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For Chapter 31

31-2. For the last assertion one may for each w, view @} as a probability measure
on (D([0,00),¥),H). Then Q. is the distribution of the W-valued random variable
¢ ~+ ¢y defined on the probability space (D([0,00), ¥),H, Q). Since pu — @¢ as u \ t
and almost sure (in this case sure) convergence implies convergence in distribution,
Qu — Q: as u \, t (for each w, not just the requested ‘a.s.”).

31-3. (i) for all x € U, pg,t — paoo = 65 as ¢t \, 0; (ii) for all Borel A C W and ¢t > 0,
the function  ~ pz.+(A) is measurable; (iii) for all Borel A C ¥, s,t >0, and x € ¥,

AU‘L&H / My, s Hz t dy)
o

31-9. Let R: denote the distribution of the Lévy process at time ¢. Then

_ / P +) Rildy).

Let R denote the distribution of the Lévy process. Then the corresponding Markov
family (Q”: € R) is defined by

Q*(B)=R({p: [t~ (z+ )] € B}).
31-15. Gf(z) = s [(f( )) Q(dy), in the notation of Example 1 of Chapter 30.

31-21. Suppose that Qo is an equilibrium distribution for T. Then

G ko G k
Q0T =e Z %QOTIc =e Z %Qo =Qo.
k=0

k=0

Hint: for converse: Use Problem 16.

31-23. Hint: Let f be the indicator function of the one-point set {y} and use Theo-
rem 14.

31-25.
poo(t) = (go1 + qr0) ™" [Qw + qo1 exp[—(qo1 + qw)t]]
po1(t) = (qor + ¢10) ™" qo1 (1 — exp[—(go1 + qr0)t])
p1o(t) = (go1 + ¢10) ™" q10 (1 — exp[—(qo1 + qu0)t])
p12(t) = (go1 + qro) ™ (Q(n + qio exp[—(qo1 + qw)t])

The limits at oo of both poo and pio are the same: (go1 + qi0) ‘qio, the value the
equilibrium distribution assigns to {0}. The limits at co of both po1 and pi1 are the
same: (qgo1 + qi0) 'qo1, the value the equilibrium distribution assigns to {1}.

31-28. The solution to Problem 23 involves applying Theorem 14 to the indicator
functions of one-point sets. When the rates are unbounded, such functions may not
be in the domain of the generator. For example, let the state space be Z¥, let the
transition rates g,y have the property that g0 — oo as ¢ — oo, and let f be the
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indicator function of {0}. Then f is not in the domain of the infinitesimal generator
because the limit in the definition does not exist boundedly, and Theorem 14 does not
apply. Nevertheless, it can be shown that (31.12) holds whenever the state space is
countable, even in the case of unbounded rates.

31-29. Let M be the largest member of the support of p, xo the initial state, and
U, the time of the n'® jump. The construction ensures that Xy, < zo + (M —
1)n. Therefore, conditioned on Fy, _,, Un — Un—1 is exponential with mean at least
1/v(xo + (M — 1)(n — 1)). An inductive argument based on this fact shows that for
each n, the distribution function of U, is bounded above by the distribution function
of the sum of n independent exponentially distributed random variables with means
1/vxo, 1/(v(zo+ M —1)), ... ,1/(y(zo+ (M —1)(n—1)). Such a sum of exponentially
distributed random variables diverges almost surely as n — oo by the Kolmogorov
Three-Series Theorem. It follows that U, — oo a.s. as n — co.

31-36. % (y) = b(1 — b)ce= =PV pfoo} = 0; equilibrium distribution assigns value

(1 —b)b” to z; jump-rate function is
bt ifx=0
€T~
c ifz>0;

transition probabilities from x to x — 1 equal 1 for x > 0 and from 0 to x > 0 equal
(1 — b)b"~!; transition rates from z to  — 1 equal ¢ for 2 > 0 and from 0 to = > 0
equal ¢(1 — b)b® and all others equal 0

For Chapter 32

32-1.
b(§) ifm=¢"
() ifn=,¢
D= G ity = e
0 otherwise

32-7. For £ € =, let X (®) be the process defined in the construction with initial state £.
The discussion in the paragraph following the proof of Theorem 2 shows that for each
time ¢ > 0, the function £ ~ Xt(g) is almost surely a continuous function. It follows
from the Bounded Convergence Theorem that, for any continuous function f: 2 — R,
the function & ~ E(f o Xt(g)) is continuous. Thus, the transition semigroup is Feller.

