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Solutions, answers, and hints for selected problems

Complete solutions of some problems are given. Answers only are given for

some other problems. For still others, only hints or partial solutions are given.

Asterisks in “A Modern Approach to Probability Theory” by Fristedt and Gray

identify the problems that are treated in this supplement.

. Method 1: By the Binomial Theorem,

= 1 1 = (1 + 1) = 2

and, for 0,

( 1) = 1 ( 1) = (1 1) = 0

Addition and then division by 2 gives

= 2

The answer for positive is 2 2 = 1 2. The answer for = 0 is easily seen to

equal 1.

Method 2: For 1 consider a sequence of length ( 1). If it contains an even

number of ‘heads’, adjoin a ‘tails’ to it to obtain a length- sequence containing an even

number of ‘heads’. If it contains an odd number of ‘heads’, adjoin a ‘heads’ to it to

obtain a length- sequence containing an even number of ‘heads’. Moreover, all length-

sequences containing an even number of ‘heads’ are obtained by one of the preceding

two procedures. We have thus established, for 1, a one-to-one correspondence

between the set of all length-( 1) sequences and the set of those length- sequences

that contain an even number of ‘heads’. Therefore, there are 2 length- sequences

that contain an even number of ‘heads’. To treat the remaining case = 0, we observe
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that the empty sequence, which is the only length-0 sequence, contains zero ‘heads’.

Since 0 is even, there is 1 length-0 sequence containing an even number of ‘heads’.

. 2

. The thirty-six points to each of which is assigned probability are the ordered

pairs ( ) for 1 6 and 1 6. The coordinates and represent the numbers

showing on the red die and green die, respectively.

. The set consisting of a single sample point, being the intersection of countably

many events of the form (1.2), is an event. Its probability is no larger than that of

any such . For each and each sample point, there is such an that has probability

2 . Thus, the probability of that sample point is no larger than 2 . Letting

we see that the probability of the sample point is 0. The process of flipping a coin until

the first tails occurs terminates in a finite number of steps with probability 1.

. (i) Sum the answer to Problem 4 over odd positive to obtain .

(ii)

(iii) (Caution: it is common for students to use invalid reasoning in this type of

problem.) We use ‘1’ and ‘0’ to denote heads and tails, respectively. Let denote the

set of finite sequences of 1’s and 0’s terminating with 1, containing no subsequence of

the form (1 0 1) or (1 1 1), and having the additional property that if the length of

is at least two, then the penultimate term in is 0. For each , let be the event

consisting of those infinite sequences that begin with followed by (0 1 1), (0 1 0),

or (1 0 1) in the next three positions, and let be the event consisting of those

that begin with followed by (1 1 1) or (1 1 0) in the next three positions. Note that

each and is a member of . Clearly 2 ( ) = 3 ( ).

Let = and = . Straightforward set-theoretic arguments show

that consists of those in which (1 0 1) occurs before (1 1 1), consists of those

in which (1 1 1) occurs before (1 0 1). By writing and as countable unions

of members of , we have shown that they are events. Note that in each case, these

unions are taken over a family of pairwise disjoint events, from which it follows that

2 ( ) = 2 ( ) = 3 ( ) = 3 ( )

Also, and are clearly disjoint, so

( ) + ( ) = ( ) = 1 ( )

We will show that ( ) = 0, so that the above two equalities become two

equations in the two unknowns ( ) and ( ), the solution of which gives ( ) = .

To show that ( ) = 0 we note that is a subset of the event

consisting of those that begin with a sequence of length 3 having the property that,

for 1 , the sequence (1 1 1) does not occur in positions 3 2, 3 1, 3 . The

number of ways of filling the first 3 positions of with 1’s and 0’s is 2 = 8 . The

number of ways of doing it so as to obtain a member of is 7 (7 choices for positions

1 2 3; 7 choices for positions 4 5 6 and so forth.). Thus, ( ) ( ) = ( ) .

Now let to obtain the desired conclusion, ( ) = 0.

(iv)



−

c

c

c

Hint:

For Chapter 2

1-14

1-16

2-2

2-3

+

+

+

+ +

+ +

+

+ +

+

+

+

+

+

+

1

R R

R

R

R R

R R

R R

R R R

R

R

R

R

R

R

R

R

SOLUTIONS, ANSWERS, AND HINTS FOR SELECTED PROBLEMS 3

B C

G { ∈ B ⊆ }

C G
G

B B G
G ∩

B B G

∩
B G

G
C

G ⊆ C D −∞

H { ∪ ∈ C ∈ D}

B ⊆ H C
H H

∪ \ ∪ −∞ \
⊆ ⊆ −∞ H

∈

∩ ∪ −∞ ∩

−∞ H
B

E

{ ∈ } { ∈ }

{ ∈ }
{ ∈ } { ∈ 6 }
{ ∈ }

σ σ

B B .

σ

G G

G

σ

O O

σ σ

σ ,

C D C , D .

C D C , D

C D ,

σ O

O O , O

O

, σ σ

X B X X B

X

X

B X Y

P ω X ω B P ω Y ω B .

P ω X ω B

P ω X ω B, Y ω X ω P ω X ω B, Y ω X ω

P ω X ω Y ω B, Y ω X ω .

Let denote the Borel -field of , the Borel -field of , and

= :

The goal is to prove = .

We first prove that is a -field of subsets of . Countable unions of members of

are members of and unions of subsets of are subsets of . Hence, is closed

under countable unions. The complement in of a member of equals ,

where denotes the complement in . This set is clearly a subset of and it is also

a member of because it is the intersection of two members of . Therefore, is a

-field.

The open subsets of have the form , where is open in . Such sets, being

subsets of and intersections of two members of , are members of . Thus, the

-field contains the -field generated by the collection of these open subsets—namely

.

To show that we introduce the Borel -field of subsets of ( 0) with the

relative topology and set

= :

We can finish the proof by showing that , because consists of those members

of which are subsets of . It is clear that is closed under countable unions. The

formula

( ) = ( ) (( 0) )

for and ( 0) shows that it is closed under complementation. So is

a -field. For any open set , the representation

= ( ) (( 0) )

represents as the union of open, and therefore Borel, subsets of the spaces and

( 0). Thus, the -field contains the -field generated by the collection of open

subsets of —namely .

It suffices to show that every open set is the union of open boxes having

edges of rational length and centers with rational coordinates.

. Let be a continuous function. For any open of the target of , ( ) is

open by continuity, and thus is an event in the domain of . Now apply Proposition 3

with equal to the collection of open subsets in the target of .

. Let be an arbitrary measurable set in the common target of and . We need

to show that

( : ( ) ) = ( : ( ) )

Here is the relevant calculation:

( : ( ) )

= ( : ( ) ( ) = ( ) ) + ( : ( ) ( ) = ( ) )

= ( : ( ) and ( ) ( ) = ( ) )
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X Y

A ω X ω c c c

a A

, a A ω < a a A

ω A ω < ω

X ω X ω c ,

ω A A , a , a

v , v < v < v < B

B

X

X

k

k/

k/
.

ω F x F x < ω

x F x ω x F x ω Y ω

x F x < ω x F x ω Y ω X ω

Y ω X ω Y ω < X ω

x Y ω ,X ω F x ω

X ω F x < ω Y ω Y X

Y

Y Y ω

Y ω ω δ > u > Y ω δ F u < ω

τ < ω F u < τ

Y ω Y τ u > Y ω δ .

δ

In this calculation, we used the fact that the event in the second term of the second

line is contained in a null event. To complete the proof, carry out a similar calculation

with the roles of and reversed.

. By Problem 13 of Chapter 1 and Proposition 3 we only need show that the set

= : ( ) is a Borel set for every (or even just for every rational ). Let

equal the least upper bound of . We will prove that every member of the interval

(0 ) belongs to . Suppose . Since is the least upper bound of , there exists

for which . Then

( ) ( )

from which it follows that . Thus, is an interval of the form (0 ) or (0 ]

and is, therefore, Borel.

.

. The distribution is uniform on the triangle ( ) : 0 1 . If

is a set for which area is defined, the value that the distribution assigns to is twice

its area, the factor of 2 arising because the triangle has area . To prove that is a

random variable— Prove that is continuous, or, alternatively, avoid the issue

of continuity of a -valued function by first doing Problem 16 and then using it in

conjunction with a proof that each coordinate function is continuous.

. In case is divisible by 4, the answer is

2

4
2

Otherwise, the answer is 0.

. The Hausdorff distances are between the first two; between the first and

third; between the second and third.

. These are the probabilities: , , .

. Fix . Since is increasing, every member of : ( ) is less than every

member of : ( ) and is thus a lower bound of : ( ) . Hence ( ) =

sup : ( ) is a lower bound of : ( ) . Therefore ( ) ( ).

To prove ( ) = ( ), suppose, for a proof by contradiction, that ( ) ( ),

and consider an ( ( ) ( )). Either ( ) contradicting the defining property

of ( ) or ( ) contradicting the defining property of ( ). Thus = , and

we will work with in the next paragraph.

Clearly, is increasing. Thus, to show left continuity we only need show ( )

( ) for every . Let 0. There exists ( ) for which ( ) . Hence

there exists such that ( ) . Therefore

( ) ( ) ( )

Now let 0.
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a b

Q a, b
π x

dx .

a b Q a, b

Q a, b Q a, b a > b <

Q a, b a b

F F

X X F

X F aX b

a b a >

F x P ω aX ω b x P ω X ω x b /a F x b /a .

F F

F F a b a >

X F

aX b F

F F

X b F F x

b F b x x

F x
x

π

x

π
x

π

x

π
F x .

X

x a b aX b x

a, b

a, b

ae dx e

P ω X ω e e

a

g x f x f x x > g x x

. Whether or is finite or infinite,

(( )) =
1

(1 + )

When and are finite this formula is also a formula for ([ ]), and similarly for

([ )) and (( ]) in case or , respectively. Note that the formula

for ([ ]) is correct in the special case = .

. Explanation for ‘type’ only. Suppose first that and are of the same type.

Then there exist random variables and of the same type such that is the

distribution function of . Then is also the distribution function of + for

some and with 0. Thus

( ) = ( : ( ) + ) = ( : ( ) ( ) ) = (( ) )

That is and must satisfy (3.2).

Conversely, suppose that and satisfy (3.2) for some and with 0. Let

be a random variable with distribution function . the above calculation then

shows that + is a random variable whose distribution function is . Therefore

is of the same type as .

. is symmetric about if and only if its distribution function satisfies (

) = 1 (( ) ) for all .

For the standard Cauchy distribution

( ) =
1

2
+

arctan
=

1

2
+

arctan( )

= 1
1

2
+

arctan( )
= 1

1

2
+

arctan(( ) )
= 1 (( ) )

. A random variable having the Cauchy distribution of Problem 8 has density

. For positive and real the continuous density of + is

.

The density of the uniform distribution with support [ ] is on the interval

[ ] and 0 elsewhere.

.

= = 1

( : 2 ( ) 3 ) =

median = log 2

. ( ) = [ ( ) + ( )] if 0 and ( ) = 0 if 0.
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γ u e du u de

γu e du γ γ .

γ

γ γ

γ γ γ γ γ γ .

γ

u e du e dv ,

π

α β u v e dudv

w v v e dw dv

w v v e dv dw

w x x e dx dw ,

b x

P ω X ω x P ω X ω e e ,

G i , , i G y

y < y y <

G y

G y

G y .

. (i)

Γ( + 1) = =

= = Γ( )

(ii) An easy calculation gives Γ(1) = 0!. For an induction proof assume that Γ( ) =

( 1)! for some positive integer . By part (i),

Γ( + 1) = Γ( ) = [( 1)!] = !

Note that the last step in the above calculation is valid for = 1. That this step be

valid is one of the motivations for the definition 0! = 1.

(iii)

Γ( ) = = 2

which, by Example 1 and symmetry, equals . Now use mathematical induction.

(iv)

Γ( )Γ( ) =

= ( )

= ( )

= (1 )

the interchange of order of integration being valid, according to a result from advanced

calculus, because the integrand is continuous and nonnegative. (The validity of the

interchange in integration order is also a consequence of the Fubini Theorem, to be

proved in Chapter 9.) The last expression is the product of the two desired integrals.

. For = 1 and 0,

( : log ( ) ) = ( : ( ) ) = 1

the standard exponential distribution function.

. Denote the three distribution functions by , = 2 3 4. For each , ( ) = 0

when 0 and = 1 when 2. For 0 2:

( ) = 1 1 ;

( ) = arcsin ;

( ) =
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X c I .

. + (notation of Problem 39 of Chapter 3)

. 7 2

. For this problem, denote the expectation operator according to Definition 1 by

and the expectation operator according to Definition 5 by . Let be nonnegative

and simple. Thus, ( ) and ( ) are meaningful. Since qualifies as an appro-

priate in the definition ( ) = sup ( ), we see that ( ) ( ). On the

other hand, Lemma 4 implies that for all simple , ( ) ( ), from which

it follows immediately that ( ) ( ).

. The random variable defined by ( ) = , defined on the probability

space ((0 1] ), where denotes Lebesgue measure, has expected value . This is

seen by calculating ( ) for simple random variables defined by ( ) =

( ( ) ) .

. We treat the case = = 1. The following calculation based on the definition

of expectation for nonnegative random variables and the linearity of the expectation

for simple random variables shows that ( ) + ( ) ( + ):

( ) + ( )

= sup ( ) : and simple + sup ( ) : and simple

= sup ( ) + ( ): and simple

= sup ( + ): and simple

sup ( ) : + and simple = ( + )

To prove the opposite inequality, let be a simple random variable such that

+ . By the construction given in the proof of Lemma 13 of Chapter 2, we can find

sequences ( : = 1 2 ) and ( : = 1 2 ) of simple random variables such

that for all and all ,

( )
1

2
( ) ( ) and

( )
1

2
( ) ( )

It is easily checked that + 1 2 for max ( ) : Ω . Thus

sup ( ) + sup ( ) ( )

and the desired inequality ( ) + ( ) ( + ) now follows from the definition

of expected value.

. For this problem, denote the expectation operators according to Definition 1,

Definition 5, and Definition 8 by , , and , respectively. Let be simple (but

not necessarily nonnegative). We use (4.1):

=
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Since : 1 is a partition,

=

and

=

For these nonnegative simple random variables we have, using Problem 9, that

( ) = ( ) = ( )

and

( ) = ( ) = ( )

By these formulas and Definition 8,

( ) = ( ) ( ) = ( ) = ( )

. The case where ( ) = + is easily treated, so we assume ( ) is finite and,

therefore, ( : ( ) = ) = 0. Accordingly, except for belonging to some

null set, we may define ( ) = ( ) ( ) and ( ) = ( ) ( ). For in

the null set we set ( ) = ( ) = 0. Applying the Monotone Convergence Theorem

to the sequence ( ), we deduce that ( ) ( ) as . It follows, by

property (iii) of Theorem 9, that

lim ( ) ( )

Since ( ) is finite we may apply property (i) of Theorem 9 to conclude

lim [ ( ) ( )] ( ) ( )

Now add ( ) to both sides.

. ( ) = , ( ) = (notation of Problem 11 of Chapter 3)

( ) = , ( ) = + (notation of Problem 37 of Chapter 3)

The distributions of and are identical. By Theorem 15 they have the

same mean. By properties (i) and (ii) of Theorem 9, these equal numbers are ( )

and ( ). It follows that ( ) = .

. (notation of Example 1 of Chapter 3)

. For standard beta distributions (that is, beta distributions with support [0 1]),

the answer is (notation of Example 3 of Chapter 3).

