) = 1, S(1,0) = S(2,0) = S(3,0) = 0, S(2,1) = S(3,1) = 1, 5(3,2) = 3,

S(n,k) =0for k >n

5-32. p(1—) = 1. Thus, if p is the probability generating function of a distribution
Q, then Q({oo}) = 0. To both show that p is a probability generating function and
calculate Q({k}) for each k € Z1 we rewrite p(s) using partial fractions:
—24 8 24 16 8
pls) = 2_s ' (2—s)? + 375Jr (3—s)2 + (3—s9)3
_ . —12 n 2 n 8 n 16/9 n 8/27
=62 T a2 T =3 T U= (532 T U= (5/3)

The first two of the last five functions are equal to their power series for |s| < 2 and the

last three for |s| < 3. So we can expand in power series and collect coefficients to get a
power series for p(s) that can be differentiated term-by-term to obtain the derivatives
of p(s). Thus, we only need to show that the coefficients are nonnegative in order to
conclude that p(s) is a probability generating function, and then the coefficients are
the values Q({k}).

Formulas for the geometric series and its derivatives give

422 5) +2i(k+1) (%) +SZ

§Zk+1 ()4 2> (k+ 1)k +2)(5)".

k=0

O«M
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When we collect terms we get nonnegative—in fact, positive—terms, as desired:

kE—5 4k 4+ 60k + 272
Qk}) = ok—1 + 3k+3

To get the mean and variance it seems best to work with p(s) in the form originally
given and use the product rule to get the first and second derivatives:

() = 16 N 24
PR = 2 —spBB—s? T 2-92@B—9)

and
48 96 96

P = i T 2—spBos T @—sPB sy

Insertion of 1 for s gives

p/(l):g and p"(1)=15.

Hence, the mean equals % and the second moment equals 15 + g = % Therefore, the
variance equals % — 47? = % and the standard deviation equals g

Had the problem only been to verify that p is a probability generating function, we
could have, while calculating the first and second derivatives, seen that a straightfor-
ward induction proof would show that all derivatives are positive, and an appeal to

Theorem 14 would complete the proof.

5-33. The mean is co and thus the variance is undefined. The distribution ), corre-
sponding to the probability generating function with parameter p satisfies Qp({o0}) =
|1 —2p|. Also, for 0 < k = 2m < oo,

2m — 2
m—1

Qp({2m}) = % ( ) [p(1—p)]™.

For k odd and k£ =0, Q»({k}) = 0.

For Chapter 6

6-6. Method 1: Using Problem 4, we get

(liminf A,)° = (U

Method 2: We prove that the indicator functions of the two sets are equal:

Tim sup 4n)e = 1 — Nimsup A, = 1 — limsup{/a,}

= hmmf{(l — IAn)} = llmlnf{IA%} = Ilim inf A¢ -
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6-8.

limsup(A, U By,) = (limsup A,) U (limsup By) ;

lz;lci;f(An N B,) = (1£n:igf An)N (hnxgngn) :

llnliﬁf(A” \ Bn) = (linnlgf An)\ (limsup By);

(imsup A,) U (lilnlioréf B,) 2 hnnlioréf(A” UB,) 2 (linnligf An) U (li:nzgf Bn);
(lg;?ogo;An) N (lim sup By,) C limsup(A, N By) C (limsup A,) N (limsup By) ;

(limsup 4,) \ (lfr;;p B,)C lfr;;p(An \ Bn) C (li;ﬁso:p An)\ (lgl:l;r; B,);
T T IL:IEO;}(An A By) C (li:nﬁso:p An) A (linnlgf By);
limsup(4, A By) 2 (li:nﬁso:p An) A (limsup By) .

Problem 6 is relevant for this problem, especially the fifth equality given in the problem.

Here are some examples in which the various subset relations given above are strict.
The first and seventh subset relations above are both strict in case B, = 0 C  for all
n and A, = @ or = Q according as n is odd or even. The second, fourth, fifth, and
eighth subset relations are all strict if A, = B for alln and A, =0 C Q or = Q
according as n is odd or even. The third and sixth subset relations are both strict if
A, = B, for alln and A, = 0 C Q or = Q according as n is odd or even.

6-9. The middle inequality is obvious. Using the Continuity of Measure Theorem in
Chapter 6, we have

P(limsup A,) = P(ﬁ G Am>

n=1m=n

= lim P( U Am> > limsup P(A4,),

n—oo n—oo
m=n

thus establishing the first inequality. For the third inequality, deduce from the first
inequality that P(limsup Aj,) > limsup P(Aj,), which is equivalent to
1— P((limsupA,‘i)c) > limsup[l — P(4,)],
which itself is equivalent to
P((limsupA,'i)c) < liminf P(A4,).

By Problem 6, the event in the left side equals liminf A,,, as desired.

6-13. Let A, = {w: X,,(w) = 1}. By Problem 5, the event A = limsup,, A, is
that event that Zn X, = oco. The events A, are pairwise negatively correlated or
uncorrelated, so by the Borel-Cantelli Lemma, P(A) = 1if > P(A,) = oo, and by

the Borel Lemma, P(A) =0if Y P(An) < oo. The proof is now completed by noting
that P(A,) = E(X,), so that y P(A,) = E(3_ Xn), whether finite or infinite.

6-15. Let n denote the number of cards and C,,, for m = 1,2,... n, the event that

h
card m is in position m. The " term of the formula for P(|JCm) in Theorem 6
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consists of the factor (—1)""* and (’Z) terms each of which equals the probability that
each of a particular ¢ cards are in a particular 7 positions. This probability equals the
number of ways of placing the remaining n — ¢ cards in the remaining n — ¢ positions,
divided by n!. We conclude that

P( U C’m) _ Z(il)ﬁ—l (?) (”;!i)! _ Z(il)ﬂ—l% 7

which approaches 1 —e™! as n — oo.

For Chapter 7
7-3. Let D= {A: P(A) = Q(A)}. Suppose that A C B are both members of D. Then

P(B\ A)=P(B) - P(A) =Q(B) —Q(A) = Q(B\ 4).

Thus, D is closed under proper differences. Now consider an increasing sequence
(A1, Az, ...) of members of D. By the Continuity of Measure Theorem, applied to
both P and @,

P(lim A,) = lim P(A,) = limQ(A,) = Q(lim A,) .

Hence D is closed under limits of increasing sequences, and therefore D is a Sierpinski
class. It contains £ and so, by the Sierpiriski Class Theorem it contains o(€), as desired.

7-10. The sequences (An,:n =1,2,...) and (A, A, A,...) have the common limit A.
By the lemma, the sequences (R(A,): n=1,2,...) and (R(A), R(A), R(A),...) have
equal limits. The limit of the second of these numerical sequences is obviously R(A),
so R(A) is also the limit of the first sequence of numbers.

7-11. Every member A of £ is the limit of the sequence (A4, A, A,...). Thus £ C &;.
It remains to prove that & is a field.

The empty set, being a member of £, is also a member of £&1. Let B € £ . Then
there exists a sequence (B, € £:n =1,2,...) that converges to B. By Problem 8 of
Chapter 6, By, — B as n — oo. Since £ is a field, each By, is a member of £. Therefore
B¢ e &;.

Let B and B, be as in the preceding paragraph and let C € £. There exists a
sequence (Cp, € £:n = 1,2,...) that converges to C. By Problem 8 of Chapter 6,
B,UC, - BUC as n — oo. Since € is a field, B, UC,, € &£ for each n. Therefore
BUC €é.

7-17. The probability is 1 — Hi:z(l — k7P). The correlation between two events A,
and A, is easily calculated; it is 0 when n # m. Similarly, for A%, and Aj,. Thus, the
Borel-Cantelli Lemma may be used to calculate the probabilities of the limit supremum
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and limit infimum.

P(liminf A,) =1 — P(limsup 4;,) =0
P(limsupA,)=1iff<1land =0if 8> 1
Pw: Y(w)=1}) =1

P({w: Zw)=np)=n"" J[ A=k ifn<oo
k=n+1
and =1 or =0 accordingas f<lor f>1ifn=oc

7-24. Since £ is in one-to-one measure-preserving correspondence with S C R?, we
only need show that the effect of a rotation or translation on £ corresponds to a
transformation on R? having Jacobian 1, provided we identify ¢ with ¢+ 2m. It is clear
that rotations about the origin have this property, leaving s unchanged and adding a
constant to ¢. Translations also have this property since they leave ¢ unchanged and
add —rcos(¢p — 0) to s, where (r,0) is the polar representation of the point to which
the origin is translated.

7-25 The measure of the set of lines intersecting a line segment is twice the length of
that line segment.

7-26 The measure of the set of lines intersecting a convex polygon is the perimeter of
that polygon.

7-29. The expected value, whether finite or infinite, is twice the length of D divided
by 27r. (It can be shown that this value is correct for arbitrary curves D contained in
the interior of the circle.)

For Chapter 8

8-8. Application of the Fatou Lemma to the sequence (g — fn: n > 1) of nonnegative
measurable functions gives

liminf/(gffn) dp > /liminf(gffn) dp = /(g —limsup fn)du > 0.

Since f gdp < oo, we may use linearity to obtain

/gdpflimsup/fnd,uz/gd,uf/limsupfnd,uEO.

Subtraction of f g dp followed by multiplication by —1 gives the last two inequalities
in (8.2). The first two inequalities in (8.2) can be obtained in a similar manner using
g + fn, and the middle inequality in (8.2) is obvious.

Under the additional hypothesis that lim f, = f, the first and last finite quantities
in (8.2) are equal, and therefore all four finite quantities are equal. Thus f [fldp <
oo and f fndy — f fdu. Applying what we have already proved to the sequence
(If = fnl: n > 1), each member of which is bounded by 2g, we obtain

lim/|fffn|du:/(lim|fffn|)d,u:/Odp:O.
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8-12. Let I; . denote the indicator function of {w: |X¢(w)| > c}.

E(|X¢|1ic) = B(IXe|'  PLie| XeP) < ¢ PE(Xe)P) < ¢ Pk — 0 as ¢ — oo.

8-22. By Theorem 14 the assertion to be proved can be stated as:

lim /Gwd)\:/ﬁd)\,
y— 00

where A\ denotes Lebesgue measure on R and

—1)2/2 if >0
0(v) = e if v>
0 otherwise .

The plan is to use the Dominated Convergence Theorem. Thus we may restrict our
attention to v > 0 throughout.
We take logarithms of the integrands:

(log o 0,)(v) = (v — 1)log(1+ vy~ /%) —vy'/2.

The Taylor Formula with remainder (or an argument based on the Mean-Value Theo-
rem) shows that (logo 6)(v) lies between

(v =Dy 2 = 3Py =0y

and
(v =)oy = 3oy + 20y 7%2) gt /2
both of which approach —v? /2 as ¥ — oo. Thus, to complete the proof we only need
find a dominating function having finite integral.
The integrands 6, are nonnegative. It is enough to show, for v > 1, that 6,(z) <
(1 +wv)e™?, since this last function of v has finite integral on [0, 00). Clearly, 6 (v) <
(1 + vy~ ?)0,(v), the logarithm of which equals

(7.1) ylog(1 4 vy~ M%) — /2,

Differentiation with respect to v and writing = for Uy_l/ 2 gives
z(2+4 x)
21 +=x)’

a function which equals 0 when = 0 and is, by Problem 21, a decreasing function of
z. Thus, (7.2) is nonpositive when = > 0. For v > 1 [which we may assume without
loss of generality], (7.1) is no larger than the value log(l + v) — v it attains when

(7.2) log(1 4+ x) —

v = 1. The exponential of this value is the desired function (1 + v)e™". [Comment:
The introduction of the factor (14 vy~%/?) in the sentence containing (7.1) was for the
purpose of obtaining a decreasing function of ~.]

8-26. Hint: The absolute value of the integral is bounded by

xr—n

2wmax|log(l +

ax(z"e "),
o) max(e"e™)

where each maximum is over those x for which |z — n| < v/n2. Apply the Mean-Value
Theorem to the logarithmic function, standard methods of differential calculus to the
, and the Stirling Formula to n!. (Note: If one works with the

function © ~ z"e™"
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product of the maximum of the function x ~ z" and the maximum of the function
x ~+ e ¥ one does not get an inequality that is sharp enough to give the desired
conclusion.)

8-35. Define a o-finite measure v by

u(A)z/AfdA,

where )\ denotes Lebesgue measure on R, so that f is the density of v with respect to
Lebesgue measure. In particular,

v((a,b) = / f(@) do

for all @ < b. By an appropriate version of the Fundamental Theorem of Calculus,

u((a,B)) = F(b) — Fla) = / £ (@) do

for all @ < b. Thus, u and v agree on intervals of the form (a,b]. By the Uniqueness
Theorem, they are the same measure.

For Chapter 9

9-1. Q1 and 2 each have six members, 2 has 36 members. Each of Fi, G1, F2 and
G- has 26 = 64 members. F has 2°¢ members and R has 64> members.

9-6. x ~ 1—limeo[],[1—Fn(z+e)] and [ [, Fn. The example Fp, = I|(1/5),00) shows
that one may not just set € = 0 in the first of the two answers.

9-7. exponential with mean A A2/(A1 + A2)

9-10. Fix Bi € o(&) for k € K. For each such k there are disjoint members Ay s,
1 <1 <rg, of & such that
Tk
By =] Ax.i.
i=1

Hence,

P(F“ﬁ)—P(FﬂﬁAm>—P< U (]AMJ

keEK keK i=1 (i <rp: k€EK) kEK

DN (AETS D S | EXES

(ig<rp:keK) keEK (ig<rg:keK)keK
Tk
= [1 > Pan =[] P50
keEK i=1 keK

(Contrast this proof with the proof of Proposition 3.)

9-14. For each event B, let

Dy ={D: P(DN B) = P(D) P(B)}.
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Clearly each Dp is closed under proper differences. By continuity of measure it is also
closed under monotone limits and, hence, it is a Sierpinski class.

Denote the two members of L by 1 and 2. By hypothesis, £&1 C Dp for each B € &;.
By the Sierpiriski Class Theorem, o(&1) C Dp for each B € &;. Therefore &2 C Dy for
each A € ¢(&1). Another application of the Sierpinski Class Theorem gives o(£2) C Da
for every A € o(&1), which is the desired conclusion.

9-15. The criterion is that for each finite subsequence (Ag,, ..., As,),

P(AklﬂﬁAkn):P(Akl)P(Akn)

9-23. Let us first confirm the appropriateness of the hint. Because the proposition
treats « and y symmetrically, we only need prove the first of the two assertions in
the proposition. To do that we need to show that {z: f(z,y) € B} € G for every
measurable B in the target of f and every y. Suppose that we show that the R-valued
function z ~ (Ip o f)(x,y) is measurable. Then it will follow that the inverse image
of {1} of this function is measurable. Since this inverse image equals {z: f(z,y) € B},
the assertion in the hint is correct.

Since f is measurable, any function of the form Ip o f, where B is a measurable
subset of the target of f, is the indicator function of some measurable set A € G x H.
Thus, our task has become that of showing that & ~ Ia(x,y) is measurable for each
such A.

Let C denote the collection of sets A C ¥ x © such that z ~ I4(z,y) is measurable
for each fixed y. This class C contains all measurable rectangles, and the class of
all measurable rectangles is closed under finite intersections. Since differences and
monotone limits of measurable functions are measurable, the Sierpiriski Class Theorem
implies that C contains the indicator functions of all sets in G x H, as desired.

9-27. The independence of X and Y is equivalent to the distribution of (X,Y) being
a product measure Q1 X Q2. By the Fubini Theorem,

B(XY) = / ( / 12| Iy Qz(dy)> Q1 (da)

:/leE(IYl)Qz(d-’v):E(IXI)E(IYI)<OO-

Thus we may apply the Fubini Theorem again:

B(XY) = / ( / :cy@zwy)) Q1 (dx)

= / 2B(Y)Qa(dz) = E(X) B(Y).

9-29. Hint: The crux of the matter is to show that, in the presence of independence,
the existence of E(X +Y") implies the existence of both E(X) and E(Y') and, moreover,
it is not the case that one of E(X) and E(Y) equals co and the other equals —oo.

2
9-33. 2
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9-41. Method 1: The left side divided by the right side equals

foo e w127 gy

Je 000000
0'2.'1)_16_12/202

Both numerator and denominator approach 0 as x — o0; so we use the ’Hospital Rule.