32-10. Here is one way to make a correct ‘if and only if’ statement: Let G and G*® be
as in the first sentence of Problem 9. The ‘if’ statement is: If G f — Gf pointwise
as k — oo for all f € §, then Xt(k) — X as k — oo, uniformly for ¢ in bounded subsets
of [0,00) and for all choices of initial states € and € such that £} — £. The ‘only if’
statement is: If there exists a function f € § and a state 1 such that G*) (1) does not
converge to Gf(n) as k — oo, then there exists a time ¢ > 0 and a sequence of initial
states E(k) converging to a state £ as k — oo such that Xt(k) does not converge to X,
as k — oo. (In this second statement, we may take £(k) = ¢ =n for all k and let ¢ be
any sufficiently small positive time.)
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To prove the ‘if’ statement, it is enough to show that for any site x and any time
t > 0, there exists a nonnegative random variable K that is almost surely finite such
that X{")(2) = X.(z) for all k > K and s € [0,¢]. This last statement is a slightly
stronger version of the statement made in the paragraph immediately following the
proof of Theorem 2. To prove this stronger statement, first note that since G® f—Gf
for f € § as k — oo, each rate in the system with infinitesimal generator G® converges
uniformly as £ — oo to the corresponding rate in the system with infinitesimal generator
G. Now consider the construction of X®) and X using the universal coupling. Let A
be as in the statement following the proof of Theorem 2 and let K be large enough so
that £ agrees with £ at sites in A for k > K. We can also choose K large enough so
that the rates of G'* at sites in A are uniformly as close as we like to the corresponding
rates of G when k£ > K. A simple modification of the proof of Theorem 2 shows that
we can thereby make the probability arbitrarily close to 1 that the processes X ) and
X take the same values at z at all times in [0,¢]. Further details are left to the reader.

The hypothesis in the ‘only if’ statement implies that there exists a site z such that
at least one of the rates at = for the process with infinitesimal generator G is not the
pointwise limit as k — oo of the corresponding rates for the processes with infinitesimal
generators G™_ Tt follows that there exist arbitrarily large integers k and a state 1 such
that the process with infinitesimal generator G™ and initial state n will not behave
the same at the site x as the process with infinitesimal generator G and initial state 7,
at least for short time periods. Once again, the details are left to the reader.

32-13. (This problem is incorrectly stated in the book. The statement is not true for
the contact process with threshold birth rates. Also, a stronger statement is proved for
the contact process with sexual reproduction in Problem 12. So the problem should
only be done for the contact process of Example 2.) For finite sets A C Z<, let

Fa©) =Y &),

z€A

Direct calculation shows that if £ is a state with only finitely many occupied sites, then

(7.22) Gfa(€) < (1 —06)fa(§),

provided A is chosen large enough to include all x such that £(z) = 1.

Let & be a state with only finitely many occupied sites, and let (X¢) be the in-
teracting particle system with initial state £y and infinitesimal generator G. For each
finite set A C Z4, define a random time o4 by

oa =inf{t > 0: X¢(x) =1 for some z ¢ A}.

Also, let
T =inf{t > 0: X; = 0}.

Since the interacting particle system is a solution to the martingale problem for G, it
follows from (7.22) and the Optional Sampling Theorem that for any time ¢ > 0,

B(fa(Xinoane)) — Faleo) < B( / sy pa(xa) ds)
0
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Since 6 > 1, the integrand on the right side is bounded above by (1 —§) for all s < o4,
S0
E(fa(Xinoans)) = fa(€o) (1 = 8)E(tNoaAT),

from which it follows immediately that
fal)> (G —1DE{fNcaNT).

We leave it to the reader to check that ¢4 * 0o a.s. as A Z%. Thus, after first letting
A /' Z% and then letting t /* 0o, we have by the Monotone Convergence Theorem that

D o) > (8- 1DE(7).

zezZd

Since & has only finitely many occupied sites, the left side of this inequality is finite.
It follows that 7 has finite expectation, and hence that 7 is finite almost surely, as
desired.

32-16. It is easily checked that for each site x, the process (X¢(x),t > 0) is a pure-jump
Markov process with state space {0,1}, transition rates go1 = 1 and qi0 = 22l and
initial state 0. It follows from Problem 25 of Chapter 31 that

P[Xi(z) = 1] < 2711

By the Borel Lemma, Zz X¢(z) is finite a.s. Thus, for any fixed time ¢, the number of
occupied sites at time t is finite a.s.