. ( ) = 1 , (exp ) = if 1 and = if 1

. ( ) = ( ) = , ( ) = , ( ) =
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X X X X

aX b, cY d ac X,Y

ϕ

X E X ϕ X X E X ϕ E X .

X, ϕ X E X E X ϕ X E ϕ X

E X E X ϕ X

E X E X ϕ E X .

E X

n

s , s , s , s , s , s , s , s ,

s , s , s n, k k > n S , S , S ,

S , S , S , S , S , S , S ,

S n, k k > n

ρ ρ

Q Q ρ

Q k k ρ s

ρ s
s s s s s

s/ s/ s/

/

s/

/

s/
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s <

s <

ρ s
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ρ s

Q k
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k k k .

. Var( ) = Var( ) = , Var( ) = , Var( ) =

. Cov( + + ) = Cov( )

. An inequality, based on the fact that is increasing will be useful:

[ ( )] ( ) [ ( )] ( ( ))

The following calculation then completes the proof:

Cov( ) = [ ( )][ ( )]

= [ ( )] ( )

[ ( )] ( ( )) = 0

(A slightly longer, but possibly more transparent proof, consists of first reducing the

problem to the case where ( ) = 0 and then using the above argument for that

special case.)

. For Example 2 of Chapter 4, the answer is 1; for Problem 18 of Chapter 4, the

answer is 0 or 1 according as is odd or even.

. (0 0) = (1 1) = (2 2) = (3 3) = 1, (1 0) = (2 0) = (3 0) = 0, (2 1) =

1, (3 1) = 2, (3 2) = 3, ( ) = 0 for ; (0 0) = (1 1) = (2 2) =

(3 3) = 1, (1 0) = (2 0) = (3 0) = 0, (2 1) = (3 1) = 1, (3 2) = 3,

( ) = 0 for

. (1 ) = 1. Thus, if is the probability generating function of a distribution

, then ( ) = 0. To both show that is a probability generating function and

calculate ( ) for each we rewrite ( ) using partial fractions:

( ) =
24

2
+

8

(2 )
+

24

3
+

16

(3 )
+

8

(3 )

=
12

1 ( 2)
+

2

(1 ( 2))
+

8

1 ( 3)
+

16 9

(1 ( 3))
+

8 27

(1 ( 3))

The first two of the last five functions are equal to their power series for 2 and the

last three for 3. So we can expand in power series and collect coefficients to get a

power series for ( ) that can be differentiated term-by-term to obtain the derivatives

of ( ). Thus, we only need to show that the coefficients are nonnegative in order to

conclude that ( ) is a probability generating function, and then the coefficients are

the values ( ).

Formulas for the geometric series and its derivatives give

( ) = 12 ( ) + 2 ( + 1)( ) + 8 ( )

+ ( + 1)( ) + ( + 1)( + 2)( )
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Q k
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ρ s
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s s s s

ρ s
s s s s s s

.

s

ρ ρ .

ρ

Q

p Q

p < k m <

Q m
m

m

m
p p .

k k Q k

A A

A

A A .

I I I

I I I .

1

2

+3

3 3 2 4

4 3 3 4 2 5

7
2

7
2

37
2

74
4

49
4

25
4

5
2

=1 =

=1 =

=1 =

(lim sup ) lim sup

lim inf

When we collect terms we get nonnegative—in fact, positive—terms, as desired:

( ) =
5

2
+

4 + 60 + 272

3

To get the mean and variance it seems best to work with ( ) in the form originally

given and use the product rule to get the first and second derivatives:

( ) =
16

(2 ) (3 )
+

24

(2 ) (3 )

and

( ) =
48

(2 ) (3 )
+

96

(2 ) (3 )
+

96

(2 ) (3 )

Insertion of 1 for gives

(1) =
7

2
and (1) = 15

Hence, the mean equals and the second moment equals 15 + = . Therefore, the

variance equals = and the standard deviation equals .

Had the problem only been to verify that is a probability generating function, we

could have, while calculating the first and second derivatives, seen that a straightfor-

ward induction proof would show that all derivatives are positive, and an appeal to

Theorem 14 would complete the proof.

. The mean is and thus the variance is undefined. The distribution corre-

sponding to the probability generating function with parameter satisfies ( ) =

1 2 . Also, for 0 = 2 ,

( 2 ) =
2 2 2

1
[ (1 )]

For odd and = 0, ( ) = 0.

. Method 1: Using Problem 4, we get

(lim inf ) =

=

= = lim sup

Method 2: We prove that the indicator functions of the two sets are equal:

= 1 = 1 lim sup

= lim inf (1 ) = lim inf =
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lim sup( ) = (lim sup ) (lim sup ) ;

lim inf( ) = (lim inf ) (lim inf ) ;

lim inf( ) = (lim inf ) (lim sup ) ;

(lim sup ) (lim inf ) lim inf( ) (lim inf ) (lim inf ) ;

(lim inf ) (lim sup ) lim sup( ) (lim sup ) (lim sup ) ;

(lim sup ) (lim sup ) lim sup( ) (lim sup ) (lim inf ) ;

lim inf( ) (lim sup ) (lim inf ) ;

lim sup( ) (lim sup ) (lim sup )

Problem 6 is relevant for this problem, especially the fifth equality given in the problem.

Here are some examples in which the various subset relations given above are strict.

The first and seventh subset relations above are both strict in case = Ω for all

and = or = Ω according as is odd or even. The second, fourth, fifth, and

eighth subset relations are all strict if = for all and = Ω or = Ω

according as is odd or even. The third and sixth subset relations are both strict if

= for all and = Ω or = Ω according as is odd or even.

. The middle inequality is obvious. Using the Continuity of Measure Theorem in

Chapter 6, we have

(lim sup ) =

= lim lim sup ( )

thus establishing the first inequality. For the third inequality, deduce from the first

inequality that (lim sup ) lim sup ( ), which is equivalent to

1 (lim sup ) lim sup[1 ( )]

which itself is equivalent to

(lim sup ) lim inf ( )

By Problem 6, the event in the left side equals lim inf , as desired.

. Let = : ( ) = 1 . By Problem 5, the event = lim sup is

that event that = . The events are pairwise negatively correlated or

uncorrelated, so by the Borel-Cantelli Lemma, ( ) = 1 if ( ) = , and by

the Borel Lemma, ( ) = 0 if ( ) . The proof is now completed by noting

that ( ) = ( ), so that ( ) = ( ), whether finite or infinite.

. Let denote the number of cards and , for = 1 2 , the event that

card is in position . The term of the formula for ( ) in Theorem 6
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n i

n i
,

e n

A P A Q A A B

P B A P B P A Q B Q A Q B A .

A ,A , . . .

P Q

P A P A Q A Q A .

σ

A n , , . . . A,A,A, . . . A

R A n , , . . . R A ,R A ,R A , . . .

R A

R A

A A,A,A, . . .

B

B n , , . . . B

B B n B

B

B B C

C n , , . . . C

B C B C n B C n

B C

k A

A n m A A

consists of the factor ( 1) and terms each of which equals the probability that

each of a particular cards are in a particular positions. This probability equals the

number of ways of placing the remaining cards in the remaining positions,

divided by !. We conclude that

= ( 1)
( )!

!
= ( 1)

1

!

which approaches 1 as .

. Let = : ( ) = ( ) . Suppose that are both members of . Then

( ) = ( ) ( ) = ( ) ( ) = ( )

Thus, is closed under proper differences. Now consider an increasing sequence

( ) of members of . By the Continuity of Measure Theorem, applied to

both and ,

(lim ) = lim ( ) = lim ( ) = (lim )

Hence is closed under limits of increasing sequences, and therefore is a Sierpiński

class. It contains and so, by the Sierpiński Class Theorem it contains ( ), as desired.

. The sequences ( : = 1 2 ) and ( ) have the common limit .

By the lemma, the sequences ( ( ) : = 1 2 ) and ( ( ) ( ) ( ) ) have

equal limits. The limit of the second of these numerical sequences is obviously ( ),

so ( ) is also the limit of the first sequence of numbers.

. Every member of is the limit of the sequence ( ). Thus .

It remains to prove that is a field.

The empty set, being a member of , is also a member of . Let . Then

there exists a sequence ( : = 1 2 ) that converges to . By Problem 8 of

Chapter 6, as . Since is a field, each is a member of . Therefore

.

Let and be as in the preceding paragraph and let . There exists a

sequence ( : = 1 2 ) that converges to . By Problem 8 of Chapter 6,

as . Since is a field, for each . Therefore

.

. The probability is 1 (1 ). The correlation between two events

and is easily calculated; it is 0 when = . Similarly, for and . Thus, the

Borel-Cantelli Lemma may be used to calculate the probabilities of the limit supremum
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P A P A

P A β β >

P ω Y ω

P ω Z ω n n k n <

β β > n

ϕ ϕ π

s

ϕ ϕ

r ϕ θ s r, θ

D

πr D

g f n

g f dµ g f dµ g f dµ .

gdµ <

gdµ f dµ g dµ f dµ .

g dµ

g f

f f

f dµ <

f dµ f dµ

f f n g

f f dµ f f dµ dµ .

and limit infimum.

(lim inf ) = 1 (lim sup ) = 0

(lim sup ) = 1 if 1 and = 0 if 1

( : ( ) = 1 ) = 1

( : ( ) = ) = (1 ) if

and = 1 or = 0 according as 1 or 1 if =

. Since is in one-to-one measure-preserving correspondence with , we

only need show that the effect of a rotation or translation on corresponds to a

transformation on having Jacobian 1, provided we identify with +2 . It is clear

that rotations about the origin have this property, leaving unchanged and adding a

constant to . Translations also have this property since they leave unchanged and

add cos( ) to , where ( ) is the polar representation of the point to which

the origin is translated.

The measure of the set of lines intersecting a line segment is twice the length of

that line segment.

The measure of the set of lines intersecting a convex polygon is the perimeter of

that polygon.

. The expected value, whether finite or infinite, is twice the length of divided

by 2 . (It can be shown that this value is correct for arbitrary curves contained in

the interior of the circle.)

. Application of the Fatou Lemma to the sequence ( : 1) of nonnegative

measurable functions gives

lim inf ( ) lim inf( ) = ( lim sup ) 0

Since , we may use linearity to obtain

lim sup lim sup 0

Subtraction of followed by multiplication by 1 gives the last two inequalities

in (8.2). The first two inequalities in (8.2) can be obtained in a similar manner using

+ , and the middle inequality in (8.2) is obvious.

Under the additional hypothesis that lim = , the first and last finite quantities

in (8.2) are equal, and therefore all four finite quantities are equal. Thus

and . Applying what we have already proved to the sequence

( : 1), each member of which is bounded by 2 , we obtain

lim = lim = 0 = 0
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. Let denote the indicator function of : ( ) .

( ) = ( ) ( ) 0 as

. By Theorem 14 the assertion to be proved can be stated as:

lim =

where denotes Lebesgue measure on and

( ) =
if 0

0 otherwise

The plan is to use the Dominated Convergence Theorem. Thus we may restrict our

attention to 0 throughout.

We take logarithms of the integrands:

(log )( ) = ( 1) log(1 + )

The Taylor Formula with remainder (or an argument based on the Mean-Value Theo-

rem) shows that (log )( ) lies between

( 1)( )

and

( 1)( + )

both of which approach 2 as . Thus, to complete the proof we only need

find a dominating function having finite integral.

The integrands are nonnegative. It is enough to show, for 1, that ( )

(1 + ) , since this last function of has finite integral on [0 ). Clearly, ( )

(1 + ) ( ), the logarithm of which equals

log(1 + )(7.1)

Differentiation with respect to and writing for gives

log(1 + )
(2 + )

2(1 + )
(7.2)

a function which equals 0 when = 0 and is, by Problem 21, a decreasing function of

. Thus, (7.2) is nonpositive when 0. For 1 [which we may assume without

loss of generality], (7.1) is no larger than the value log(1 + ) it attains when

= 1. The exponential of this value is the desired function (1 + ) . [Comment:

The introduction of the factor (1+ ) in the sentence containing (7.1) was for the

purpose of obtaining a decreasing function of .]

. The absolute value of the integral is bounded by

2 max log 1 + max

where each maximum is over those for which . Apply the Mean-Value

Theorem to the logarithmic function, standard methods of differential calculus to the

function , and the Stirling Formula to !. (Note: If one works with the
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B
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product of the maximum of the function and the maximum of the function

one does not get an inequality that is sharp enough to give the desired

conclusion.)

. Define a -finite measure by

( ) =

where denotes Lebesgue measure on , so that is the density of with respect to

Lebesgue measure. In particular,

(( ]) = ( )

for all . By an appropriate version of the Fundamental Theorem of Calculus,

(( ]) = ( ) ( ) = ( )

for all . Thus, and agree on intervals of the form ( ]. By the Uniqueness

Theorem, they are the same measure.

. Ω and Ω each have six members, Ω has 36 members. Each of , , and

has 2 = 64 members. has 2 members and has 64 members.

. 1 lim [1 ( + )] and . The example = shows

that one may not just set = 0 in the first of the two answers.

. exponential with mean ( + )

. Fix ( ) for . For each such there are disjoint members ,

1 , of such that

=

Hence,

= =

= = ( )

= ( ) = ( )

(Contrast this proof with the proof of Proposition 3.)

. For each event , let

= : ( ) = ( ) ( )
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A σ σ

A σ

A , . . . , A

P A A P A . . . P A .

x y

x f x, y B

B f y

x I f x, y

x f x, y B

f I f B

f A

x I x, y

A

A x I x, y

y

X Y X, Y

Q Q

E XY x y Q dy Q dx

x E Y Q dx E X E Y < .

E XY xy Q dy Q dx

xE Y Q dx E X E Y .

E X Y E X E Y

E X E Y

Clearly each is closed under proper differences. By continuity of measure it is also

closed under monotone limits and, hence, it is a Sierpiński class.

Denote the two members of by 1 and 2. By hypothesis, for each .

By the Sierpiński Class Theorem, ( ) for each . Therefore for

each ( ). Another application of the Sierpiński Class Theorem gives ( )

for every ( ), which is the desired conclusion.

. The criterion is that for each finite subsequence ( ),

( ) = ( ) ( )

. Let us first confirm the appropriateness of the hint. Because the proposition

treats and symmetrically, we only need prove the first of the two assertions in

the proposition. To do that we need to show that : ( ) for every

measurable in the target of and every . Suppose that we show that the -valued

function ( )( ) is measurable. Then it will follow that the inverse image

of 1 of this function is measurable. Since this inverse image equals : ( ) ,

the assertion in the hint is correct.

Since is measurable, any function of the form , where is a measurable

subset of the target of , is the indicator function of some measurable set .

Thus, our task has become that of showing that ( ) is measurable for each

such .

Let denote the collection of sets Ψ Θ such that ( ) is measurable

for each fixed . This class contains all measurable rectangles, and the class of

all measurable rectangles is closed under finite intersections. Since differences and

monotone limits of measurable functions are measurable, the Sierpiński Class Theorem

implies that contains the indicator functions of all sets in , as desired.

. The independence of and is equivalent to the distribution of ( ) being

a product measure . By the Fubini Theorem,

( ) = ( ) ( )

= ( ) ( ) = ( ) ( )

Thus we may apply the Fubini Theorem again:

( ) = ( ) ( )

= ( ) ( ) = ( ) ( )

. The crux of the matter is to show that, in the presence of independence,

the existence of ( + ) implies the existence of both ( ) and ( ) and, moreover,

it is not the case that one of ( ) and ( ) equals and the other equals .

.
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e du

σ x e
.

x

e

σ x
.

