Solutions, answers, and hints for selected problems

Asterisks in “A Modern Approach to Probability Theory” by Fristedt and Gray
identify the problems that are treated in this supplement. For many of those
problems, complete solutions are given. For the remaining ones, we give hints,
partial solutions, or numerical answers only.

For Chapter 1

1-2. Method 1: By the Binomial Theorem,

zn: (Z) = zn: (Z) "Fh = (1) =2n

k=0 k=0

and, for n > 0,

> (Z)(—l)k => (Z) ")t =1 -1 =0.

k=0

Addition and then division by 2 gives

= n

=2""",

> (1)
k even

The answer for positive n is 2"71/2" = 1/2. The answer for n = 0 is easily seen to

equal 1.

Method 2: For n > 1 consider a sequence of length (n — 1). If it contains an even
number of ‘heads’, adjoin a ‘tails’ to it to obtain a length-n sequence containing an even
number of ‘heads’. If it contains an odd number of ‘heads’; adjoin a ‘heads’ to it to
obtain a length-n sequence containing an even number of ‘heads’. Moreover, all length-
n sequences containing an even number of ‘heads’ are obtained by one of the preceding
two procedures. We have thus established, for n > 1, a one-to-one correspondence
between the set of all length-(n — 1) sequences and the set of those length-n sequences
that contain an even number of ‘heads’. Therefore, there are 2"~ ' length-n sequences
that contain an even number of ‘heads’. To treat the remaining case n = 0, we observe
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that the empty sequence, which is the only length-0 sequence, contains zero ‘heads’.
Since 0 is even, there is 1 length-0 sequence containing an even number of ‘heads’.

1-4. 277

1-10. The thirty-six points to each of which is assigned probability 3—16 are the ordered
pairs (r,g) for 1 <r < 6and 1 < g < 6. The coordinates r and g represent the numbers
showing on the red die and green die, respectively.

1-11. The set consisting of a single sample point, being the intersection of countably
many events A of the form (1.2), is an event. Its probability is no larger than that of
any such A. For each n and each sample point, there is such an A that has probability
27", Thus, the probability of that sample point is no larger than 27", Letting n — oo
we see that the probability of the sample point is 0. The process of flipping a coin until
the first tails occurs terminates in a finite number of steps with probability 1.

1-12. (i) Sum the answer to Problem 4 over odd positive j to obtain 2.

3

(i)

(iii) (Caution: it is common for students to use invalid reasoning in this type of
problem.) We use ‘1’ and ‘0’ to denote heads and tails, respectively. Let S denote the
set of finite sequences s of 1’s and 0’s terminating with 1, containing no subsequence of
the form (1,0,1) or (1,1,1), and having the additional property that if the length of s
is at least two, then the penultimate term in s is 0. For each s € S, let A be the event
consisting of those infinite sequences w that begin with s followed by (0, 1, 1), (0, 1,0),
or (1,0,1) in the next three positions, and let Bs be the event consisting of those w
that begin with s followed by (1,1,1) or (1,1,0) in the next three positions. Note that
each A, and B is a member of £. Clearly 2P(A,) = 3P(Bs).

Let A =|]J,.gAs and B = J,_g Bs. Straightforward set-theoretic arguments show
that A consists of those w in which (1,0, 1) occurs before (1,1,1), B consists of those
w in which (1,1,1) occurs before (1,0,1). By writing A and B as countable unions
of members of £, we have shown that they are events. Note that in each case, these
unions are taken over a family of pairwise disjoint events, from which it follows that

2P(A) =2 P(A) =3 P(B,)=3P(B).

seS seS

Also, A and B are clearly disjoint, so
P(A)+ P(B)=P(AUB)=1—- P(A°N B°).

We will show that P(A° N B¢) = 0, so that the above two equalities become two
equations in the two unknowns P(A) and P(B), the solution of which gives P(A) = 2.

To show that P(A° N B°) = 0 we note that A° N B° is a subset of the event Dy
consisting of those w that begin with a sequence of length 3k having the property that,
for 1 < j < k, the sequence (1, 1,1) does not occur in positions 3j — 2, 3j — 1, 3j. The
number of ways of filling the first 3k positions of w with 1’s and 0’s is 2% = 8*. The
number of ways of doing it so as to obtain a member of Dy, is 7% (7 choices for positions
1,2, 3; 7 choices for positions 4, 5,6 and so forth.). Thus, P(A°NB°) < P(Dy) = (g)k
Now let k — oo to obtain the desired conclusion, P(A° N B¢) = 0.