After differentiating we multiply throughout by ¢**/27®  The result is that we need to

calculate the limit of
-1

—o2rx—2 1"
The limit equals 1, as desired.
Method 2: Let § > 0. For =z > 0'/\/3,

1 —u?/202 d
V2ro? ‘ “

O'

2 /6 2
—u?/2
2e“/"du

\/ 27‘(’0’2 / (
1+6 < —u?/202
< 5ot /z e du

The expression between the two inequality signs is equal to the right side of (9.12). (The

motivation behind these calculations is to replace the integrand by a slightly different
integrand that has a simple antiderivative. One way to discover such an integrand is
to try integration by parts along a few different paths, and, then, if, for one of these
paths, the new integral is small compared with the original integral, combine it with
the original integral. Of course, Method 1 is simple and straightforward, but it depends
on being given the asymptotic formula in advance.)

9-42. a, = /202logn

9-45. 0

9-47. If x; < v+ for every positive 6, then x; < v; hence, the infimum that one would
naturally place in (9.13), where the minimum appears, is attained and, therefore, the
minimum exists. As j in the right side of (9.13) is increased, the set described there
becomes smaller or stays constant and, therefore, its minimum becomes larger or stays
constant. So (9.14) is true. The function v ~~ #{i: ; < v} has a jump of size
#{i: x; = v}, possibly 0, at each v. But the size of this jump equals the number of
different values for the integer j that yield this value of v for the minimum in the right
side of (9.13). Thus, (9.15) is true. The image of x(¥ consists of all y € R? for which
y1 < y2 < --- < yq. For such a y the cardinality of its inverse image equals

d!
T, (@) /4

where d; denotes the number of coordinates of y which equal y;, including y; itself.

To prove X(d) continuous it suffices to prove that each of its coordinate functions is
uniformly continuous. Let € > 0. Suppose that = and w are members of R¢ for which
|z —w| < e. Then

{i:z; <v} C{i:w; <v+e}.
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Hence
#liiz <v}>j=#{i:w; <v+e}>7j.
Since [x?(x)]; is the smallest v for which the left side is true, we have
#i:wi < V(@);+e} 25
Therefore, [x? (w)]; < [x¥(x)]; + . The roles of # and w may be interchanged to

complete the proof.

9-49. The density is d! on the set of points in [0, 1]% whose coordinates are in increasing
order, and 0 elsewhere.

9-51. Forn=1,2,...,

n

(n+1)!°

Also, E(N) = e — 1. The support of the distribution of Z is [0, 1] and its density there
is 2 ~ (1 —2)e! 2.

P({w: N(w) = n}) =

9-52. 1/16
9-53. E(X) =00 if 2 < 2; B(X) = Cf(;)l) if 2> 2 Var(X)=o0if 2< 2 < 3;
((z=2)¢(x) — [Cz =1 .
Var(X) = if z > 3.
) (=7
The probability that X is divisible by m equals 1/m?* which approaches % as z "\, 1.

9-57. The distribution of the polar angle has density

I'(2y) in2g|271!
e

The norm is a nonnegative random variable the square of which has a gamma distri-
bution with parameter 2.
For Chapter 10
10-5. normal with mean p1 + p2 and standard deviation \/cm
10-7.  ~ (1— |z —1]) VO
10-11. probability {5 at each of the points £* for —5 <k <6

10-17. For 0 < k < n,

P({w: Xn()(w) =k and N(w) =n}) = P{w: Xn(w) =k and N(w) = n})

n_—A\
— P({w: Xu(w) = k) P(fw: N() = n}) = [(Z)ml p)"—k] [A] |

n!

We sum on n:

Ve o AL —p)" 7 (pA)Fe ™
(p)k! Z(( p)) (pA)
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as desired.

10-21. The distribution of a single fair-coin flip is the square convolution root. If there
were a cube convolution root @, it would, by Problem 19, be supported by ARBT:
Q({m}) were positive for some positive m € 7", then P({3m}) would also be positive,
a contradiction. Thus, it would necessarily be that @ is the delta distribution ép, which
is certainly not a cube root of P. Therefore P has no cube root.

10-30.
1
E(Y) = ;(717---77«1)
Yi(y — i)
Var(V;) = ————2
() 7Oy +1)
YiVi S
Cov(ViYV;)=—————, i
( ]) 72(’Y+1) 7{]

For the calculations of the above formulas one must avoid the error of treating the
Dirichlet density in (10.4) as a d-dimensional density on the d-dimensional hypercube.

Here are the details of the calculation of E(Y1Y2) under the assumption that d > 4.
We replace yq by 1 —y1 —- - - — ya_1 and discard the denominator v/d in (10.4) in order
to obtain a density on a (d — 1)-dimensional hypercube. (In fact, this replacement is
done so often that the result of this displacement is often called the Dirichlet density.)
Implicitly assuming that all variables are positive, setting

D={(ys,.--,ya-1):ys + -+ ya1 < 1},

and using the abbreviation w =1 — (y3 + ...y4—1), we obtain

d—

_ () rul
PO = 1 T e T ) /DH ()

w w—ys
/ ygz/ Y (w—y2 —y1)"  dyr dy2 d(ys, . .. Y1) -
0 0

We substitute (w—y2)z1 for y1 and then use Problem 34 of Chapter 3 for the evaluation
of the innermost integral to obtain

_ 1I(v)
EWiYz) = L(y2)T(y1 +7a+1)

d—1
w/D

— L i—1
For the evaluation of the inner integral we substitute wzs for y2; we get

Yi b
II (v / Yo (w—y2)" 4 dya d(ys, ... ya-1) -
i=3 i) Jo

d—1 .. _q
1172l (7) /H?ﬂl 1 +yg+1
E(Yllfg) = 177,0’YZ 717 d(yg,...,yd_l).
Pz +m+ya+2) Jpo2 T

By rearranging the constants appropriately we have come to the position of needing
to calculate the integral of a Dirichlet density with parameters ~s,...,va—1, and v2 +
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Y1 + va + 2. Since the integral of the density of any probability distribution equals 1
we obtain

Y1772
E(V1Ys) = 1172
(1Y) y(y+1)

Since Y1 + -+ - + Yy is a constant its variance equals 0. On the other hand, from the
formula

d d
Var(Yi + -+ Ya) = Y ) Cov(V;Y))
j=1 i=1
we see that the variance equals the sum of the entries of the covariance matrix. So, in
this case, that sum is 0. But the determinant of any square matrix whose entries sum
to 0 is 0, since a zero row is obtained by subtracting all the other rows from it.

10-33. Let F denote the desired distribution function. Clearly, F/(z) = 0 for z < 0 and
F(z)=1for z > §. Let 2 € (0, ). From (10.4), 1 — F(z2) equals 2/v/3 times the area
of those ordered triples (z1, 22, 23) satisfying z; > z for s = 1,2,3 and 21 + 22 + 23 = 1.
This is the same as twice the area of those ordered pairs (z1,22) such that z1 > z,
zo > z,and 1 — z1 — z2 > z. Thus

1—-2z 1—z—2zp
17F(z):2/ / dzodzi =1 — 624 92°.

Therefore F(z) = 6z — 92% for 0 < z < 3
10-36. beta with parameters d — 1 and 2

10-37. The distribution has support [0, 1] and there the distribution function is given
by
1 2 1
w ~ 3 + 3w” + 3wlog 5 .
10-40. Hint: For Ci, (2, and C3 convex compact sets, show that
{riz1 + roxs + rszs: x; € Ci,r; > 0,11 + 12 + 73 = 1}

is convex, closed, and a subset of both (C1 V C3) VvV Cs and C1 V (Cs V Cs).
10-43. |sinp|, |cosp|, | sing| V | cos ¢|

10-47. For all ¢ and —1 < w < 1, the distribution function is

(W—Fw\/l — w? zaurccosmw)3
W ~

™

10-48. Let A and B be two compact convex sets. Consider two arbitrary members
a1+ b1 and a2 + b2 of A+ B, where a; € A and b; € B. Let k € [0,1]. Then

n(al —+ bl) —+ (1 — Ifi)(ag + bg) = [Fial =+ (1 — Fi)ag] —+ [Iibl + (1 — Ii)bg] s

which, in view of the fact that A and B are convex, is the sum of a member ka1 + (1 —
k)az of A and a member kb1 + (1 — k)ba of B, and thus is itself a member of A + B.
Thus, convexity is proved.

It remains to prove that A 4+ B is compact. Consider a sequence (an + bn:n =
1,2,...), where each a, € A and each b, € B. The sequence ((an,bn): n =1,2,...)
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has a subsequence ((an,,bn,): kK =1,2,...) that converges to a member (a,b) of Ax B,
because A X B is compact. Since summation of coordinates is a continuous function
on A x B, the sequence (an, + bn, ) converges to the member a + b of A + B. Hence,
A+ B is compact. (By bringing the product space A x B into the argument we have
avoided a proof involving a subsequence of a subsequence.)

and variance equals 1 % — %

10-52. For each ¢: mean equals %

For Chapter 11

11-12. The one-point sets {0} and {7} each have probability 2"*37™. The probability
of any measurable B disjoint from each of these one-point sets is the product of ﬁ(l -
2"37™) and the Lebesgue measure of B.

11-13.

P({w: (N(w) — 17SN(W)_1(w)) = (m, k:)}) _ T(k m >qk—mp2m—k

—m

for m < k < 2m and 0 otherwise. E(Sy_1) = 224

T

11-14. for B a Borel subset of RT,
P({w: N(w) =1 =m, Sy()-1(w) € B}) = Q{oc})Q™™ (B);

E(Sn-1) = E(S1; {w: S1(w) < o0})

b
Q({o0})

11-17. Suppose that N is a stopping time. Then, for all n € Z+,
{w: N(w) <n} € Fy,

which for n = 0 is the desired conclusion {w: N(w) = 0} € Fo. Suppose 0 < n < co.
Then
{w: N(w) <n} € Fno1 C Fn.

Therefore,
{w: Nw)=n} ={w: N(w) <n}\{w: Nw) <n} € F,.

We complete the proof in this direction by noting that

{w: N(w) = 00} = {w: N(w) < oo} \ | J{w: N(w) <m}

and that all the events on the right side are members of F.
For the converse we assume that {w: N(w) = n} € F, for all n € 7", Then,
whether n < co or n = oo,

{w: N(w) <n} = U{w: N(w) =m}.

All events on the right are members of F,, because filtrations are increasing. Therefore,
the event on the left is a member of F,,, as desired.



22 SOLUTIONS, ANSWERS, AND HINTS FOR SELECTED PROBLEMS

11-24. Let A € Fp;. Then
AN{w: Nw)<n}=AnN [{w: M(w) < n}N{w: N(w) gn}]
= [Aﬂ{w: M(w) gn}] N{w: N(w) <n},

which, being the intersection of two members of F,,, is a member of F,,. Hence A € Fn.
Therefore Fpr C Fn.

11-28.

1—+/1—4p(1 —p)s?
2(1 —p)s ’
For n finite and even, the probability is 0 that n equals the hitting time of {1}. For

o1(s) = 0<s<1

n = 2m — 1, the hitting time of {1} equals n with probability

1 (2m -1\ . m—1
1- :
2m1< " )p (1-p)

The hitting time of {1} equals co with probability 0 or (1 — 2p)/(1 — p) according as
p> % or not.

Ifp > %, the global supremum equals co with probability 1. If p < %, the global

maximum exists a.s. and is geometrically distributed; the global maximum equals x

with probability 11__2: (ﬁ)z.

11-30. Hint: Use the Stirling Formula.

11-32. Let (Z;: 7 > 1) be a sequence of independent random variables with common
distribution R (as used in the theorem). From the theorem we see that (0,T1,75,...)
is distributed like a random walk with steps Z;. Thus,

PHw: V(w) =k}) = P{{w: Zk(w) =00, Z;(w) < oo for j < k})
= P({w: Ty(w) = oo}) [P(fw: Ti(w) < 0o})]" .

Set k =1 to obtain the first equality in (11.6). The above calculation also shows that
V is geometrically distributed unless P({w: V(w) = oo}) = 1. Thus, it only remains
to prove the second equality in (11.6).

Notice that

V=3 T su=0) -
n=0

Take expected values of both sides to obtain

[e'e]

EWV) =3 Q" ({0}).

n=0

If the right side equals co, then V = oo a.s., for otherwise it would be geometrically
distributed and have finite mean. If the right side is finite, then E(V) < oo, and, so, V
is geometrically distributed and, as for all geometrically distributed random variables

with smallest value 1, E(1V) =P({w: V(w) =1}).

11-40. m!/m™
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11-41. For m = 3, let QQ,, denote the distribution of S,,.

11+ 37("=D) if n is even

Qn({0h) = {0 if n is odd

Qn({{1}}) = @u({{2}}) = Qu({{3}}) = {

0 if n is even
1(14+37™) ifnis odd

Qu(H{1,2}}) = Qu({{L3}) = Qu({{2.31}) = {3 o) e

if n is even

0
Qn({{L 273}}) = { (1 o 3—(”_1)) if n is odd

1
4

11-42. probability that {0} is hit at time n or sooner: [1 — (3)"]™; probability that
{{1,2,...,k}} is hit at the positive time n < co:

n n\m—k n—1\m—~k
G- == s
probability that hitting time of {1,...,m — 1} equals co: (2™ —2)/(2™ — 1)

11-45. For n > 1 the distribution of S,, assigns equal probability to each one-point
event. The sequence S is an independent sequence of random variables. For n > 1, the
probability that the first return time to 0 equals n is (£)(1 — 2)""', where m is the
number of members of the group.

For Chapter 12

12-10. (ii) Let Z, = Xil{u: |x, (w)|<n}- Then |Z,(w)| < |X1(w)| for each n and w.
Since E(|X1]) < oo and Z,(w) — Xi(w) for every w for which X;(w) is finite, the
Dominated Convergence Theorem applies to give E(Z,) — E(X1). Since X; and X,
have identical distributions, Z,, and Y,, also have identical distributions and hence the
same expected value. Therefore E(Y,,) — E(X1).

12-16. Let G denote the distribution function of | X;|. Then

D P{{w: [Xam(w)| > 2em}) = > [1 - G(2em)]

m=1 m=1

1 0 2¢(m—+1)
> = _
Z 50 Z/Q 1 - G(2cz)|dz

m=1 cm

- %/Q [l — G(2cx)] da
1 (e o)

= 1.2
4c? J, .2

[1-Gyldy,

which, by Corollary 20 of Chapter 4, equals oo, since E(]X1]) = co. By the Borel-
Cantelli Lemma, (12.1) is true.
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To prove (12.2) we note that if | Xom (w)| > 2cm, then |Som (w)| > em or |S2m—1(w)| >
c¢m from which it follows that
’SZm(W) ’ v ’ SZm—l(w) ’

s €
2m 2m — 1 ’

2

From (12.1) we see that, for almost every w, this inequality happens for infinitely many
m. Hence, 0 is the probability of the event consisting of those w for which Sy, (w)/n

converges to a number having absolute value less than $. Now let ¢ — oo through a

countable sequence to conclude that (12.2) is true.

12-17. E(Sn) = [[,_, E(Xx) = 27". An application of the Strong Law of Large
Numbers to the sequence defined by log S, = ZZ:1 log X1 gives

lim

n— oo

log S, !
% = E(log X1) :/ logzdz = —1 a.s.
0

Since almost sure convergence implies convergence in probability, we conclude that, for
any € > 0,
lim P({w: e 9" <5, <=9 =1,

Thus, with high probability E(S,)/S, is very large for large n. There is some small
probability that S, is not only much larger than e~ ", but even much larger than 27",
and it is the contribution of this small probability to the expected value that makes
E(Sy) much larger (in the sense of quotients, not differences) than the typical values of
Sn. The random variable S,, represents the length of the stick that has been obtained
by starting with a stick of length 1 and breaking off n pieces from the stick, the length
of the piece kept (or the piece broken off) at the n'® stage being uniformly distributed
on (O, Sn—l)-

12-19. (1+p)(1 —p), (1 +p)(1 —p)?,

(1-p?  (A+p-p’+p*-p )1 -p)
l—p+p?’ 1 —p? +2p% —p?

12-27. Let A € ®2°:1 G and € > 0. (We are only interested in exchangeable A but the
first part of the argument does not use exchangeability.) By Lemma 18 of Chapter 9,
there exists an integer p and a measurable subset D of []? _, W such that P(AAB) < e,
where

Define a permutation 7 of Z*\ {0} by

n+p ifn<p
mn)=<n—p ifp<n<2p
n if 2p<n.

