
Solutions, answers, and hints for selected problems

Complete solutions of some problems are given. Answers only are given for some
other problems. For still others, only hints or partial solutions are given. Asterisks
in “A Modern Approach to Probability Theory” by Fristedt and Gray identify the
problems that are treated in this supplement.

For Chapter 9

9-1. Ω1 and Ω2 each have six members, Ω has 36 members. Each of F1, G1, F2

and G2 has 26 = 64 members. F has 236 members and R has 642 members.

9-6. x ; 1 − limε↘0

∏
n[1 − Fn(x + ε)] and

∏
n Fn. The example Fn = I[(1/n),∞)

shows that one may not just set ε = 0 in the first of the two answers.

9-7. exponential with mean λ1λ2/(λ1 + λ2)

9-10. Fix Bk ∈ σ(Ek) for k ∈ K. For each such k there are disjoint members Ak,i,
1 ≤ i ≤ rk, of Ek such that

Bk =
rk⋃
i=1

Ak,i .

Hence,

P

( ⋂
k∈K

Bk

)
= P

( ⋂
k∈K

rk⋃
i=1

Ak,i

)
= P

( ⋃
(ik≤rk: k∈K)

⋂
k∈K

Ak,ik

)

=
∑

(ik≤rk: k∈K)

P

( ⋂
k∈K

Ak,ik

)
=

∑
(ik≤rk: k∈K)

∏
k∈K

P (Ak,ik)

=
∏
k∈K

rk∑
i=1

P (Ak,ik ) =
∏
k∈K

P (Bk) .

(Contrast this proof with the proof of Proposition 3.)

9-14. For each event B, let

DB = {D : P (D ∩B) = P (D)P (B)} .

Clearly each DB is closed under proper differences. By continuity of measure it is
also closed under monotone limits and, hence, it is a Sierpiński class.

Denote the two members of L by 1 and 2. By hypothesis, E1 ⊆ DB for each
B ∈ E2. By the Sierpiński Class Theorem, σ(E1) ⊆ DB for each B ∈ E2. Therefore

1



2 SOLUTIONS, ANSWERS, AND HINTS FOR SELECTED PROBLEMS

E2 ⊆ DA for each A ∈ σ(E1). Another application of the Sierpiński Class Theorem
gives σ(E2) ⊆ DA for every A ∈ σ(E1), which is the desired conclusion.

9-15. The criterion is that for each finite subsequence (Ak1 , . . . , Akn),

P (Ak1 ∩ · · · ∩Akn) = P (Ak1) . . . P (Akn) .

9-23. Let us first confirm the appropriateness of the hint. Because the proposition
treats x and y symmetrically, we only need prove the first of the two assertions
in the proposition. To do that we need to show that {x : f(x, y) ∈ B} ∈ G for
every measurable B in the target of f and every y. Suppose that we show that the
R-valued function x ; (IB ◦ f)(x, y) is measurable. Then it will follow that the
inverse image of {1} of this function is measurable. Since this inverse image equals
{x : f(x, y) ∈ B}, the assertion in the hint is correct.

Since f is measurable, any function of the form IB ◦f , where B is a measurable
subset of the target of f , is the indicator function of some measurable set A ∈ G×H.
Thus, our task has become that of showing that x; IA(x, y) is measurable for each
such A.

Let C denote the collection of sets A ⊆ Ψ×Θ such that x; IA(x, y) is measur-
able for each fixed y. This class C contains all measurable rectangles, and the class
of all measurable rectangles is closed under finite intersections. Since differences
and monotone limits of measurable functions are measurable, the Sierpiński Class
Theorem implies that C contains the indicator functions of all sets in G × H, as
desired.

9-27. The independence of X and Y is equivalent to the distribution of (X, Y )
being a product measure Q1 ×Q2. By the Fubini Theorem,

E(|XY |) =
∫ (∫

|x| |y|Q2(dy)
)

Q1(dx)

=
∫
|x|E(|Y |)Q2(dx) = E(|X |)E(|Y |) <∞ .

Thus we may apply the Fubini Theorem again:

E(XY ) =
∫ (∫

xy Q2(dy)
)

Q1(dx)

=
∫

xE(Y )Q2(dx) = E(X)E(Y ) .