δ > x > σ/ δ

πσ
e du

<
πσ

σ

u
e du

<
δ

πσ
e du .

a σ n

x v δ δ x v

j

v ] i x v

] i x v v

j v

χ y

y y y y

d

d
,

d y y y

χ

ε > x w

x w < ε

i x v i w v ε .

. Method 1: The left side divided by the right side equals

Both numerator and denominator approach 0 as ; so we use the l’Hospital Rule.

After differentiating we multiply throughout by . The result is that we need to

calculate the limit of
1

1

The limit equals 1, as desired.

Method 2: Let 0. For ,

1

2

1

2
1 +

1 +

2

The expression between the two inequality signs is equal to the right side of (9.12). (The

motivation behind these calculations is to replace the integrand by a slightly different

integrand that has a simple antiderivative. One way to discover such an integrand is

to try integration by parts along a few different paths, and, then, if, for one of these

paths, the new integral is small compared with the original integral, combine it with

the original integral. Of course, Method 1 is simple and straightforward, but it depends

on being given the asymptotic formula in advance.)

. = 2 log

. 0

. If + for every positive , then ; hence, the infimum that one

would naturally place in (9.13), where the minimum appears, is attained and, therefore,

the minimum exists. As in the right side of (9.13) is increased, the set described

there becomes smaller or stays constant and, therefore, its minimum becomes larger or

stays constant. So (9.14) is true. The function : has a jump of size

: = , possibly 0, at each . But the size of this jump equals the number of

different values for the integer that yield this value of for the minimum in the right

side of (9.13). Thus, (9.15) is true. The image of consists of all for which

. For such a the cardinality of its inverse image equals

!

( !)

where denotes the number of coordinates of which equal , including itself.

To prove continuous it suffices to prove that each of its coordinate functions is

uniformly continuous. Let 0. Suppose that and are members of for which

. Then

: : +
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] i w χ x ε j .

χ w χ x ε x w
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n , , . . .

P ω N ω n
n

n
.

E N e Z ,

z z e

/

E X z E X z > X < z

X
ζ z ζ z ζ z

ζ z
z > .

X m /m z

θ
γ

γ
θ .

γ

µ µ σ σ

x x

k

k n

P ω X ω k N ω n P ω X ω k N ω n

P ω X ω k P ω N ω n
n

k
p p

λ e

n
.

n

pλ e

k

λ p

n k

pλ e

k
,

Hence

: = : +

Since [ ( )] is the smallest for which the left side is true, we have

: [ ( )] +

Therefore, [ ( )] [ ( )] + . The roles of and may be interchanged to

complete the proof.

. The density is ! on the set of points in [0 1] whose coordinates are in increasing

order, and 0 elsewhere.

. For = 1 2 ,

( : ( ) = ) =
( + 1)!

Also, ( ) = 1. The support of the distribution of is [0 1] and its density there

is (1 ) .

. 1 16

. ( ) = if 2; ( ) = if 2. Var( ) = if 2 3;

Var( ) =
( 2) ( ) [ ( 1)]

( )
if 3

The probability that is divisible by equals 1 which approaches as 1.

. The distribution of the polar angle has density

Γ(2 )

4 [Γ( )]
sin 2

The norm is a nonnegative random variable the square of which has a gamma distri-

bution with parameter 2 .

. normal with mean + and standard deviation +

. (1 1 ) 0

. probability at each of the points for 5 6

. For 0 ,

( : ( ) = and ( ) = ) = ( : ( ) = and ( ) = )

= ( : ( ) = ) ( : ( ) = ) = (1 )
!

We sum on :

( )

!

( (1 ))

( )!
=

( )

!
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i
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i
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d

+
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0

1

2

2
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3 1

1 2
1 2

1

=3

1

0
2

0
1 2 1

1
1 2 3 1

2 1 1

1 2
1

2 1

1

=3

1

0
2 2

+
2 3 1

2 2

1 2
1 2

2 1

1

=3

1
+ + +1

3 1

3 1 2

Q

Q m m P m

Q δ

P P

E Y
γ
γ , . . . , γ

Y
γ γ γ

γ γ

Y Y
γ γ

γ γ
, i j

d d

E Y Y d

y y y d

d

D y , . . . , y y y ,

w y . . . y

E Y Y
γ

γ γ γ

y

γ

y y w y y dy dy d y , . . . , y .

w y z y

E Y Y
γ γ

γ γ γ

y

γ
y w y dy d y , . . . , y .

wz y

E Y Y
γ γ γ

γ γ γ

y

γ
w d y , . . . , y .

γ , . . . , γ γ

as desired.

. The distribution of a single fair-coin flip is the square convolution root. If there

were a cube convolution root , it would, by Problem 19, be supported by . If

( ) were positive for some positive , then ( 3 ) would also be positive,

a contradiction. Thus, it would necessarily be that is the delta distribution , which

is certainly not a cube root of . Therefore has no cube root.

.

( ) =
1
( )

Var( ) =
( )

( + 1)

Cov( ) =
( + 1)

=

For the calculations of the above formulas one must avoid the error of treating the

Dirichlet density in (10.4) as a -dimensional density on the -dimensional hypercube.

Here are the details of the calculation of ( ) under the assumption that 4.

We replace by 1 and discard the denominator in (10.4) in order

to obtain a density on a ( 1)-dimensional hypercube. (In fact, this replacement is

done so often that the result of this displacement is often called the Dirichlet density.)

Implicitly assuming that all variables are positive, setting

= ( ): + + 1

and using the abbreviation = 1 ( + ), we obtain

( ) =
Γ( )

Γ( ) Γ( ) Γ( ) Γ( )

( ) ( )

We substitute ( ) for and then use Problem 34 of Chapter 3 for the evaluation

of the innermost integral to obtain

( ) =
Γ( )

Γ( ) Γ( + + 1)

Γ( )
( ) ( )

For the evaluation of the inner integral we substitute for ; we get

( ) =
Γ( )

Γ( + + + 2) Γ( )
( )

By rearranging the constants appropriately we have come to the position of needing

to calculate the integral of a Dirichlet density with parameters , and +
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γ γ

E Y Y
γ γ

γ γ
.

Y Y

Y Y Y Y

F F z z

F z z z , F z /

z , z , z z > z i , , z z z

z , z z > z

z > z z z > z

F z dz dz z z .

F z z z < z <

d

,

w w w .

C C C

r x r x r x x C , r , r r r

C C C C C C

ϕ ϕ ϕ ϕ

ϕ w

w
π w w w

π
.

A B

a b a b A B a A b B κ ,

κ a b κ a b κa κ a κb κ b ,

A B κa

κ a A κb κ b B A B

A B a b n

, , . . . a A b B a , b n , , . . .

+ + 2. Since the integral of the density of any probability distribution equals 1

we obtain

( ) =
( + 1)

Since + + is a constant its variance equals 0. On the other hand, from the

formula

Var( + + ) = Cov( )

we see that the variance equals the sum of the entries of the covariance matrix. So, in

this case, that sum is 0. But the determinant of any square matrix whose entries sum

to 0 is 0, since a zero row is obtained by subtracting all the other rows from it.

. Let denote the desired distribution function. Clearly, ( ) = 0 for 0 and

( ) = 1 for . Let (0 ). From (10.4), 1 ( ) equals 2 3 times the area

of those ordered triples ( ) satisfying for = 1 2 3 and + + = 1.

This is the same as twice the area of those ordered pairs ( ) such that ,

, and 1 . Thus

1 ( ) = 2 = 1 6 + 9

Therefore ( ) = 6 9 for 0 .

. beta with parameters 1 and 2

. The distribution has support [0 ] and there the distribution function is given

by

+ 3 + 3 log

. For , , and convex compact sets, show that

+ + : 0 + + = 1

is convex, closed, and a subset of both ( ) and ( ).

. sin , cos , sin cos

. For all and 1 1, the distribution function is

+ 1 arccos

. Let and be two compact convex sets. Consider two arbitrary members

+ and + of + , where and . Let [0 1]. Then

( + ) + (1 )( + ) = [ + (1 ) ] + [ + (1 ) ]

which, in view of the fact that and are convex, is the sum of a member + (1

) of and a member + (1 ) of , and thus is itself a member of + .

Thus, convexity is proved.

It remains to prove that + is compact. Consider a sequence ( + : =

1 2 ), where each and each . The sequence (( ) : = 1 2 )
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ω N ω n ω N ω m .

has a subsequence (( ) : = 1 2 ) that converges to a member ( ) of ,

because is compact. Since summation of coordinates is a continuous function

on , the sequence ( + ) converges to the member + of + . Hence,

+ is compact. (By bringing the product space into the argument we have

avoided a proof involving a subsequence of a subsequence.)

. For each : mean equals and variance equals 1 +

. The one-point sets 0 and each have probability 2 3 . The probability

of any measurable disjoint from each of these one-point sets is the product of (1

2 3 ) and the Lebesgue measure of .

.

: ( ) 1 ( ) = ( ) =

for 2 and 0 otherwise. ( ) =

. for a Borel subset of ,

: ( ) 1 = ( ) = ( ) ( ) ;

( ) =
1

( )
( ; : ( ) )

. Suppose that is a stopping time. Then, for all ,

: ( )

which for = 0 is the desired conclusion : ( ) = 0 . Suppose 0 .

Then

: ( )

Therefore,

: ( ) = = : ( ) : ( )

We complete the proof in this direction by noting that

: ( ) = = : ( ) : ( )

and that all the events on the right side are members of .

For the converse we assume that : ( ) = for all . Then,

whether or = ,

: ( ) = : ( ) =

All events on the right are members of because filtrations are increasing. Therefore,

the event on the left is a member of , as desired.
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. Let . Then

: ( ) = : ( ) : ( )

= : ( ) : ( )

which, being the intersection of two members of , is a member of . Hence .

Therefore .

.

( ) =
1 1 4 (1 )

2(1 )
0 1

For finite and even, the probability is 0 that equals the hitting time of 1 . For

= 2 1, the hitting time of 1 equals with probability

1

2 1

2 1
(1 )

The hitting time of 1 equals with probability 0 or (1 2 ) (1 ) according as

or not.

If , the global supremum equals with probability 1. If , the global

maximum exists a.s. and is geometrically distributed; the global maximum equals

with probability ( ) .

. Use the Stirling Formula.

. Let ( : 1) be a sequence of independent random variables with common

distribution (as used in the theorem). From the theorem we see that (0 )

is distributed like a random walk with steps . Thus,

( : ( ) = ) = ( : ( ) = ( ) for )

= ( : ( ) = ) ( : ( ) )

Set = 1 to obtain the first equality in (11.6). The above calculation also shows that

is geometrically distributed unless ( : ( ) = ) = 1. Thus, it only remains

to prove the second equality in (11.6).

Notice that

=

Take expected values of both sides to obtain

( ) = ( 0 )

If the right side equals , then = a.s., for otherwise it would be geometrically

distributed and have finite mean. If the right side is finite, then ( ) , and, so,

is geometrically distributed and, as for all geometrically distributed random variables

with smallest value 1, = ( : ( ) = 1 ).

. !
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. For = 3, let denote the distribution of .

( ) =
(1 + 3 ) if is even

0 if is odd

( 1 ) = ( 2 ) = ( 3 ) =
0 if is even

(1 + 3 ) if is odd

( 1 2 ) = ( 1 3 ) = ( 2 3 ) =
(1 3 ) if is even

0 if is odd

( 1 2 3 ) =
0 if is even

(1 3 ) if is odd

. probability that is hit at time or sooner: [1 ( ) ] ; probability that

1 2 is hit at the positive time :

( ) 1 ( ) 1 ( ) ;

probability that hitting time of 1 1 equals : (2 2) (2 1)

. For 1 the distribution of assigns equal probability to each one-point

event. The sequence is an independent sequence of random variables. For 1, the

probability that the first return time to 0 equals is ( )(1 ) , where is the

number of members of the group.

. (ii) Let = . Then ( ) ( ) for each and .

Since ( ) and ( ) ( ) for every for which ( ) is finite, the

Dominated Convergence Theorem applies to give ( ) ( ). Since and

have identical distributions, and also have identical distributions and hence the

same expected value. Therefore ( ) ( ).

. Let denote the distribution function of . Then

( : ( ) 2 ) = [1 (2 )]

1

2
[1 (2 )]

=
1

2
[1 (2 )]

=
1

4
[1 ( )]

which, by Corollary 20 of Chapter 4, equals , since ( ) = . By the Borel-

Cantelli Lemma, (12.1) is true.
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To prove (12.2) we note that if ( ) 2 , then ( ) or ( )

from which it follows that

( )

2

( )

2 1 2

From (12.1) we see that, for almost every , this inequality happens for infinitely many

. Hence, 0 is the probability of the event consisting of those for which ( )

converges to a number having absolute value less than . Now let through a

countable sequence to conclude that (12.2) is true.

. ( ) = ( ) = 2 . An application of the Strong Law of Large

Numbers to the sequence defined by log = log gives

lim
log

= (log ) = log = 1 a.s.

Since almost sure convergence implies convergence in probability, we conclude that, for

any 0,

lim ( : ) = 1

Thus, with high probability ( ) is very large for large . There is some small

probability that is not only much larger than , but even much larger than 2 ,

and it is the contribution of this small probability to the expected value that makes

( ) much larger (in the sense of quotients, not differences) than the typical values of

. The random variable represents the length of the stick that has been obtained

by starting with a stick of length 1 and breaking off pieces from the stick, the length

of the piece kept (or the piece broken off) at the stage being uniformly distributed

on (0 ).

. (1 + )(1 ), (1 + )(1 ) ,

(1 )

1 +

(1 + + )(1 )

1 + 2

. Let and 0. (We are only interested in exchangeable but the

first part of the argument does not use exchangeability.) By Lemma 18 of Chapter 9,

there exists an integer and a measurable subset of Ψ such that ( ) ,

where

= Ψ

Define a permutation of 0 by

( ) =

+ if

if 2

if 2

Let ˆ denote the corresponding permutation of Ω.

It is easy to check the following set-theoretic relation:

ˆ( ) ˆ( ) ˆ( ) ˆ( )
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P A π A P A B P B π B P π B π A .

ε P C P π C

C

P π B π A P π B A P B A < ε .

ε

P A π A < P B π B ε

A A π A A B

π B

P B π B P B P π B P B .

P B < P A ε

P A < P A ε ε P A ε ε .

P A P A < ε ε .

ε P A P A

σ σ

σ

σ

P ω X ω > /n /n <

ω X ω /n n

X ω ω

b Y

P ω X ω > b
E X

b bn
.

Y X E Y

Y E Y bE Y bE X
b

n
.

X

Hence

ˆ( ) + ˆ( ) + ˆ( ) ˆ( )(7.3)

The first term on the right side of (7.3) is less than . Since ( ) = (ˆ( )) for any

,

ˆ( ) ˆ( ) = ˆ( ) =

Thus the third term on the right side of (7.3) is also less than . Therefore

ˆ( ) ˆ( ) + 2(7.4)

Now assume that is exchangeable. Then ˆ( ) = . Also, it is clear that

and ˆ( ) are independent, and so

( ˆ( )) = ( ) (ˆ( )) = [ ( )]

Another easily obtained fact is that ( ) ( )+ . From (7.4), we therefore obtain

( ) ( ) + + 2 [ ( )] + 4 +

Algebraic manipulations give

( )[1 ( )] 4 +

Let 0 to obtain ( )[1 ( )] = 0, as desired.

