
Solutions, answers, and hints for selected problems

Complete solutions of some problems are given. Answers only are given for some
other problems. For still others, only hints or partial solutions are given. Asterisks
in “A Modern Approach to Probability Theory” by Fristedt and Gray identify the
problems that are treated in this supplement.

For Chapter 33

33-2. Hint: Let (Ft : t ≥ 0) denote the minimal filtration of the Wiener process
W . Square both sides of (33.1) and then take expectations. Six terms result on
the right side. The following calculation shows that one of them is equal to 0:
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The following calculation is relevant for another of the six terms:
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33-5. yes

33-12. d(eαW ) = αeαW dW + 1
2α

2eαW dt

33-15. TO BE DONE

33-17. TO BE DONE

33-29. TO BE DONE

For Appendix A

A-2. The derivative x ; 1 − cosx is positive for −2π < x < 0 and also for
0 < x < 2π. A theorem of calculus says that a continuous function on a closed
interval that has a positive derivative at all interior points of that interval is strictly
increasing on the closed interval. Therefore the given function is strictly increasing
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on the interval [−2π, 0] and on the interval [0, 2π]. By the preceding problem it
is strictly increasing on the interval [−2π, 2π]. (Notice that the argument can be
extended to prove that the given function is strictly increasing on R.)

For Appendix B

B-1. Proof that a closed subset of a compact set is compact. Let B be a closed
subset of a compact set C, and let O be an open covering of B. Consider O∪{Bc},
the collection obtained by adjoining the complement of B to the collection O. This
collection is an open covering of C. It contains a finite subcovering of C. The
members of O in this finite subcovering of C constitute a finite subcovering (from
O) of B.

B-5. The ‘only if’ part is trivial. We will prove the contrapositive of the ‘if part’,
so suppose that the sequence does not converge to y. Then there exists ε > 0 and
an infinite subsequence (xnk : k = 1, 2, . . . ) of (xn) such that ρ(xnk , y) > ε for all k.
No further subsequence of this subsequence can converge to y because the distance
between y and every member of that further subsequence would be greater than ε.

For Appendix C

C-5. Suppose that x ∈ ∂B. Case 1, x ∈ B: Every neighborhood of x contains a
member of B —namely x itself. If some neighborhood did not contain a member
of Bc, then x would be a member an open subset of that neighborhood which itself
would be a subset of B. Hence x would belong to the interior of B and thus not to
∂B.

Case 2, x 6∈ B: Now we must show that every neighborhood of x contains
a member of B. If there were some neighborhood lying entirely inside Bc, there
would be an open subset of that neighborhood containing x and having the same
property. The complement of that open set would be a closed set containing B and
thus containing the closure of B. Therefore x would not belong to ∂B.

For the converse suppose that every neighborhood of x contains at least one
point of B and least one point in Bc. First we observe that x cannot be a member
of the interior of B, for, if it were, this interior would be a neighborhood of x that
contains no member of Bc. To finish the proof we must show that x belongs to
the closure of B. If it did not, the complement of the closure of B would be a
neighborhood of x containing no point of B, which is a contradiction.

C-6. Hint: Avoid doing work similar to that needed for the preceding problem.

C-9. [a, b), both open and closed whether b <∞ or b =∞; (a, b], neither open nor
closed whether a > −∞ or a = −∞; [a, b] closed but not open; (a, b) open but not
closed whether a and b are finite or infinite; [a, a] is only compact interval

C-10. Closure under arbitrary unions: clearly yes if all sets in the union belong
to O; if one of the sets in the union contains ∞ and has a complement that is a
compact subset C of Ω, the union will contain ∞ and have a complement that is
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closed subset of the compact subset C of Ω. An appeal to Proposition 1 completes
this portion of the proof.

Closure under finite intersections: clearly yes if one of the sets in the intersection
does not contain ∞; if all do contain ∞, then so does the intersection and the
complement of the intersection is the union of a finite number of compact subsets
of Ω. The definition of compactness shows that a finite union of compact sets is
compact.

Compactness: An open covering must have at least one set that contains ∞.
Take any such set O. The remaining sets in the open covering cover the compact
complement of O. Thus there is a finite subcovering of this complement. Adjoin O
to this finite subcovering to obtain a finite subcovering of Ω∗.