For the second part of the problem, we fix t € (0,00). We know from the previous
part of the problem that at any given time s there are infinitely many vacant sites.
Since the birth rates are all equal to 1 at vacant sites, it is not hard to show that, with
probability 1, infinitely many births occur during every time interval of positive length.
In particular, infinitely many births occur with probability 1 during the time interval
(0,¢). Let

21 = min{z > 0: there is a birth at « during (0,¢)} .

Let Uy be the time of the first birth at z1 and Vi the time of the first death at x;.

We now proceed by induction. We assume that random sites x1,...,x, have been
defined for some n > 1, with corresponding random times Ui, ...,U, and Vi,..., V,,
where for each k = 2,...,n, U is the time of the first birth at xx after time U_1, and
Vi is the time of the first death at zx after time Ugx. Note that Uy < Us < --- < U,.
As part of the induction, we also assume that U, < t AVi A--- A V,. This assumption
implies that the time interval (Un,t A Vi A---AUy,) has positive length, so the following
random site is almost surely defined:

Znt+1 = min{z > 0: there is a birth at x during (Un,t AVI A---AV,).

Let U,+1 be the time of the first birth at z,41 after time U,, and V,41 the time
of the first death at x,4+1 after time U,+1. Note that our construction ensures that
Upnt1 <tAVIA---AVyi1, as required by the assumption made in the inductive step.

Let U = limy,,— o0 Up. Our construction of U shows that U is defined almost surely,
and that when it is defined, U < ¢. This construction also shows that Xy _(z,) = 1 for
all n =1,2,.... Our construction of the process (X;) shows that, with probability 1,
at most one death can occur at time U, so infinitely many sites are occupied at time
U, as desired.
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82-18. joy(§) = ply — 2} if £(y) = 0; da(§) = D, &(y)p{y — a}; other rates are 0

32-24. There is an error in Example 8: in order for the if and only if statement at the
end of the example to be true, one must assume that the death rate is bounded away
from zero. Under that additional assumption, a solution to Problem 24 (with arbitrary
finite range r) can be made as follows. First do the problem for the case in which the
initial state £ satisfies the property that £(z) = 0 for all sites x to the right of some site
y. Deduce that y can be chosen so that the probability is arbitrarily close to 1 that
the sites to the right of —r remain vacant for all time. Prove similar statements for
the case in which the initial state satisfies £(x) = 0 for all  to the left of some site y.
Use these facts to show that y > 0 can be chosen so that if the initial state £ satisfies
&(z) = 0 for —y < z < y, then the probability is at least 1 that Xt - 0ast — oo.
Having chosen such a y, use the assumption on the death rates to show that for any
initial state, the process almost surely spends an infinite amount of time in states 7
for which n(z) = 0 for —y < & < y. Use the strong Markov property to complete the
proof.

For Chapter 33

33-2. Hint: Let (F;: t > 0) denote the minimal filtration of the Wiener process W.
Square both sides of (33.1) and then take expectations. Six terms result on the right
side. The following calculation shows that one of them is equal to 0:

(o) W ye = Wae) ) = B( B(ZacalZue) Wi — Wae) | o))
= B Zneal(Zoe) E(Wins)e = Wae) | Fac) ) =0.

Similarly,
E(b(Znz)ea(Zne)(Wins1ye — Wae)) = 0.

The following calculation is relevant for another of the six terms:
E([a(ZP Weninye = Wae)?) = B(E((a(Z)P Wiy = Wae)® | o))

- E([a(ZE)]QE((W(nH)E — Wae)? | fm)) = eE([a(Zs)]z) :

33-5. yes
33-12. d(e*") = ae®™ dW + Lo’ dt

33-15. Equation (33.18) is to be interpreted as an almost sure statement. In the
following, we assume that the relevant properties of the It6 integral have been extended
to allow for integrands like sgn(W, — ).

Let

1

t
L? = %/O 1[76+z,6+z](Wu) d’LL,

so that for each z,

|W. — x| — / sgn(W, — ) dW, = L.(z) = lim L°(z) i.p.
o 50
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In the notation of the example,

L) = fs (Wi —2) — / FLWa — 2y,
0

(see (33.16)).
Using Theorem 4 and the fact that (a + b)? < 2a® + 2b* for real numbers a and b,
we have

E((Li(x) — Li(2))?) <
t
2B (Wi — | — fo(We - 2))%) +2B( / (sen(Wa = 2) = [ (W — 2))* du)
0
It follows that for any bounded Borel set B,

;i{% i E((Li(z) — Lj(x))?*) dz = 0.
By the Fubini Theorem,
. 2 .
%1{1(1) : (Lt(:c) — Lf(:c)) dr =0 ip.