(iv) g
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1-14 Let B denote the Borel o-field of R, C the Borel o-field of RT, and
G={BecB:BCR"}.

The goal is to prove C = G.

We first prove that G is a o-field of subsets of RT. Countable unions of members of
B are members of B and unions of subsets of RT are subsets of RT. Hence, G is closed
under countable unions. The complement in R of a member G of G equals R™ N G¢,
where G° denotes the complement in R. This set is clearly a subset of Rt and it is also
a member of B because it is the intersection of two members of B. Therefore, G is a
o-field.

The open subsets of R have the form RT™NO, where O is open in R. Such sets, being
subsets of RT and intersections of two members of B, are members of G. Thus, the
o-field G contains the o-field generated by the collection of these open subsets—namely
C.

To show that G C C we introduce the Borel o-field D of subsets of (—oo,0) with the
relative topology and set

H={CUD:CeC,DeD}.

We can finish the proof by showing that B C H, because C consists of those members
of H which are subsets of RT. It is clear that H is closed under countable unions. The
formula

(CUD)* = ([RNC) U ((—o0,0)\D)

for C CR* and D C (—o0,0) shows that it is closed under complementation. So H is
a o-field. For any open set O € R, the representation

O0=ER"N0O) U ((—0,0)N0O)

represents O as the union of open, and therefore Borel, subsets of the spaces R* and
(—00,0). Thus, the o-field H contains the o-field generated by the collection of open
subsets of R —namely B.

1-16 Hint: It suffices to show that every open set is the union of open boxes having
edges of rational length and centers with rational coordinates.

For Chapter 2

2-2. Let X be a continuous function. For any open B of the target of X, X !(B) is
open by continuity, and thus is an event in the domain of X. Now apply Proposition 3
with £ equal to the collection of open subsets in the target of X.

2-3. Let B be an arbitrary measurable set in the common target of X and Y. We need
to show that
P{w: X(w) € B}) = P({w: Y(w) € B}).

Here is the relevant calculation:
P{w: X(w) € B})
=P{w: X(w) € B, Y(w) = X(w)}) + P{w: X(w) € B, Y(w) # X(w)})
= P{w: X(w) and Y(w) € B, Y(w) = X(w)}).
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In this calculation, we used the fact that the event in the second term of the second
line is contained in a null event. To complete the proof, carry out a similar calculation
with the roles of X and Y reversed.

2-9. By Problem 13 of Chapter 1 and Proposition 3 we only need show that the set
A={w: X(w) <c}is a Borel set for every ¢ (or even just for every rational c). Let
a equal the least upper bound of A. We will prove that every member of the interval
(—o0,a) belongs to A. Suppose w1 < a. Since a is the least upper bound of A, there
exists we € A for which w1 < wz. Then

X(w) € X(w2) <c,

from which it follows that w1 € A. Thus, A is an interval of the form (—oo,a) or
(=00, a] and is, therefore, Borel.

2-12. 3

2-14. The distribution is uniform on the triangle {(v1,v2) : 0 < v1 < v2 < 1}. If B
is a set for which area is defined, the value that the distribution assigns to B is twice
its area, the factor of 2 arising because the triangle has area % To prove that X is a
random variable—Hint: Prove that X is continuous, or, alternatively, avoid the issue
of continuity of a R%valued function by first doing Problem 16 and then using it in
conjunction with a proof that each coordinate function is continuous.

2-19. In case k is divisible by 4, the answer is
LEAPES
k/4

2-21. The Hausdorff distances are 1+2‘6 between the first two; % between the first and

third; 2*—2‘/5 between the second and third.

Otherwise, the answer is 0.

2-22. These are the probabilities: %, %6, ”8—;2.

For Chapter 3

3-3. Fix w. Since F is increasing, every member of {z: F(z) < w} is less than every

member of {z: F(z) > w} and is thus a lower bound of {z: F(z) > w}. Hence Y (w) €of

sup{z: F(z) < w} is a lower bound of {z: F(z) > w}. Therefore Y (w) < X (w).