Let 7 denote the corresponding permutation of €2.
It is easy to check the following set-theoretic relation:

AN#(A) C[AAB]JU[BN#(B)] U [#(B) A #(A)].
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Hence
(7.3) P(AN#(A)) < P(AA B) + P(BN#(B)) + P(#(B) A#(A)).
The first term on the right side of (7.3) is less than e. Since P(C) = P(#(C)) for any
ce®., .6,
P(#(B) A#(A)) =P(#(BAA)=P(BAA) <e.
Thus the third term on the right side of (7.3) is also less than e. Therefore
(7.4) P(An#(A)) < P(BN#(B)) +2¢

Now assume that A is exchangeable. Then AN #(A) = A. Also, it is clear that B
and 7(B) are independent, and so

P(BN#(B)) = P(B)P(#(B)) = [P(B)].
Another easily obtained fact is that P(B) < P(A)+e¢. From (7.4), we therefore obtain
P(A) < (P(A) + &) +2¢ < [P(A)) + 4e + 2.
Algebraic manipulations give
P(A)[1 — P(A)] < 4e +&°.
Let € \, 0 to obtain P(A)[1 — P(A)] =0, as desired.

12-30. (i) exchangeable but not tail, (ii) exchangeable and tail, (iii) neither exchange-
able nor tail (but the Hewitt-Savage 0-1 Law can still be used to prove that the given
event has probability 0 or 1) [Comment: the tail o-field is a sub-o-field of the ex-
changeable o-field, so there is no random-walk example of an event that is tail but not
exchangeable. This observation does not mean that the Kolmogorov 0-1 Law is a corol-
lary of the Hewitt-Savage 0-1 Law, because there are settings where the Kolmogorov
0-1 Law applies and it is not even meaningful to speak of the exchangeable o-field.]

12-35. Y P({w: |Xn(w)| > 1/n*}) < > (1/n*) < co. By the Borel Lemma, for al-
most every w, | X, (w)| < (1/n?) for all but finitely many n. By the comparison test for
numerical series, Y X, (w) converges (in fact, absolutely) for such w.

12-40. by the Three-Series Theorem: Let b be any positive number, and define Y,, as
in the theorem. By the Markov Inequality,
E(X») 1

P{w: Xn(w) >b}) < R

Thus the series (12.8) converges. Since 0 < Y, < X,, 0 < E(Y,) < ,712 Hence, the
series (12.9) converges. Also,

b

n2

Var(Y,) < E(Y;?) < bE(Y,) < bE(X,

~

Thus the series (12.10) converges. Therefore, > X, converges a.s. (Notice that this
proof did not use the fact that the random variables are geometrically distributed.)
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by Corollary 26: The distribution of X,, is geometric with parameter (n? 4+ 1)7*.
Thus the variance is (n? + 1)/n* < 2/n%. The series of these terms converges, as does
the series of expectations. An appeal to Corollary 26 finishes the proof.

by Monotone Convergence Theorem: E(} X,) = > F(Xn) < co. A random
variable with finite expectation is finite a.s. Therefore, > X, is finite a.s. (Notice that
for this proof, as for the proof by the Three-Series Theorem, the geometric nature of
the distributions was not used.)

12-41. Y ¢k < o0

12-45. One place it breaks down is very early in the proof where the statement
Y oney Xe(w) # 3000 Xk(w) is replaced by the statement » ¢ Xi(w) # 0. These

two statements are equivalent if the state space is RY, but if the state space is B itis
possible for the first of these two statements to be false, with both sums equal to oo,
and the second to be true.

For Chapter 13

13-15. if and only if the supports of the two uniform distributions have the same
length

2
13-19. k£ — ﬁp‘k‘; vV o~ %. [p is the parameter of the (unsymmetrized)
geometric distribution.]

13-30. mean equals > .~ k™" and variance equals >, k>
13-34. Hint: Let
<1
fa)= [ e
o 'LL2 _|_ y2

and find a simple formula for f” + u?f.

2 a—+va? —b? I
a2 — b2 b

13-48.

13-72. yes

For Chapter 14

14-2. At any = where both F and G are continuous, F(z) = G(x). The set of points
where I is discontinuous is countable because F' is monotone. The same is true for
G. The set D of points where both F' and G are continuous, and thus equal, is dense,
because it has a countable complement. For any y € IR, there exists a decreasing
sequence (Z1,Z2,...) in D such that zx \, y as k /" co. The right continuity of F' and
G and the equality F'(zr) = G(x) for each k then yield F(y) = G(y).

14-4. We will first show that Q,{z} — 2;e > for each z € Z*. The factor e * arises
as the limit of (1 — 2)". The factor A” already appears in the formula for Q,{z}, and
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x! appears there implicitly as part of the binomial coefficient. To finish this part of the
proof we need to show

lim L(l—i)*zzl.

n—oo (n — x)In® n

The second factor obviously has the limit 1 and the first factor can be written as

[1e-5

which also has limit 1.
We will finish the proof by showing that

Jm S Qu) =3 e
z<y z<y

for every y € R. On the left side the limit and summation can be interchanged because
the summation has only finitely many nonzero terms. The desired equality then follows
from the preceding paragraph.

This problem could also be done by using Proposition 8 which appears later in
Chapter 14.

14-6. standard gamma distributions. For x > 0,

1 i 1 =~
lim —— W le™du=1— [lim —— | [lim / W e du) .
™o T'(7) /O [w\o F(v)] [w\o . ]
The first limit in the product of two limits equals 0 and by the Dominated Convergence

Theorem, the second limit equals f:o uw e du < oo, a dominating function being
(u™' vV 1)e ™. We conclude that

I A,
lim—/ w e du =1
o T'() J,
for z > 0 from which convergence to the delta distribution at 0 follows (despite the
fact that we did not obtain convergence to 1 at = = 0).

14-10. Fix £ > 0 and r > 0. We want to show

lma)
, 1\r (1)) I T
A 2 G 0 5) ‘rm/o wle T du,

which is equivalent to

|ma]
, 1\r (1)) R T
(7-5) Jim Zk_l(a) ) _F(r)/o wleTdu,

because the term i, obtained by setting k = 0, approaches 0 as m — co.
The sum on the left side of (7.5) can be written as

/Ozgm(mdu,
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where

m kr—1k!

T TT
(1) = (ﬁ) 1%(1—i)k ifk—1<mu<kfork=12,...,|mx|
0 otherwise;

and the right side can be written as

where

The plan is to show that gm(u) — g(u) as m — oo for each u in the interval (0, z)
and to find a function h that has finite integral and dominates each ¢,,, for then the
desired conclusion will follow immediately from the Dominated Convergence Theorem.
We will consider the three factors in g,, separately. It is important to keep in mind
that k depends on u and m and that in particular, k — oo as m — oo for each fixed
u € (0,2), as this dependence is not explicit in the notation.

It is clear that (%)T_l — w7t for u € (0,z). In case r < 1, (%)T_l <u™t In
case r > 1, (%)T_l < 2”71, Thus, we have constructed one factor of what we hope

will be the dominating function h: u"~! "1 in case
r> 1.

The second factor in gm (u) equals

in case r < 1 and the constant x

1 L(r+k)

D(r) k—'T(k—1) "
We use the Stirling Formula to obtain the limit:
1 lim I(r+k)
T'(r) sk—oo k" 1T(k+ 1)

V2r(r + k)”'k_% e~ (r k)
3 e~ (k1)

= im
L(r) k—oo fr=1 /27 (k 4 1)k+

e—(r—l) . rar—1 r—1y-1/2 r—1\k+1

:Wkllnio(“r%) () ()
1

=t

The second factor in gm(u) is thus bounded as a function of k, the bound possibly
depending on r. Such a constant bound will be the second factor we will use in con-
structing the dominating function h.

For the third factor in g (u) we observe that

) (1= )" <= ) s - )™

from which it follows that
1\% —u
(1 - —) —e .
m
Moreover, (7.6) and the inequality (1 — L)™ < e~ " imply that e~
function for the third factor in g, (u).

“ is a dominating
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Our candidate for a dominating function h(u) having finite integral is a constant
multiple of ©"te % in case r < 1 and a constant multiple of e in case r > 1. Both
these function have finite integral on the interval [0, z], as desired.

For r = 0, each @, is the delta distribution at 0, and, therefore, limy oo Rm

equals this delta distribution.

14-14. Let G denote the standard Gumbel distribution function defined in Problem 13.
Fora>0and beR,

Gax +0b) = e T e ,
where c = e % > 0.

14-16. For any real constant x,

oo

ZP[XH>C]:OO.

n=1

By the Borel-Cantelli Lemma, M, — oo a.s. as n — oo and, hence,

{w: lim [M,(w) —logn] exists and > m}
is a tail event of the sequence (X: k =1,2,...) for every m. By the Kolmogorov 0-1
Law, the almost sure limit of (M, — logn) must equal a constant if it exists. On the
other hand, by the preceding problem the almost sure limit, if it exists, must have a
Gumbel distribution. Therefore, the almost sure limit does not exist.

The sequence does not converge in probability, for if it did, there would be a sub-
sequence that converges almost surely and the argument of the preceding paragraph
would show that the distribution of the limit would have to be a delta distribution
rather than a Gumbel distribution.

The preceding problem does imply that

7Mnflogn i>O as n — oo
logn
and, therefore, that
Mn
logn

— 1 in probability as n — co.

In Example 6 of Chapter 9 the stronger conclusion of almost sure convergence was
obtained using calculations not needed for either this or the preceding problem.

14-22. Weibull: mean = —I'(1+ 1), variance = I'(1+ 2) — [['(1 4 2)]?; Fréchet: mean
is finite if and only if & > 1 in which case it equals I'(1 — é), variance is finite if and
only if & > 2 in which case it equals I'(1 — 2) — [['(1 — 1)

14-35. Q. {0} =1-1, Q. {n’} =1

n

14-37. We need to show

lim Q.(—o0,z] = €=
2N\, 1 C
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for all positive finite . That is, we must show
L/ (G 5)

. 1 1 c—1
ll\,m1 (2) Z k= ¢

k=1

We may replace ﬁ by z — 1 because the ratio of these two functions approaches
1 as z \\ 1 (as may be checked by bounding the sum that defines the Riemann zeta
function by formulas involving integrals). We can bound the above sum by using:

/idz< i<1—|—/ id,z;
.z k> L T

1 1 1 1 1
()<Y < o (U )

Replace m by Lcl/(z_l)xj, multiply by z — 1, and let z \, 1 to obtain the desired limit
1-—1

that is,

14-44. Since |Bn(u)| < 1 for every u and n, we only need show that 1 —R(Bn(u)) — 0
for each w. This will follow from the hypothesis in the lemma and the inequality

1-%(6(2u) < 41 - R(B(w))],

which we will now prove to be valid for all characteristic functions [3.
Using the positive definiteness of 8 we have
+ 8(0—0)z121 + B(u—0)z122 + B(2u — 0)z123
+ B(0 —u)z2Z1 + B(u — u)z222 + B(2u — u)z2Z3
+ B(0 — 2u)z3z1 + B(u — 2u)2z322 + B(2u — 2u)2323 > 0.

Setting z1 = 1, 22 = —2, z3 = 1, noting that 8(—v) = B(v), and using 5(0) = 1, we
obtain

6 — 8%(B(w)) + 2%(B(2u)) >0,
from which follows

8[1-%(B(w)] >2[1-R(B(2uw))],

as desired. (Notice that the characteristic function of the standard normal distribution

shows that 4 is the smallest possible constant for the inequality proved above, but it
does not resolve the issue of whether < can be replaced by < for u # 0.)

14-48. The probability generating function pp » of Qp,» is given by
rf T T T T -7
por(s) =D (1-p) (m >p s"=(1-p)"(1—ps)".
=0

Clearly, (p,7) ~ pp,r(s) is a continuous function on
{lp,r):0<p<1,r>0}

for each fixed s, so the same is true of the function (p,r) ~+ Qp.r.
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14-49. Example 1. The moment generating function of @, is

= 1\ -k iy _ 1 1 _ 1
1;:0(1+n) € 77’[,—'—1 1_6;:i" n(l_efu/n_ki)’

which, as n — 0o, approaches, pointwise, the function u ~~ the moment generating

=1
function of the exponential distribution. An appeal to Theorem 19 finishes the proof.

14-52. Let V be the constant random variable 3 and let V,, be normally distributed
with mean 3 and variance n=2. Let b, = 3 and an = n~*. Then (Vs — by)/an is
normally distributed with mean 0 and variance 1 for every n even though a, — 0 as
n — oo.

For Chapter 15

15-1. > "7 | Xk| <5572, 67% = 1. Hence the series converges absolutely a.s. and
therefore, it converges a.s., in probability, and in distribution; this is true without the
independence assumption. The remainder of this solution, which concerns the limiting
distribution and its characteristic function does use the independence assumption. The
characteristic function of X}, is the function

v L (cos + cos — v -+ co 5”)
3\ ¢k 6k 6

Therefore the characteristic function of 220:1 X is the function

(7.7) v~ H[ (cos— + cos zk + cos ZZ)] .

A direct simplification of this formula is not easy, so we will obtain the distribution by
a method that does not rely on characteristic functions.

Calculations for n = 1,2,3 lead to the conjecture that the distribution @, of
> r_y Xk is given by

Qrn{m6™ "} =6"" for m odd, |m| < 6"

This is easily proved by induction once it is noted that

m 5 m+ 2 5

6n + 6n+1 < 6™ - 6n+1 :

Then it is easy to let n — oo to conclude that the distribution of 220:1 X}, is the
uniform distribution on (—1,1).
A sidelight: we have proved that the infinite product (7.7) equals the characteristic

function of the uniform distribution on (—1,1) —namely $2¢.

15-6. 0.10

15-9. are not (except for the delta distribution at 0 in case one regards it as a degenerate
Poisson distribution)

15-14. strict type consisting of positive constants (note: negative constants constitute
another strict type)
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15-16. Hint: The function g given by

< 1 -y
g(U):/O WE x dx

can be evaluated by relating ¢’ (u) to the integral that can be obtained for g(u) by using

c

the substitution y = £ with an appropriate c¢. a = %

1820, ) (522) 77 ()" ) (1 i e P

1-p—¢ pte
2
15-28. supy,. . }’p[sn = 2] - %exp(_hgn(ﬂ)’ — O(n—l/z) as
zZ: z—n even 2rnp(l— np(l—p)
" — oo v/ 2mnp(1—p)

For Chapter 16

16-1. Hint: Use Example 1.

16-6. 0.309 at 0; 0.215 at £1; 0.093 at £2; 0.029 at £3; 0.007 at £4; 0.001 at £5;
0.000 elsewhere (Comment: Using a certain table we found values that did not come
close to summing to 1, so we concluded that either that table has errors or we were
reading it incorrectly. We used another table.)

16-12. Suppose that Qr — @ as k — oco. Fix n and suppose that there exist distri-
butions Ry such that R;"™ = Qx. Let Bk, and i denote the characteristic functions of
Qr and Ry, respectively. Because the family {Qr: k = 1,2,...} is relatively sequen-
tially compact, the family {8x: k = 1,2,...} is equicontinuous at 0, by Theorem 13 of
Chapter 14. Thus there exists some open interval B containing 0 such that Bx(u) # 0
for w € B and all k. So (Problem 7 of Appendix E), ¢r(u) = —logofk(u) is well-
defined for u € B and all k, and the family {¢%: k = 1,2,...} is equicontinuous at 0.
For u € B, vi(u) = exp(—%z/)k(u)). Hence {vx: k= 1,2,...} is equicontinuous at 0.
By Theorem 13 of Chapter 14 the family {Rx: k = 1,2,...} is relatively sequentially
compact, and, therefore, the sequence (Rj) contains a convergent subsequence; let R
denote the limit of such a subsequence. Since the convolution of convergent sequences
converges to the convolution of the limit, R*™™ = @ as desired. [Comment: For fixed n
we only used R;" = Qf for each k, rather than the full strength of infinite divisibil-
ity. If @ is infinitely divisible we can strengthen the conclusion: From the forthcoming
Proposition 3 it follows that 3 is never 0 and therefore that R is the unique distribution
whose characteristic function is exp o( log 08) and moreover, it equals the limit of the
sequence (Rg).]

