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(vii) yes; 0 = 1, = 0 for odd, = [ (1 )] for 2 and

even; measure generating function of :

1 +
2 1

[ (1 )] =
1

2
+

1

2

1 2
[ 4 (1 ) ]

=
1

2
1 + 1 4 (1 ) ;

measure generating function of :

1 2 (1 ) 1 4 (1 )

2 (1 )
= 2

1 2

+ 1
[ 4 (1 ) ]

=
1

+ 1

2
[ (1 )] ;

= 0 for odd, = [ (1 )] for even, = [Notice

that the coefficient in the formula for , even, is the ( 2) Catalan

number.]

. for a set of consecutive integers, ( ( ) 0) = 1 , in notation of

Problem 12

. , where is mean and (possibly ) is variance

. = 4 , = 4

. The solution of Problem 28 of Chapter 11 gives the measure generating function

of the waiting time distribution for strict ascending ladder times:

( ) =
1 1 4 (1 )

2(1 )

The measure generating function of the waiting time distribution for weak descending

ladder times can then be obtained from Theorem 22:

( ) =
1 + 2(1 ) 1 4 (1 )

2

It is straightforward to use the Binomial Theorem to obtain the waiting time distribu-

tions and potential measures corresponding to these two measure generating functions.

The other two types of ladder times can be treated by interchanging and 1 .

.

( ) = [ ] = ([ ] )

= ( ) = ( ) ( ) = ( )( )

( ) = ( ) ( ) = ( )
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T n m T
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. Let be the identity function on [0 1]. Clearly is bounded and measurable.

By Theorem 6, is a martingale where

= ( )

Solving for gives a representation for in terms of the martingale and a previsible

sequence having the value 0 when = 0. To show that this sequence is increasing,

as required for a Doob decomposition, we only need show that is a nonnegative

function when is the identity function. The following calculation does this:

( ) = ( ) = ( ) 0

the last equality using the fact that is a submartingale.

.

. Reminder: There is one value of that is not required to satisfy the

difference equation.

.

. Denote the two states by and . By the last part of Problem 38, if one of the

two states is transient so is the other. Now suppose that is null recurrent; our goal

is to show that is not positive recurrent.

By the Renewal Theorem the sequence of entries of in position along the main

diagonal converges to 0 as . We will complete the proof by finding an integer

and a positive constant such that the entry in position along the main diagonal

in is larger than times the entry in position along the main diagonal in

for all , for then it will follow that the sequence of entries in in position

along the main diagonal will converge to 0 as , implying that is not positive

recurrent.

One way to start at and to then be there again at time is to first be at state

at some time , then be at again at some time + , and then be at state at

time . By first choosing and then appropriately one can make the product of the

probabilities of the first and third of these three tasks a positive constant .

We omit the part of the solution treating the periodicity issue.

. Suppose that, for some , all entries of are positive. For any states

and there is positive probability of being at at time if the starting state is .

Hence, 0. Therefore, is irreducible. Clearly, = has only positive

entries for all nonnegative integers , and thus 1 is the greatest common divisor of the

powers of for which the upper left entry (or any other diagonal entry) is positive.

Aperiodicity follows.

For the converse suppose that is irreducible and aperiodic. The sequence of num-

bers in a fixed diagonal position of is an aperiodic potential sequence,

which, by Lemma 18 of Chapter 25, contains only finitely many zero terms. Thus,

there exists an integer such that all diagonal entries of are positive. Hence, all

diagonal entries of are positive for . Since is irreducible, there is, for each

and , an integer such that the entry in row and column of is positive.
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Let = + max . Since can be obtained by multiplying by a power of

at least as large as , the entry in row and column of is positive. Thus, all

entries of are positive, as desired.

. starting state of interest denoted by 0; probabilities of absorption at the ab-

sorbing states 2 and 1, respectively:

2

(3 2 1)(3 2 1)
and

2

(3 2 1)(3 2 1)

probability of no absorption: 1 3

. We can introduce infinitely many extra transient states in order to obtain a

birth-death sequence. The transition distributions are given by

1 = 1

+ 1 = 0

From Problem 54 we see the relevance of the following product:

0

1
=

The number as defined in Problem 54 can now be calculated:

= = = 2

The equilibrium distribution for the Ehrenfest urn sequence is given by

=
1

2
0

. denotes De Finetti measure; for = 1 2 3, = , where 1 =

6 =

. De Finetti measure equals delta measure at uniform distribution on : 1

12

. Yes. By letting equal the value assigned to the one-point set by a proba-

bility measure on 1 2 3 4 , the probability measure itself is represented by an ordered