. (i) exchangeable but not tail, (ii) exchangeable and tail, (iii) neither exchange-

able nor tail (but the Hewitt-Savage 0-1 Law can still be used to prove that the given

event has probability 0 or 1) [Comment: the tail -field is a sub- -field of the ex-

changeable -field, so there is no random-walk example of an event that is tail but not

exchangeable. This observation does not mean that the Kolmogorov 0-1 Law is a corol-

lary of the Hewitt-Savage 0-1 Law, because there are settings where the Kolmogorov

0-1 Law applies and it is not even meaningful to speak of the exchangeable -field.]

. ( : ( ) 1 ) (1 ) . By the Borel Lemma, for al-

most every , ( ) (1 ) for all but finitely many . By the comparison test for

numerical series, ( ) converges (in fact, absolutely) for such .

. by the Three-Series Theorem: Let be any positive number, and define as

in the theorem. By the Markov Inequality,

( : ( ) )
( )

=
1

Thus the series (12.8) converges. Since 0 , 0 ( ) . Hence, the

series (12.9) converges. Also,

Var( ) ( ) ( ) ( ) =

Thus the series (12.10) converges. Therefore, converges a.s. (Notice that this

proof did not use the fact that the random variables are geometrically distributed.)
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by Corollary 26: The distribution of is geometric with parameter ( + 1) .

Thus the variance is ( + 1) 2 . The series of these terms converges, as does

the series of expectations. An appeal to Corollary 26 finishes the proof.

by Monotone Convergence Theorem: ( ) = ( ) . A random

variable with finite expectation is finite a.s. Therefore, is finite a.s. (Notice that

for this proof, as for the proof by the Three-Series Theorem, the geometric nature of

the distributions was not used.)

.

. One place it breaks down is very early in the proof where the statement

( ) = ( ) is replaced by the statement ( ) = 0. These

two statements are equivalent if the state space is , but if the state space is it is

possible for the first of these two statements to be false, with both sums equal to ,

and the second to be true.

. if and only if the supports of the two uniform distributions have the same

length

. ; . [ is the parameter of the (unsymmetrized)

geometric distribution.]

. mean equals and variance equals

. Let

( ) =
1

+

and find a simple formula for + .

.

2

. yes

. At any where both and are continuous, ( ) = ( ). The set of points

where is discontinuous is countable because is monotone. The same is true for

. The set of points where both and are continuous, and thus equal, is dense,

because it has a countable complement. For any , there exists a decreasing

sequence ( ) in such that as . The right continuity of and

and the equality ( ) = ( ) for each then yield ( ) = ( ).

. We will first show that for each . The factor arises

as the limit of (1 ) . The factor already appears in the formula for , and
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u e du .
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u e

γ
u e du

x >

x

x r >

m

r

k m r
u e du ,

m

r

k m r
u e du ,

k m

g u du ,

! appears there implicitly as part of the binomial coefficient. To finish this part of the

proof we need to show

lim
!

( )!
1 = 1

The second factor obviously has the limit 1 and the first factor can be written as

1

which also has limit 1.

We will finish the proof by showing that

lim ( ) =
!

for every . On the left side the limit and summation can be interchanged because

the summation has only finitely many nonzero terms. The desired equality then follows

from the preceding paragraph.

This problem could also be done by using Proposition 8 which appears later in

Chapter 14.

. standard gamma distributions. For 0,

lim
1

Γ( )
= 1 lim

1

Γ( )
lim

The first limit in the product of two limits equals 0 and by the Dominated Convergence

Theorem, the second limit equals , a dominating function being

( 1) . We conclude that

lim
1

Γ( )
= 1

for 0 from which convergence to the delta distribution at 0 follows (despite the

fact that we did not obtain convergence to 1 at = 0).

. Fix 0 and 0. We want to show

lim
1 ( )

!
1

1
=

1

Γ( )

which is equivalent to

lim
1 ( )

!
1

1
=

1

Γ( )
(7.5)

because the term , obtained by setting = 0, approaches 0 as .

The sum on the left side of (7.5) can be written as

( )
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where

( ) =
1 if 1 for = 1 2

0 otherwise ;

and the right side can be written as

( )

where

( ) =
1

Γ( )

The plan is to show that ( ) ( ) as for each in the interval (0 )

and to find a function that has finite integral and dominates each , for then the

desired conclusion will follow immediately from the Dominated Convergence Theorem.

We will consider the three factors in separately. It is important to keep in mind

that depends on and and that in particular, as for each fixed

(0 ), as this dependence is not explicit in the notation.

It is clear that for (0 ). In case 1, . In

case 1, . Thus, we have constructed one factor of what we hope

will be the dominating function : in case 1 and the constant in case

1.

The second factor in ( ) equals

1

Γ( )

Γ( + )

Γ( 1)

We use the Stirling Formula to obtain the limit:

1

Γ( )
lim

Γ( + )

Γ( + 1)

=
1

Γ( )
lim

2 ( + )

2 ( + 1)

=
Γ( )

lim 1 + 1 +
1

+ 1
1 +

1

+ 1

=
1

Γ( )

The second factor in ( ) is thus bounded as a function of , the bound possibly

depending on . Such a constant bound will be the second factor we will use in con-

structing the dominating function .

For the third factor in ( ) we observe that

1
1

1
1

1
1

(7.6)

from which it follows that

1
1

Moreover, (7.6) and the inequality (1 ) imply that is a dominating

function for the third factor in ( ).
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Our candidate for a dominating function ( ) having finite integral is a constant

multiple of in case 1 and a constant multiple of in case 1. Both

these function have finite integral on the interval [0 ], as desired.

For = 0, each is the delta distribution at 0, and, therefore, lim

equals this delta distribution.

. Let denote the standard Gumbel distribution function defined in Problem 13.

For 0 and ,

( + ) = =

where = 0.

. For any real constant ,

[ ] =

By the Borel-Cantelli Lemma, a.s. as and, hence,

: lim [ ( ) log ] exists and

is a tail event of the sequence ( : = 1 2 ) for every . By the Kolmogorov 0-1

Law, the almost sure limit of ( log ) must equal a constant if it exists. On the

other hand, by the preceding problem the almost sure limit, if it exists, must have a

Gumbel distribution. Therefore, the almost sure limit does not exist.

The sequence does not converge in probability, for if it did, there would be a sub-

sequence that converges almost surely and the argument of the preceding paragraph

would show that the distribution of the limit would have to be a delta distribution

rather than a Gumbel distribution.

The preceding problem does imply that

log

log
0 as

and, therefore, that

log
1 in probability as

In Example 6 of Chapter 9 the stronger conclusion of almost sure convergence was

obtained using calculations not needed for either this or the preceding problem.

. Weibull: mean = Γ(1+ ), variance = Γ(1+ ) [Γ(1+ )] ; Fréchet: mean

is finite if and only if 1 in which case it equals Γ(1 ), variance is finite if and

only if 2 in which case it equals Γ(1 ) [Γ(1 )]

. 0 = 1 , =

. We need to show

lim ( ] =
1
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for all positive finite . That is, we must show

lim
1

( )

1
=

1

We may replace by 1 because the ratio of these two functions approaches

1 as 1 (as may be checked by bounding the sum that defines the Riemann zeta

function by formulas involving integrals). We can bound the above sum by using:

1 1
1 +

1
;

that is,

1

1
1

1 1
1 +

1

1
1

1
;

Replace by , multiply by 1, and let 1 to obtain the desired limit

1 .

. Since ( ) 1 for every and , we only need show that 1 ( ( )) 0

for each . This will follow from the hypothesis in the lemma and the inequality

1 (2 ) 4 1 ( )

which we will now prove to be valid for all characteristic functions .

Using the positive definiteness of we have

+ (0 0) ¯ + ( 0) ¯ + (2 0) ¯

+ (0 ) ¯ + ( ) ¯ + (2 ) ¯

+ (0 2 ) ¯ + ( 2 ) ¯ + (2 2 ) ¯ 0

Setting = 1, = 2, = 1, noting that ( ) = ( ), and using (0) = 1, we

obtain

6 8 ( ) + 2 (2 ) 0

from which follows

8 1 ( ) 2 1 (2 )

as desired. (Notice that the characteristic function of the standard normal distribution

shows that 4 is the smallest possible constant for the inequality proved above, but it

does not resolve the issue of whether can be replaced by for = 0.)

. The probability generating function of is given by

( ) = (1 ) = (1 ) (1 )

Clearly, ( ) ( ) is a continuous function on

( ) : 0 1 0

for each fixed , so the same is true of the function ( ) .



1

−u/n

n

 

 

 

 

For Chapter 15

∞
− −

−

− −

∞ ∞ −

∞

∞

− −

∞

∑( ) ( )

∑ ∑

( )
∑

∏[ ( )]

∑

∑

·
− −

→ ∞

−
→

→∞

| | ≤

{ } | |

−

→ ∞
−

−

14-49

14-52

15-1

15-6

15-9

15-14

=0 1+

1

1
+1

2 1

=1 =1

=1

=1

=1

+1 +1

=1

sin

SOLUTIONS, ANSWERS, AND HINTS FOR SELECTED PROBLEMS 31

n

k

k uk/n

e u/n
n

u

n

n n n n n

n

k k k
k

k

k k k

k k

k

k k k

n
n

k k

n
n n n

n n n n

k k

v
v

Q

u
n n

e
n n e

,

n u

V V

n b a n V b /a

n a

n

X

X

v
v v v

.

X

v
v v v

.

n , , Q

X

Q m m m < .

m
<
m

.

n X

,

,

.

. Example 1. The moment generating function of is

1

+ 1
1 +

1
=

1

+ 1

1

1
=

1

1 +

which, as , approaches, pointwise, the function , the moment generating

function of the exponential distribution. An appeal to Theorem 19 finishes the proof.

. Let be the constant random variable 3 and let be normally distributed

with mean 3 and variance . Let = 3 and = . Then ( ) is

normally distributed with mean 0 and variance 1 for every even though 0 as

.

. 5 6 = 1. Hence the series converges absolutely a.s. and

therefore, it converges a.s., in probability, and in distribution; this is true without the

independence assumption. The remainder of this solution, which concerns the limiting

distribution and its characteristic function does use the independence assumption. The

characteristic function of is the function

1

3
cos

6
+ cos

3

6
+ cos

5

6

Therefore the characteristic function of is the function

1

3
cos

6
+ cos

3

6
+ cos

5

6
(7.7)

A direct simplification of this formula is not easy, so we will obtain the distribution by

a method that does not rely on characteristic functions.

Calculations for = 1 2 3 lead to the conjecture that the distribution of

is given by

6 = 6 for odd, 6

This is easily proved by induction once it is noted that

6
+

5

6

+ 2

6

5

6

Then it is easy to let to conclude that the distribution of is the

uniform distribution on ( 1 1).

A sidelight: we have proved that the infinite product (7.7) equals the characteristic

function of the uniform distribution on ( 1 1) —namely .

. 0 10

. are not (except for the delta distribution at 0 in case one regards it as a degenerate

Poisson distribution)

. strict type consisting of positive constants (note: negative constants constitute

another strict type)
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. The function given by

( ) =
1

can be evaluated by relating ( ) to the integral that can be obtained for ( ) by using

the substitution = with an appropriate . =

. (i) (ii) 1 +

. sup [ = ] exp = as

. Use Example 1.

. 0 309 at 0; 0 215 at 1; 0 093 at 2; 0 029 at 3; 0 007 at 4; 0 001 at 5;

0 000 elsewhere (Comment: Using a certain table we found values that did not come

close to summing to 1, so we concluded that either that table has errors or we were

reading it incorrectly. We used another table.)

. Suppose that as . Fix and suppose that there exist distri-

butions such that = . Let , and denote the characteristic functions of

and , respectively. Because the family : = 1 2 is relatively sequen-

tially compact, the family : = 1 2 is equicontinuous at 0, by Theorem 13 of

Chapter 14. Thus there exists some open interval containing 0 such that ( ) = 0

for and all . So (Problem 7 of Appendix E), ( ) = log ( ) is well-

defined for and all , and the family : = 1 2 is equicontinuous at 0.

For , ( ) = exp ( ) . Hence : = 1 2 is equicontinuous at 0.

By Theorem 13 of Chapter 14 the family : = 1 2 is relatively sequentially

compact, and, therefore, the sequence ( ) contains a convergent subsequence; let

denote the limit of such a subsequence. Since the convolution of convergent sequences

converges to the convolution of the limit, = as desired. [Comment: For fixed

we only used = for each , rather than the full strength of infinite divisibil-

ity. If is infinitely divisible we can strengthen the conclusion: From the forthcoming

Proposition 3 it follows that is never 0 and therefore that is the unique distribution

whose characteristic function is exp ( log ) and moreover, it equals the limit of the

sequence ( ).]

. By Proposition 1 the product of two infinitely divisible characteristic func-

tions is infinitely divisible. The factors we use are the characteristic function of the

compound Poisson distribution corresponding to , as in (16.1), and the function

exp
2

known by Problem 9 to be infinitely divisible. The product equals exp ( ), which

is, therefore, an infinitely divisible characteristic function. For = 0 and = ,

the second factor is the function 1 and thus we obtain the compound Poisson
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[ 1 1] 0

2

2

( 1)

2

( 1)

2

3

(1 )

3

(1 )

2

4 4
2

2 3 1

4

1

1

[ 1 1] 0

ν

ν j

ν B ν B ,

ν B ν B ,

ν B ν B , .

ψ ψ

ψ u e iuy ν dy

ψ u e ν dy

ψ u e ν dy

ψ u iu η ν , ν ,
σ u

.

X X X j

j X

ψ

E X , X y ν dy

E X y ν dy , X y ν dy

E X y ν dy , X y ν dy

E X η ν , ν , , X σ .

ψ ψ ψ

χ

X

ψ

ψ u iye iy ν dy

characteristic function corresponding to an arbitrary finite measure .

. Define , 1 3, by

( ) = [ 1 1] ;

( ) = ( 1) ;

( ) = (1 )

Write = , where

( ) = 1 + ( ) ;

( ) = 1 ( ) ;

( ) = 1 ( ) ;

( ) = ( 1) + (1 ) +
2

Then has the same distribution as , where ( : 1 4) is an indepen-

dent quadruple and, for 1 4, is infinitely divisible with characteristic function

exp ( ). In view of the linearity of expectation, strengthened as in Problem 29 of

Chapter 9 for independent random variables, and the linearity of variance for indepen-

dent random variables, we have thus replaced the original problem by four subsidiary

problems—to show:

( ) = 0 Var( ) = ( ) ;

( ) = ( ) Var( ) = ( ) ;

( ) = ( ) Var( ) = ( ) ;

( ) = + ( 1) (1 ) Var( ) =

(Comments: In defining and , but not we were able to split off the term

involving . It is important that no assumptions about existence of expectations or

about finiteness of either expectations or variances are being made.)

The formulas involving are the known formulas for the mean and variance of

a Gaussian random variable. Standard applications of the Dominated Convergence

Theorem, based on bounds from Appendix E, show that has derivatives of all

orders, in particular orders 1 and 2, which may be calculated by differentiating under

the integral sign. Thus,

( ) = ( + ) ( )
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1
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(1 )

2

=2

(1 )

2
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2

ψ u y e ν dy .

ψ ψ

ψ ψ ψ ψ ψ u

y ν dy

X X

X ν

ν

ν λR R ,

X

Y I ,

Y ,M

E X y R dy P M k

y R dy E M y ν dy .

E X E Y Y I

E Y E Y P M k E Y P M k

yR dy k P M k

y R dy P M k .

E X

and

( ) = ( )

The first and second derivatives of exp ( ) exist (because those of do) and equal

the functions (exp ( )) and ( +( ) ) (exp ( )). Inserting = 0 gives

0 for the first derivative and ( ) for the second, as desired.