A simple application of the Cauchy-Schwarz Inequality then gives

2 Li(z) dz = li L{(z)da i.p.
(7.29 [ mwyas = tim [ riwyasin

Now suppose that B is a bounded interval in R. Let

1
95 (y) = I _612,64] (y)dz.
26 |

Clearly we have 0 < ¢° < 1 and ¢° — ¢ pointwise as § \, 0, where g is 1 on the interior
of B, 1/2 at the endpoints of B, and 0 elsewhere. By Dominated Convergence, applied

to (7.23), we have
t
/ Li(z)dz = / g(Wu) du a.s.
B 0

It is easy to deduce from this equation that

/BLt(x) dx = /Ot I5(W.) du as.

A standard argument using the Sierpiniski Class Theorem shows that this last equation
is valid for all Borel sets B, as claimed.

33-17. For z € B, let Z*) denote the solution of (33.19) with initial state z, and let
(Ty,t > 0) denote the corresponding transition semigroup. Since T} f(z) = E(f o Z{*)),
the Bounded Convergence Theorem implies that it is enough to show that for each
t>0and z € R, limy_. 2 = Z* as. In the proof of Theorem 7 it is shown
that each random variable Z(¥) is the limit in probability of random variables Z¥"%) as
€\, 0. From the definitions it is apparent that y ~ Z :2) is almost surely a continuous
function for each € > 0. Thus, it is enough to show that

(7.24) lim sup |Z(y¢5) _ Z(y,n)| —0.
&nMN\O0 yeR
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Noting that the estimates used in the proof of Theorem 7 do not depend on the initial
value y, we see that, with minor modifications, the argument in that proof can be used
to give (7.24).

33-29. Gf = %A f for sufficiently nice functions f: R? — R. For bounded continuous
functions f having bounded continuous first, second, and third partial derivatives, this
fact can be proved by direct computation, using the second degree Taylor polynomial
approximation of f with remainder.

For Appendix A

A-2. The derivative  ~- 1 — cosx is positive for —27 < z < 0 and also for 0 < = <
2m. A theorem of calculus says that a continuous function on a closed interval that
has a positive derivative at all interior points of that interval is strictly increasing on
the closed interval. Therefore the given function is strictly increasing on the interval
[—27,0] and on the interval [0, 27]. By the preceding problem it is strictly increasing
on the interval [—27, 27]. (Notice that the argument can be extended to prove that the
given function is strictly increasing on R.)

For Appendix B

B-1. Proof that a closed subset of a compact set is compact. Let B be a closed
subset of a compact set C, and let O be an open covering of B. Consider O U { B¢},
the collection obtained by adjoining the complement of B to the collection . This
collection is an open covering of C. It contains a finite subcovering of C. The members
of O in this finite subcovering of C' constitute a finite subcovering (from O) of B.

B-5. The ‘only if’ part is trivial. We will prove the contrapositive of the ‘if part’,
so suppose that the sequence does not converge to y. Then there exists ¢ > 0 and
an infinite subsequence (zn, : k = 1,2,...) of (z,) such that p(xn,,y) > € for all k.
No further subsequence of this subsequence can converge to y because the distance
between y and every member of that further subsequence would be greater than €.

For Appendix C

C-5. Suppose that x € 0B. Case 1, x € B: Every neighborhood of = contains a
member of B —namely z itself. If some neighborhood did not contain a member of
B¢, then & would be a member an open subset of that neighborhood which itself would
be a subset of B. Hence x would belong to the interior of B and thus not to 9B.

Case 2, ¢ ¢ B: Now we must show that every neighborhood of z contains a member
of B. If there were some neighborhood lying entirely inside B¢, there would be an
open subset of that neighborhood containing x and having the same property. The
complement of that open set would be a closed set containing B and thus containing
the closure of B. Therefore  would not belong to 0B.

For the converse suppose that every neighborhood of x contains at least one point
of B and least one point in B¢. First we observe that x cannot be a member of the
interior of B, for, if it were, this interior would be a neighborhood of x that contains
no member of B°. To finish the proof we must show that = belongs to the closure of
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B. If it did not, the complement of the closure of B would be a neighborhood of =
containing no point of B, which is a contradiction.

C-6. Hint: Avoid doing work similar to that needed for the preceding problem.

C-9. [a,b), both open and closed whether b < co or b = o0; (a,b], neither open nor
closed whether a > —o0 or a = —o0; [a,b] closed but not open; (a,b) open but not
closed whether a and b are finite or infinite; [a, a] is only compact interval

C-10. Closure under arbitrary unions: clearly yes if all sets in the union belong to O;
if one of the sets in the union contains co and has a complement that is a compact
subset C' of €2, the union will contain co and have a complement that is closed subset
of the compact subset C' of 2. An appeal to Proposition 1 completes this portion of
the proof.