9-29. Hint: The crux of the matter is to show that, in the presence of independence,
the existence of E(X + Y ) implies the existence of both E(X) and E(Y ) and,
moreover, it is not the case that one of E(X) and E(Y ) equals ∞ and the other
equals −∞.

9-33. 2
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9-41. Method 1: The left side divided by the right side equals∫∞
x

e−u
2/2σ2

du

σ2x−1e−x2/2σ2 .

Both numerator and denominator approach 0 as x → ∞; so we use the l’Hospital
Rule. After differentiating we multiply throughout by ex

2/2σ2
. The result is that

we need to calculate the limit of
−1

−σ2x−2 − 1
.

The limit equals 1, as desired.
Method 2: Let δ > 0. For x > σ/

√
δ,

1√
2πσ2

∫ ∞
x

e−u
2/2σ2

du

<
1√

2πσ2

∫ ∞
x

(
1 +

σ2

u2

)
e−u

2/2σ2
du

<
1 + δ√
2πσ2

∫ ∞
x

e−u
2/2σ2

du .

The expression between the two inequality signs is equal to the right side of (9.12).
(The motivation behind these calculations is to replace the integrand by a slightly
different integrand that has a simple antiderivative. One way to discover such an
integrand is to try integration by parts along a few different paths, and, then,
if, for one of these paths, the new integral is small compared with the original
integral, combine it with the original integral. Of course, Method 1 is simple and
straightforward, but it depends on being given the asymptotic formula in advance.)

9-42. an =
√

2σ2 log n

9-45. 0

9-47. If xi ≤ v + δ for every positive δ, then xi ≤ v; hence, the infimum that
one would naturally place in (9.13), where the minimum appears, is attained and,
therefore, the minimum exists. As j in the right side of (9.13) is increased, the
set described there becomes smaller or stays constant and, therefore, its minimum
becomes larger or stays constant. So (9.14) is true. The function v ; ]{i : xi ≤ v}
has a jump of size ]{i : xi = v}, possibly 0, at each v. But the size of this jump
equals the number of different values for the integer j that yield this value of v for
the minimum in the right side of (9.13). Thus, (9.15) is true. The image of χ(d)

consists of all y ∈ Rd for which y1 ≤ y2 ≤ · · · ≤ yd. For such a y the cardinality of
its inverse image equals

d!∏d
j=1(dj !)1/dj

,

where dj denotes the number of coordinates of y which equal yj , including yj itself.
To prove χ(d) continuous it suffices to prove that each of its coordinate functions

is uniformly continuous. Let ε > 0. Suppose that x and w are members of Rd for
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which |x− w| < ε. Then

{i : xi ≤ v} ⊆ {i : wi ≤ v + ε} .

Hence
]{i : xi ≤ v} ≥ j =⇒ ]{i : wi ≤ v + ε} ≥ j .

Since [χ(d)(x)]j is the smallest v for which the left side is true, we have

]{i : wi ≤ [χ(d)(x)]j + ε} ≥ j .

Therefore, [χ(d)(w)]j ≤ [χ(d)(x)]j + ε. The roles of x and w may be interchanged
to complete the proof.

9-49. The density is d! on the set of points in [0, 1]d whose coordinates are in
increasing order, and 0 elsewhere.

9-51. For n = 1, 2, . . . ,

P ({ω : N(ω) = n}) =
n

(n + 1)!
.

Also, E(N) = e − 1. The support of the distribution of Z is [0, 1] and its density
there is z ; (1− z)e1−z.

9-52. 1/16

9-53. E(X) =∞ if z ≤ 2; E(X) = ζ(z−1)
ζ(z) if z > 2. Var(X) =∞ if 2 < z ≤ 3;

Var(X) =
ζ(z − 2)ζ(z)− [ζ(z − 1)]2

ζ(z)2
if z > 3 .

The probability that X is divisible by m equals 1/mz which approaches 1
m as z ↘ 1.

9-57. The distribution of the polar angle has density

θ ;
Γ(2γ)

4γ [Γ(γ)]2
| sin 2θ|2γ−1 .

The norm is a nonnegative random variable the square of which has a gamma
distribution with parameter 2γ.