Turning to , with the intention of skipping because its treatment is so similar

to that of , we note that the desired formulas are obvious in case is the zero

measure and recognize that for other we may use Example 2. In this latter case we

replace by where is a probability measure on (1 ). In terms of the notation

of Example 2 we see that has the same distribution as

Using the independence of each pair ( ) and monotone convergence we obtain

( ) = ( ) [ ]

= ( ) ( ) = ( )

We go for the second moment rather than directly for the variance (a useful strategy

when monotone convergence is being used):

( ) = ( )

= 2 ( ) ( ) [ ] + ( ) [ ]

= 2 ( ) ( 1) [ ]

+ ( ) [ ]

(7.8)

The second term in (7.8) is what we want to prove the variance to be, so we only

need prove that the first term equals ( ( )) . To do this we only need show that
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k P M k λ

k P M k k P M m

k P M m

m m P M m

E M E M λ λ λ λ .

η ν

y uy uχ y

u

ηu uy uχ y ν dy

u η η ν ν

ν B ν B ν B σ

η ν ν

ν

ζ

X

ν ν ν ν ν , ν , X

X X X ,X

ν ν

ν ν ν ν

X <

X X < ν

P X

v

ξ, ν ν

γ
v

a
ξv e ν dy .

v ξ

2 ( 1) [ ] = , which is a consequence of the following calculation:

2 ( 1) [ ] = 2 ( 1) [ = ]

= 2 ( 1) [ = ]

= ( 1) [ = ]

= ( ) ( ) = ( + ) =

. If = 0 and is symmetric about 0, the characteristic exponent is real because

the function

sin + ( )

is an odd function for each . Therefore the corresponding distribution is symmetric

about 0 and its characteristic exponent has the form shown.

For the converse suppose that the characteristic function is real. It follows that the

characteristic exponent is real since it is continuous and equals the real number 0 at 0.

Then

+ sin + ( ) ( ) = 0

for every . Another way to get 0 is to replace by = 0 and by defined by

( ) = ( ( ) + ( )). This change, together with no change in also leaves the

real part of the characteristic exponent unchanged. By the uniqueness of the triples in

Lévy-Khinchin representations (Lemma 11) it follows that = 0 and = . We are

done since it is obvious that is symmetric about 0. (Comment: Another approach

is to use the measure defined in Lemma 7.)

. Let have a compound Poisson distribution with corresponding Lévy measure

. Write = + , where (0 ) = 0 and ( 0) = 0. Then has the same

distribution as + , where ( ) is an independent pair of compound Poisson

random variables with corresponding Lévy measures and , the independence

being a consequence of the factorization of (16.1) induced by = + . If is

not the zero measure, then by Problem 19 there is positive probability that 0

and = 0 and thus positive probability that 0. Therefore, must be the zero

measure if [ 0] = 1.

. The moment generating functions of a gamma distribution has the form

(1 + ) . Accordingly, we want to find ( ) (with = 0) such that

log 1 + = + (1 ) ( )

By letting we see that the shift = 0. Then differentiation of both sides,

with differentiation inside the integral being justified by the Monotone Convergence
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ν y γy e

,

ξ , ν n , , . . . ξ ν

n Q

ξ , ν

e Q dx ξ v e ν dy .

Q n , , . . .

ξ ν

ν x, ν x, < x ν x

ξ ξ y ν dy

ξ y ν dy .

Q n

v ξv e ν dy .

c u cu

, , ν ν ,

ν ν

u
u

u .

u ε >

β ψ

β u ψ u ε β u

n u k n

u e

Q , , ν y

Q e

Theorem (or in some other manner), gives

+
= ( )

It is now easy to see that the Lévy measure has the density with

respect to Lebesgue measure on (0 ).

. Statement: Let (( ), = 1 2 ), satisfy: every and every is

a Lévy measure for . For each , let be the infinitely divisible distribution on

corresponding to ( ) via the relation

( ) = exp (1 ) ( )

Then the sequence ( : = 1 2 ) converges to a distribution on different from

the delta distribution at if and only if there exist and a Lévy measure for

for which the following two conditions both hold:

[ ] = lim [ ] if 0 and = 0 ;

= lim lim sup + ( )

= lim lim inf + ( )

In case these conditions are satisfied the limit of the sequence ( : 1) is the

infinitely divisible distribution with moment generating function

exp (1 ) ( )

. limiting distribution: two-sided Poisson supported by set of integral multiples

of ; characteristic exponent: 1 cos .

. limit exists; corresponding triple: (0 1 ), where has support 1 1 and

1 = 1 = ; characteristic exponent of the limit (not requested in the problem)

is

2
+ 1 cos

. Fix and let 0. By (E.2) and (E.3) of Appendix E and Lemma 20, the

characteristic functions and corresponding characteristic exponents satisfy

1 ( ) ( ) (1 + ) 1 ( )

for all sufficiently large (depending on ) and all .

. uan condition satisfied so Theorem 25 applicable;

. exists and characterized by triple (0 0 ), where ( ) = 0;

0 =
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=0
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16-68

17-3

17-9

17-15

17-17

17-29

17-31

17-38

18-5 C

C

18-8

18-15

, ,

c < c

c >

s R ds .

γ α , ,

ξ > ξ < α

u k u

a e n e

c

α γ

δ

,

n,n .

g g h

g dR g h dQ g h dQ g dR .

A A A

Q A

Q A > B

A

R B
Q B

Q A
.

. limit exists; (0 log 2 0) is corresponding triple for its Lévy-Khinchin

representation

. slowly varying if 1; regularly varying of index 1 if = 1; not regularly

varying if 1

. Find a bound for

( )

. 1

. + arctan( tan ) in case (0 1) (1 2]; + arctan with =

or = according as 0 or 0 in case = 1; maximum value is 1 .

. in no domain of attraction

. characteristic exponent of limiting distribution is ;

3

and = 0.

. in domain of attraction of stable distribution with = 1 and = 1; in domain

of strict attraction of

. Identify [0 ) in a natural way with a closed subset of

[ + 1]

. Let be a continuous bounded -valued function on Υ. Then is a continuous

bounded -valued function on Ψ. Therefore

lim = lim ( ) = ( ) =

. We first prove a related assertion—namely, the one obtained by replacing the

hypothesis that is open by the hypothesis that is closed, in which case is itself

a Polish space by Proposition 3. If ( ) = 0, this modified assertion (and also the

original assertion) is clear, so assume that ( ) 0. For a Borel subset of the Polish

space let

( ) =
( )

( )
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R ε >

A K A

R K > ε

Q K > ε Q A Q A ε .

K

A

δ > C A

Q C > Q A δ C

S S A

A A A x S A B

x x A

A B

S A Q

Q A

w

w ,
X nµ

n

w,X nE w,X

n
Z ,

Z

w,X

X nµ

n
Z

w,Z Z w

Z w,Z Z Z

w , . . . , , , , . . . j Z Z

E Z

Z Z w,X ,

j X

Z Z

w , . . . , , , , . . . , , , , . . . , j k

Z Z Z

w,X Z Z Z Z ,Z .

j k X

j k

j k X Z Z

Clearly is a probability measure. Let 0. Corollary 18, applied to the Polish

space , shows that there exists a compact set in the Polish space such that

( ) 1 and, thus,

( ) (1 ) ( ) ( )

The observation that, by Proposition 1 of Appendix C, is compact in the Polish

space Ψ completes the proof of the modification of the original assertion.

We return to the original assertion by now assuming that is open in Ψ. We will

prove that for every 0, there exists a subset of that is closed in Ψ and satisfies

( ) ( ) . An application to of the assertion proved above for closed sets

then completes the proof.

Let be a countable dense set in Ψ. It is easy to see that is a countable

subset of which, since is open, is dense in . For each , let denote the

closed ball centered at whose radius is half the distance from to . It is easy to

check that = . Replacing this union with a finite union over some finite

subset of gives a closed set, a closed set whose -measure can, by continuity of

measure, be chosen arbitrarily close to ( ), thus completing the proof.

Comment: The closed balls in the last paragraph of the proof need not be compact;

this possibility is one reason the proof is so lengthy. Another reason is that an open

subset of a Polish space is not necessarily a Polish space because it may not be complete.

Thus, an intermediate result involving a closed subset is useful.

. Let . By the Classical Central Limit Theorem,

=
( )

where is a normally distributed -valued random variable having mean 0 and

variance Var . By the Cramér-Wold Device,

some

such that has the same distribution as for each , and so we may

redefine to actually equal . Since each is normally distributed, itself is,

by definition, normally distributed.

Let = (0 0 1 0 ), where 1 is in the position. Then = , and hence

( ) = 0. Also,

Var = Var = Var

which equals the variance of the coordinate of . Therefore the mean vector of

is the zero vector and the diagonal members of the covariance matrix of are the

diagonal members of Σ.

Now let = (0 0 1 0 0 1 0 0), where 1 is in both the and

positions. Then = + and so

Var( ) = Var( ) = Var( ) + Var( ) + 2 Cov( )

The left side is the sum of the variances of the and coordinates of and twice

the covariance of the and coordinates. By the preceding paragraph the sum of

the variances of the and coordinates of equals the sum Var( ) + Var( ).
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Thus twice the covariance of those two coordinates of must equal 2Cov( ).

Therefore the off-diagonal members of the covariance matrix of are the off-diagonal

members of Σ.

. Prove that (( ) ) .

. first part: 1.

. The function is monotone (and therefore of bounded variation) on [0 1]

and, for each , the function ( ) is continuous. Hence (see Appendix D), we may

use integration by parts to rewrite the given functional as

(1) ( ) = (1 ) ( )

which in turn is the limit of Riemann-Stieltjes sums:

lim 1 ( ) ( )

Under Wiener measure, this sum is the sum of independent normally distributed

random variables each of which has mean 0 and the of which has variance (1 ) .

Therefore the Riemann-Stieltjes sum itself is normally distributed with mean 0 and

variance

(1 )

This variance is a Riemann sum for the Riemann integral

(1 ) =

By Problem 8 of Chapter 14 we see that the answer to the problem is: Gaussian with

mean 0 and variance .

. We treat the case = ; the case = 0 is similar. Following along the lines of

the argument in the text, but using the fact that ( ) = 1 is possible if ( ) 1 and

impossible if ( ) 0, we obtain

( : ( ) = 1 )

=
1

2

1

1 2

1

2

( )

( ) 2

1

2
+

1

2

1

1 2

1

2

which, because of Lemma 12, equals

1

2 2
2 +

1

2

1

1 2

1

2
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E X X E X X E X X E E X X .

E X E X E X X E X

E X E X E X X

E X E X X E X ,

E V i E Z E X

E X Z E X Z Y

i Y V

E X Z

E XV E ZV j

Z

E ZV X, E V X, V E V V X, V E XV .

A straightforward induction proof that

1

1 2

1

2
=

2
2

completes the proof. [For = 0 (the starting value for the induction proof), the left

side equals the probability—namely 1 —that the time of first return to 0 equals some

finite value, and 1 is also the value of the right side when = 0.]

. 0 82

. We need to show that the value of the derivative of the moment generating

function at 0 equals . By definition, the derivative there equals

lim
sinh( 2 ) + sinh( 2 ) sinh(( + ) 2 )

sinh(( + ) 2 )

= lim
2[sinh( ) + sinh( ) sinh(( + ) )]

sinh(( + ) )

Now three applications of the l’Hospital Rule yield the desired result.

. ( )

. Proof of (iv): By the Cauchy-Schwarz Inequality

( ) = ( 1) ( ) (1 ) = (( ) ) 0

Proof of (iii), using (iv):

lim sup ( ) ( ) + limsup ( ) = ( )

and

( ) lim inf ( ) + ( )

lim inf ( ) + lim sup ( ) = lim inf ( )

from which the desired conclusion follows.

. By the sentence preceding the problem, ( ) = 0 for each and ( ) = ( ).

Hence, ( ) = 0. Our task has become that of showing (( ) ) = 0 for

each . In view of the fact that each is a linear combination of 1 and the various

and that we have already shown that (( )1) = 0, we can reformulate our task

as that of showing that ( ) = ( ) for each .

From the definition of we obtain

( ) = 1 ( ) + ( ) = = ( )
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I Y

P B

X P B I

X C

E XI P A B C .

E P B I P B A C .

A C

P B

, , P

X σ C

σ C

E XI P A

E XI
P A C

P C
E I I P A C

E XI
P A C

P C
E I I P A C .

E XI E XI E XI P A C P A C P A .

ω

ω ω ω ω

ω ω ω ω

ω ω ω ω

ω

ω
ω ω ω ω

ω

. By Definition 1: Clearly, ( ) is a member of (Ω ). Let

(Ω ). To finish the proof we must show

[ ( ) ] = 0

That is we must show that

[ ( )] [ ] = 0

In view of the fact that is -measurable, this statement follows from the definition

of ( ).

By Proposition 2: Let = ( ) . Condition (i) of Proposition 2 is clearly

satisfied by . To check condition (ii), let . Then we must show that

( ) = (( ) )

That is, we must show that

( ( ) ) = ( ( ))

In view of the fact that , this last statement follows from Proposition 2

applied to ( ).

[Comment: Notice the similarity between the two proofs. Proposition 2 says that

the orthogonality condition entailed in Definition 1 need only be checked for indicator

functions of members of rather than for every member of (Ω ).]

. The right side of (21.1) is obviously ( )-measurable. To check the sec-

ond condition in Proposition 2 we only have to consider the four members of ( ).

Obviously ( ) = 0 = ( ). Also,

( ) =
( )

( )
( ) = ( )

and similarly,

( ) =
( )

( )
( ) = ( )

Finally,

( ) = ( ) + ( ) = ( ) + ( ) = ( Ω)

. (ii)

1 if + + + = 4

if + + + = 2

if + + + = 0

0 otherwise

for the particular given

(v)

if + + + = 0

0 otherwise

for the particular given
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f w
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f w
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λ e
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ω
ω ω

ω

m ω

P A ω P A ω P A ω .

ω

m ω ω

m

ψ ψ

V

v v

Q Y δ x

ω,B Q X ω , δ B Q B ,X ω .

B ω ω

B

Q

X δ c

g X

g w
δ δ f w f w

Q f w f w .

ω, x

e X ω t , x t

e X ω < t , x t

. The general formula is

16 ( )

where

= : = 2 1 = 2 1 = 2 1 = 2 1

(ii)

1 if + = 2

0 otherwise

0 for the particular given

(v) same answer as problem 8

. For each positive integer and almost every ,

(lim sup )( ) ( ) ( )( )

For those for which the sum on the right is finite, that sum can be made arbitrarily

close to 0 by choosing sufficiently large (depending on ). For such an the proba-

bility on the far left must equal 0 since it does not depend on . This completes the

proof of the first of the two assertions in the problem.

.

. It is possible that the image of is not a measurable subset of Ψ.

.

. With denoting the distribution of and the delta distribution at , a

conditional distribution is the function

( ) [ ( ) ) ( ) + ( ( )

(Various functions are presented via this notation: one function of two variables, func-

tions of for various fixed values of , and functions of for various fixed values of

.)

. With denoting any fixed distribution [for instance, the (unconditional) dis-

tribution of and denoting the delta distribution at , a conditional distribution is

, where

( ) =
+ if ( ) + ( ) = 0

if ( ) + ( ) = 0

.

( )

if ( )

if ( ) 0

0 otherwise
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1
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1
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1 3 2 3

1

[ + ( )] 2

+
+1

+ +1
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( +1)

( + )( + +1)
( +1)

( + )( + +1)

( + )( + +1)

1

2

1 2 + + 0 0

0 0

x , . . . , x , y
y x x e

γ

x

γ

x , y x x

Y X X X , . . . ,X σ Y

ω, x , . . . , x

γ γ

γ Y ω γ

x , x x Y ω Y ω >

X , . . . ,X Y ω

σ σ

, σ ,

σ σ

σ , σ

X X ,X ,X X X

X X X X

X

E P A P A A

n

S ω / n S ω / p

, ,

, ,

I I I

I n m n m

I I x , y

, c

x , y c

c

. The density is

( )
( )

Γ( ) Γ( )

for 0 + + .