16-13. By Proposition 1 the product of two infinitely divisible characteristic func-
tions is infinitely divisible. The factors we use are the characteristic function of the
compound Poisson distribution corresponding to v, as in (16.1), and the function

. o?u?
uwexp(z[n— Xdy}u— 5 ),
R\ {0}

known by Problem 9 to be infinitely divisible. The product equals exp o(—1), which
is, therefore, an infinitely divisible characteristic function. For ¢ = 0 and n = f X dv,
the second factor is the function u ~~ 1 and thus we obtain the compound Poisson
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characteristic function corresponding to an arbitrary finite measure v.

16-14. Define v;, 1 < j < 3, by

Write ¢ = 37| 4, where
= [ (1= i) ()
®\{0}
o) = / (1 - &) va(dy)
®\ {0}

() = / (1— &™) s (dy)
&\ {0}
0'27.L2

Ya(u) = iu( —n—v(—o0,—1) + 1/(1,00)) + 3

Then X has the same distribution as ijl X;, where (X;: 1 < j <4) is an indepen-
dent quadruple and, for 1 < j <4, X is infinitely divisible with characteristic function
exp o(—1;). In view of the linearity of expectation, strengthened as in Problem 29 of
Chapter 9 for independent random variables, and the linearity of variance for indepen-
dent random variables, we have thus replaced the original problem by four subsidiary
problems—to show:

E(X1) =0, Var(X1) = / y2 v(dy) ;
[=1,1\{0}
E(Xs) = / y(dy), Var(Xs) = / ¥ v(dy)
(—o00,—1) (—o00,—1)
B(Xs) = / yo(dy), Var(Xs) = [ wldy):
(1,00) 1,00)

(
E(X4) =n+v(—00,—1) —v(l,00), Var(X4)= 2.

(Comments: In defining ¥2 and w3, but not ¥1 we were able to split off the term
involving x. It is important that no assumptions about existence of expectations or
about finiteness of either expectations or variances are being made.)

The formulas involving X4 are the known formulas for the mean and variance of
a Gaussian random variable. Standard applications of the Dominated Convergence
Theorem, based on bounds from Appendix E, show that w1 has derivatives of all
orders, in particular orders 1 and 2, which may be calculated by differentiating under
the integral sign. Thus,

V() = / (—ige™ + iy) v(dy)
[-1,1\{0}
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and
W) = / e w(dy).
[=1,1\{0}

The first and second derivatives of exp o(—11) exist (because those of 11 do) and equal
the functions —1] - (exp o(—1)) and (=} + (¥1)?) - (exp o(—1))). Inserting u = 0 gives
0 for the first derivative and f[—1 1\{0} y* v(dy) for the second, as desired.

Turning to X3, with the intention of skipping X2 because its treatment is so similar
to that of X3, we note that the desired formulas are obvious in case v3 is the zero
measure and recognize that for other v3 we may use Example 2. In this latter case we
replace v3 by AR where R is a probability measure on (1,00). In terms of the notation
of Example 2 we see that X3 has the same distribution as

Z Yilinrsw
k=1

Using the independence of each pair (Y, M) and monotone convergence we obtain

po) = (f _ vman) UL

k=1

- (/(1 Oo)yR(dy))E(M) = /(1 Oo)yv(dy)-

We go for the second moment rather than directly for the variance (a useful strategy
when monotone convergence is being used):

E(X}) = Z Z E(YxYilipr>pvr)

= 2203 E(Yy)E(Y)P[M > k] + iE(YkQ)P[M > k]

k=2 1=1 k=1

= 2(/ yR(dy)> > (k= 1)P[M > k]
(1,00)

k=2

+ (/ yQR(dy)> > PIM =K.
(1,00)

k=1

The second term in (7.8) is what we want to prove the variance to be, so we only
need prove that the first term equals (E(X3))?. To do this we only need show that
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2y (k—1)P[M > k] = A%, which is a consequence of the following calculation:

Qi(k—l)P[M > Kk zzi i(k—l)P[M:m]
=23 " (k- 1)P[M =m]

=EM*)—E(M)=(X\+X) —A=x%.

16-17. If n = 0 and v is symmetric about 0, the characteristic exponent is real because
the function

y ~ —sinuy +ux(y)

is an odd function for each u. Therefore the corresponding distribution is symmetric
about 0 and its characteristic exponent has the form shown.

For the converse suppose that the characteristic function is real. It follows that the
characteristic exponent is real since it is continuous and equals the real number 0 at 0.
Then

—nu + / (= sinuy +ux(y)) v(dy) = 0
®\{0}

for every u. Another way to get 0 is to replace nn by o = 0 and v by vy defined by
vo(B) = (v(B) + v(—B)). This change, together with no change in o also leaves the
real part of the characteristic exponent unchanged. By the uniqueness of the triples in
Lévy-Khinchin representations (Lemma 11) it follows that n = 0 and v = v9. We are
done since it is obvious that v is symmetric about 0. (Comment: Another approach

is to use the measure ¢ defined in Lemma 7.)

16-20. Let X have a compound Poisson distribution with corresponding Lévy measure
v. Write v = v_ + v, where v_(0,00) = 0 and v4(—00,0) = 0. Then X has the same
distribution as X_ 4+ X4, where (X_, X) is an independent pair of compound Poisson
random variables with corresponding Lévy measures v_ and v, the independence
being a consequence of the factorization of (16.1) induced by v = v_ +v4. If v_ is
not the zero measure, then by Problem 19 there is positive probability that X_ < 0
and X4 = 0 and thus positive probability that X < 0. Therefore, v— must be the zero
measure if P[X > 0] = 1.

16-25. The moment generating functions of a gamma distribution has the form v ~+
(14 2)77. Accordingly, we want to find (§,v) (with v{co} = 0) such that

ylog(1+ 2) = v+ (1—e ") v(dy).
a (0,00)

By letting v — oo we see that the shift £ = 0. Then differentiation of both sides,
with differentiation inside the integral being justified by the Monotone Convergence
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Theorem (or in some other manner), gives

Y —vy
= e v(dy) .
. /(O’Oo) yv(dy)

It is now easy to see that the Lévy measure v has the density y ~ vy~ 'e™*Y with
respect to Lebesgue measure on (0, c0).

16-33. Statement: Let ((£,,vn), n =1,2,...), satisfy: every &, € RT and every v, is
a Lévy measure for RB*. For each n, let @, be the infinitely divisible distribution on
=+ . . .

R corresponding to (&,,vn) via the relation

/ e " Qn(dz) = exp ( —&nv — / (1—e™") Vn(dy)) .
[0,00] (0,00]

Then the sequence (Qn: n =1,2,...) converges to a distribution on R* different from
the delta distribution at oo if and only if there exist £ € RT and a Lévy measure v for
R" for which the following two conditions both hold:

viz,00] = lim v,[z,00] if 0 < z and v{z} = 0;
¢ = lim lim sup (fn + / y Vn(dy))
eNO nooo (0,e]

= lim liminf(£n+ / yun(dy))-
eN0 n—oo (0,¢]

In case these conditions are satisfied the limit of the sequence (Qn: n > 1) is the
infinitely divisible distribution with moment generating function

U~ exp ( —&v— /(O’OO] (1—e™") Z/(dy)) .

16-41. limiting distribution: two-sided Poisson supported by set of integral multiples
of ¢; characteristic exponent: u ~+ 1 — cos cu.

16-42. limit exists; corresponding triple: (0,1, v), where v has support {—1,1} and
v{—1} = v{1} = $; characteristic exponent of the limit (not requested in the problem)

1S
2

u
uw?—klfcosu.

16-50. Hint: Fix u and let € > 0. By (E.2) and (E.3) of Appendix E and Lemma 20, the
characteristic functions By, and corresponding characteristic exponents 9y, satisfy

(1= Brn(u) < () < (1+2) (1= Brn(u)
for all sufficiently large n (depending on u) and all k& < n.

16-54. uan condition satisfied so Theorem 25 applicable; u ~ e~ 1°82)¥

16-59. (@ exists and characterized by triple (0,0,v), where %(y) = % vV 0;
Q{0 =e/?
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‘ =

16-68. limit exists; (0,
representation

log 2,0) is corresponding triple for its Lévy-Khinchin

S

2

For Chapter 17

17-3. slowly varying if ¢ < 1; regularly varying of index 1 if ¢ = 1; not regularly
varying if ¢ > 1

17-9. Hint: Find a bound for

/ Is|? R(ds) .
(zk’2k+1]u[_2k+17_2k)

17-15. 1

17-17. 3 + L arctan(ytan Z2) in case o € (0,1) U (1,2]; 2 + L arctan £ with § = oo
or = —oo according as & > 0 or £ < 0 in case a = 1; maximum value is 1 A i
17-29. in no domain of attraction

17-31. characteristic exponent of limiting distribution is u ~+ k4,3 [u|*/3;

— 3/2, /
Uy ~ 33/4 627/128 n3/4 e (3/4) logn

and ¢, = 0.

17-38. in domain of attraction of stable distribution with & =1 and v = 1; in domain
of strict attraction of 61

For Chapter 18

18-5. Hint: Identify C[0,00) in a natural way with a closed subset of

oo

®C[n,n—|— 1].

n=0

18-8. Let g be a continuous bounded R-valued function on T. Then goh is a continuous
bounded R-valued function on ¥. Therefore

lim [ gdR, = lim /(goh)dQn:/(goh)dQ:/ng.
o o o

n— oo n— oo
e

18-15. We first prove a related assertion—namely, the one obtained by replacing the
hypothesis that A is open by the hypothesis that A is closed, in which case A is itself
a Polish space by Proposition 3. If Q(A) = 0, this modified assertion (and also the
original assertion) is clear, so assume that Q(A) > 0. For B a Borel subset of the Polish
space A let
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Clearly R is a probability measure. Let ¢ > 0. Corollary 18, applied to the Polish
space A, shows that there exists a compact set K in the Polish space A such that
R(K) > 1 — ¢ and, thus,

QIK) > (1-2)Q(A) 2 Q(A) — €.

The observation that, by Proposition 1 of Appendix C, K is compact in the Polish
space ¥ completes the proof of the modification of the original assertion.

We return to the original assertion by now assuming that A is open in . We will
prove that for every § > 0, there exists a subset C of A that is closed in ¥ and satisfies
Q(C) > Q(A) — 6. An application to C of the assertion proved above for closed sets
then completes the proof.

Let S be a countable dense set in W. It is easy to see that S N A is a countable
subset of A which, since A is open, is dense in A. For each x € SN A, let B, denote the
closed ball centered at x whose radius is half the distance from = to A°. It is easy to
check that A = Uz csna Bz- Replacing this union with a finite union over some finite
subset of SN A gives a closed set, a closed set whose Q-measure can, by continuity of
measure, be chosen arbitrarily close to Q(A), thus completing the proof.

Comment: The closed balls in the last paragraph of the proof need not be compact;
this possibility is one reason the proof is so lengthy. Another reason is that an open
subset of a Polish space is not necessarily a Polish space because it may not be complete.
Thus, an intermediate result involving a closed subset is useful.

18-24. Let w € R%. By the Classical Central Limit Theorem,
ooy Xk — . Xi) — nE((w, X
<w, Dy Xk ”N> _ 2 (W, Xk) — nE((w, X1)) 2, ..
Vn Vn

where Z,, is a normally distributed R-valued random variable having mean 0 and
variance Var{w, X1). By the Cramér-Wold Device,

22:1 Xi —np
\/ﬁ

such that (w,Z) has the same distribution as Z,, for each w € R% and so we may
redefine Z,, to actually equal (w, Z). Since each Z,, is normally distributed, Z itself is,

D
— some Z

by definition, normally distributed.
Let w = (0,...,0,1,0,...), where 1 is in the jth position. Then Z,, = Z;, and hence
E(Z;) = 0. Also,
Var Z; = Var Z,, = Var(w, X1),

which equals the variance of the jth coordinate of X;. Therefore the mean vector of
Z is the zero vector and the diagonal members of the covariance matrix of Z are the
diagonal members of 3.

Now let w = (0,...,0,1,0,...,0,1,0,...,0), where 1 is in both the ;" and k'
positions. Then Z,, = Z; + Z), and so

Var(w, X1) = Var(Z,) = Var(Z;) + Var(Z) + 2 Cov(Z;, Zx,) .

The left side is the sum of the variances of the jth and k' coordinates of X and twice

the covariance of the jth and k' coordinates. By the preceding paragraph the sum of
the variances of the j* and k' coordinates of X, equals the sum Var(Z;) + Var(Zy).



SOLUTIONS, ANSWERS, AND HINTS FOR SELECTED PROBLEMS 39

Thus twice the covariance of those two coordinates of X; must equal 2 Cov(Z;, Zy).
Therefore the off-diagonal members of the covariance matrix of Z are the off-diagonal
members of 3.

18-26. Hint: Prove that ((A:)¢). C A°.

18-29. first part: 12 A1

For Chapter 19

19-4. The function ¢t ~+ ¢ is monotone (and therefore of bounded variation) on [0, 1]
and, for each w, the function W(w, -) is continuous. Hence (see Appendix D), we may
use integration by parts to rewrite the given functional as

x(l)—/ tdm(t):/ (1—t)dz(t),
0 0

which in turn is the limit of Riemann-Stieltjes sums:

k

Under Wiener measure, this sum is the sum of k£ independent normally distributed

random variables each of which has mean 0 and the i*® of which has variance (1— i)Q %
Therefore the Riemann-Stieltjes sum itself is normally distributed with mean 0 and

variance

=1

This variance is a Riemann sum for the Riemann integral

1
2
/(17t) dt = 3.
0

By Problem 8 of Chapter 14 we see that the answer to the problem is: Gaussian with

mean 0 and variance %

19-8. We treat the case m = n; the case m = 0 is similar. Following along the lines of
the argument in the text, but using the fact that K(x) =1 is possible if T'(z) > 1 and
impossible if z(1) < 0, we obtain

Qn({z: K(z)=1})

! 1 (i\1[ (n—j) 1 — 1
2].2_2“(3‘/2)21'((11;‘)/2)2@ 9 52 = (a/2>

jeven ]even

which, because of Lemma 12, equals

1/fn\._, 1 <<= 1 i1

_ 2 _ - . .

2(n/2) *3 Z jl(j/2> 2i
Jj=n
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A straightforward induction proof that

—1\j/2) 2~ \n/2
ota? il n/
jeven

completes the proof. [For n = 0 (the starting value for the induction proof), the left
side equals the probability—namely 1 —that the time of first return to 0 equals some
finite value, and 1 is also the value of the right side when n = 0.]

19-11. 2™ ~0.82

19-27. We need to show that the value of the derivative of the moment generating
function at 0 equals —ab. By definition, the derivative there equals

sinh(av/2u) + sinh(bv/2u) — sinh((a 4 b)v/2u)

7}1{,% usinh((a + b)v/2u)
1 2[sinh(aw) + sinh(bw) — sinh((a + b)w)]
T w0 w? sinh((a + b)w)

Now three applications of the I’Hospital Rule yield the desired result.

For Chapter 20
20-5. E(X)

20-6. Proof of (iv): By the Cauchy-Schwarz Inequality

B(IX = Xo|) = B(X — X,|1) < VE(X - Xa)/E(1?) = \/E((X = X,)?) = 0.
Proof of (iii), using (iv):
limsup E(|X»|) < E(|X]) + limsup E(| X, — X|) = E(|X])
and

E(|X|) < liminf[E(|Xa|) + E(|X — Xnl)]
< liminf E(|X,|) + limsup E(|X — X,|) = liminf E(|X,]|),

from which the desired conclusion follows.

20-15. By the sentence preceding the problem, E(V;) = 0 for each i and E(Z) = E(X).
Hence, E(X — Z) = 0. Our task has become that of showing E((X — Z)Y;) = 0 for
each 7. In view of the fact that each Y; is a linear combination of 1 and the various V;
and that we have already shown that E((X — Z)1) = 0, we can reformulate our task
as that of showing that F(XV;) = E(ZV}) for each j.

From the definition of Z we obtain

E(ZV;) = (X, HE(V;) + i(XM)E(ViVj) = (X, Vj) = E(XVj).

For Chapter 21
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21-3. By Definition 1: Clearly, P(B | G)Ia is a member of L2(Q,G, P). Let Y €
L2(9,G, P). To finish the proof we must show

E([Ians — P(B | G)I4]Y) =0.
That is we must show that
E([Is — P(B|G)][IaY]) =0.

