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. The function given by

( ) =
1

can be evaluated by relating ( ) to the integral that can be obtained for ( ) by using

the substitution = with an appropriate . =

. (i) (ii) 1 +

. sup [ = ] exp = as

. Use Example 1.

. 0 309 at 0; 0 215 at 1; 0 093 at 2; 0 029 at 3; 0 007 at 4; 0 001 at 5;

0 000 elsewhere (Comment: Using a certain table we found values that did not come

close to summing to 1, so we concluded that either that table has errors or we were

reading it incorrectly. We used another table.)

. Suppose that as . Fix and suppose that there exist distri-

butions such that = . Let , and denote the characteristic functions of

and , respectively. Because the family : = 1 2 is relatively sequen-

tially compact, the family : = 1 2 is equicontinuous at 0, by Theorem 13 of

Chapter 14. Thus there exists some open interval containing 0 such that ( ) = 0

for and all . So (Problem 7 of Appendix E), ( ) = log ( ) is well-

defined for and all , and the family : = 1 2 is equicontinuous at 0.

For , ( ) = exp ( ) . Hence : = 1 2 is equicontinuous at 0.

By Theorem 13 of Chapter 14 the family : = 1 2 is relatively sequentially

compact, and, therefore, the sequence ( ) contains a convergent subsequence; let

denote the limit of such a subsequence. Since the convolution of convergent sequences

converges to the convolution of the limit, = as desired. [Comment: For fixed

we only used = for each , rather than the full strength of infinite divisibil-

ity. If is infinitely divisible we can strengthen the conclusion: From the forthcoming

Proposition 3 it follows that is never 0 and therefore that is the unique distribution

whose characteristic function is exp ( log ) and moreover, it equals the limit of the

sequence ( ).]

. By Proposition 1 the product of two infinitely divisible characteristic func-

tions is infinitely divisible. The factors we use are the characteristic function of the

compound Poisson distribution corresponding to , as in (16.1), and the function

exp
2

known by Problem 9 to be infinitely divisible. The product equals exp ( ), which

is, therefore, an infinitely divisible characteristic function. For = 0 and = ,

the second factor is the function 1 and thus we obtain the compound Poisson
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ψ u iu η ν , ν ,
σ u
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X X X j
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ψ

E X , X y ν dy

E X y ν dy , X y ν dy

E X y ν dy , X y ν dy

E X η ν , ν , , X σ .

ψ ψ ψ

χ

X

ψ

ψ u iye iy ν dy

characteristic function corresponding to an arbitrary finite measure .

. Define , 1 3, by

( ) = [ 1 1] ;

( ) = ( 1) ;

( ) = (1 )

Write = , where

( ) = 1 + ( ) ;

( ) = 1 ( ) ;

( ) = 1 ( ) ;

( ) = ( 1) + (1 ) +
2

Then has the same distribution as , where ( : 1 4) is an indepen-

dent quadruple and, for 1 4, is infinitely divisible with characteristic function

exp ( ). In view of the linearity of expectation, strengthened as in Problem 29 of

Chapter 9 for independent random variables, and the linearity of variance for indepen-

dent random variables, we have thus replaced the original problem by four subsidiary

problems—to show:

( ) = 0 Var( ) = ( ) ;

( ) = ( ) Var( ) = ( ) ;

( ) = ( ) Var( ) = ( ) ;

( ) = + ( 1) (1 ) Var( ) =

(Comments: In defining and , but not we were able to split off the term

involving . It is important that no assumptions about existence of expectations or

about finiteness of either expectations or variances are being made.)

The formulas involving are the known formulas for the mean and variance of

a Gaussian random variable. Standard applications of the Dominated Convergence

Theorem, based on bounds from Appendix E, show that has derivatives of all

orders, in particular orders 1 and 2, which may be calculated by differentiating under

the integral sign. Thus,

( ) = ( + ) ( )
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E X y R dy P M k

y R dy E M y ν dy .

E X E Y Y I

E Y E Y P M k E Y P M k

yR dy k P M k
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and

( ) = ( )

The first and second derivatives of exp ( ) exist (because those of do) and equal

the functions (exp ( )) and ( +( ) ) (exp ( )). Inserting = 0 gives

0 for the first derivative and ( ) for the second, as desired.