4-tuple ( ) The De Finetti measure assigns probability

to (1 0 0 0) and to each of the other 3 permutations thereof;

to ( 0 0) and to each of the other 11 permutations thereof;

to ( 0) and to each of the other 11 permutations thereof;

to ( 0 0) and to each of the other 5 permutations thereof;

to ( )
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µ µ m/n P Z Z m

P X X P X X

P X X P X X

α β

Y,X ,X µ

γ γ γ ,

p, z , z
p p

x x µ dx

p z γ X

z
p p µ dp

x x µ dx

z z X

p p µ dp

x x µ dx
,

X X

m

µ

X X x e e X ,X

x , x e e

y , y

e e < y < y

Y X , . . . ,X

m X

. . .

X , . . . , X

k / k

P X x X x , . . . ,X x
c γ

k γ
,

c x j k x x

1

1 2 1 2
5 6

12( 1)

1 2 1 2 12( 1)

+1 +2

1 2

( + + + + ) ( +2) ( + + + + )

[0 1]
( + + ) ( + + )

2 +1

1
[0 1]

( + + + ) ( +1) ( + + + )

[0 1]
( + + ) ( + + )

1 1 +1

[0 1]

( + + +1) ( + + )

[0 1]
( + + ) ( + + )

1

1 2
1
2

1
4

2
1 2

1 2
1
4

2 2

1 2
1
2

2 2
1 2

1

=1

1

+1 +1 1 1

=1

+1

. denotes De Finetti measure; = [ + + = ].

. [ = = 1] = [ = = 0] =

[ = = 1] = [ = = 1] =

. + the numbers of 1’s, + the number of 0’s

. conditional distribution of ( ) has density with respect to

, where denotes counting measure on 0 1 ; density is

( )
(1 )

(1 ) ( )
;

integration in and gives conditional density with respect to of :

(1 ) ( )

(1 ) ( )
;

multiplication by and integration in give the conditional expectation of :

(1 ) ( )

(1 ) ( )

which equals

+ + + 1

+ 2

in case is the standard uniform distribution.

. density of each of and : + ; density of ( ):

( ) + ; De Finetti measure assigns probability 1 to the

set of uniform two-point distributions, the density of the two points being

+ , 0 .

. conditional distribution of reciprocal of mean of given ( ) is gamma

with main parameter + 1 and scaling parameter 1 +

. The stick-breaking random walk breaks a stick into random pieces in such a

way that, say, the sizes of the first three pieces determines how much of the stick is left

for pieces 4, 5, , to share but gives no information about the relative sizes of these

pieces. Certain information about ( ) might, for example, give information

about the sizes of pieces 1, 2, and 3, without giving information about the relative sizes

of the remaining pieces. (Comment: The authors of this book find this explanation to

be neither complete nor satisfactory, but it is the best that they could do.)

. The formula is trivial when = 0; it is 1 = 1 1. Assume it is true for and

multiply both sides by

[ = = = ] =
+

+

where equals the number of , , for which = . The result follows.
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X

B x , x , . . . , x x , x , . . . , x A .

P X ,X , . . . ,X B

P X ,X , . . . ,X B .

Y , Y , Y , . . .

. . . , Y , Y , Y

Y , Y , . . .

A R A S A

I , I τ , I τ , . . .

n
I τ n , , . . .

R A R S A S

S A R A

a p/q q

x , x , p .

a πa

,

,

,

,

n J ,

J

. It suffices to prove that

[( ) ]

= [( ) ]
(7.12)

for every positive integer and every Borel set Ψ , where Ψ denotes the common

target of the . Set

= ( ) Ψ : ( )

Then the left side of (7.12) equals

[( ) ]

and the right side equals

[( ) ]

These are equal by Problem 3.

. From the given sequence obtain the desired joint distributions of every finite

set of random variables. Use this information to construct a sequence ( )

using Theorem 3 of Chapter 22. Then treat ( ) as a single random object

and use it as the first member of a random sequence to be constructed using Theorem 3

of Chapter 22 again, with the next members being .

. Let be an set for which ( ) = ( ). By Problem 18,

( )

is ergodic. By the Birkhoff Ergodic Theorem the sequence

1
: = 1 2

converges to ( ) with -probability 1 and also to ( ) with -probability 1. Since

( ) = ( ), these two events are disjoint, and thus the mutual singularity is estab-

lished.