In view of the fact that I4Y is G-measurable, this statement follows from the definition
of P(B | Q).

By Proposition 2: Let X = P(B | G)I4. Condition (i) of Proposition 2 is clearly
satisfied by X. To check condition (ii), let C' € G. Then we must show that

E(XIc)=P(ANnB)NC).
That is, we must show that
E(P(B | G)Ianc) = P(BN(ANCQ)).

In view of the fact that A N C € G, this last statement follows from Proposition 2
applied to P(B | G).

[Comment: Notice the similarity between the two proofs. Proposition 2 says that
the orthogonality condition entailed in Definition 1 need only be checked for indicator
functions of members of G rather than for every member of L2(2, G, P).]

21-5. The right side X of (21.1) is obviously o(C)-measurable. To check the sec-
ond condition in Proposition 2 we only have to consider the four members of o(C).
Obviously E(X1y) =0 = P(ANP). Also,

B(XIe) = %E(Iclc) — P(ANC)
and similarly,
BE(XIee) = %Eu@f@) — P(ANCY).

Finally,
E(XIp)=E(XIc)+ E(XIce)=P(ANC)+ P(ANC)=PANQ).

21-8. (ii)
1 fw +ws+ws+ws=4
% if wr +w2 +ws +ws =2
W~
% ifw +ws+ws+ws=0
l() otherwise
é for the particular given w

(v)
fwi+we+ws+ws=0

otherwise

O =

-

for the particular given w

=
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21-9. The general formula is

1 1 1 1
16> 33N P(AN By s, 54,

i=0 j=0 k=0 1=0

where
Bijri={t: Y1 =2i— 1,902 =25 — 1,903 =2k — 1,¢pa = 21 — 1} .
(i)

1 fwi+wr=2
W~
0 otherwise

0 for the particular given w
(v) same answer as problem 8

21-10. For each positive integer m and almost every w,

P(limsup A, | §)(w) < P( U Ay | g> (w) < Z P(An | G)(w) .

For those w for which the sum on the right is finite, that sum can be made arbitrarily
close to 0 by choosing m sufficiently large (depending on w). For such an w the proba-
bility on the far left must equal 0 since it does not depend on m. This completes the
proof of the first of the two assertions in the problem.

21-12. ¢ ~ Y1
21-13. It is possible that the image of V' is not a measurable subset of W.
21-17. v~ v

21-24. With @ denoting the distribution of Y and é, the delta distribution at z, a
conditional distribution is the function

(w, B) ~ Q([X (w),00))éx () (B) + Q(B N (—00, X (w)) .

(Various functions are presented via this notation: one function of two variables, func-
tions of B for various fixed values of w, and functions of w for various fixed values of
B.)

21-25. With @ denoting any fixed distribution [for instance, the (unconditional) dis-
tribution of X and 6. denoting the delta distribution at ¢, a conditional distribution is
go|X|, where

f(=w) f(w) . _
g(w) = Fl=w)+f(w) b—w + F(—w)+f(w) 6w if f(—w)+ f(w) #0
Q if f(—w)+ f(w) =0.
21-30.
yertmon ifX(W) 2t 2>t
(w,z) ~ me_m/)‘ if X(w)<t,0<z<1t

0 otherwise
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21-34. The density is

d—1

(y — 1 —'~~—:Ed,1)%lflefy :Ezi71
Llyeeo sy Ld—1,Y) ~
( ) I(w) 1SS ven

forx; >0,y >x1 4+ -+ xd—1-
Let Y = X1 + -+ 4+ Xg4. A conditional density of (X1,...,X4—1) given o(Y) is

(w, (:El, . ,:Edfl))

x Td— -1 - T4 i—1
(1 Ty T yd(wl))mi Ty 4 474) ﬁ (Y(w))w
F(ya) [Y ()]
for z; > 0,21 + -+ + xa—1 < Y(w) if Y(w) > 0 and ~~ the unconditional density of

(X1,...,Xa-1) f Y(w) <0. [Note the relationship to the Dirichlet distribution which
is described in an optional section of Chapter 10.]

21-44. Let Q consist of the four points corresponding to two independent fair coins.
Let G denote the o-field generated by the first coin and H the o-field generated by the
second coin. By definition, (G,H) is an independent pair and it is clear that (G, H)
consists of all subsets of 2. Thus, any o-field consisting of subsets of € is a sub-o-field
of o(G, H). Let K be the o-field generated by the event that exactly 1 head is flipped.
Given K the conditional probability of any member of G different from () and Q equals
% as does the conditional of any such member of H. But, there is no event that has
1.1 _1

conditional probability given K equal to 5 - 5 = ;.

For Chapter 22

22-10. If X3 were to exist so that (X1, X2, X3) is exchangeable, then, since X1+ X2 =0
with probability 1, it would follow that X1 + X3 = 0 and X2 + X3 = 0 with probability
1. By solving three equations in three unknowns it would then follow that X1 = 0 with
probability 1, a contradiction.

22-11. Hint: Apply E(P(A | G)) = P(A) for various choices for A.

22-14. uniform on the set of those ([n+3:(w)]/2) sequences of £1’s that contain [n +
Sn(w)]/2 1’s and [n— Sp(w)]/2 —1’s. [Comment: The answer does not depend on p.]

22-16. first term equals 1 with probability fiﬁ conditional distribution of second

term given first term: equals 1 with probability ﬁ}il

1 with probability ﬁgﬂ if first term equals 0. distribution of first two terms: equals

(1,1) with probability % and equals (0,0) with probability %
. . afB

and equals (1,0) and (0, 1) each with probability CEG Tewrmy

if first term equals 1 and equals

22-21. By exchangeability, the correlation of I,,, and I, is the same as that of I; and
I if n # m; of course, it equals 1 if n = m.

The correlation of I; and I» equals m, which approaches 0 as (zo,y0) —
(00, 00) and approaches 1 as ¢ — oo.

For large (zo,yo0) the knowledge of the color of a fixed number ¢ of balls in the urn
hardly influences the probability that a blue ball will be drawn. For large ¢, the second
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ball drawn is very likely to be of the same color as the first ball since after the first ball
is drawn almost all the balls in the urn will have the same color as the first ball.

22-22. Using the fact that Hn ‘;iﬁ =0if0<a<band 0 <c, we have

P[I,=0forn>m]=E(P[l,=0forn>m|o(Xm,Yn)])

o Y + (n—m—1)c
=F
Xm +Ym+(n—m—1)c

n=m-+1

=E0)=0

for each fixed m. Hence

P(liminf{w: I,(w) =0}) =

U ﬂ {w: In(w) —0})

P m{w:In(w)—O}>
:io:o,

from which it follows that the first event in the problem has probability 1. That the
second event given there also has probability 1 follows by applying the result already
proved to the sequence ((1—1,): n =1,2,...), an application which is seen to be valid
by interchanging the colors of the balls.

22-24. 208 S((n - 1), (m — 1))

m(n—1)

For Chapter 23
23-11. Hint: Use Problem 14 of Chapter 5.

23-17. Let w = (0,1], F the Borel o-field, and P Lebesgue measure. Let X, =
nlo,1/n). Then X, (w) — 0 for every w and E(X,) = 1, so the (unconditional) Domi-
nated Convergence Theorem must not apply. Let

Gg=o( ™ 2" Vim=1,2...).

The random variable Y (w) = L dominates every X, and satisfies E(Y | G)(w) =
2" log 2 for 27™ < w < 27 M~V 1In particular E(Y | §)(w) < oo for every w. Hence
the Conditional Dominated Convergence Theorem applies. We conclude that E(X,, |
G)(w) — 0 for almost every w, a fact that we could have also obtained by directly by
observing that E(X, | §)(w) =0 forn > 2.

23-23. Problem 21 of Chapter 21

23-30. ; (for all b), which is larger than %, the (unconditional) expectation. The
following paragraphs present various ways of looking at the situation.

Fix b. If, before the random experiment begins, it is understood that one will be told
whether or not b is between X and Y, one will clearly want to assign a larger value to

the expectation of Y — X in case b is between X and Y and a smaller value otherwise.
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1

An appropriate weighted average of these two numbers equals 3,

first of these two numbers is larger than %
Knowing that exactly one of two order statistics from the uniform distribution on

so, as expected, the

(0,1) is larger than b gives no reason for biasing one’s estimate for it among the various
values larger than b. Thus, the conditional mean of its excess over b is half the distance
1>t. Similarly the conditional mean of the difference between
b and the smaller of the two order statistics is g. The sum of these two conditional
%, independently of b.

Here is a second method of getting an intuitive feel for the value % Fix the number b.
Pick three iid points Z1, Z2, and Z3 on a circle of circumference 1. Cut the circle at Z;

in order to straighten it into a unit interval with the counterclockwise direction on the

from b to 1 —namely,

expectations is

circle corresponding locally to the direction of increase on the unit interval. Then set
the smaller of Z> and Z3 equal to X and the larger equal to Y. The condition that b be
between X and Y is the condition that as one traverses the circle counterclockwise the
contacts with either Z> or Z3 alternate with the contacts with either Z; or b. Among
such possible arrangements, there is probability % that b lies in the long interval and

Z1 in the short interval determined by Z2 and Z3 and probability % that the opposite

relations hold. So the average length of the interval in which b lies is %

23-33. By Problem 27 and Proposition 6, there exist choices of E(X1Ig | H) and
E(X~Ip | H) such that

E(BE(X" | G)Is | H)(w) = E(BE(X "5 | G) | H)(w) = E(X 15 | H)(w)
and

E(E(X™ [9)p | H)(w) = E(E(X I |9) | H)(w) = BE(X " Ip | H)(w)
for every sample point w. Subtraction gives

E(BE(X" | G)Is | H)(w) — E(E(X™ | G)Is | H)(w)

(7.9) =E(XIp | H)(w)

for every w for which the right side of (7.9) [that is, the right side of (23.9)] exists. At
such an w at least one of the two terms on the left side is finite.
We will focus on

AL B(E(XT | G)Is | H)(w) < oo}
For each w € A,
/ z Z(w,dz) < oo,
[0,00]

where Z is the conditional distribution of E(X™ | G)I5. So E(Z(-,{o0})I4) = 0. From
the definition of conditional probability we then obtain

P({w: [B(XT | G)Ip](w) =00} N A) =0.
Therefore the left side of (7.9) can be rewritten as

(7.10) E([E(X"G6)—E(X™ | 9)ls | H)(w)
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for almost every w for which the right side of (7.9) is less than co. Similarly, this can
be done for almost every w for which the right side of (7.10) is greater than —oo, in
particular for almost every w for which the right side of (7.9) equals oco.

The upshot is that for almost every w for which the right side of (7.9) exists, the
left side of (7.9) can be rewritten as (7.10) in which the inside difference between two
conditional expectations is not of the form oo — co. Therefore linearity of conditional
expectation may be used to complete the proof.

23-42. Hint: Apply the Conditional Chebyshev Inequality and then take (uncondi-

tional) expectations of both sides.

For Chapter 24

24-2. The ‘if’ part is obvious. For the proof of ‘only if’ fix n. The inequality in the
problem is obviously true with equality in case m = 0 and it is true by definition if
m = 1. To complete an inductive proof, let m > 1 and assume that

E(Xan(mfl) | fn) > X, a.s.
Since F,, C _7—'n+<m,1)7

E(Xn+m | -7:11) (E(Xn+m | fn+(m71)) | ‘7:”)

=F
> E(Xnpm-1) | Fn) = X, as.

24-8. We treat the real and imaginary parts simultaneously. Let F, = o(So,...,Sn)

and denote the steps of the random walk by X1, Xo,.... Then
1 Sy _tuXy
E(Yn+1 |-7:n): WE(Q e +1 |fn)
1 iuSy uXy,
= e B F)
_ 1 eiuSn _ Yn )

(p(w))"

[Remark: We have proved that the real and imaginary parts of (Yn.: n = 0,1,...)
are martingales with respect to the minimal filtration for the random walk, which may
possibly contain larger o-fields than the corresponding o-fields in the minimal filtration
for the sequence (Y3).]

24-10. Proof of uniqueness: Suppose that conditions (i)-(iv) of the proposition hold
as stated and that they also hold with some sequences Z and U in place of Y and V,
respectively. By subtraction

I —Yn=Vo, —U,.
Thus Z, — Y, is Fn—1-measurable, and, hence,
Zn—Yn =E((Zn—Yn) | Fac1) = Zn1— Y 1.

This fact combined with Zy — Yo = 0, a consequence of Uy = Vy = 0, gives Z,, = Ya,
and therefore U,, = V,, for every n.
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24-11. Let F, = (S0, ..., Sn). Then
E((Si11 = 82) | Fu) = E((Snt1 = Sa)® | Fu) +2E((Sn41 = Sn)Sn | Fn)
>0+ 28, E((Snt1 — Sn) | Fn) =0,
as desired. [Remark: See the remark in the solution of Problem 8.] V;, = nVar(S1).
24-20. Hint: | X, I = Xnlron < Xolgpsn < Xr
24-23. Hint: Use two relevant previous results; do not do any hard work.

24-26. The sequence (X, : n > 0), being uniformly bounded, is uniformly integrable.
By Theorem 12 and the Optional Sampling Theorem, E(Xr) < E(Xo) = fo; Clearly
E(Xr) > g P[X1 = g]. Hence fo > g P[X1 = g], as desired.

24-33.
E([St, — iTn)?) = Var(S1)E(T) =27 ' [1 - 27" /27" = E([Sr — 3T]°)
Var(St,,) = 27"[1—27"] \, 0 = Var(Sr)
E(Var(Sr, | Tn)) =2 " N 0 = B(Var(Sr | T))

For n > 1, Var(St, ) < E(S1)E(T%), thus highlighting the importance of the assump-
tion in Theorem 15 of mean 0 for the steps.

24-41. Suppose that X is a uniformly integrable martingale. By the theorem it has
an almost sure limit Y = X, such that (X,: n € Z+) is both a submartingale and
a supermartingale—that is, a martingale. Hence E(Y | F,) = X,. Moreover, Y is
Foo-measurable, so E(Y | Foo) =Y.

For the converse, suppose that Y has finite expectation and

X, = E(Y | Fa)

for each n € Z*. Take expectations of both sides to obtain E(X,) = E(Y), which is
finite. For k < n,

E(Xn | Fx) =E(E(Y | Fa) | Fx) = E(Y | Fr) = Xx.

Therefore with Xoo =Y, (Xn:n € Z+) is a martingale with respect to the filtration
(Gn:m € Z+), where G,, = F,, for n < oo and

Goo = (Y, Foo) .

To prove that {X,: n € Z1} is uniformly integrable we let A, , = [|X,| > r] and
note that, for any m > 0,

E(IXul; Anr) = E(IE(Y | Fo)l; Anr) < E(E(Y] | Fn); An.y)
= E(|Y|; Anyr) SmP(Any) + E(Y]; [[Y] > m]).

Since, by dominated convergence, the second term approaches 0 as m — oo, we can
finish the proof of uniform integrability by showing that P(Bn,r) + P(Chn,») — 0 as
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r — oo uniformly in n, where Bn,» = [X, > r] and Cpn,» = [Xn < —7]. That this is so
follows from

P(Buy) < 2E(Xu: Buy) = 2E(Y; Buy) < 2E(Y)),
T T T

1 1 1
P(Cor) € T B(Xo; Cu) = = B(Y; Coy) < SE(Y]),
and the observation that F(|Y]) is a finite number independent of r and n. From the
theorem (X1, X2,...) has an Ly and a.s. limit Z that is Foo measurable.
To prove that Z = E(Y | Fo) we only need show that E((Z—Y); D) = 0 for every

D e Fs. For D € F,, we have

E(Z-Y); D)=E(E(Z-Y); D|F.))
=E(IpE(Z-Y) | Fa)) = E((Ip(Xn — Xa)) =0,

where I'p denotes the indicator function of D. Thus the desired equality is true for all
D € U;ZyFn, a collection that is closed under finite intersections, contains the entire
probability space €2, and generates Fo. By linearity of expectation the set of D for
which E((Y — Z); D) =0 is closed under proper differences, and, since Y and Z both
have means, dominated convergence shows that it is closed under monotone limits. An
appeal to the Sierpinski Class Theorem completes the proof.

24-42. The martingale (V;,: n € Z ™), being bounded, is obviously uniformly integrable.
Hence, lim V,, exists; call this limiting proportion of blue balls V. From the fact that
the martingale property is preserved when Va, is adjoined to the sequence (V,: n € Z™1),
we conclude that the expected limiting proportion of blue balls conditioned on the
contents of the urn at any particular time is the proportion of blue balls in the urn at
that time.