Turning to , with the intention of skipping because its treatment is so similar

to that of , we note that the desired formulas are obvious in case is the zero

measure and recognize that for other we may use Example 2. In this latter case we

replace by where is a probability measure on (1 ). In terms of the notation

of Example 2 we see that has the same distribution as

Using the independence of each pair ( ) and monotone convergence we obtain

( ) = ( ) [ ]

= ( ) ( ) = ( )

We go for the second moment rather than directly for the variance (a useful strategy

when monotone convergence is being used):

( ) = ( )

= 2 ( ) ( ) [ ] + ( ) [ ]

= 2 ( ) ( 1) [ ]

+ ( ) [ ]

(7.8)

The second term in (7.8) is what we want to prove the variance to be, so we only

need prove that the first term equals ( ( )) . To do this we only need show that
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v ξ

2 ( 1) [ ] = , which is a consequence of the following calculation:

2 ( 1) [ ] = 2 ( 1) [ = ]

= 2 ( 1) [ = ]

= ( 1) [ = ]

= ( ) ( ) = ( + ) =

. If = 0 and is symmetric about 0, the characteristic exponent is real because

the function

sin + ( )

is an odd function for each . Therefore the corresponding distribution is symmetric

about 0 and its characteristic exponent has the form shown.

For the converse suppose that the characteristic function is real. It follows that the

characteristic exponent is real since it is continuous and equals the real number 0 at 0.

Then

+ sin + ( ) ( ) = 0

for every . Another way to get 0 is to replace by = 0 and by defined by

( ) = ( ( ) + ( )). This change, together with no change in also leaves the

real part of the characteristic exponent unchanged. By the uniqueness of the triples in

Lévy-Khinchin representations (Lemma 11) it follows that = 0 and = . We are

done since it is obvious that is symmetric about 0. (Comment: Another approach

is to use the measure defined in Lemma 7.)

. Let have a compound Poisson distribution with corresponding Lévy measure

. Write = + , where (0 ) = 0 and ( 0) = 0. Then has the same

distribution as + , where ( ) is an independent pair of compound Poisson

random variables with corresponding Lévy measures and , the independence

being a consequence of the factorization of (16.1) induced by = + . If is

not the zero measure, then by Problem 19 there is positive probability that 0

and = 0 and thus positive probability that 0. Therefore, must be the zero

measure if [ 0] = 1.

. The moment generating functions of a gamma distribution has the form

(1 + ) . Accordingly, we want to find ( ) (with = 0) such that

log 1 + = + (1 ) ( )

By letting we see that the shift = 0. Then differentiation of both sides,

with differentiation inside the integral being justified by the Monotone Convergence
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Theorem (or in some other manner), gives

+
= ( )

It is now easy to see that the Lévy measure has the density with

respect to Lebesgue measure on (0 ).

. Statement: Let (( ), = 1 2 ), satisfy: every and every is

a Lévy measure for . For each , let be the infinitely divisible distribution on

corresponding to ( ) via the relation

( ) = exp (1 ) ( )

Then the sequence ( : = 1 2 ) converges to a distribution on different from

the delta distribution at if and only if there exist and a Lévy measure for

for which the following two conditions both hold:

[ ] = lim [ ] if 0 and = 0 ;

= lim lim sup + ( )

= lim lim inf + ( )

In case these conditions are satisfied the limit of the sequence ( : 1) is the

infinitely divisible distribution with moment generating function

exp (1 ) ( )

. limiting distribution: two-sided Poisson supported by set of integral multiples

of ; characteristic exponent: 1 cos .

. limit exists; corresponding triple: (0 1 ), where has support 1 1 and

1 = 1 = ; characteristic exponent of the limit (not requested in the problem)

is

2
+ 1 cos

. Fix and let 0. By (E.2) and (E.3) of Appendix E and Lemma 20, the

characteristic functions and corresponding characteristic exponents satisfy

1 ( ) ( ) (1 + ) 1 ( )

for all sufficiently large (depending on ) and all .

. uan condition satisfied so Theorem 25 applicable;

. exists and characterized by triple (0 0 ), where ( ) = 0;

0 =
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R B
Q B
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. limit exists; (0 log 2 0) is corresponding triple for its Lévy-Khinchin

representation

. slowly varying if 1; regularly varying of index 1 if = 1; not regularly

varying if 1

. Find a bound for

( )

. 1

. + arctan( tan ) in case (0 1) (1 2]; + arctan with =

or = according as 0 or 0 in case = 1; maximum value is 1 .

. in no domain of attraction

. characteristic exponent of limiting distribution is ;

3

and = 0.

. in domain of attraction of stable distribution with = 1 and = 1; in domain

of strict attraction of

. Identify [0 ) in a natural way with a closed subset of

[ + 1]

. Let be a continuous bounded -valued function on Υ. Then is a continuous

bounded -valued function on Ψ. Therefore

lim = lim ( ) = ( ) =

. We first prove a related assertion—namely, the one obtained by replacing the

hypothesis that is open by the hypothesis that is closed, in which case is itself

a Polish space by Proposition 3. If ( ) = 0, this modified assertion (and also the

original assertion) is clear, so assume that ( ) 0. For a Borel subset of the Polish

space let

( ) =
( )

( )
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Clearly is a probability measure. Let 0. Corollary 18, applied to the Polish

space , shows that there exists a compact set in the Polish space such that

( ) 1 and, thus,

( ) (1 ) ( ) ( )

The observation that, by Proposition 1 of Appendix C, is compact in the Polish

space Ψ completes the proof of the modification of the original assertion.