. Suppose first that is rational, say in lowest terms with positive. Then

the following set is easily seen to be shift-invariant and have Lebesgue measure :

[0 1): [ ) for some

Now suppose that is irrational. Rotation through angle 2 generates a shift

transformation on [0 1) . It is clear that any shift-invariant distribution is determined

by the initial distribution on [0 1), but it may be that some choices for that distribution

do not yield a shift-invariant measure on [0 1) . In fact, we will prove that the only

initial distribution that does yield a shift-invariant measure on [0 1) is Lebesgue

measure.

For every and ‘left-closed, right-open subinterval’ of [0 1), possibly with

‘wrap-around’, any shift-invariant measure assigns the same value to and the interval
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x l,

x l, Z

l

Z

T k, l Z n , , , . . .

k

P Z Z ,

obtained by adding to each endpoint of mod . For any left-closed, right-

open interval having the same length as , a sequence ( : = 1 2 ) can

be chosen so that

= lim

Hence all open intervals having the same length have the same measure, and there-

fore the only initial distribution that yields a shift-invariant distribution is Lebesgue

measure.

Since there is only one shift-invariant distribution, that distribution is extremal

and by Theorem 4, therefore ergodic. The Weyl Equidistribution Theorem is then an

immediate consequence of the Birkhoff Ergodic Theorem.

. ( )

. Suppose that is strongly mixing and consider any . For each there

exists such that = ( ). As ,

( ) [ ( )] = ( ( )) ( ) ( ( ))

= ( ( )) ( ) ( ) 0

Therefore ( ), being a solution of ( ) [ ( )] = 0, equals 0 or 1, as desired.

For the converse we assume that is 0-1 trivial and fix a member of . Then

for all and all positive integers ,

( ( )) ( ) ( ) = ( )

= [ ( ) ( )]

( ) ( )(7.13)

where denotes expectation based on the distribution and

= ( ):

To finish the proof we only need show that (7.13) approaches 0 as , the unifor-

mity in resulting from the fact that (7.13) does not depend on . By the Bounded

Convergence Theorem, we only need show

lim ( ) ( ) = 0

By the Reverse Martingale Convergence Theorem, this limit does exist and equals

( ) ( ), a random variable which has mean 0 and which, since is 0-1

trivial, is a.s. constant. Therefore it must equal 0 a.s. as desired.

. For each positive integer , we say that a path ( ) is if every

point on the path lies between the vertical line through the point ( 0) and the

vertical line through the point +( 0). Define a collection of random variables ( )

in terms of -restricted paths in a manner that is analogous to the way in which the

collection ( ) was defined. It is easy to use the independence of the random variables

( ) to see that for positive integers , the sequence ( : = 1 2 3 ) is

mixing (in fact strongly mixing). It is also easy to see that for each fixed ,

lim [ = ] = 1
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S , S , S , . . .

c n Y , . . . , Y

S , . . . , S

uniformly in . We leave it to the reader to conclude from this last fact that the se-

quence ( : = 1 2 3 ) is mixing (and hence ergodic) for each .

. Let denote a stationary Gaussian sequence with correlation function ( )

. The result is obvious if = 1, so we assume 1. Following the hint, the

conditional distribution of given ( ) is Gaussian with a constant

variance and mean

1

1
...

...
...

1

...
(7.14)

Since the first matrix is a row matrix that is a multiple of the first column of the matrix

whose inverse is in the formula, the matrix product (7.14) is some multiple of ,

and this is all that is needed to show that is Markov.

. Let = .

[ 1 = ] =

[ 1 = 2 = ] =

[ 1 = 2 = 3 = ] =

. [ ( ) = ] = , 0 . Thus the distribution of ( )

is binomial with parameters and .

. Let ( : 0) be a renewal sequence. Define a random measure on by

= . Clearly is a point process and its intensity measure equals the potential

measure of the renewal sequence.

. We use the formula for the probability that a Poisson random variable equals

0. For 0,

[ ] = [ ( 0 1 1 ) = 0] =

Then

[ = ] = [ ] [ ( + 1)] = = (1 )

. Write

0 = 0 =

and let ( = 0 ) be a random walk having exponentially distributed steps

with mean . For an arbitrary positive integer we will show that ( ) and

( ) have the same distribution, thereby finishing the proof. We will verify that
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the distribution of each of these random vectors has the same density with respect to

-dimensional Lebesgue measure—namely,

( )
if 0

0 otherwise
(7.15)

To check that this is the correct density for ( ) we integrate it over a set of

the form [ ), where

0 = =

We get

( ) = ( )

= [#( [ )) = 1] [#( [ )) = 0]

= [ [ ) for 1 ]

as desired.

We know that the density of ( ) ( ) ( ) is

( )
if each 0

0 otherwise

We can get the density of ( ) by using the linear transformation = +

+ , 1 , the Jacobian of which equals 1. The result is the desired density

(7.15).