24-45. Let Y be a (—oo,0]-valued random variable for which E(Y) = —oco. Let
Xn =Y V (—n). Then X, (w) — Y (w) for every w. For n =0,1,2,..., let G, = o(Y).
Then (Gn:n = 0,1,2,...) is a reverse filtration to which (X,:n = 0,1,2,...) is
adapted. Clearly E(X,) > —oo for every n. The inequality

E(Xn | gn+1) = Xn 2 Xn+1

shows that (Xo, X1,...) is a reverse submartingale.

For Chapter 25

25-1. Define a random sequence T by 7o = 0 and (25.1). Fix a finite sequence
(z1,...,Zr+s) such that z, = 1 and let p denote the number of 1’s in this sequence.
Define a finite sequence (o, t1,...,tp) by to = 0 and

ty = inf{m >th_1: Tm = 1} .
Then the probability on the left side of (25.2) equals

P[Tk—Tk_lztk—tk_l for1<k<p

7.11
(7.11) and Tpy1 —Tp > 1+ s —tp],
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and, since ¢ty = r for some k, the probability on the right side of (25.2) equals

P[Tk — Tx—1 =ty — tx—1 for k for which tx < 7”]
. P[Tk — Ti—1 = tr — tx—1 for k < p for which tx > r
and Tpy1 —Tp > 1+ s —tp).

If T is a random walk, then this product equals (7.11), and so (25.2) holds.
For the converse assume that (25.2) holds. Hint: To prove that T is a random walk
use Proposition 3 of Chapter 11.

25-5. Since the measure generating function of R** is o* we have

Z U{n}s" = Z Z R*{n}s" = Z Z R*{n}s"
n=0 n=0 k=0 k=0 n=0

oo . B 1

for0 <s< 1.

25-8. The function s ~ 14 s?/4(1 — s) is the measure generating function of the given
sequence. Setting this function equal to 1/(1 —¢) gives the formula o(s) = s*(2 —s) 2.
To show that the given sequence is a potential sequence, we only need show that ¢ as
just calculated is the measure generating function of some probability distribution on
zZ" \ {0}. We will do this by expanding in a power series and checking that all the
coefficients are positive, that the coefficient of s is 0, and that ¢(1—) < 1. Provided
that all the checks are affirmative we will at the same time get a formula for the waiting
time distribution R.

Clearly ¢(1—) = 1, so if it develops that there is a corresponding waiting time
distribution R, then R{co} = 0. By the Binomial Theorem,

Therefore R{n} = (n —1)27" forn =1,2,3,....

25-14. Hint: Problem 13 may be useful.

25-15. (ii). yes; U{0} =1, U{1} = p, U{n} = p? for n > 2; R{co} =0,
AT — A\ ATt nt
T el -p) T,

Ay — Ao A — Ao

where A+ = 1 [1 —pt/(1-p)(Q+ 3p)] (It may be of some interest that each R{n}

is a polynomial function of p.)

(v) no, unless p = 3

R{n} =p
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(vii) yes; U{0} =1, U{n} = 0 for n odd, U{n} = (’;7;) [p(1 — p)]™/? for n > 2 and

even; measure generating function of U:

s 1+ Z (%k 1) (1 —p)*s™ = + % > (2/2> [~4p(1 — p)s°]"

[1+ (1—4p(1 = p)s*)*];

measure generating function of R:

1-2p(1—p)s* = (1—dp(1-p)s*)"" &
o 2p(1 — p)s? =22

R{n} = 0for n odd, R{n} = %4—2( " )[p(lfp)]”/2 for n even, R{co} = 122=1L [Notice

n/2 pV(1—p)
that the coefficient %4—2 (n’;z) in the formula for R{n}, n even, is the (n/2)"® Catalan
number.]

25-20. for B a set of consecutive integers, P(N(B) > 0) = 1 — p*Z, in notation of
Problem 12

2
25-29. %ﬁf‘_l), where 4 is mean and o (possibly co) is variance

25-36. R{n} = ;2 (*)4™", U{n} = (*")4™"

2n—1\n

25-39. The solution of Problem 28 of Chapter 11 gives the measure generating function
of the waiting time distribution for strict ascending ladder times:

o (s) = 1—4/1—4p(1—p)s? .
2(1—p)s
The measure generating function of the waiting time distribution for weak descending

ladder times can then be obtained from Theorem 22:

_ 1+2(1 —p)s — /1 —4p(1 — p)s?
@ (s) = 5 -

It is straightforward to use the Binomial Theorem to obtain the waiting time distribu-
tions and potential measures corresponding to these two measure generating functions.

The other two types of ladder times can be treated by interchanging p and 1 — p.

For Chapter 26
26-5.

@Qn+1(B) = P[Xn11 € B = E(P([Xyy1 € B] | Fu))

= B (B) = [ 1(B)Qu () = @.T)(B)

E(f o Xuir | F) = / F@)iix, (dy) = (TF) 0 X
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26-19. Let f be the identity function on [0,1]. Clearly f is bounded and measurable.
By Theorem 6, Y is a martingale where

n—1

Y, :Xn—Z(Gf)oXk.

k=0

Solving for X, gives a representation for X in terms of the martingale Y and a previsible
sequence having the value 0 when n = 0. To show that this sequence is increasing,
as required for a Doob decomposition, we only need show that Gf is a nonnegative
function when f is the identity function. The following calculation does this:

Gf(z)=Tf(x) —x=E*(X1) -z >0,
the last equality using the fact that X is a submartingale.

2

26-29. Hint: Reminder: There is one value of x that is not required to satisfy the
difference equation.

26-31. x~e 'y 7 L

26-39. Denote the two states by « and y. By the last part of Problem 38, if one of the
two states is transient so is the other. Now suppose that y is null recurrent; our goal
is to show that x is not positive recurrent.

By the Renewal Theorem the sequence of entries of 7" in position y along the main
diagonal converges to 0 as n — co. We will complete the proof by finding an integer
k and a positive constant ¢ such that the entry in position y along the main diagonal
in 7™ is larger than c times the entry in position z along the main diagonal in T7*
for all n > k, for then it will follow that the sequence of entries in 7"~ % in position z
along the main diagonal will converge to 0 as n — oo, implying that x is not positive
recurrent.

One way to start at y and to then be there again at time n is to first be at state x
at some time r, then be at x again at some time n — k + r, and then be at state y at
time n. By first choosing r and then k appropriately one can make the product of the
probabilities of the first and third of these three tasks a positive constant c.

We omit the part of the solution treating the periodicity issue.

26-43. Suppose that, for some k, all entries of T% are positive. For any states x
and y there is positive probability of being at y at time k if the starting state is z.
Hence, 7z, > 0. Therefore, T is irreducible. Clearly, 7T* = T™%* has only positive
entries for all nonnegative integers m, and thus 1 is the greatest common divisor of the
powers of T for which the upper left entry (or any other diagonal entry) is positive.
Aperiodicity follows.

For the converse suppose that T is irreducible and aperiodic. The sequence of num-
bers in a fixed diagonal position of T°, 7%, T2, ... is an aperiodic potential sequence,
which, by Lemma 18 of Chapter 25, contains only finitely many zero terms. Thus,
there exists an integer m such that all diagonal entries of T™ are positive. Hence, all
diagonal entries of T™ are positive for n > m. Since T is irreducible, there is, for each
x and y, an integer k., such that the entry in row x and column y of T%=¥ is positive.
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Let k = m 4 max{k.,}. Since 7% can be obtained by multiplying 7%=¥ by a power of
T at least as large as m, the entry in row & and column y of T* is positive. Thus, all
entries of T" are positive, as desired.

26-52. starting state of interest denoted by 0; probabilities of absorption at the ab-
sorbing states —2 and —1, respectively:

> 92k—1 > 22k
kz—o (3 - 22k—1 1)(3- 22k 1) and Z - 22k 3 - 22k+1 1)

probability of no absorption: 1/3

26-55. We can introduce infinitely many extra transient states in order to obtain a
birth-death sequence. The transition distributions u, are given by

uz{x—l}:%/\l

pef{x+1} = b;x\/().

From Problem 54 we see the relevance of the following product:

x

H b=zt1 v/ _ (b) .
b A1 T

The number r as defined in Problem 54 can now be calculated:

£0)-20)-

The equilibrium distribution @ for the Ehrenfest urn sequence is given by

Q{x}—;(z), 0<z<b.

For Chapter 27
27-2. u denotes De Finetti measure; for i = 1,2,3, pu{y:} =
yi{6 —i} = 3

27-4. De Finetti measure equals delta measure at uniform distribution on {z € Z: 1 <
x <12}

1 —
3, where y; {1} =

27-6. Yes. By letting p; equal the value assigned to the one-point set {i} by a proba-
bility measure on {1, 2, 3,4}, the probability measure itself is represented by an ordered
4-tuple (p1,p2,ps,ps) The De Finetti measure assigns probability

=13 t0 (1,0,0,0) and to each of the other 3 permutations thereof;

5 to (3, i 0,0) and to each of the other 11 permutations thereof;

155 to (3,3, 1,0) and to each of the other 11 permutations thereof;

555 t0 (3, 3,0,0) and to each of the other 5 permutations thereof;
o1 o (5o i)
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27-10. p denotes De Finetti measure; u{m/n} = P[Z1 + -+ + Z, = m].

27-15. P[X1 = X5 = 1] = P[X1 = X5 = 0] = 2=
P[X;=—-Xo=1=P[X; =—-Xo=—-1] =

12(:71)

27-31. a+ the numbers of 1’s, 8 + the number of 0’s

27-32. conditional distribution of (Y, X;m41, Xm+2) has density with respect to p x
v X 7, where v denotes counting measure on {0, 1}; density is

p(X1+~~+Xm+21+Zz) (1 _ p)(m+2)7(X1+--~+Xm+21+22) .

f[O,l] (X1t +Xm) (1 — ;p)m—(X1+"~+Xm) H(dx) ’

(p7 21722) ~

integration in p and 22 gives conditional density with respect to v of Xy 41:

Sy PXTH A (1 p)(mAD=Caat Xm 21 )

Z1 ~=
Sy wXH ) (1L — )= (Xat4Xm) pu(dr)

multiplication by z1 and integration in z; give the conditional expectation of Xp,11:

Jigy PP (1 T Gt )y (dp)

f[o’l] Xt F+Xm) (1 — g)m—a++Xm) y(dx)

which equals
X1+ + X +1
m+ 2

in case p is the standard uniform distribution.

27-39. density of each of X; and Xo: = ~~ %e‘z + ie‘z/z; density of (X1, X2):
(z1,22) ~ i(e‘zl_”/z + 6_12_11/2); De Finetti measure assigns probability 1 to the
set of uniform two-point distributions, the density of the two points being {y1,y2} ~
%(6—91—92/2 + e—yz—yl/?)7 0<y1 <yo.

27-47. conditional distribution of reciprocal of mean of Y given (X1, ..., X, ) is gamma
with main parameter m + 1 and scaling parameter 1 + Z;n:l X;

27-52. The stick-breaking random walk breaks a stick into random pieces in such a
way that, say, the sizes of the first three pieces determines how much of the stick is left
for pieces 4, 5, ..., to share but gives no information about the relative sizes of these
pieces. Certain information about (Xi,..., X,») might, for example, give information
about the sizes of pieces 1, 2, and 3, without giving information about the relative sizes
of the remaining pieces. (Comment: The authors of this book find this explanation to
be neither complete nor satisfactory, but it is the best that they could do.)

27-55. The formula is trivial when k = 0; it is 1 = 1/1. Assume it is true for k and
multiply both sides by
C+ Vappy
d )
k+ Zi:l Vi

where ¢ equals the number of z;, j < k, for which z; = zx41. The result follows.

P[X}H_l = Tk+1 | X1 ::El,...,Xk ::Ek] =
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For Chapter 28
28-4. It suffices to prove that

P[(Xm7Xm+k7 s 7Xm+(d71)k) S A]

7.12
( ) = P[(Xm+k,Xm+2k,...,Xm+dk) S A]

for every positive integer d and every Borel set A C ¥¢, where ¥ denotes the common
target of the X;. Set

€ grt@-Dk+L, (

B = {(96079017 cee 7:17m+(d—1)k) Tmy Tmtky .- 7:17m+(d—1)k) S A}-

Then the left side of (7.12) equals

P[(Xo0,X1,..., Xpya-1)x) € Bl
and the right side equals

P[( Xk, Xkt1,- - Xmtar) € B].
These are equal by Problem 3.

28-6. Hint: From the given sequence obtain the desired joint distributions of every finite
set of random variables. Use this information to construct a sequence (Yo, Y-1,Y_2,...)
using Theorem 3 of Chapter 22. Then treat (..., Y_2,Y_1,Y)) as a single random object
and use it as the first member of a random sequence to be constructed using Theorem 3
of Chapter 22 again, with the next members being Y1, Ya,. ...

28-21. Let A be an set for which R(A) # S(A). By Problem 18,
(Ia,IaoT, IAOTQ, o)

is ergodic. By the Birkhoff Ergodic Theorem the sequence
1 n—1
(*ZIAOT]CZ n:1,2,...)
n
k=0

converges to R(A) with R-probability 1 and also to S(A) with S-probability 1. Since
S(A) # R(A), these two events are disjoint, and thus the mutual singularity is estab-
lished.

28-23. Suppose first that a is rational, say p/q in lowest terms with ¢ positive. Then

the following set is easily seen to be shift-invariant and have Lebesgue measure %:

{fzel0,):zelf, 2’;1'1) for some p}.

Now suppose that a is irrational. Rotation through angle 27a generates a shift
transformation on [0,1)°°. It is clear that any shift-invariant distribution is determined
by the initial distribution on [0, 1), but it may be that some choices for that distribution
do not yield a shift-invariant measure on [0,1)*°. In fact, we will prove that the only
initial distribution that does yield a shift-invariant measure on [0,1)° is Lebesgue
measure.

For every n € Z" and ‘left-closed, right-open subinterval’ J of [0,1), possibly with
‘wrap-around’; any shift-invariant measure assigns the same value to J and the interval
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Jnae obtained by adding na to each endpoint of J mod n. For any left-closed, right-
open interval K having the same length as J, a sequence (nx € Z1: k=1,2,...) can
be chosen so that

K= 1lim Ju,q.

k—oo
Hence all open intervals having the same length have the same measure, and there-
fore the only initial distribution that yields a shift-invariant distribution is Lebesgue
measure.

Since there is only one shift-invariant distribution, that distribution is extremal
and by Theorem 4, therefore ergodic. The Weyl Equidistribution Theorem is then an
immediate consequence of the Birkhoff Ergodic Theorem.

28-25. Q{i}T(i, 5)

28-28. Suppose that X is strongly mixing and consider any A € 7. For each n there
exists By such that A =7""(By). As n — oo,

Q(A) = [QUA)?| = |Q(AN T (By)) = Q(A)Q(r™"(Bn))|
= |QANT"(Bn)) - Q(A)Q(By)| — 0.

Therefore Q(A), being a solution of ’Q(A) - [Q(A)ﬂ =0, equals 0 or 1, as desired.
For the converse we assume that 7 is 0-1 trivial and fix a member A of H. Then
for all B € H and all positive integers n,

|QANT(B) = QA)Q(B)| = |Eq (Ial,—n(5) — QA L —n(s)) |
= ’EQ([Q(A | Hn) — Q(A)] Iffn(B))’
(7.13) < Eq(|QA | Ha) —Q(A)])
where Fg denotes expectation based on the distribution ¢ and
Hn={r""(C): C € H}.

To finish the proof we only need show that (7.13) approaches 0 as n — oo, the unifor-
mity in B resulting from the fact that (7.13) does not depend on B. By the Bounded
Convergence Theorem, we only need show

lim [Q(A | Ha) — Q(A)] =0.

n— oo

By the Reverse Martingale Convergence Theorem, this limit does exist and equals
Q(A | T) — Q(A), a random variable which has mean 0 and which, since 7 is 0-1
trivial, is a.s. constant. Therefore it must equal 0 a.s. as desired.