Let = + + . A conditional density of ( ) given ( ) is

( ( ))

1 Γ( + + )

Γ( ) [ ( )] Γ( )

for 0 + + ( ) if ( ) 0 and the unconditional density of

( ) if ( ) 0. [Note the relationship to the Dirichlet distribution which

is described in an optional section of Chapter 10.]

. Let Ω consist of the four points corresponding to two independent fair coins.

Let denote the -field generated by the first coin and the -field generated by the

second coin. By definition, ( ) is an independent pair and it is clear that ( )

consists of all subsets of Ω. Thus, any -field consisting of subsets of Ω is a sub- -field

of ( ). Let be the -field generated by the event that exactly 1 head is flipped.

Given the conditional probability of any member of different from and Ω equals

as does the conditional of any such member of . But, there is no event that has

conditional probability given equal to = .

. If were to exist so that ( ) is exchangeable, then, since + = 0

with probability 1, it would follow that + = 0 and + = 0 with probability

1. By solving three equations in three unknowns it would then follow that = 0 with

probability 1, a contradiction.

. Apply ( ( )) = ( ) for various choices for .

. uniform on the set of those sequences of 1’s that contain [ +

( )] 2 1’s and [ ( )] 2 1’s. [Comment: The answer does not depend on .]

. first term equals 1 with probability . conditional distribution of second

term given first term: equals 1 with probability if first term equals 1 and equals

1 with probability if first term equals 0. distribution of first two terms: equals

(1 1) with probability and equals (0 0) with probability

and equals (1 0) and (0 1) each with probability

. By exchangeability, the correlation of and is the same as that of and

if = ; of course, it equals 1 if = .

The correlation of and equals , which approaches 0 as ( )

( ) and approaches 1 as .

For large ( ) the knowledge of the color of a fixed number of balls in the urn

hardly influences the probability that a blue ball will be drawn. For large , the second
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a < b c

P I n > m E P I n > m σ X , Y

E
Y n m c

X Y n m c

E

m

P ω I ω P ω I ω

P ω I ω

,

I n , , . . .

S n , m

ω , σ P X

nI X ω ω E X

σ , m , , . . . .

Y ω X E Y ω

< ω E Y ω < ω

E X

ω ω

E X ω n >

b

b

b X Y

Y X b X Y

ball drawn is very likely to be of the same color as the first ball since after the first ball

is drawn almost all the balls in the urn will have the same color as the first ball.

. Using the fact that = 0 if 0 and 0 , we have

[ = 0 for ] = ( [ = 0 for ( )])

=
+ ( 1)

+ + ( 1)

= (0) = 0

for each fixed . Hence

(lim inf : ( ) = 0 ) = : ( ) = 0

: ( ) = 0

= 0 = 0

from which it follows that the first event in the problem has probability 1. That the

second event given there also has probability 1 follows by applying the result already

proved to the sequence ((1 ) : = 1 2 ), an application which is seen to be valid

by interchanging the colors of the balls.

. ( 1) ( 1)

. Use Problem 14 of Chapter 5.

. Let = (0 1], the Borel -field, and Lebesgue measure. Let =

. Then ( ) 0 for every and ( ) = 1, so the (unconditional) Domi-

nated Convergence Theorem must not apply. Let

= (2 2 ] : = 1 2

The random variable ( ) = dominates every and satisfies ( )( ) =

2 log 2 for 2 2 . In particular ( )( ) for every . Hence

the Conditional Dominated Convergence Theorem applies. We conclude that (

)( ) 0 for almost every , a fact that we could have also obtained by directly by

observing that ( )( ) = 0 for .

. Problem 21 of Chapter 21

. (for all ), which is larger than , the (unconditional) expectation. The

following paragraphs present various ways of looking at the situation.

Fix . If, before the random experiment begins, it is understood that one will be told

whether or not is between and , one will clearly want to assign a larger value to

the expectation of in case is between and and a smaller value otherwise.
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| G | H | G | H | H

| G | H − | G | H
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| G · {∞}
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| G − | G H
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b b

b
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b
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Z Z Z Z

Z Z X Y b

X Y

Z Z Z b

b

Z Z Z

b

E X I

E X I

E E X I ω E E X I ω E X I ω

E E X I ω E E X I ω E X I ω

ω

E E X I ω E E X I ω

E XI ω

ω

ω

A ω E E X I ω < .

ω A

xZ ω, dx < ,

Z E X I E Z , I

P ω E X I ω A .

E E X E X I ω

An appropriate weighted average of these two numbers equals , so, as expected, the

first of these two numbers is larger than .

Knowing that exactly one of two order statistics from the uniform distribution on

(0 1) is larger than gives no reason for biasing one’s estimate for it among the various

values larger than . Thus, the conditional mean of its excess over is half the distance

from to 1 —namely, . Similarly the conditional mean of the difference between

and the smaller of the two order statistics is . The sum of these two conditional

expectations is , independently of .

Here is a second method of getting an intuitive feel for the value . Fix the number .

Pick three iid points , , and on a circle of circumference 1. Cut the circle at

in order to straighten it into a unit interval with the counterclockwise direction on the

circle corresponding locally to the direction of increase on the unit interval. Then set

the smaller of and equal to and the larger equal to . The condition that be

between and is the condition that as one traverses the circle counterclockwise the

contacts with either or alternate with the contacts with either or . Among

such possible arrangements, there is probability that lies in the long interval and

in the short interval determined by and and probability that the opposite

relations hold. So the average length of the interval in which lies is .

. By Problem 27 and Proposition 6, there exist choices of ( ) and

( ) such that

( ( ) )( ) = ( ( ) )( ) = ( )( )

and

( ( ) )( ) = ( ( ) )( ) = ( )( )

for every sample point . Subtraction gives

( ( ) )( ) ( ( ) )( )

= ( )( )
(7.9)

for every for which the right side of (7.9) [that is, the right side of (23.9)] exists. At

such an at least one of the two terms on the left side is finite.

We will focus on

= : ( ( ) )( )

For each ,

( )

where is the conditional distribution of ( ) . So ( ( ) ) = 0. From

the definition of conditional probability we then obtain

: [ ( ) ]( ) = = 0

Therefore the left side of (7.9) can be rewritten as

[ ( ) ( )] ( )(7.10)
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σ σ
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Z U Y V

Z Y V U .

Z Y

Z Y E Z Y Z Y .
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U V n

for almost every for which the right side of (7.9) is less than . Similarly, this can

be done for almost every for which the right side of (7.10) is greater than , in

particular for almost every for which the right side of (7.9) equals .

The upshot is that for almost every for which the right side of (7.9) exists, the

left side of (7.9) can be rewritten as (7.10) in which the inside difference between two

conditional expectations is not of the form . Therefore linearity of conditional

expectation may be used to complete the proof.

. Apply the Conditional Chebyshev Inequality and then take (uncondi-

tional) expectations of both sides.

. The ‘if ’ part is obvious. For the proof of ‘only if ’ fix . The inequality in the

problem is obviously true with equality in case = 0 and it is true by definition if

= 1. To complete an inductive proof, let 1 and assume that

( ) a.s.

Since ,

= ( )

a.s.

. We treat the real and imaginary parts simultaneously. Let = ( )

and denote the steps of the random walk by . Then

( ) =
1

( ( ))

=
1

( ( ))

=
1

( ( ))
=

[Remark: We have proved that the real and imaginary parts of ( : = 0 1 )

are martingales with respect to the minimal filtration for the random walk, which may

possibly contain larger -fields than the corresponding -fields in the minimal filtration

for the sequence ( ).]

. Proof of uniqueness: Suppose that conditions (i)-(iv) of the proposition hold

as stated and that they also hold with some sequences and in place of and ,

respectively. By subtraction

=

Thus is -measurable, and, hence,

= ( ) =

This fact combined with = 0, a consequence of = = 0, gives = ,

and therefore = for every .
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Y X X n

E Y X Y
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Y

X E Y

n E X E Y

k < n

E X E E Y E Y X .

X Y X n

n n <

σ Y, .

X n A X > r

m >

E X A E E Y A E E Y A

E Y A mP A E Y Y > m .

m

P B P C

. Let = ( ). Then

( ) = ( ) + 2 ( )

0 + 2 ( ) = 0

as desired. [Remark: See the remark in the solution of Problem 8.] = Var( ).

. =

. Use two relevant previous results; do not do any hard work.

. The sequence ( : 0), being uniformly bounded, is uniformly integrable.

By Theorem 12 and the Optional Sampling Theorem, ( ) ( ) = ; Clearly

( ) [ = ]. Hence [ = ], as desired.

.

([ ] ) = Var( ) ( ) = 2 [1 2 ] 2 = ([ ] )

Var( ) = 2 [1 2 ] 0 = Var( )

Var( ) = 2 0 = Var( )

For 1, Var( ) ( ) ( ), thus highlighting the importance of the assump-

tion in Theorem 15 of mean 0 for the steps.

. Suppose that is a uniformly integrable martingale. By the theorem it has

an almost sure limit = such that ( : +) is both a submartingale and

a supermartingale—that is, a martingale. Hence ( ) = . Moreover, is

-measurable, so ( ) = .

For the converse, suppose that has finite expectation and

= ( )

for each . Take expectations of both sides to obtain ( ) = ( ), which is

finite. For ,

= ( ) = =

Therefore with = , ( : ) is a martingale with respect to the filtration

( : ), where = for and

= ( )

To prove that : is uniformly integrable we let = [ ] and

note that, for any 0,

; = ( ) ; ( ) ;

= ; ( ) + ( ; [ ])

Since, by dominated convergence, the second term approaches 0 as , we can

finish the proof of uniform integrability by showing that ( ) + ( ) 0 as
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uniformly in , where = [ ] and = [ ]. That this is so

follows from

( )
1

( ; ) =
1

( ; )
1

( )

( )
1

( ; ) =
1

( ; )
1

( )

and the observation that ( ) is a finite number independent of and . From the

theorem ( ) has an and a.s. limit that is measurable.

To prove that = ( ) we only need show that (( ) ; ) = 0 for every

. For we have

(( ) ; ) = (( ) ; )

= (( ) ) = ( ( ) = 0

where denotes the indicator function of . Thus the desired equality is true for all

, a collection that is closed under finite intersections, contains the entire

probability space Ω, and generates . By linearity of expectation the set of for

which (( ) ; ) = 0 is closed under proper differences, and, since and both

have means, dominated convergence shows that it is closed under monotone limits. An

appeal to the Sierpiński Class Theorem completes the proof.

. The martingale ( : ), being bounded, is obviously uniformly integrable.

Hence, lim exists; call this limiting proportion of blue balls . From the fact that

the martingale property is preserved when is adjoined to the sequence ( : ),

we conclude that the expected limiting proportion of blue balls conditioned on the

contents of the urn at any particular time is the proportion of blue balls in the urn at

that time.

. Let be a ( 0]-valued random variable for which ( ) = . Let

= ( ). Then ( ) ( ) for every . For = 0 1 2 , let = ( ).

Then ( : = 0 1 2 ) is a reverse filtration to which ( : = 0 1 2 ) is

adapted. Clearly ( ) for every . The inequality

( ) =

shows that ( ) is a reverse submartingale.

. Define a random sequence by = 0 and (25.1). Fix a finite sequence

( ) such that = 1 and let denote the number of 1’s in this sequence.

Define a finite sequence ( ) by = 0 and

= inf : = 1

Then the probability on the left side of (25.2) equals

[ = for 1

and + ]
(7.11)
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p

and, since = for some , the probability on the right side of (25.2) equals

[ = for for which ]

[ = for for which

and + ]

If is a random walk, then this product equals (7.11), and so (25.2) holds.

For the converse assume that (25.2) holds. To prove that is a random walk

use Proposition 3 of Chapter 11.

. Since the measure generating function of is we have

= =

= ( ) =
1

1 ( )

for 0 1.

. The function 1+ 4(1 ) is the measure generating function of the given

sequence. Setting this function equal to 1 (1 ) gives the formula ( ) = (2 ) .

To show that the given sequence is a potential sequence, we only need show that as

just calculated is the measure generating function of some probability distribution on

0 . We will do this by expanding in a power series and checking that all the

coefficients are positive, that the coefficient of is 0, and that (1 ) 1. Provided

that all the checks are affirmative we will at the same time get a formula for the waiting

time distribution .

Clearly (1 ) = 1, so if it develops that there is a corresponding waiting time

distribution , then = 0. By the Binomial Theorem,

(2 ) =
4

1
2

=
4

2

2

=
2

2 2
=

1

2

Therefore = ( 1)2 for = 1 2 3 .

. Problem 13 may be useful.

. (ii). yes; 0 = 1, 1 = , = for 2; = 0,

= (1 )

where = 1 (1 )(1 + 3 ) (It may be of some interest that each

is a polynomial function of .)

(v) no, unless =
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n

n
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Q B P X B E P X B

E µ B µ B Q dx Q T B
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(vii) yes; 0 = 1, = 0 for odd, = [ (1 )] for 2 and

even; measure generating function of :

1 +
2 1

[ (1 )] =
1

2
+

1

2

1 2
[ 4 (1 ) ]

=
1

2
1 + 1 4 (1 ) ;

measure generating function of :

1 2 (1 ) 1 4 (1 )

2 (1 )
= 2

1 2

+ 1
[ 4 (1 ) ]

=
1

+ 1

2
[ (1 )] ;

= 0 for odd, = [ (1 )] for even, = [Notice

that the coefficient in the formula for , even, is the ( 2) Catalan

number.]

. for a set of consecutive integers, ( ( ) 0) = 1 , in notation of

Problem 12

. , where is mean and (possibly ) is variance

. = 4 , = 4

. The solution of Problem 28 of Chapter 11 gives the measure generating function

of the waiting time distribution for strict ascending ladder times:

( ) =
1 1 4 (1 )

2(1 )

The measure generating function of the waiting time distribution for weak descending

ladder times can then be obtained from Theorem 22:

( ) =
1 + 2(1 ) 1 4 (1 )

2

It is straightforward to use the Binomial Theorem to obtain the waiting time distribu-

tions and potential measures corresponding to these two measure generating functions.

The other two types of ladder times can be treated by interchanging and 1 .

.

( ) = [ ] = ([ ] )

= ( ) = ( ) ( ) = ( )( )

( ) = ( ) ( ) = ( )
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Y X Gf X .
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x e

x y

y
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T y

n

k c y

T c x T

n k T x

n x

y n x

r x n k r y

n r k

c

k T x

y y k x

π > T T T T

m

T

T

T , T , T , . . .

m T

T n m T

x y k x y T

. Let be the identity function on [0 1]. Clearly is bounded and measurable.

By Theorem 6, is a martingale where

= ( )

Solving for gives a representation for in terms of the martingale and a previsible

sequence having the value 0 when = 0. To show that this sequence is increasing,

as required for a Doob decomposition, we only need show that is a nonnegative

function when is the identity function. The following calculation does this:

( ) = ( ) = ( ) 0

the last equality using the fact that is a submartingale.

.

. Reminder: There is one value of that is not required to satisfy the

difference equation.

.

. Denote the two states by and . By the last part of Problem 38, if one of the

two states is transient so is the other. Now suppose that is null recurrent; our goal

is to show that is not positive recurrent.

