
Solutions, answers, and hints for selected problems

Complete solutions of some problems are given. Answers only are given for some
other problems. For still others, only hints or partial solutions are given. Asterisks
in “A Modern Approach to Probability Theory” by Fristedt and Gray identify the
problems that are treated in this supplement.

For Chapter 12

12-10. (ii) Let Zn = X1I{ω : |X1(ω)|≤n}. Then |Zn(ω)| ≤ |X1(ω)| for each n and ω.
Since E(|X1|) < ∞ and Zn(ω)→ X1(ω) for every ω for which X1(ω) is finite, the
Dominated Convergence Theorem applies to give E(Zn) → E(X1). Since X1 and
Xn have identical distributions, Zn and Yn also have identical distributions and
hence the same expected value. Therefore E(Yn)→ E(X1).

12-16. Let G denote the distribution function of |X1|. Then
∞∑
m=1

P ({ω : |X2m(ω)| > 2cm}) =
∞∑
m=1

[1−G(2cm)]

≥ 1
2c

∞∑
m=1

∫ 2c(m+1)

2cm

[1−G(2cx)] dx

=
1
2c

∫ ∞
2c

[1−G(2cx)] dx

=
1

4c2

∫ ∞
4c2

[1−G(y)] dy ,

which, by Corollary 20 of Chapter 4, equals ∞, since E(|X1|) =∞. By the Borel-
Cantelli Lemma, (12.1) is true.

To prove (12.2) we note that if |X2m(ω)| > 2cm, then |S2m(ω)| > cm or
|S2m−1(ω)| > cm from which it follows that∣∣S2m(ω)

2m

∣∣ ∨ ∣∣S2m−1(ω)
2m− 1

∣∣ > c

2
.

From (12.1) we see that, for almost every ω, this inequality happens for infinitely
many m. Hence, 0 is the probability of the event consisting of those ω for which
Sn(ω)/n converges to a number having absolute value less than c

2 . Now let c→∞
through a countable sequence to conclude that (12.2) is true.

12-17. E(Sn) =
∏n
k=1E(Xk) = 2−n. An application of the Strong Law of Large
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Numbers to the sequence defined by logSn =
∑n
k=1 logXk gives

lim
n→∞

log Sn
n

= E(logX1) =
∫ 1

0

log xdx = −1 a.s.

Since almost sure convergence implies convergence in probability, we conclude that,
for any ε > 0,

lim
n→∞

P ({ω : e−(1+ε)n < Sn < e−(1−ε)n}) = 1 .

Thus, with high probability E(Sn)/Sn is very large for large n. There is some
small probability that Sn is not only much larger than e−n, but even much larger
than 2−n, and it is the contribution of this small probability to the expected value
that makes E(Sn) much larger (in the sense of quotients, not differences) than the
typical values of Sn. The random variable Sn represents the length of the stick that
has been obtained by starting with a stick of length 1 and breaking off n pieces
from the stick, the length of the piece kept (or the piece broken off) at the nth stage
being uniformly distributed on (0, Sn−1).

12-19. (1 + p)(1− p), (1 + p)(1− p)2,

(1− p)2

1− p+ p2
,

(1 + p− p2 + p3 − p4)(1− p)
1− p2 + 2p3 − p4

12-27. Let A ∈
⊗∞

n=1 G and ε > 0. (We are only interested in exchangeable A
but the first part of the argument does not use exchangeability.) By Lemma 18 of
Chapter 9, there exists an integer p and a measurable subset D of

∏p
n=1 Ψ such

that P (A4 B) < ε, where

B = D ×
( ∞⊗
n=p+1

Ψ
)
.

Define a permutation π of Z+ \ {0} by

π(n) =


n+ p if n ≤ p
n− p if p < n ≤ 2p

n if 2p < n .

Let π̂ denote the corresponding permutation of Ω.
It is easy to check the following set-theoretic relation:

A ∩ π̂(A) ⊆
[
A4 B

]
∪
[
B ∩ π̂(B)

]
∪
[
π̂(B)4 π̂(A)

]
.