To prove Y (w) = X (w), suppose, for a proof by contradiction, that Y (w) < X (w),
and consider an z € (Y (w), X (w)). Either F(z) > w contradicting the defining property
of X(w) or F(x) < w contradicting the defining property of Y (w). Thus Y = X, and
we will work with Y in the next paragraph.

Clearly, Y is increasing. Thus, to show left continuity we only need show Y (w—) >
Y (w) for every w. Let § > 0. There exists u > Y (w) — 6 for which F(u) < w. Hence
there exists 7 < w such that F(u) < 7. Therefore

Yw=)>2Y(r) >u>Y(w)—6.
Now let 6 \ 0.
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3-8. Whether a or b is finite or infinite,

Q((a,b)) = / m dz.

When a and b are finite this formula is also a formula for Q([a,b]), and similarly for
Q([a,b)) and Q((a,b]) in case a > —oo or b < oo, respectively. Note that the formula
for Q([a, b)) is correct in the special case a = b.

3-12. Explanation for ‘type’ only. Suppose first that Fi and F» are of the same type.
Then there exist random variables X; and X2 of the same type such that F} is the
distribution function of X;. Then F3 is also the distribution function of aX; + b for
some a and b with a > 0. Thus

Fy(z) = Pw:aXi(w)+b<z})=P{w: Xi(w) < (x—b)/a}) = Fi((x — b)/a) .

That is F1 and F> must satisfy (3.2).

Conversely, suppose that F> and Fi satisfy (3.2) for some a and b with a > 0. Let
X1 be a random variable with distribution function Fi. the above calculation then
shows that aX7 + b is a random variable whose distribution function is F>. Therefore
F5 is of the same type as Fi.

3-23. X is symmetric about b if and only if its distribution function F satisfies F(z —
b) =1— F((b— z)-—) for all z.
For the standard Cauchy distribution

F(z) = % + arct:nm _ % 4= arctin(fx)
=1 (5 ) 21 (g D) <1 P,

3-28. A random variable X having the Cauchy distribution of Problem 8 has density

T~ For positive a and real b the continuous density of aX + b is & ~-

1
ATy
m(a®+(@=b)%)"

The density of the uniform distribution with support [a,b] is ;- on the interval
[a,b] and 0 elsewhere.

3-30.

o0
- — o0
/ ae” Cdxr = —e “z|0 =1
0

Pw:2< X(w)<3})=e 2 —e ™%

median = o~ " log 2

3-33. g(z) = 55 [f (Vo) + f(=Va)] if > 0 and g(z) =0 if 2 < 0.
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L(y+1) :/ uwe " du = —/ u’ de "
0 0

:/ v e du = AT (7).
0

3-34. (i)

(ii) An easy calculation gives I'(1) = 0!. For an induction proof assume that I'(y) =
(v — 1)! for some positive integer v. By part (i),

T(vy+1) =T(y) =y - DY ="

Note that the last step in the above calculation is valid for v = 1. That this step be
valid is one of the motivations for the definition 0! = 1.

(i)
F(%):/ u_l/Qe_“du:/ \/56_”2/2600,
0 0

which, by Example 1 and symmetry, equals /7. Now use mathematical induction.

(iv)
L(a)'(B) = /00 /°° w0 e () qu do
o Jo

:/ / (w—v)* e dwdv

0 v

:/ / (w—v)* e ™ du dw
o Jo

oo 1
:/ / w1 — 2)* P e da dw,
o Jo

the interchange of order of integration being valid, according to a result from advanced
calculus, because the integrand is continuous and nonnegative. (The validity of the
interchange in integration order is also a consequence of the Fubini Theorem, to be
proved in Chapter 9.) The last expression is the product of the two desired integrals.

3-40. Hint: For b=1 and = > 0,
PHw: —logX(w)<z})=PHw: X(w)>e “)=1—-¢",
the standard exponential distribution function.