28-30. For each positive integer [, we say that a path (xo,...,zn) is l-restricted if every
point on the path lies between the vertical line through the point zo — ({,0) and the
vertical line through the point z,+(I,0). Define a collection of random variables (Zﬁ) n)
in terms of [-restricted paths in a manner that is analogous to the way in which the
collection (Zp, ) was defined. It is easy to use the independe?ce of the random variables

(T,,y) to see that for positive integers k, [, the sequence (Zr(le,(n-&-l)k: n=1,23,...)1s

mixing (in fact strongly mixing). It is also easy to see that for each fixed k,

; ) _ —
llingo P[an,(n+1)k = Znk,(n+1k] = 1,
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uniformly in n. We leave it to the reader to conclude from this last fact that the se-
quence (Zpg (nt1)e: m =1,2,3,...) is mixing (and hence ergodic) for each k.

28-45. Let X denote a stationary Gaussian sequence with correlation function (m,n) ~
p'™~ " The result is obvious if p = £1, so we assume |p| < 1. Following the hint, the
conditional distribution of X, given (Xo, X1,...,Xn—1) is Gaussian with a constant
variance and mean

1 p Pt Xn—1

n—2
P 1 P Xn_2

(7.14) (p P2 p”) : .
pn—l pn—2 1 XO

Since the first matrix is a row matrix that is a multiple of the first column of the matrix
whose inverse is in the formula, the matrix product (7.14) is some multiple of X,_1,
and this is all that is needed to show that X is Markov.

For Chapter 29

29-5. Let 7 =) 7" 7;.

P[X{l}:k]z(kl)((rvs_—ﬁ)
PIX{1} =k, X{2} =1 = () () (527)

()

PIX{1) = b, (2} = 1, x{3) = m] = () (DG CLEE)

()

29-8. P[X(B) = z] = #B-"#B 2 (") ' < z < r. Thus the distribution of X (B)

is binomial with parameters #2

n

and r.

29-13. Let (Vn: n > 0) be a renewal sequence. Define a random measure X on ZT by
X{n} =V,. Clearly X is a point process and its intensity measure equals the potential
measure of the renewal sequence.

29-18. We use the formula for the probability that a Poisson random variable equals
0. For v > 0,
PV >v] =P[X({0,1,...,v—1})=0]=¢"".

Then
PV =0v]=P[V>0v]-PV>w+1)]=e"—e @ =(1-c1e".

29-23. Write

Yu{o}={0=Yo<Yi<Ya<...},
and let (Sp = 0,51,S52,...) be a random walk having exponentially distributed steps
with mean ¢~ !. For an arbitrary positive integer n we will show that (Y1,...,Y,) and
(S1,...,5n) have the same distribution, thereby finishing the proof. We will verify that
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the distribution of each of these random vectors has the same density with respect to
n-dimensional Lebesgue measure—namely,

c"e” Y H0<yr < < yYn
0 otherwise .

To check that this is the correct density for (Y1,...,Y,) we integrate it over a set of
the form H?zl[ui,vi), where

O=v<uw <vi<uz < <uUp <vp=00.

We get
n—1 n—1
o Ctm HC D= i) = (HC = ui)e —C(vl—u1)> (H —(ui—vi1)>
i=1 i=1 i=1
n—1
(HP #(Y 0 [ui, v:)) 1) (HP #(Y N [vio1, ui)) —0]>
i=1
PlY; € [us,v;) for 1 <i <n],
as desired.
We know that the density of ((S1 —So), (S2 —S1), ..., (Sn —S1)) is

n —cxT; .
- ce " ifeach x; >0
(1, Tn) ~ Hl:l ! e
0 otherwise .

We can get the density of (S1,...,S») by using the linear transformation yr = x1 +
-+ x, 1 <k <n, the Jacobian of which equals 1. The result is the desired density
(7.15).

29-24. Hint: One approach is to start with sequences U and V having the desired
properties and then use Problem 23 to show that {(Un,Vy): n=1,2,...} is a Poisson
point process with intensity measure A X p.

29-26. ¢ °
29-29. T,
29-34. Ly (i) for r =15 b~ L[S0 [0(&)] T [T, h(j) for r =n —1
29-39. h ~~ exp(f Z¢€W(1 — h(z/;))), where VU is the countable set

29-43. The probability generating functional of X 4+ Y is

h o~ E(H[h(w)](x+y)({¢})) — E(H[h(iﬁ)]x(w})[h(zp)]y({’”}))
AS

YET
E( [H [h(w)]X(w})} [H [h(qp)]Y(W})} )

Pew Ppew

B [T ) o T] mw ),

pew PET
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which is the product of the probability generating functionals of X and Y.

29-50. Suppose that X, P X asn — oo; that is, Q. — @, where @, and ) denote
the distributions of X,, and X, respectively. Let h be in the domain of the probability
generating functional of @ (and thus of each Q). Assume first that h is bounded below
by a positive constant. Then the function

T~ /log(l/h) dm

is continuous, and thus the same is true for the function
(7.16) 7 e J 08O/ A

For this latter function it is straightforward to remove the assumption that h be
bounded below by a positive constant (of course, using the conventions oo -0 = 0
and e”*° = 0). That

/e—flog(l/h) dr dQn — /e—flog(l/h) dr dQ

follows from the continuity of the function (7.16). That the limiting probability gener-
ating functional has the property described in the theorem is a consequence of Propo-
sition 16 which says that all probability generating functionals have a more general
property.

For the converse suppose that § is the limit of a sequence of probability generating
functionals corresponding to a sequence (Qn: n = 1,2,...) of distributions of point
processes in a locally compact Polish space W, and that § satisfies the condition in
the theorem. Let C' be any compact subset of ¥. By using Lemma 1 one can show
that there exists a compact set B such that every point of C' is an interior point of B
and that therefore there exists a continuous [(1 — X), 1]-valued function h, such that
hm(¥) =1— L for ¢ € C and hm (¢) =1 for ¢ € B

Let € > 0 Since §(hm) — 1 as m — oo, we can fix m so that for all n

QuiminC) <2} 2 | [T 1D Quam)

{r: m@)<2) )
>1-5- / [ ()7 Qu ()
{m: n(C)>z} ¥

>1-5—(1- 1),

which is larger than 1 — ¢ for sufficiently large z. By Theorem 19, every subsequence
of (Q») has a convergent subsequence. By the first paragraph of this proof, § is
the probability generating functional of every subsequential limit. By Theorem 14 all
subsequential limits are identical. Therefore, the sequence (@) itself converges to a
limit whose probability generating functional is §.

For Chapter 30

30-1. Ij24(1/n),00) Tight-continuous; pointwise limit I(3 o) not right-continuous at 2.
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30-10. The moment generating function is

. E(eiuyt) _ E(exp(—u Z xX((O,t] X {:c})))

z€[0,00]
(7.17) _E< H [euz]X{(S,z)}> ]
s€(0,t]
z€[0,00]

uzT

For calculating (7.17), we may replace (0,¢] by [0,¢] . The function (s,z) ~+ e “ is
a continuous function on the compact set [0,t] x [0, 00], taking the value 0 at (s, 00)
if u > 0 and the value 1 there if u = 0. Therefore we may apply Proposition 15 of
Chapter 29 to conclude that (7.17) equals

exp (- /[ PR IS Qs )

= exp(fmf /[O’Oo](l —e ") Q(dx)) .

We could have treated the problem as a single-variable problem by working with
the Poisson point process X, the restriction of X to (0,¢] x [0, 00].

In view of Remark 1, @ might be a probability measure on (0, 0c], which is not
compact. We could handle this setting, by adjoining 0 to (0, o] and specifying Q{0} =
0, or by approximating x ~ e~ “* by continuous functions that equal 1 for small x.

It is not possible to treat characteristic functions by adjoining oo to R in order
to obtain compactness, because one will then lose continuity. Approximation of the
functions  ~ €**® by functions that are continuous everywhere and constant for large
z is a method that works. By then going to the limit one obtains the characteristic

function of Y;:
U~ exp(fﬁt/ (1—e™7) Q(dx)) .
[0,00]

30-13. 1 — ¢ty
30-16. Set
R,(B) = R({v € D*[0,1]: yv € B}),
and let 0 =ty <t1 <tz <--- <tq=1. The proof relies on showing that
PlZsy, — Zy, , <b; for 1 <13 <d]
7.18 ~
(7.18) = / R,({z € DT[0,1]: 20, — 21, , <bi for 1 <i<d})ae ¥ dy
(0,00)

for positive numbers b;.
The left side of (7.18) equals

d b; a(fi—ti—l) 0'(ti—ti,1)—1 o—ab;
I/ |
! 0 Tt —tiz1)

d b; 9'(75«;—751'—1)—1 e—abi




60 SOLUTIONS, ANSWERS, AND HINTS FOR SELECTED PROBLEMS
The right side of (7.18) equals
=~ bz —a
/ R({v e DV[0,1]: vy, — vy, , < — for 1 <i < d})ae” Y dy.
Y
0

From Problem 15, we can rewrite this expression in terms of a Dirichlet distribution:

/ F ey (L= pr == pay) O
@ | 0<pi<bi/y,i<(d—1) / €
O<1—ppl—‘“3pd—1§bd/y 0 [(ta —ta-1)
(7.20) d—1  (t;—ti—1)—1
L m dydpdfl . dpl .
For 1<i<d-—1,let 6; = yp;, and also let g = y(1 — p1 — -+ — pa—1). The Jacobian

. R I P
of this transformation is “irfa=1.6a) _
d(p1sesPd—15Y)

(7.20) into (7.19), as desired.

y?™1; hence this change of variables turns

30-25. negative binomial with parameters 1/(1 + E(Yl)) and TE(Z1)

30-31. (iii): Let € > 0, and denote the distribution of Z: by Q:. Then for et < 1,

(1 B 6_1)P[Zt >et] < / (1 - e—z/(st)) Q:(dx)

(et,00)

<1-—exp (ft/ (1 — e_y/(st)) Z/(dy))
(0,1]
< t/ (1 — efy/(st)) Z/(dy))
(0,1]

(7.21) < 671/ yv(dy) + t/ v(dy) .
(0,et] (et,1]

The first term in (7.21) goes to 0 as ¢ \, 0. To treat the second term, let 6 > 0 and
choose r € (0,1) so that f(o . sv(ds) < 6. Then as t \, 0,

t/ v(dy) < / sv(ds) + tv(r,1] — sv(ds) < 6.
(et,1] (et,r] (0,7]

Since ¢ is an arbitrary positive number, it follows that

lim t/ v(dy) =0,
™NO (et,1]

as desired. Hint: for (vi): For any ¢ € (0, 1] there exists a nonnegative integer n such

that ¢t > 27" and
Zy

2otz
PR
30-32. The carelessness might be ignoring the term ‘almost’ in the phrase ‘ a.s.’.

30-35. in case o < 1, 0 or oo according as 8 < i or § > é; in case a = 1, 0 if and
only if # < 1, and oo if and only if > 1
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For Chapter 31

31-2. For the last assertion one may for each w, view @} as a probability measure
on (D([0,00),¥),H). Then Q. is the distribution of the W-valued random variable
¢ ~+ ¢y defined on the probability space (D([0,00), ¥),H, Q). Since pu — @¢ as u \ t
and almost sure (in this case sure) convergence implies convergence in distribution,
Qu — Q: as u \, t (for each w, not just the requested ‘a.s.”).

31-3. (i) for all x € U, pg,t — paoo = 65 as ¢t \, 0; (ii) for all Borel A C W and ¢t > 0,
the function  ~ pz.+(A) is measurable; (iii) for all Borel A C ¥, s,t >0, and x € ¥,

AU‘L&H / My, s Hz t dy)
o

31-9. Let R: denote the distribution of the Lévy process at time ¢. Then

_ / P +) Rildy).

Let R denote the distribution of the Lévy process. Then the corresponding Markov
family (Q”: € R) is defined by

Q*(B)=R({p: [t~ (z+ )] € B}).
31-15. Gf(z) = s [(f( )) Q(dy), in the notation of Example 1 of Chapter 30.

31-21. Suppose that Qo is an equilibrium distribution for T. Then

G ko G k
Q0T =e Z %QOTIc =e Z %Qo =Qo.
k=0

k=0

Hint: for converse: Use Problem 16.

31-23. Hint: Let f be the indicator function of the one-point set {y} and use Theo-
rem 14.

31-25.
poo(t) = (go1 + qr0) ™" [Qw + qo1 exp[—(qo1 + qw)t]]
po1(t) = (qor + ¢10) ™" qo1 (1 — exp[—(go1 + qr0)t])
p1o(t) = (go1 + ¢10) ™" q10 (1 — exp[—(qo1 + qu0)t])
p12(t) = (go1 + qro) ™ (Q(n + qio exp[—(qo1 + qw)t])

The limits at oo of both poo and pio are the same: (go1 + qi0) ‘qio, the value the
equilibrium distribution assigns to {0}. The limits at co of both po1 and pi1 are the
same: (qgo1 + qi0) 'qo1, the value the equilibrium distribution assigns to {1}.

31-28. The solution to Problem 23 involves applying Theorem 14 to the indicator
functions of one-point sets. When the rates are unbounded, such functions may not
be in the domain of the generator. For example, let the state space be Z¥, let the
transition rates g,y have the property that g0 — oo as ¢ — oo, and let f be the
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indicator function of {0}. Then f is not in the domain of the infinitesimal generator
because the limit in the definition does not exist boundedly, and Theorem 14 does not
apply. Nevertheless, it can be shown that (31.12) holds whenever the state space is
countable, even in the case of unbounded rates.

31-29. Let M be the largest member of the support of p, xo the initial state, and
U, the time of the n'® jump. The construction ensures that Xy, < zo + (M —
1)n. Therefore, conditioned on Fy, _,, Un — Un—1 is exponential with mean at least
1/v(xo + (M — 1)(n — 1)). An inductive argument based on this fact shows that for
each n, the distribution function of U, is bounded above by the distribution function
of the sum of n independent exponentially distributed random variables with means
1/vxo, 1/(v(zo+ M —1)), ... ,1/(y(zo+ (M —1)(n—1)). Such a sum of exponentially
distributed random variables diverges almost surely as n — oo by the Kolmogorov
Three-Series Theorem. It follows that U, — oo a.s. as n — co.

31-36. % (y) = b(1 — b)ce= =PV pfoo} = 0; equilibrium distribution assigns value

(1 —b)b” to z; jump-rate function is
bt ifx=0
€T~
c ifz>0;

transition probabilities from x to x — 1 equal 1 for x > 0 and from 0 to x > 0 equal
(1 — b)b"~!; transition rates from z to  — 1 equal ¢ for 2 > 0 and from 0 to = > 0
equal ¢(1 — b)b® and all others equal 0

For Chapter 32

32-1.
b(§) ifm=¢"
() ifn=,¢
D= G ity = e
0 otherwise

32-7. For £ € =, let X (®) be the process defined in the construction with initial state £.
The discussion in the paragraph following the proof of Theorem 2 shows that for each
time ¢ > 0, the function £ ~ Xt(g) is almost surely a continuous function. It follows
from the Bounded Convergence Theorem that, for any continuous function f: 2 — R,
the function & ~ E(f o Xt(g)) is continuous. Thus, the transition semigroup is Feller.

32-10. Here is one way to make a correct ‘if and only if’ statement: Let G and G*® be
as in the first sentence of Problem 9. The ‘if’ statement is: If G f — Gf pointwise
as k — oo for all f € §, then Xt(k) — X as k — oo, uniformly for ¢ in bounded subsets
of [0,00) and for all choices of initial states € and € such that £} — £. The ‘only if’
statement is: If there exists a function f € § and a state 1 such that G*) (1) does not
converge to Gf(n) as k — oo, then there exists a time ¢ > 0 and a sequence of initial
states E(k) converging to a state £ as k — oo such that Xt(k) does not converge to X,
as k — oo. (In this second statement, we may take £(k) = ¢ =n for all k and let ¢ be
any sufficiently small positive time.)
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To prove the ‘if’ statement, it is enough to show that for any site x and any time
t > 0, there exists a nonnegative random variable K that is almost surely finite such
that X{")(2) = X.(z) for all k > K and s € [0,¢]. This last statement is a slightly
stronger version of the statement made in the paragraph immediately following the
proof of Theorem 2. To prove this stronger statement, first note that since G® f—Gf
for f € § as k — oo, each rate in the system with infinitesimal generator G® converges
uniformly as £ — oo to the corresponding rate in the system with infinitesimal generator
G. Now consider the construction of X®) and X using the universal coupling. Let A
be as in the statement following the proof of Theorem 2 and let K be large enough so
that £ agrees with £ at sites in A for k > K. We can also choose K large enough so
that the rates of G'* at sites in A are uniformly as close as we like to the corresponding
rates of G when k£ > K. A simple modification of the proof of Theorem 2 shows that
we can thereby make the probability arbitrarily close to 1 that the processes X ) and
X take the same values at z at all times in [0,¢]. Further details are left to the reader.