Hence

P
(
A ∩ π̂(A)

)
≤ P

(
A4B

)
+ P

(
B ∩ π̂(B)

)
+ P

(
π̂(B)4 π̂(A)

)
. (0.1)

The first term on the right side of (7.3) is less than ε. Since P (C) = P (π̂(C)) for
any C ∈

⊗∞
n=1 G,

P
(
π̂(B)4 π̂(A)

)
= P

(
π̂(B 4A)

)
= P

(
B 4A

)
< ε .

Thus the third term on the right side of (7.3) is also less than ε. Therefore

P
(
A ∩ π̂(A)

)
< P

(
B ∩ π̂(B)

)
+ 2ε (0.2)
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Now assume that A is exchangeable. Then A∩ π̂(A) = A. Also, it is clear that
B and π̂(B) are independent, and so

P (B ∩ π̂(B)) = P (B)P (π̂(B)) = [P (B)]2 .

Another easily obtained fact is that P (B) < P (A) + ε. From (7.4), we therefore
obtain

P (A) <
(
P (A) + ε

)2 + 2ε ≤ [P (A)]2 + 4ε+ ε2 .

Algebraic manipulations give

P (A)[1 − P (A)] < 4ε+ ε2 .

Let ε↘ 0 to obtain P (A)[1 − P (A)] = 0, as desired.

12-30. (i) exchangeable but not tail, (ii) exchangeable and tail, (iii) neither ex-
changeable nor tail (but the Hewitt-Savage 0-1 Law can still be used to prove that
the given event has probability 0 or 1) [Comment: the tail σ-field is a sub-σ-field
of the exchangeable σ-field, so there is no random-walk example of an event that
is tail but not exchangeable. This observation does not mean that the Kolmogorov
0-1 Law is a corollary of the Hewitt-Savage 0-1 Law, because there are settings
where the Kolmogorov 0-1 Law applies and it is not even meaningful to speak of
the exchangeable σ-field.]

12-35.
∑
P ({ω : |Xn(ω)| > 1/n2}) ≤

∑
(1/n2) < ∞. By the Borel Lemma, for

almost every ω, |Xn(ω)| ≤ (1/n2) for all but finitely many n. By the comparison
test for numerical series,

∑
Xn(ω) converges (in fact, absolutely) for such ω.

12-40. by the Three-Series Theorem: Let b be any positive number, and define Yn
as in the theorem. By the Markov Inequality,

P ({ω : Xn(ω) > b}) ≤ E(Xn)
b

=
1
bn2

.

Thus the series (12.8) converges. Since 0 ≤ Yn ≤ Xn, 0 ≤ E(Yn) ≤ 1
n2 . Hence, the

series (12.9) converges. Also,

Var(Yn) ≤ E(Y 2
n ) ≤ bE(Yn) ≤ bE(Xn) =

b

n2
.

Thus the series (12.10) converges. Therefore,
∑
Xn converges a.s. (Notice that this

proof did not use the fact that the random variables are geometrically distributed.)
by Corollary 26: The distribution ofXn is geometric with parameter (n2+1)−1.

Thus the variance is (n2 + 1)/n4 < 2/n2. The series of these terms converges, as
does the series of expectations. An appeal to Corollary 26 finishes the proof.

by Monotone Convergence Theorem: E(
∑
Xn) =

∑
E(Xn) < ∞. A random

variable with finite expectation is finite a.s. Therefore,
∑
Xn is finite a.s. (Notice

that for this proof, as for the proof by the Three-Series Theorem, the geometric
nature of the distributions was not used.)

12-41.
∑
c2n <∞

12-45. One place it breaks down is very early in the proof where the statement∑n
k=1 Xk(ω) 6=

∑m
k=1 Xk(ω) is replaced by the statement

∑n
k=m+1Xk(ω) 6= 0.
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These two statements are equivalent if the state space is Rd, but if the state space
is R

+
it is possible for the first of these two statements to be false, with both sums

equal to ∞, and the second to be true.