3-41. Denote the three distribution functions by G;, i = 2,3,4. For each i, G;(y) =0
when y < 0 and =1 when y > 2. For 0 <y < 2:

For Chapter 4
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4-7. n?p? 4 npq (notation of Problem 39 of Chapter 3)
4-8.7/2

4-9. For this problem, denote the expectation operator according to Definition 1 by Es
and the expectation operator according to Definition 5 by E,. Let X be nonnegative
and simple. Thus, Fs(X) and E,(X) are meaningful. Since X qualifies as an appro-
priate Z in the definition E,(X) = sup, Es(Z), we see that E,(X) > Es(X). On the
other hand, Lemma 4 implies that for all simple Z < X, Es(Z) < Es(X), from which
it follows immediately that E,(X) < Es(X).

4-10. The random variable X defined by X(w) = 1, defined on the probability
space ((0,1], B, P), where P denotes Lebesgue measure, has expected value co. This is
seen by calculating F(X,) for simple random variables X,, < X defined by X,(w) =

([X(@)]) An.

4-11. We treat the case a = b = 1. The following calculation based on the definition
of expectation for nonnegative random variables and the linearity of the expectation
for simple random variables shows that E(X)+ E(Y) < E(X +Y):

E(X)+ E(Y)
=sup{F(X"): X' < X and X' simple} +sup{E(Y"): Y' <Y and Y’ simple}
=sup{E(XY+ E(Y’'): X' < X,Y' <Y and X', Y’ simple}

(X
=sup{E(X'+Y'): X' < X,Y' <Y and X', Y’ simple}
<sup{E(Z): Z< X +Y and Z simple} = E(X +Y).

To prove the opposite inequality, let Z be a simple random variable such that Z <
X +Y. By the construction given in the proof of Lemma 13 of Chapter 2, we can find
sequences (X,:n =1,2,...) and (Yn: n =1,2,...) of simple random variables such
that for all w and all n,

X(@)An— £ < Xo(w) < X(w) and
Y(w)An— - <Yp(w) <Y (w).
It is easily checked that X, + Y, > Z —1/2" for n > max{Z(w): w € 2}. Thus

sup B(X.,) + sup E(Y,) > B(Z),

and the desired inequality E(X) + E(Y) > E(X 4+Y) now follows from the definition
of expected value.

4-14. For this problem, denote the expectation operators according to Definition 1,
Definition 5, and Definition 8 by Fs, E,, and Ey, respectively. Let X be simple (but
not necessarily nonnegative). We use (4.1):

X = ZC]'ICj .
j=1
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Since {C; : 1 < j < n} is a partition,

Xt=3" ol

jicj >0

XT== > ¢le,.

jic; <0

and

For these nonnegative simple random variables we have, using Problem 9, that
Ep(X1) = BJ(XT) = > ¢;P(Cy)
jicj >0

and

jic; <0

By these formulas and Definition 8,

Eo(X) = Ep(XT) ~ Ep(X7) = ich(Cj) = E(X).

4-21. The case where F(X1) = 400 is easily treated, so we assume FE(X1) is finite and,
therefore, P({w : |X1(w)| = }) = 0. Accordingly, except for w belonging to some
null set, we may define Y, (w) = X, (w) — X1(w) and Y (w) = X(w) — X1(w). For w in
the null set we set Y, (w) = Y (w) = 0. Applying the Monotone Convergence Theorem
to the sequence (Y1,Y2,...), we deduce that E(Y,) — E(Y) as n — oo. It follows, by
property (iii) of Theorem 9, that

lim E(anXl) HE(X*Xl).

n— oo

Since F(X1) is finite we may apply property (i) of Theorem 9 to conclude
lim [E(X,) — E(X1)] — BE(X) — E(X1).

n— oo

Now add F(X1) to both sides.

4-22. BE(X)= 2 EB(X? = ?1(1_:?22 (notation of Problem 11 of Chapter 3)

4-23 E(X) = A, E(X?) = XA+ )\? (notation of Problem 37 of Chapter 3)
4-26 The distributions of X —b and b — X are identical. By Theorem 15 they have the

same mean. By properties (i) and (ii) of Theorem 9, these equal numbers are E(X) —b
and b — E(X). It follows that F(X) = b.

4-29. b (notation of Example 1 of Chapter 3)

4-30. For standard beta distributions (that is, beta distributions with support [0, 1]),

the answer is 95 (notation of Example 3 of Chapter 3).