Closure under finite intersections: clearly yes if one of the sets in the intersection does
not contain oo; if all do contain oo, then so does the intersection and the complement of
the intersection is the union of a finite number of compact subsets of 2. The definition
of compactness shows that a finite union of compact sets is compact.

Compactness: An open covering must have at least one set that contains co. Take
any such set O. The remaining sets in the open covering cover the compact complement
of O. Thus there is a finite subcovering of this complement. Adjoin O to this finite
subcovering to obtain a finite subcovering of Q*.

C-14. The closed interval [0, 1] of R with the usual topology is not open in that topol-
ogy, but it is an open subset of the topological space [0, 1] with the relative topology.

Now assume that ¥ € O and that O C VU is open in the relative topology on W.
Then O = ANV for some A € O. Hence, O, the intersection of two members of O, is
itself a member of O.

For Appendix D
D-1. 30

3
D-2. 2

D-14. According to Theorem 4 we only need prove that f is Riemann-Stieltjes inte-
grable with respect to g, and for doing that, Proposition 2 says that we only need prove
that f is bounded and fg¢’ is Riemann integrable.

Suppose that f is unbounded. For each m there exists xz,, € [a,b] such that
|f(zm)| > m. Let x denote a limit of a subsequence of (x,). It cannot be that
infinitely many members of the subsequence equal z. If infinitely many members are
larger than z, then f(z+) does not exist. If infinitely many members are smaller than
x, then f(z—) does not exist. Therefore the assumption that f is unbounded leads to
a contradiction, and hence f is bounded.

For future use we show that for each § > 0, there exists only finitely many x such
that

fla=)V @)V flz+) > 6+ flz=) A f(@) A fz+).
If there were infinitely many, then at the limit y of a convergence sequence of distinct
such z, either f(y+) or f(y—) would fail to exist.
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Turning to the proof of Riemann integrability of fg’, we let € > 0. For each z € [a, b]
let J, be an open interval in [a, b] such that

e xcJ,,

o |fly)— flz+)| < 0 e <y€ds,

o [f(y)—fa-) < qpgy fx>y €.
(Reminder: Intervals in [a,b] including the endpoint a or b can be open in the relative
topology of [a,b]. Alternatively, we could have let J, and J, be open intervals in R
containing members outside the interval [a,b].) Since [a,b] is compact there exists a
finite collection of intervals J, whose union equals [a, b]. Let P be the point partition of
[a,b] consisting of the endpoints of the intervals in this finite collection and the points
midway between two consecutive endpoints.

For each point x for which

Fa=)V @)V Fe4) > o + Fla—=) A f@) A flat),

of which there are only finitely many—say ¢ —introduce a close interval K, C [a,b]
containing = as an interior point and having length less than EES’ where s denotes
the supremum of |f(z)g'(z)| for = € [a,b]. Let P denote the point partition of [a, ]
obtained by adjoining the endpoints of each such K, to p.

Consider any refinement P’ of P. For any Riemann sum of fg’ corresponding to P’,
the total contribution arising from intervals lying in the various K is less than €/4.
The contributions to any two such Riemann sums arising from other intervals differ by
less than 3e/4. Thus any two Riemann sums of any refinement of P differ by less than
€.

Now a straightforward argument using a sequence of refinements corresponding to
a decreasing sequence (e1) gives a Cauchy sequence of Riemann sums. Then the above
argument can be used again to show that the limit of this Cauchy sequence is the value
of the Riemann integral, and thus in particular, that the Riemann integral of fg’ exists.

Comment: For those whose definition of Riemann integrals involves upper and lower
integrals and sums rather than Riemann sums, the above argument can be shortened
a bit. We have not adopted the ‘upper-lower’ approach because it does not generalize
nicely to the Riemann-Stieltjes setting.

For Appendix E
E-4. We consider the real part of expo:
(Roexpol) = (expoRoA) - (cosoTo ).
Using the Product Rule and Chain Rule for R-valued functions we obtain
(RopB) = (expoRoA) - (Rol) - (cosoTo )
— (expoP o)) - (sinoJo ) (TJoA)
— (RoX) - (Roexpod) — (Jo X) - (o expo)
=Ro (X - (exp OA)) ,

as desired. We omit the similar calculation relevant for the imaginary part.

E-9. no