By the Renewal Theorem the sequence of entries of in position along the main

diagonal converges to 0 as . We will complete the proof by finding an integer

and a positive constant such that the entry in position along the main diagonal

in is larger than times the entry in position along the main diagonal in

for all , for then it will follow that the sequence of entries in in position

along the main diagonal will converge to 0 as , implying that is not positive

recurrent.

One way to start at and to then be there again at time is to first be at state

at some time , then be at again at some time + , and then be at state at

time . By first choosing and then appropriately one can make the product of the

probabilities of the first and third of these three tasks a positive constant .

We omit the part of the solution treating the periodicity issue.

. Suppose that, for some , all entries of are positive. For any states

and there is positive probability of being at at time if the starting state is .

Hence, 0. Therefore, is irreducible. Clearly, = has only positive

entries for all nonnegative integers , and thus 1 is the greatest common divisor of the

powers of for which the upper left entry (or any other diagonal entry) is positive.

Aperiodicity follows.

For the converse suppose that is irreducible and aperiodic. The sequence of num-

bers in a fixed diagonal position of is an aperiodic potential sequence,

which, by Lemma 18 of Chapter 25, contains only finitely many zero terms. Thus,

there exists an integer such that all diagonal entries of are positive. Hence, all

diagonal entries of are positive for . Since is irreducible, there is, for each

and , an integer such that the entry in row and column of is positive.
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, , , .

Let = + max . Since can be obtained by multiplying by a power of

at least as large as , the entry in row and column of is positive. Thus, all

entries of are positive, as desired.

. starting state of interest denoted by 0; probabilities of absorption at the ab-

sorbing states 2 and 1, respectively:

2

(3 2 1)(3 2 1)
and

2

(3 2 1)(3 2 1)

probability of no absorption: 1 3

. We can introduce infinitely many extra transient states in order to obtain a

birth-death sequence. The transition distributions are given by

1 = 1

+ 1 = 0

From Problem 54 we see the relevance of the following product:

0

1
=

The number as defined in Problem 54 can now be calculated:

= = = 2

The equilibrium distribution for the Ehrenfest urn sequence is given by

=
1

2
0

. denotes De Finetti measure; for = 1 2 3, = , where 1 =

6 =

. De Finetti measure equals delta measure at uniform distribution on : 1

12

. Yes. By letting equal the value assigned to the one-point set by a proba-

bility measure on 1 2 3 4 , the probability measure itself is represented by an ordered

4-tuple ( ) The De Finetti measure assigns probability

to (1 0 0 0) and to each of the other 3 permutations thereof;

to ( 0 0) and to each of the other 11 permutations thereof;

to ( 0) and to each of the other 11 permutations thereof;

to ( 0 0) and to each of the other 5 permutations thereof;

to ( )
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( + + + + ) ( +2) ( + + + + )

[0 1]
( + + ) ( + + )

2 +1

1
[0 1]

( + + + ) ( +1) ( + + + )

[0 1]
( + + ) ( + + )

1 1 +1

[0 1]

( + + +1) ( + + )
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1
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1
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1
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2
1 2

1 2
1
4

2 2

1 2
1
2

2 2
1 2

1

=1

1

+1 +1 1 1
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. denotes De Finetti measure; = [ + + = ].

. [ = = 1] = [ = = 0] =

[ = = 1] = [ = = 1] =

. + the numbers of 1’s, + the number of 0’s

. conditional distribution of ( ) has density with respect to

, where denotes counting measure on 0 1 ; density is

( )
(1 )

(1 ) ( )
;

integration in and gives conditional density with respect to of :

(1 ) ( )

(1 ) ( )
;

multiplication by and integration in give the conditional expectation of :

(1 ) ( )

(1 ) ( )

which equals

+ + + 1

+ 2

in case is the standard uniform distribution.

. density of each of and : + ; density of ( ):

( ) + ; De Finetti measure assigns probability 1 to the

set of uniform two-point distributions, the density of the two points being

+ , 0 .

. conditional distribution of reciprocal of mean of given ( ) is gamma

with main parameter + 1 and scaling parameter 1 +

. The stick-breaking random walk breaks a stick into random pieces in such a

way that, say, the sizes of the first three pieces determines how much of the stick is left

for pieces 4, 5, , to share but gives no information about the relative sizes of these

pieces. Certain information about ( ) might, for example, give information

about the sizes of pieces 1, 2, and 3, without giving information about the relative sizes

of the remaining pieces. (Comment: The authors of this book find this explanation to

be neither complete nor satisfactory, but it is the best that they could do.)

. The formula is trivial when = 0; it is 1 = 1 1. Assume it is true for and

multiply both sides by

[ = = = ] =
+

+

where equals the number of , , for which = . The result follows.
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n
I τ n , , . . .

R A R S A S

S A R A

a p/q q

x , x , p .

a πa

,

,

,

,

n J ,

J

. It suffices to prove that

[( ) ]

= [( ) ]
(7.12)

for every positive integer and every Borel set Ψ , where Ψ denotes the common

target of the . Set

= ( ) Ψ : ( )

Then the left side of (7.12) equals

[( ) ]

and the right side equals

[( ) ]

These are equal by Problem 3.

. From the given sequence obtain the desired joint distributions of every finite

set of random variables. Use this information to construct a sequence ( )

using Theorem 3 of Chapter 22. Then treat ( ) as a single random object

and use it as the first member of a random sequence to be constructed using Theorem 3

of Chapter 22 again, with the next members being .

. Let be an set for which ( ) = ( ). By Problem 18,

( )

is ergodic. By the Birkhoff Ergodic Theorem the sequence

1
: = 1 2

converges to ( ) with -probability 1 and also to ( ) with -probability 1. Since

( ) = ( ), these two events are disjoint, and thus the mutual singularity is estab-

lished.

. Suppose first that is rational, say in lowest terms with positive. Then

the following set is easily seen to be shift-invariant and have Lebesgue measure :

[0 1): [ ) for some

Now suppose that is irrational. Rotation through angle 2 generates a shift

transformation on [0 1) . It is clear that any shift-invariant distribution is determined

by the initial distribution on [0 1), but it may be that some choices for that distribution

do not yield a shift-invariant measure on [0 1) . In fact, we will prove that the only

initial distribution that does yield a shift-invariant measure on [0 1) is Lebesgue

measure.

For every and ‘left-closed, right-open subinterval’ of [0 1), possibly with

‘wrap-around’, any shift-invariant measure assigns the same value to and the interval
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J na J n
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K J .

Q i T i, j

X A n

B A τ B n

Q A Q A Q A τ B Q A Q τ B

Q A τ B Q A Q B .

Q A Q A Q A

A

B n

Q A τ B Q A Q B E I I Q A I

E Q A Q A I

E Q A Q A ,

E Q

τ C C .

n

B B

Q A Q A .

Q A Q A

X m,n

ρ ρ ρ <

X X ,X , . . . ,X

obtained by adding to each endpoint of mod . For any left-closed, right-

open interval having the same length as , a sequence ( : = 1 2 ) can

be chosen so that

= lim

Hence all open intervals having the same length have the same measure, and there-

fore the only initial distribution that yields a shift-invariant distribution is Lebesgue

measure.

Since there is only one shift-invariant distribution, that distribution is extremal

and by Theorem 4, therefore ergodic. The Weyl Equidistribution Theorem is then an

immediate consequence of the Birkhoff Ergodic Theorem.

. ( )

. Suppose that is strongly mixing and consider any . For each there

exists such that = ( ). As ,

( ) [ ( )] = ( ( )) ( ) ( ( ))

= ( ( )) ( ) ( ) 0

Therefore ( ), being a solution of ( ) [ ( )] = 0, equals 0 or 1, as desired.

For the converse we assume that is 0-1 trivial and fix a member of . Then

for all and all positive integers ,

( ( )) ( ) ( ) = ( )

= [ ( ) ( )]

( ) ( )(7.13)

where denotes expectation based on the distribution and

= ( ):

To finish the proof we only need show that (7.13) approaches 0 as , the unifor-

mity in resulting from the fact that (7.13) does not depend on . By the Bounded

Convergence Theorem, we only need show

lim ( ) ( ) = 0

By the Reverse Martingale Convergence Theorem, this limit does exist and equals

( ) ( ), a random variable which has mean 0 and which, since is 0-1

trivial, is a.s. constant. Therefore it must equal 0 a.s. as desired.

. NEEDS TO BE DONE.

. Let denote a stationary Gaussian sequence with correlation function ( )

. The result is obvious if = 1, so we assume 1. Following the hint, the

conditional distribution of given ( ) is Gaussian with a constant
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Since the first matrix is a row matrix that is a multiple of the first column of the matrix

whose inverse is in the formula, the matrix product (7.14) is some multiple of ,

and this is all that is needed to show that is Markov.

. Let = .

[ 1 = ] =

[ 1 = 2 = ] =

[ 1 = 2 = 3 = ] =

. [ ( ) = ] = , 0 . Thus the distribution of ( ) is

binomial with parameters and .

. Let ( : 0) be a renewal sequence. Define a random measure on by

= . Clearly is a point process and its intensity measure equals the potential

measure of the renewal sequence.

. We use the formula for the probability that a Poisson random variable equals

0. For 0,

[ ] = [ ( 0 1 1 ) = 0] =

Then

[ = ] = [ ] [ ( + 1)] = = (1 )

. Write

0 = 0 =

and let ( = 0 ) be a random walk having exponentially distributed steps

with mean . For an arbitrary positive integer we will show that ( ) and

( ) have the same distribution, thereby finishing the proof. We will verify that

the distribution of each of these random vectors has the same density with respect to

-dimensional Lebesgue measure—namely,

( )
if 0

0 otherwise
(7.15)
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To check that this is the correct density for ( ) we integrate it over a set of

the form [ ), where

0 = =

We get

( ) = ( )

= [ ( [ )) = 1] [ ( [ )) = 0]

= [ [ ) for 1 ]

as desired.

We know that the density of ( ) ( ) ( ) is

( )
if each 0

0 otherwise

We can get the density of ( ) by using the linear transformation = +

+ , 1 , the Jacobian of which equals 1. The result is the desired density

(7.15).

. One approach is to start with sequences and having the desired

properties and then use Problem 23 to show that ( ) : = 1 2 is a Poisson

point process with intensity measure .

.

. ,

. ( ) for = 1; [ ( )] ( ) for = 1

. exp (1 ( )) , where Ψ is the countable set

. The probability generating functional of + is

[ ( )] = [ ( )] [ ( )]

= [ ( )] [ ( )]

= [ ( )] [ ( )]

which is the product of the probability generating functionals of and .

. Suppose that as ; that is, , where and denote

the distributions of and , respectively. Let be in the domain of the probability
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generating functional of (and thus of each ). Assume first that is bounded below

by a positive constant. Then the function

log(1 )

is continuous, and thus the same is true for the function

(7.16)

For this latter function it is straightforward to remove the assumption that be

bounded below by a positive constant (of course, using the conventions 0 = 0

and = 0). That

follows from the continuity of the function (7.16). That the limiting probability gener-

ating functional has the property described in the theorem is a consequence of Propo-

sition 16 which says that all probability generating functionals have a more general

property.

For the converse suppose that is the limit of a sequence of probability generating

functionals corresponding to a sequence ( : = 1 2 ) of distributions of point

processes in a locally compact Polish space Ψ, and that satisfies the condition in

the theorem. Let be any compact subset of Ψ. By using Lemma 1 one can show

that there exists a compact set such that every point of is an interior point of

and that therefore there exists a continuous [(1 ) 1]-valued function such that

( ) = 1 for and ( ) = 1 for .

Let 0 Since ( ) 1 as , we can fix so that for all

: ( ) [ ( )] ( )

1 [ ( )] ( )

1 1

which is larger than 1 for sufficiently large . By Theorem 19, every subsequence

of ( ) has a convergent subsequence. By the first paragraph of this proof, is

the probability generating functional of every subsequential limit. By Theorem 14 all

subsequential limits are identical. Therefore, the sequence ( ) itself converges to a

limit whose probability generating functional is .

. right-continuous; pointwise limit not right-continuous at 2.
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. The moment generating function is

= exp (0 ]

=(7.17)

For calculating (7.17), we may replace (0 ] by [0 ] . The function ( ) is

a continuous function on the compact set [0 ] [0 ], taking the value 0 at ( )

if 0 and the value 1 there if = 0. Therefore we may apply Proposition 15 of

Chapter 29 to conclude that (7.17) equals

exp (1 ) ( )( ( ))

= exp (1 ) ( )

We could have treated the problem as a single-variable problem by working with

the Poisson point process , the restriction of to (0 ] [0 ].

In view of Remark 1, might be a probability measure on (0 ], which is not

compact. We could handle this setting, by adjoining 0 to (0 ] and specifying 0 =

0, or by approximating by continuous functions that equal 1 for small .

It is not possible to treat characteristic functions by adjoining to in order

to obtain compactness, because one will then lose continuity. Approximation of the

functions by functions that are continuous everywhere and constant for large

is a method that works. By then going to the limit one obtains the characteristic

function of :

exp (1 ) ( )

. 1

. Set

( ) = ( [0 1] : )

and let 0 = = 1. The proof relies on showing that

[ for 1 ]

= ( [0 1] : for 1 )
(7.18)

for positive numbers .

The left side of (7.18) equals

Γ( )

=
Γ( )

(7.19)
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The right side of (7.18) equals

( [0 1] : for 1 )

From Problem 15, we can rewrite this expression in terms of a Dirichlet distribution:

(1 )

Γ( )

Γ( )

(7.20)

For 1 1, let = , and also let = (1 ). The Jacobian

of this transformation is = ; hence this change of variables turns

(7.20) into (7.19), as desired.

. negative binomial with parameters 1 1 + ( ) and ( )

. (iii): Let 0, and denote the distribution of by . Then for 1,

1 [ ] 1 ( )

1 exp 1 ( )

1 ( )

( ) + ( )(7.21)

The first term in (7.21) goes to 0 as 0. To treat the second term, let 0 and

choose (0 1) so that ( ) . Then as 0,

( ) ( ) + ( 1] ( )

Since is an arbitrary positive number, it follows that

lim ( ) = 0

as desired. for (vi): For any (0 1] there exists a nonnegative integer such

that 2 and

2

. The carelessness might be ignoring the term ‘almost’ in the phrase ‘ a.s.’.

. in case 1, 0 or according as or ; in case = 1, 0 if and

only if 1, and if and only if 1
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. For the last assertion one may for each , view as a probability measure

on ( ([0 ) Ψ) ). Then is the distribution of the Ψ-valued random variable

defined on the probability space ( ([0 ) Ψ) ). Since as

and almost sure (in this case sure) convergence implies convergence in distribution,

as (for each , not just the requested ‘a.s.’).

. (i) for all Ψ, = as 0; (ii) for all Borel Ψ and 0,

the function ( ) is measurable; (iii) for all Borel Ψ, 0, and Ψ,

( ) = ( ) ( )

. Let denote the distribution of the Lévy process at time . Then

( ) = ( + ) ( )

Let denote the distribution of the Lévy process. Then the corresponding Markov

family ( : ) is defined by

( ) = : [ ( + )]

. ( ) = ( ( ) ( )) ( ), in the notation of Example 1 of Chapter 30.

. Suppose that is an equilibrium distribution for . Then

=
( )

!
=

( )

!
=

for converse: Use Problem 16.

. Let be the indicator function of the one-point set and use Theo-

rem 14.

.

( ) = ( + ) + exp[ ( + ) ]

( ) = ( + ) 1 exp[ ( + ) ]

( ) = ( + ) 1 exp[ ( + ) ]

( ) = ( + ) + exp[ ( + ) ]

The limits at of both and are the same: ( + ) , the value the

equilibrium distribution assigns to 0 . The limits at of both and are the

same: ( + ) , the value the equilibrium distribution assigns to 1 .