4-31. E(X) = 1/k, E(expoX)=ocif k<land = 2 if k> 1

4-35. B(X1) = B(Xs) = 1, BE(X2) = §, B(X4) = 5
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For Chapter 5

5-7. Var(X;) = Var(X3) = 258 Var(X,) = 32;3”2, Var(Xy) = 2
5-13. Cov(aX + b,cY +d) = acCov(X,Y)
5-14. An inequality, based on the fact that ¢ is increasing will be useful:
(X = E(X)](poX) = [X - E(X)]p(E(X)).
The following calculation then completes the proof:
Cov(X, 9o X)=E([X — E(X)][po X — E(po X)))
= E([X — E(X)](po X))
> B(IX - B(X)] p(E(X))) = 0.
(A slightly longer, but possibly more transparent proof, consists of first reducing the

problem to the case where E(X) = 0 and then using the above argument for that
special case.)

5-17. For Example 2 of Chapter 4, the answer is 1; for Problem 18 of Chapter 4, the
answer is 0 or 1 according as n is odd or even.

5-29. 5(0,0) = s(1,1) = 5(2,2) = 5(3,3) = 1, s(1,0) = 5(2,0) = 5(3,0) = 0, 5(2,1) =
-1, s(3,1) = 2, s(3,2) = =3, s(n,k) = 0 for k > n; S(0,0) = S(1,1) = S(2,2) =
S(3,3) = 1, S(1,0) = S(2,0) = S(3,0) = 0, S(2,1) = S(3,1) = 1, 5(3,2) = 3,

S(n,k) =0for k >n

5-32. p(1—) = 1. Thus, if p is the probability generating function of a distribution
Q, then Q({oo}) = 0. To both show that p is a probability generating function and
calculate Q({k}) for each k € Z1 we rewrite p(s) using partial fractions:
—24 8 24 16 8
pls) = 2_s ' (2—s)? + 375Jr (3—s)2 + (3—s9)3
_ . —12 n 2 n 8 n 16/9 n 8/27
=62 T a2 T =3 T U= (532 T U= (5/3)

The first two of the last five functions are equal to their power series for |s| < 2 and the

last three for |s| < 3. So we can expand in power series and collect coefficients to get a
power series for p(s) that can be differentiated term-by-term to obtain the derivatives
of p(s). Thus, we only need to show that the coefficients are nonnegative in order to
conclude that p(s) is a probability generating function, and then the coefficients are
the values Q({k}).

Formulas for the geometric series and its derivatives give

422 5) +2i(k+1) (%) +SZ

§Zk+1 ()4 2> (k+ 1)k +2)(5)".

k=0

O«M
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When we collect terms we get nonnegative—in fact, positive—terms, as desired:

kE—5 4k 4+ 60k + 272
Qk}) = ok—1 + 3k+3

To get the mean and variance it seems best to work with p(s) in the form originally
given and use the product rule to get the first and second derivatives:

() = 16 N 24
PR = 2 —spBB—s? T 2-92@B—9)

and
48 96 96

P = i T 2—spBos T @—sPB sy

Insertion of 1 for s gives

p/(l):g and p"(1)=15.

Hence, the mean equals % and the second moment equals 15 + g = % Therefore, the
variance equals % — 47? = % and the standard deviation equals g

Had the problem only been to verify that p is a probability generating function, we
could have, while calculating the first and second derivatives, seen that a straightfor-
ward induction proof would show that all derivatives are positive, and an appeal to

Theorem 14 would complete the proof.

5-33. The mean is co and thus the variance is undefined. The distribution ), corre-
sponding to the probability generating function with parameter p satisfies Qp({o0}) =
|1 —2p|. Also, for 0 < k = 2m < oo,

2m — 2
m—1

Qp({2m}) = % ( ) [p(1—p)]™.

For k odd and k£ =0, Q»({k}) = 0.

For Chapter 6

6-6. Method 1: Using Problem 4, we get

(liminf A,)° = (U

Method 2: We prove that the indicator functions of the two sets are equal:

Tim sup 4n)e = 1 — Nimsup A, = 1 — limsup{/a,}

= hmmf{(l — IAn)} = llmlnf{IA%} = Ilim inf A¢ -