. One approach is to start with sequences and having the desired

properties and then use Problem 23 to show that ( ) : = 1 2 is a Poisson

point process with intensity measure .

.

. ,

. ( ) for = 1; [ ( )] ( ) for = 1

. exp (1 ( )) , where Ψ is the countable set

. The probability generating functional of + is

[ ( )] = [ ( )] [ ( )]

= [ ( )] [ ( )]

= [ ( )] [ ( )]
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which is the product of the probability generating functionals of and .

. Suppose that as ; that is, , where and denote

the distributions of and , respectively. Let be in the domain of the probability

generating functional of (and thus of each ). Assume first that is bounded below

by a positive constant. Then the function

log(1 )

is continuous, and thus the same is true for the function

(7.16)

For this latter function it is straightforward to remove the assumption that be

bounded below by a positive constant (of course, using the conventions 0 = 0

and = 0). That

follows from the continuity of the function (7.16). That the limiting probability gener-

ating functional has the property described in the theorem is a consequence of Propo-

sition 16 which says that all probability generating functionals have a more general

property.

For the converse suppose that is the limit of a sequence of probability generating

functionals corresponding to a sequence ( : = 1 2 ) of distributions of point

processes in a locally compact Polish space Ψ, and that satisfies the condition in

the theorem. Let be any compact subset of Ψ. By using Lemma 1 one can show

that there exists a compact set such that every point of is an interior point of

and that therefore there exists a continuous [(1 ) 1]-valued function such that

( ) = 1 for and ( ) = 1 for .

Let 0 Since ( ) 1 as , we can fix so that for all

: ( ) [ ( )] ( )

1 [ ( )] ( )

1 1

which is larger than 1 for sufficiently large . By Theorem 19, every subsequence

of ( ) has a convergent subsequence. By the first paragraph of this proof, is

the probability generating functional of every subsequential limit. By Theorem 14 all

subsequential limits are identical. Therefore, the sequence ( ) itself converges to a

limit whose probability generating functional is .

. right-continuous; pointwise limit not right-continuous at 2.
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. The moment generating function is

= exp (0 ]

=(7.17)

For calculating (7.17), we may replace (0 ] by [0 ] . The function ( ) is

a continuous function on the compact set [0 ] [0 ], taking the value 0 at ( )

if 0 and the value 1 there if = 0. Therefore we may apply Proposition 15 of

Chapter 29 to conclude that (7.17) equals

exp (1 ) ( )( ( ))

= exp (1 ) ( )

We could have treated the problem as a single-variable problem by working with

the Poisson point process , the restriction of to (0 ] [0 ].

In view of Remark 1, might be a probability measure on (0 ], which is not

compact. We could handle this setting, by adjoining 0 to (0 ] and specifying 0 =

0, or by approximating by continuous functions that equal 1 for small .

It is not possible to treat characteristic functions by adjoining to in order

to obtain compactness, because one will then lose continuity. Approximation of the

functions by functions that are continuous everywhere and constant for large

is a method that works. By then going to the limit one obtains the characteristic

function of :

exp (1 ) ( )

. 1

. Set

( ) = ( [0 1] : )

and let 0 = = 1. The proof relies on showing that

[ for 1 ]

= ( [0 1] : for 1 )
(7.18)

for positive numbers .

The left side of (7.18) equals

Γ( )

=
Γ( )

(7.19)
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The right side of (7.18) equals

( [0 1] : for 1 )

From Problem 15, we can rewrite this expression in terms of a Dirichlet distribution:

(1 )

Γ( )

Γ( )

(7.20)

For 1 1, let = , and also let = (1 ). The Jacobian

of this transformation is = ; hence this change of variables turns

(7.20) into (7.19), as desired.

. negative binomial with parameters 1 1 + ( ) and ( )

. (iii): Let 0, and denote the distribution of by . Then for 1,

1 [ ] 1 ( )

1 exp 1 ( )

1 ( )

( ) + ( )(7.21)

The first term in (7.21) goes to 0 as 0. To treat the second term, let 0 and

choose (0 1) so that ( ) . Then as 0,

( ) ( ) + ( 1] ( )

Since is an arbitrary positive number, it follows that

lim ( ) = 0

as desired. for (vi): For any (0 1] there exists a nonnegative integer such

that 2 and

2

. The carelessness might be ignoring the term ‘almost’ in the phrase ‘ a.s.’.

. in case 1, 0 or according as or ; in case = 1, 0 if and

only if 1, and if and only if 1