The hypothesis in the ‘only if’ statement implies that there exists a site z such that
at least one of the rates at = for the process with infinitesimal generator G is not the
pointwise limit as k — oo of the corresponding rates for the processes with infinitesimal
generators G™_ Tt follows that there exist arbitrarily large integers k and a state 1 such
that the process with infinitesimal generator G™ and initial state n will not behave
the same at the site x as the process with infinitesimal generator G and initial state 7,
at least for short time periods. Once again, the details are left to the reader.

32-13. (This problem is incorrectly stated in the book. The statement is not true for
the contact process with threshold birth rates. Also, a stronger statement is proved for
the contact process with sexual reproduction in Problem 12. So the problem should
only be done for the contact process of Example 2.) For finite sets A C Z<, let

Fa©) =Y &),

z€A

Direct calculation shows that if £ is a state with only finitely many occupied sites, then

(7.22) Gfa(€) < (1 —06)fa(§),

provided A is chosen large enough to include all x such that £(z) = 1.

Let & be a state with only finitely many occupied sites, and let (X¢) be the in-
teracting particle system with initial state £y and infinitesimal generator G. For each
finite set A C Z4, define a random time o4 by

oa =inf{t > 0: X¢(x) =1 for some z ¢ A}.

Also, let
T =inf{t > 0: X; = 0}.

Since the interacting particle system is a solution to the martingale problem for G, it
follows from (7.22) and the Optional Sampling Theorem that for any time ¢ > 0,

B(fa(Xinoane)) — Faleo) < B( / sy pa(xa) ds)
0



64 SOLUTIONS, ANSWERS, AND HINTS FOR SELECTED PROBLEMS

Since 6 > 1, the integrand on the right side is bounded above by (1 —§) for all s < o4,
S0
E(fa(Xinoans)) = fa(€o) (1 = 8)E(tNoaAT),

from which it follows immediately that
fal)> (G —1DE{fNcaNT).

We leave it to the reader to check that ¢4 * 0o a.s. as A Z%. Thus, after first letting
A /' Z% and then letting t /* 0o, we have by the Monotone Convergence Theorem that

D o) > (8- 1DE(7).

zezZd

Since & has only finitely many occupied sites, the left side of this inequality is finite.
It follows that 7 has finite expectation, and hence that 7 is finite almost surely, as
desired.

32-16. It is easily checked that for each site x, the process (X¢(x),t > 0) is a pure-jump
Markov process with state space {0,1}, transition rates go1 = 1 and qi0 = 22l and
initial state 0. It follows from Problem 25 of Chapter 31 that

P[Xi(z) = 1] < 2711

By the Borel Lemma, Zz X¢(z) is finite a.s. Thus, for any fixed time ¢, the number of
occupied sites at time t is finite a.s.

For the second part of the problem, we fix t € (0,00). We know from the previous
part of the problem that at any given time s there are infinitely many vacant sites.
Since the birth rates are all equal to 1 at vacant sites, it is not hard to show that, with
probability 1, infinitely many births occur during every time interval of positive length.
In particular, infinitely many births occur with probability 1 during the time interval
(0,¢). Let

21 = min{z > 0: there is a birth at « during (0,¢)} .

Let Uy be the time of the first birth at z1 and Vi the time of the first death at x;.

We now proceed by induction. We assume that random sites x1,...,x, have been
defined for some n > 1, with corresponding random times Ui, ...,U, and Vi,..., V,,
where for each k = 2,...,n, U is the time of the first birth at xx after time U_1, and
Vi is the time of the first death at zx after time Ugx. Note that Uy < Us < --- < U,.
As part of the induction, we also assume that U, < t AVi A--- A V,. This assumption
implies that the time interval (Un,t A Vi A---AUy,) has positive length, so the following
random site is almost surely defined:

Znt+1 = min{z > 0: there is a birth at x during (Un,t AVI A---AV,).

Let U,+1 be the time of the first birth at z,41 after time U,, and V,41 the time
of the first death at x,4+1 after time U,+1. Note that our construction ensures that
Upnt1 <tAVIA---AVyi1, as required by the assumption made in the inductive step.

Let U = limy,,— o0 Up. Our construction of U shows that U is defined almost surely,
and that when it is defined, U < ¢. This construction also shows that Xy _(z,) = 1 for
all n =1,2,.... Our construction of the process (X;) shows that, with probability 1,
at most one death can occur at time U, so infinitely many sites are occupied at time
U, as desired.
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82-18. joy(§) = ply — 2} if £(y) = 0; da(§) = D, &(y)p{y — a}; other rates are 0

32-24. There is an error in Example 8: in order for the if and only if statement at the
end of the example to be true, one must assume that the death rate is bounded away
from zero. Under that additional assumption, a solution to Problem 24 (with arbitrary
finite range r) can be made as follows. First do the problem for the case in which the
initial state £ satisfies the property that £(z) = 0 for all sites x to the right of some site
y. Deduce that y can be chosen so that the probability is arbitrarily close to 1 that
the sites to the right of —r remain vacant for all time. Prove similar statements for
the case in which the initial state satisfies £(x) = 0 for all  to the left of some site y.
Use these facts to show that y > 0 can be chosen so that if the initial state £ satisfies
&(z) = 0 for —y < z < y, then the probability is at least 1 that Xt - 0ast — oo.
Having chosen such a y, use the assumption on the death rates to show that for any
initial state, the process almost surely spends an infinite amount of time in states 7
for which n(z) = 0 for —y < & < y. Use the strong Markov property to complete the
proof.

For Chapter 33

33-2. Hint: Let (F;: t > 0) denote the minimal filtration of the Wiener process W.
Square both sides of (33.1) and then take expectations. Six terms result on the right
side. The following calculation shows that one of them is equal to 0:

(o) W ye = Wae) ) = B( B(ZacalZue) Wi — Wae) | o))
= B Zneal(Zoe) E(Wins)e = Wae) | Fac) ) =0.

Similarly,
E(b(Znz)ea(Zne)(Wins1ye — Wae)) = 0.

The following calculation is relevant for another of the six terms:
E([a(ZP Weninye = Wae)?) = B(E((a(Z)P Wiy = Wae)® | o))

- E([a(ZE)]QE((W(nH)E — Wae)? | fm)) = eE([a(Zs)]z) :

33-5. yes
33-12. d(e*") = ae®™ dW + Lo’ dt

33-15. Equation (33.18) is to be interpreted as an almost sure statement. In the
following, we assume that the relevant properties of the It6 integral have been extended
to allow for integrands like sgn(W, — ).

Let

1

t
L? = %/O 1[76+z,6+z](Wu) d’LL,

so that for each z,

|W. — x| — / sgn(W, — ) dW, = L.(z) = lim L°(z) i.p.
o 50
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In the notation of the example,

L) = fs (Wi —2) — / FLWa — 2y,
0

(see (33.16)).
Using Theorem 4 and the fact that (a + b)? < 2a® + 2b* for real numbers a and b,
we have

E((Li(x) — Li(2))?) <
t
2B (Wi — | — fo(We - 2))%) +2B( / (sen(Wa = 2) = [ (W — 2))* du)
0
It follows that for any bounded Borel set B,

;i{% i E((Li(z) — Lj(x))?*) dz = 0.
By the Fubini Theorem,
. 2 .
%1{1(1) : (Lt(:c) — Lf(:c)) dr =0 ip.

A simple application of the Cauchy-Schwarz Inequality then gives

2 Li(z) dz = li L{(z)da i.p.
(7.29 [ mwyas = tim [ riwyasin

Now suppose that B is a bounded interval in R. Let

1
95 (y) = I _612,64] (y)dz.
26 |

Clearly we have 0 < ¢° < 1 and ¢° — ¢ pointwise as § \, 0, where g is 1 on the interior
of B, 1/2 at the endpoints of B, and 0 elsewhere. By Dominated Convergence, applied

to (7.23), we have
t
/ Li(z)dz = / g(Wu) du a.s.
B 0

It is easy to deduce from this equation that

/BLt(x) dx = /Ot I5(W.) du as.

A standard argument using the Sierpiniski Class Theorem shows that this last equation
is valid for all Borel sets B, as claimed.

33-17. For z € B, let Z*) denote the solution of (33.19) with initial state z, and let
(Ty,t > 0) denote the corresponding transition semigroup. Since T} f(z) = E(f o Z{*)),
the Bounded Convergence Theorem implies that it is enough to show that for each
t>0and z € R, limy_. 2 = Z* as. In the proof of Theorem 7 it is shown
that each random variable Z(¥) is the limit in probability of random variables Z¥"%) as
€\, 0. From the definitions it is apparent that y ~ Z :2) is almost surely a continuous
function for each € > 0. Thus, it is enough to show that

(7.24) lim sup |Z(y¢5) _ Z(y,n)| —0.
&nMN\O0 yeR
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Noting that the estimates used in the proof of Theorem 7 do not depend on the initial
value y, we see that, with minor modifications, the argument in that proof can be used
to give (7.24).

33-29. Gf = %A f for sufficiently nice functions f: R? — R. For bounded continuous
functions f having bounded continuous first, second, and third partial derivatives, this
fact can be proved by direct computation, using the second degree Taylor polynomial
approximation of f with remainder.

For Appendix A

A-2. The derivative  ~- 1 — cosx is positive for —27 < z < 0 and also for 0 < = <
2m. A theorem of calculus says that a continuous function on a closed interval that
has a positive derivative at all interior points of that interval is strictly increasing on
the closed interval. Therefore the given function is strictly increasing on the interval
[—27,0] and on the interval [0, 27]. By the preceding problem it is strictly increasing
on the interval [—27, 27]. (Notice that the argument can be extended to prove that the
given function is strictly increasing on R.)

For Appendix B

B-1. Proof that a closed subset of a compact set is compact. Let B be a closed
subset of a compact set C, and let O be an open covering of B. Consider O U { B¢},
the collection obtained by adjoining the complement of B to the collection . This
collection is an open covering of C. It contains a finite subcovering of C. The members
of O in this finite subcovering of C' constitute a finite subcovering (from O) of B.

B-5. The ‘only if’ part is trivial. We will prove the contrapositive of the ‘if part’,
so suppose that the sequence does not converge to y. Then there exists ¢ > 0 and
an infinite subsequence (zn, : k = 1,2,...) of (z,) such that p(xn,,y) > € for all k.
No further subsequence of this subsequence can converge to y because the distance
between y and every member of that further subsequence would be greater than €.

For Appendix C

C-5. Suppose that x € 0B. Case 1, x € B: Every neighborhood of = contains a
member of B —namely z itself. If some neighborhood did not contain a member of
B¢, then & would be a member an open subset of that neighborhood which itself would
be a subset of B. Hence x would belong to the interior of B and thus not to 9B.

Case 2, ¢ ¢ B: Now we must show that every neighborhood of z contains a member
of B. If there were some neighborhood lying entirely inside B¢, there would be an
open subset of that neighborhood containing x and having the same property. The
complement of that open set would be a closed set containing B and thus containing
the closure of B. Therefore  would not belong to 0B.

For the converse suppose that every neighborhood of x contains at least one point
of B and least one point in B¢. First we observe that x cannot be a member of the
interior of B, for, if it were, this interior would be a neighborhood of x that contains
no member of B°. To finish the proof we must show that = belongs to the closure of
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B. If it did not, the complement of the closure of B would be a neighborhood of =
containing no point of B, which is a contradiction.

C-6. Hint: Avoid doing work similar to that needed for the preceding problem.

C-9. [a,b), both open and closed whether b < co or b = o0; (a,b], neither open nor
closed whether a > —o0 or a = —o0; [a,b] closed but not open; (a,b) open but not
closed whether a and b are finite or infinite; [a, a] is only compact interval

C-10. Closure under arbitrary unions: clearly yes if all sets in the union belong to O;
if one of the sets in the union contains co and has a complement that is a compact
subset C' of €2, the union will contain co and have a complement that is closed subset
of the compact subset C' of 2. An appeal to Proposition 1 completes this portion of
the proof.

Closure under finite intersections: clearly yes if one of the sets in the intersection does
not contain oo; if all do contain oo, then so does the intersection and the complement of
the intersection is the union of a finite number of compact subsets of 2. The definition
of compactness shows that a finite union of compact sets is compact.

Compactness: An open covering must have at least one set that contains co. Take
any such set O. The remaining sets in the open covering cover the compact complement
of O. Thus there is a finite subcovering of this complement. Adjoin O to this finite
subcovering to obtain a finite subcovering of Q*.

C-14. The closed interval [0, 1] of R with the usual topology is not open in that topol-
ogy, but it is an open subset of the topological space [0, 1] with the relative topology.

Now assume that ¥ € O and that O C VU is open in the relative topology on W.
Then O = ANV for some A € O. Hence, O, the intersection of two members of O, is
itself a member of O.

For Appendix D
D-1. 30

3
D-2. 2

D-14. According to Theorem 4 we only need prove that f is Riemann-Stieltjes inte-
grable with respect to g, and for doing that, Proposition 2 says that we only need prove
that f is bounded and fg¢’ is Riemann integrable.

Suppose that f is unbounded. For each m there exists xz,, € [a,b] such that
|f(zm)| > m. Let x denote a limit of a subsequence of (x,). It cannot be that
infinitely many members of the subsequence equal z. If infinitely many members are
larger than z, then f(z+) does not exist. If infinitely many members are smaller than
x, then f(z—) does not exist. Therefore the assumption that f is unbounded leads to
a contradiction, and hence f is bounded.

For future use we show that for each § > 0, there exists only finitely many x such
that

fla=)V @)V flz+) > 6+ flz=) A f(@) A fz+).
If there were infinitely many, then at the limit y of a convergence sequence of distinct
such z, either f(y+) or f(y—) would fail to exist.
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Turning to the proof of Riemann integrability of fg’, we let € > 0. For each z € [a, b]
let J, be an open interval in [a, b] such that

e xcJ,,

o |fly)— flz+)| < 0 e <y€ds,

o [f(y)—fa-) < qpgy fx>y €.
(Reminder: Intervals in [a,b] including the endpoint a or b can be open in the relative
topology of [a,b]. Alternatively, we could have let J, and J, be open intervals in R
containing members outside the interval [a,b].) Since [a,b] is compact there exists a
finite collection of intervals J, whose union equals [a, b]. Let P be the point partition of
[a,b] consisting of the endpoints of the intervals in this finite collection and the points
midway between two consecutive endpoints.

For each point x for which

Fa=)V @)V Fe4) > o + Fla—=) A f@) A flat),

of which there are only finitely many—say ¢ —introduce a close interval K, C [a,b]
containing = as an interior point and having length less than EES’ where s denotes
the supremum of |f(z)g'(z)| for = € [a,b]. Let P denote the point partition of [a, ]
obtained by adjoining the endpoints of each such K, to p.

Consider any refinement P’ of P. For any Riemann sum of fg’ corresponding to P’,
the total contribution arising from intervals lying in the various K is less than €/4.
The contributions to any two such Riemann sums arising from other intervals differ by
less than 3e/4. Thus any two Riemann sums of any refinement of P differ by less than
€.

Now a straightforward argument using a sequence of refinements corresponding to
a decreasing sequence (e1) gives a Cauchy sequence of Riemann sums. Then the above
argument can be used again to show that the limit of this Cauchy sequence is the value
of the Riemann integral, and thus in particular, that the Riemann integral of fg’ exists.

Comment: For those whose definition of Riemann integrals involves upper and lower
integrals and sums rather than Riemann sums, the above argument can be shortened
a bit. We have not adopted the ‘upper-lower’ approach because it does not generalize
nicely to the Riemann-Stieltjes setting.

For Appendix E
E-4. We consider the real part of expo:
(Roexpol) = (expoRoA) - (cosoTo ).
Using the Product Rule and Chain Rule for R-valued functions we obtain
(RopB) = (expoRoA) - (Rol) - (cosoTo )
— (expoP o)) - (sinoJo ) (TJoA)
— (RoX) - (Roexpod) — (Jo X) - (o expo)
=Ro (X - (exp OA)) ,

as desired. We omit the similar calculation relevant for the imaginary part.

E-9. no