We return to the original assertion by now assuming that is open in Ψ. We will

prove that for every 0, there exists a subset of that is closed in Ψ and satisfies

( ) ( ) . An application to of the assertion proved above for closed sets

then completes the proof.

Let be a countable dense set in Ψ. It is easy to see that is a countable

subset of which, since is open, is dense in . For each , let denote the

closed ball centered at whose radius is half the distance from to . It is easy to

check that = . Replacing this union with a finite union over some finite

subset of gives a closed set, a closed set whose -measure can, by continuity of

measure, be chosen arbitrarily close to ( ), thus completing the proof.

Comment: The closed balls in the last paragraph of the proof need not be compact;

this possibility is one reason the proof is so lengthy. Another reason is that an open

subset of a Polish space is not necessarily a Polish space because it may not be complete.

Thus, an intermediate result involving a closed subset is useful.

. Let . By the Classical Central Limit Theorem,

=
( )

where is a normally distributed -valued random variable having mean 0 and

variance Var . By the Cramér-Wold Device,

some

such that has the same distribution as for each , and so we may

redefine to actually equal . Since each is normally distributed, itself is,

by definition, normally distributed.

Let = (0 0 1 0 ), where 1 is in the position. Then = , and hence

( ) = 0. Also,

Var = Var = Var

which equals the variance of the coordinate of . Therefore the mean vector of

is the zero vector and the diagonal members of the covariance matrix of are the

diagonal members of Σ.

Now let = (0 0 1 0 0 1 0 0), where 1 is in both the and

positions. Then = + and so

Var( ) = Var( ) = Var( ) + Var( ) + 2 Cov( )

The left side is the sum of the variances of the and coordinates of and twice

the covariance of the and coordinates. By the preceding paragraph the sum of

the variances of the and coordinates of equals the sum Var( ) + Var( ).
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Thus twice the covariance of those two coordinates of must equal 2Cov( ).

Therefore the off-diagonal members of the covariance matrix of are the off-diagonal

members of Σ.

. Prove that (( ) ) .

. first part: 1.

. The function is monotone (and therefore of bounded variation) on [0 1]

and, for each , the function ( ) is continuous. Hence (see Appendix D), we may

use integration by parts to rewrite the given functional as

(1) ( ) = (1 ) ( )

which in turn is the limit of Riemann-Stieltjes sums:

lim 1 ( ) ( )

Under Wiener measure, this sum is the sum of independent normally distributed

random variables each of which has mean 0 and the of which has variance (1 ) .

Therefore the Riemann-Stieltjes sum itself is normally distributed with mean 0 and

variance

(1 )

This variance is a Riemann sum for the Riemann integral

(1 ) =

By Problem 8 of Chapter 14 we see that the answer to the problem is: Gaussian with

mean 0 and variance .

. We treat the case = ; the case = 0 is similar. Following along the lines of

the argument in the text, but using the fact that ( ) = 1 is possible if ( ) 1 and

impossible if ( ) 0, we obtain

( : ( ) = 1 )

=
1

2

1

1 2
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( ) 2

1

2
+

1

2
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which, because of Lemma 12, equals
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A straightforward induction proof that
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completes the proof. [For = 0 (the starting value for the induction proof), the left

side equals the probability—namely 1 —that the time of first return to 0 equals some

finite value, and 1 is also the value of the right side when = 0.]
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. We need to show that the value of the derivative of the moment generating

function at 0 equals . By definition, the derivative there equals

lim
sinh( 2 ) + sinh( 2 ) sinh(( + ) 2 )

sinh(( + ) 2 )

= lim
2[sinh( ) + sinh( ) sinh(( + ) )]

sinh(( + ) )

Now three applications of the l’Hospital Rule yield the desired result.

. ( )

. Proof of (iv): By the Cauchy-Schwarz Inequality

( ) = ( 1) ( ) (1 ) = (( ) ) 0

Proof of (iii), using (iv):

lim sup ( ) ( ) + limsup ( ) = ( )

and

( ) lim inf ( ) + ( )

lim inf ( ) + lim sup ( ) = lim inf ( )

from which the desired conclusion follows.

. By the sentence preceding the problem, ( ) = 0 for each and ( ) = ( ).

Hence, ( ) = 0. Our task has become that of showing (( ) ) = 0 for

each . In view of the fact that each is a linear combination of 1 and the various

and that we have already shown that (( )1) = 0, we can reformulate our task

as that of showing that ( ) = ( ) for each .

From the definition of we obtain

( ) = 1 ( ) + ( ) = = ( )