C-14. The closed interval [0, 1] of R with the usual topology is not open in that
topology, but it is an open subset of the topological space [0, 1] with the relative
topology.

Now assume that Ψ ∈ O and that O ⊂ Ψ is open in the relative topology on
Ψ. Then O = A ∩ Ψ for some A ∈ O. Hence, O, the intersection of two members
of O, is itself a member of O.

For Appendix D

D-1. 30

D-2. 3
11

D-14. According to Theorem 4 we only need prove that f is Riemann-Stieltjes
integrable with respect to g, and for doing that, Proposition 2 says that we only
need prove that f is bounded and fg′ is Riemann integrable.

Suppose that f is unbounded. For each m there exists xm ∈ [a, b] such that
|f(xm)| > m. Let x denote a limit of a subsequence of (xm). It cannot be that
infinitely many members of the subsequence equal x. If infinitely many members
are larger than x, then f(x+) does not exist. If infinitely many members are smaller
than x, then f(x−) does not exist. Therefore the assumption that f is unbounded
leads to a contradiction, and hence f is bounded.

For future use we show that for each δ > 0, there exists only finitely many x
such that

f(x−) ∨ f(x) ∨ f(x+) > δ + f(x−) ∧ f(x) ∧ f(x+) .

If there were infinitely many, then at the limit y of a convergence sequence of
distinct such x, either f(y+) or f(y−) would fail to exist.

Turning to the proof of Riemann integrability of fg′, we let ε > 0. For each
x ∈ [a, b] let Jx be an open interval in [a, b] such that

• x ∈ Jx ,
• |f(y)− f(x+)| < ε

4(b−a) if x < y ∈ Jx ,
• |f(y)− f(x−)| < ε

4(b−a) if x > y ∈ Jx .
(Reminder: Intervals in [a, b] including the endpoint a or b can be open in the
relative topology of [a, b]. Alternatively, we could have let Ja and Jb be open
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intervals in R containing members outside the interval [a, b].) Since [a, b] is compact
there exists a finite collection of intervals Jx whose union equals [a, b]. Let P̂ be
the point partition of [a, b] consisting of the endpoints of the intervals in this finite
collection and the points midway between two consecutive endpoints.

For each point x for which

f(x−) ∨ f(x) ∨ f(x+) > ε
4(b−a) + f(x−) ∧ f(x) ∧ f(x+) ,

of which there are only finitely many—say q —introduce a close interval Kx ⊆ [a, b]
containing x as an interior point and having length less than ε

4qs , where s denotes
the supremum of |f(x)g′(x)| for x ∈ [a, b]. Let P denote the point partition of [a, b]
obtained by adjoining the endpoints of each such Kx to P̂ .

Consider any refinement P ′ of P . For any Riemann sum of fg′ corresponding
to P ′, the total contribution arising from intervals lying in the various Kx is less
than ε/4. The contributions to any two such Riemann sums arising from other
intervals differ by less than 3ε/4. Thus any two Riemann sums of any refinement
of P differ by less than ε.

Now a straightforward argument using a sequence of refinements corresponding
to a decreasing sequence (εk) gives a Cauchy sequence of Riemann sums. Then the
above argument can be used again to show that the limit of this Cauchy sequence is
the value of the Riemann integral, and thus in particular, that the Riemann integral
of fg′ exists.

Comment: For those whose definition of Riemann integrals involves upper and
lower integrals and sums rather than Riemann sums, the above argument can be
shortened a bit. We have not adopted the ‘upper-lower’ approach because it does
not generalize nicely to the Riemann-Stieltjes setting.

For Appendix E

E-4. We consider the real part of exp◦λ:
(R ◦ exp ◦λ) = (exp ◦R ◦ λ) · (cos ◦I ◦ λ) .

Using the Product Rule and Chain Rule for R-valued functions we obtain

(R ◦ β)′ = (exp ◦R ◦ λ) · (R ◦ λ)′ · (cos ◦I ◦ λ)
− (exp ◦R ◦ λ) · (sin ◦I ◦ λ) · (I ◦ λ)′

= (R ◦ λ′) · (R ◦ exp ◦λ)− (I ◦ λ′) · (I ◦ exp ◦λ)
= R ◦

(
λ′ · (exp ◦λ)

)
,

as desired. We omit the similar calculation relevant for the imaginary part.

E-9. no