. The solution to Problem 23 involves applying Theorem 14 to the indicator

functions of one-point sets. When the rates are unbounded, such functions may not

be in the domain of the generator. For example, let the state space be , let the

transition rates have the property that as , and let be the
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indicator function of 0 . Then is not in the domain of the infinitesimal generator

because the limit in the definition does not exist boundedly, and Theorem 14 does not

apply. Nevertheless, it can be shown that (31.12) holds whenever the state space is

countable, even in the case of unbounded rates.

. Let be the largest member of the support of , the initial state, and

the time of the jump. The construction ensures that + (

1) . Therefore, conditioned on , is exponential with mean at least

1 ( + ( 1)( 1)). An inductive argument based on this fact shows that for

each , the distribution function of is bounded above by the distribution function

of the sum of independent exponentially distributed random variables with means

1 , 1 ( ( + 1)), ,1 ( ( + ( 1)( 1)). Such a sum of exponentially

distributed random variables diverges almost surely as by the Kolmogorov

Three-Series Theorem. It follows that a.s. as .

. ( ) = (1 ) , = 0; equilibrium distribution assigns value

(1 ) to ; jump-rate function is

if = 0

if 0 ;

transition probabilities from to 1 equal 1 for 0 and from 0 to 0 equal

(1 ) ; transition rates from to 1 equal for 0 and from 0 to 0

equal (1 ) and all others equal 0

.

( )

( ) if =

( ) if =

( ) if =

0 otherwise

. For Ξ, let be the process defined in the construction with initial state .

The discussion in the paragraph following the proof of Theorem 2 shows that for each

time 0, the function is almost surely a continuous function. It follows

from the Bounded Convergence Theorem that, for any continuous function : Ξ ,

the function ( ) is continuous. Thus, the transition semigroup is Feller.

. Here is one way to make a correct ‘if and only if ’ statement: Let and be

as in the first sentence of Problem 9. The ‘if ’ statement is: If pointwise

as for all , then as , uniformly for in bounded subsets

of [0 ) and for all choices of initial states and such that . The ‘only if ’

statement is: If there exists a function and a state such that ( ) does not

converge to ( ) as , then there exists a time 0 and a sequence of initial

states converging to a state as such that does not converge to

as . (In this second statement, we may take = = for all and let be

any sufficiently small positive time.)
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To prove the ‘if ’ statement, it is enough to show that for any site and any time

0, there exists a nonnegative random variable that is almost surely finite such

that ( ) = ( ) for all and [0 ]. This last statement is a slightly

stronger version of the statement made in the paragraph immediately following the

proof of Theorem 2. To prove this stronger statement, first note that since

for as , each rate in the system with infinitesimal generator converges

uniformly as to the corresponding rate in the system with infinitesimal generator

. Now consider the construction of and using the universal coupling. Let

be as in the statement following the proof of Theorem 2 and let be large enough so

that agrees with at sites in for . We can also choose large enough so

that the rates of at sites in are uniformly as close as we like to the corresponding

rates of when . A simple modification of the proof of Theorem 2 shows that

we can thereby make the probability arbitrarily close to 1 that the processes and

take the same values at at all times in [0 ]. Further details are left to the reader.

The hypothesis in the ‘only if ’ statement implies that there exists a site such that

at least one of the rates at for the process with infinitesimal generator is not the

pointwise limit as of the corresponding rates for the processes with infinitesimal

generators . It follows that there exist arbitrarily large integers and a state such

that the process with infinitesimal generator and initial state will not behave

the same at the site as the process with infinitesimal generator and initial state ,

at least for short time periods. Once again, the details are left to the reader.

. (This problem is incorrectly stated in the book. The statement is not true for

the contact process with threshold birth rates. Also, a stronger statement is proved for

the contact process with sexual reproduction in Problem 12. So the problem should

only be done for the contact process of Example 1.) For finite sets , let

( ) = ( )

Direct calculation shows that if is a state with only finitely many occupied sites, then

( ) (1 ) ( )(7.22)

provided is chosen large enough to include all such that ( ) = 1.

Let be a state with only finitely many occupied sites, and let ( ) be the in-

teracting particle system with initial state and infinitesimal generator . For each

finite set , define a random time by

= inf 0: ( ) = 1 for some

Also, let

= inf 0: = 0̄

Since the interacting particle system is a solution to the martingale problem for , it

follows from (7.22) and the Optional Sampling Theorem that for any time 0,

( ( )) ( ) (1 ) ( )
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ξ x δ E τ .

ξ
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, q q

P X x < .

X x t

t

t ,

s

, t

x x > x , t .

U x V x

x , . . . , x

n U , . . . , U V , . . . , V

k , . . . , n U x U

V x U U < U < < U

U < t V V

U , t V U

x x > x U , t V V .

U x U V

x U

U < t V V

U U U U

U t X x

n , , . . . X

U

U

Since 1, the integrand on the right side is bounded above by (1 ) for all ,

so

( ( )) ( ) (1 ) ( )

from which it follows immediately that

( ) ( 1) ( )

We leave it to the reader to check that a.s. as . Thus, after first letting

and then letting , we have by the Monotone Convergence Theorem that

( ) ( 1) ( )

Since has only finitely many occupied sites, the left side of this inequality is finite.

It follows that has finite expectation, and hence that is finite almost surely, as

desired.

. It is easily checked that for each site , the process ( ( ) 0) is a pure-jump

Markov process with state space 0 1 , transition rates = 1 and = 2 , and

initial state 0. It follows from Problem 25 of Chapter 31 that

[ ( ) = 1] 2

By the Borel Lemma, ( ) is finite a.s. Thus, for any fixed time , the number of

occupied sites at time is finite a.s.

For the second part of the problem, we fix (0 ). We know from the previous

part of the problem that at any given time there are infinitely many vacant sites.

Since the birth rates are all equal to 1 at vacant sites, it is not hard to show that, with

probability 1, infinitely many births occur during every time interval of positive length.

In particular, infinitely many births occur with probability 1 during the time interval

(0 ). Let

= min 0: there is a birth at during (0 )

Let be the time of the first birth at and the time of the first death at .

We now proceed by induction. We assume that random sites have been

defined for some 1, with corresponding random times and ,

where for each = 2 , is the time of the first birth at after time , and

is the time of the first death at after time . Note that .

As part of the induction, we also assume that . This assumption

implies that the time interval ( ) has positive length, so the following

random site is almost surely defined:

= min 0: there is a birth at during ( )

Let be the time of the first birth at after time , and the time

of the first death at after time . Note that our construction ensures that

, as required by the assumption made in the inductive step.

Let = lim . Our construction of shows that is defined almost surely,

and that when it is defined, . This construction also shows that ( ) = 1 for

all = 1 2 . Our construction of the process ( ) shows that, with probability 1,

at most one death can occur at time , so infinitely many sites are occupied at time

, as desired.
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T , t T f z E f Z

t z Z Z

Z Z

ε y Z

ε >

Z Z .

y

Gf f f

f

f

x x π < x < < x <

. ( ) = if ( ) = 0; ( ) = ( ) ; other rates are 0

. TO BE DONE

. Let ( : 0) denote the minimal filtration of the Wiener process .

Square both sides of (33.1) and then take expectations. Six terms result on the right

side. The following calculation shows that one of them is equal to 0:

( )( ) = ( )( )

= ( ) ( ) = 0

Similarly,

( ) ( )( ) = 0

The following calculation is relevant for another of the six terms:

[ ( )] ( ) = [ ( )] ( )

= [ ( )] ( ) = [ ( )]

. yes

. ( ) = +

. TO BE DONE

. For , let denote the solution of (33.19) with initial state , and let

( 0) denote the corresponding transition semigroup. Since ( ) = ( ),

the Bounded Convergence Theorem implies that it is enough to show that for each

0 and , lim = a.s. In the proof of Theorem 7 it is shown

that each random variable is the limit in probability of random variables as

0. From the definitions it is apparent that is almost surely a continuous

function for each 0. Thus, it is enough to show that

lim sup = 0(7.23)

Noting that the estimates used in the proof of Theorem 7 do not depend on the initial

value , we see that, with minor modifications, the argument in that proof can be used

to give (7.23).

. = ∆ for sufficiently nice functions : . For bounded continuous

functions having bounded continuous first, second, and third partial derivatives, this

fact can be proved by direct computation, using the second degree Taylor polynomial

approximation of with remainder.

. The derivative 1 cos is positive for 2 0 and also for 0
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B x
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a, b b < b a, b

a > a a, b a, b

a b a, a

C

2 . A theorem of calculus says that a continuous function on a closed interval that

has a positive derivative at all interior points of that interval is strictly increasing on

the closed interval. Therefore the given function is strictly increasing on the interval

[ 2 0] and on the interval [0 2 ]. By the preceding problem it is strictly increasing

on the interval [ 2 2 ]. (Notice that the argument can be extended to prove that the

given function is strictly increasing on .)

. Proof that a closed subset of a compact set is compact. Let be a closed

subset of a compact set , and let be an open covering of . Consider ,

the collection obtained by adjoining the complement of to the collection . This

collection is an open covering of . It contains a finite subcovering of . The members

of in this finite subcovering of constitute a finite subcovering (from ) of .

. The ‘only if ’ part is trivial. We will prove the contrapositive of the ‘if part’,

so suppose that the sequence does not converge to . Then there exists 0 and

an infinite subsequence ( : = 1 2 ) of ( ) such that ( ) for all .

No further subsequence of this subsequence can converge to because the distance

between and every member of that further subsequence would be greater than .

. Suppose that . Case 1, : Every neighborhood of contains a

member of —namely itself. If some neighborhood did not contain a member of

, then would be a member an open subset of that neighborhood which itself would

be a subset of . Hence would belong to the interior of and thus not to .

Case 2, : Now we must show that every neighborhood of contains a member

of . If there were some neighborhood lying entirely inside , there would be an

open subset of that neighborhood containing and having the same property. The

complement of that open set would be a closed set containing and thus containing

the closure of . Therefore would not belong to .

For the converse suppose that every neighborhood of contains at least one point

of and least one point in . First we observe that cannot be a member of the

interior of , for, if it were, this interior would be a neighborhood of that contains

no member of . To finish the proof we must show that belongs to the closure of

. If it did not, the complement of the closure of would be a neighborhood of

containing no point of , which is a contradiction.

. Avoid doing work similar to that needed for the preceding problem.

. [ ), both open and closed whether or = ; ( ], neither open nor

closed whether or = ; [ ] closed but not open; ( ) open but not

closed whether and are finite or infinite; [ ] is only compact interval

. Closure under arbitrary unions: clearly yes if all sets in the union belong to ;

if one of the sets in the union contains and has a complement that is a compact

subset of Ω, the union will contain and have a complement that is closed subset



̂

R

R

∗

′

′

−

−

3
11

4( )

4( )

For Appendix D

C-14

D-1

D-2

D-14

m

m m

x

x
ε
b a x
ε
b a x

a b

x

∞ ∞

∞

∈ O ⊂
∩ ∈ O O

O

∈
| |

−

− ∨ ∨ − ∧ ∧

−
∈

• ∈
• | − | ∈
• | − − | ∈

SOLUTIONS, ANSWERS, AND HINTS FOR SELECTED PROBLEMS 67

C

O

O O

,

,

O

O A A O

f

g

f fg

f m x a, b

f x > m x x

x

x f x

x f x f

f

δ > x

f x f x f x > δ f x f x f x .
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x f y f y

fg ε > x a, b
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x J ,

f y f x < x < y J ,

f y f x < x > y J .

a, b a b

a, b J J

a, b a, b

J a, b P

of the compact subset of Ω. An appeal to Proposition 1 completes this portion of

the proof.

Closure under finite intersections: clearly yes if one of the sets in the intersection does

not contain ; if all do contain , then so does the intersection and the complement of

the intersection is the union of a finite number of compact subsets of Ω. The definition

of compactness shows that a finite union of compact sets is compact.

Compactness: An open covering must have at least one set that contains . Take

any such set . The remaining sets in the open covering cover the compact complement

of . Thus there is a finite subcovering of this complement. Adjoin to this finite

subcovering to obtain a finite subcovering of Ω .

. The closed interval [0 1] of with the usual topology is not open in that topol-

ogy, but it is an open subset of the topological space [0 1] with the relative topology.

Now assume that Ψ and that Ψ is open in the relative topology on Ψ.

Then = Ψ for some . Hence, , the intersection of two members of , is

itself a member of .

. 30

.

. According to Theorem 4 we only need prove that is Riemann-Stieltjes inte-

grable with respect to , and for doing that, Proposition 2 says that we only need prove

that is bounded and is Riemann integrable.

Suppose that is unbounded. For each there exists [ ] such that

( ) . Let denote a limit of a subsequence of ( ). It cannot be that

infinitely many members of the subsequence equal . If infinitely many members are

larger than , then ( +) does not exist. If infinitely many members are smaller than

, then ( ) does not exist. Therefore the assumption that is unbounded leads to

a contradiction, and hence is bounded.

For future use we show that for each 0, there exists only finitely many such

that

( ) ( ) ( +) + ( ) ( ) ( +)

If there were infinitely many, then at the limit of a convergence sequence of distinct

such , either ( +) or ( ) would fail to exist.

Turning to the proof of Riemann integrability of , we let 0. For each [ ]

let be an open interval in [ ] such that

( ) ( +) if

( ) ( ) if

(Reminder: Intervals in [ ] including the endpoint or can be open in the relative

topology of [ ]. Alternatively, we could have let and be open intervals in

containing members outside the interval [ ].) Since [ ] is compact there exists a

finite collection of intervals whose union equals [ ]. Let be the point partition of
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a, b

x

f x f x f x > f x f x f x ,

q K a, b

x s

f x g x x a, b P a, b

K P

P P fg P

K ε/

ε/ P

ε

ε

fg

λ

λ λ λ .

β λ λ λ

λ λ λ

λ λ λ λ

λ λ ,

[ ] consisting of the endpoints of the intervals in this finite collection and the points

midway between two consecutive endpoints.

For each point for which

( ) ( ) ( +) + ( ) ( ) ( +)

of which there are only finitely many—say —introduce a close interval [ ]

containing as an interior point and having length less than , where denotes

the supremum of ( ) ( ) for [ ]. Let denote the point partition of [ ]

obtained by adjoining the endpoints of each such to .

Consider any refinement of . For any Riemann sum of corresponding to ,

the total contribution arising from intervals lying in the various is less than 4.

The contributions to any two such Riemann sums arising from other intervals differ by

less than 3 4. Thus any two Riemann sums of any refinement of differ by less than

.

Now a straightforward argument using a sequence of refinements corresponding to

a decreasing sequence ( ) gives a Cauchy sequence of Riemann sums. Then the above

argument can be used again to show that the limit of this Cauchy sequence is the value

of the Riemann integral, and thus in particular, that the Riemann integral of exists.

Comment: For those whose definition of Riemann integrals involves upper and lower

integrals and sums rather than Riemann sums, the above argument can be shortened

a bit. We have not adopted the ‘upper-lower’ approach because it does not generalize

nicely to the Riemann-Stieltjes setting.

. We consider the real part of exp :

( exp ) = (exp ) (cos )

Using the Product Rule and Chain Rule for -valued functions we obtain

( ) = (exp ) ( ) (cos )

(exp ) (sin ) ( )

= ( ) ( exp ) ( ) ( exp )

= (exp )

as desired. We omit the similar calculation relevant for the imaginary part.

. no


