Solutions, answers, and hints for selected problems

Complete solutions of some problems are given. Answers only are given for some
other problems. For still others, only hints or partial solutions are given. Asterisks
in “A Modern Approach to Probability Theory” by Fristedt and Gray identify the
problems that are treated in this supplement.

For Chapter 29

29-5. Let r =370 7.
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29-8. P[X(B) =z] = W(Z), 0 < z <r. Thus the distribution of X (B)
£B

n

PIX{1} = k] =

PIX{1} =k, X{2} = 1] =

PIX{1} =k, X{2} =1, X{3} =m] =

is binomial with parameters and 7.

29-13. Let (V,,: n > 0) be a renewal sequence. Define a random measure X on 7+
by X{n} =V,,. Clearly X is a point process and its intensity measure equals the
potential measure of the renewal sequence.

29-18. We use the formula for the probability that a Poisson random variable
equals 0. For v > 0,
PV >v]=P[X({0,1,...,v—1})=0]=e"".
Then
PV =v]=P[V>v]-PV>@w+1)]=e"—e ) =(1—-¢1e".

29-23. Write

YU{O}Z{OZYO<Y1 <Y, <...},
and let (Sp = 0, 51,59, ...) be arandom walk having exponentially distributed steps
with mean ¢~!. For an arbitrary positive integer n we will show that (Y7,...,Yy,)
and (S1,...,S,) have the same distribution, thereby finishing the proof. We will

1
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verify that the distribution of each of these random vectors has the same density
with respect to n-dimensional Lebesgue measure—mnamely,

eV H0<y; < <Yn

(yla--wyn)'\” { (0'1)

0 otherwise.

To check that this is the correct density for (Y7,...,Y,) we integrate it over a
set of the form [, [u;,v;), where

O=wvw<u <v1<us<-<uUu, <v, =00.

We get
n—1 n—1 n
e Cun H c(v; —u;) = (H c(v; — ui)e_c(”"’_""')) (H e_(“"’_”i—l))
i=1 i=1 i=1
n—1 n
— (T PE0 sy = 1) (TLPEO 0 o1.0) = 0]
i=1 i=1
= P[Y; € [u;,v;) for 1 <i<mn],
as desired.
We know that the density of ((S1 —So), (S2 —S1), ..., (Sn — S1)) is
[T, ce~e® if each z; > 0
(1, Tp) ~ ¢
0 otherwise .

We can get the density of (Si,...,S,) by using the linear transformation y, =
r1+ -+ w2, 1 <k <n, the Jacobian of which equals 1. The result is the desired
density (7.15).

29-24. Hint: One approach is to start with sequences U and V having the desired
properties and then use Problem 23 to show that {(U,,V,):n = 1,2,...} is a
Poisson point process with intensity measure A x p.

29-26. ¢ 3

29-29. 7, I

29-34. h~ L3 k(i) for r =1; h~ L[5  [R()] 7 [T0, h(j) forr=n—1

i=1 j=1
29-39. h~ exp(— > pew(l— h(¢))), where W is the countable set

29-43. The probability generating functional of X + Y is
h ~> E( H [h(¢)](x+w({w}>) = E( H [h(y)] XD [hw)]w{w}))

pevw PYEY

— E({H [hw)]X({w})} [H [hw)]Y({w})])

YeT pET
= B( [T (@)X ) B(T] i) D),
pevw PYEY

which is the product of the probability generating functionals of X and Y.
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29-50. Suppose that X, P Xasn— oo; that is, @, — @, where @,, and @Q
denote the distributions of X,, and X, respectively. Let h be in the domain of the
probability generating functional of @ (and thus of each Q). Assume first that h
is bounded below by a positive constant. Then the function

T~ /log(l/h) drm
is continuous, and thus the same is true for the function
T~ e J1o8(1/h) dm . (0.2)

For this latter function it is straightforward to remove the assumption that h be
bounded below by a positive constant (of course, using the conventions co - 0 = 0
and e~ = 0). That

/e—flog(l/h) 40, — /e—flog(l/h) 40

follows from the continuity of the function (7.16). That the limiting probability
generating functional has the property described in the theorem is a consequence
of Proposition 16 which says that all probability generating functionals have a more
general property.

For the converse suppose that F is the limit of a sequence of probability gen-
erating functionals corresponding to a sequence (Q,: n =1,2,...) of distributions
of point processes in a locally compact Polish space ¥, and that F satisfies the
condition in the theorem. Let C' be any compact subset of ¥. By using Lemma 1
one can show that there exists a compact set B such that every point of C is an
interior point of B and that therefore there exists a continuous [(1 — 1), 1]-valued
function h,, such that hy,(¢) =1 — % for ¢ € C and hy,(¢)) =1 for ¢ € B°.

Let £ > 0 Since F(hy,) — 1 as m — oo, we can fix m so that for all n

Qn{m: w(C) <z} > / H[hm(w)]ﬂ({w}) Qn(dr)

m: w(C)<z} o

Z1-5- (-3

m
which is larger than 1 —e¢ for sufficiently large z. By Theorem 19, every subsequence
of (@) has a convergent subsequence. By the first paragraph of this proof, F is
the probability generating functional of every subsequential limit. By Theorem 14
all subsequential limits are identical. Therefore, the sequence (Q),) itself converges
to a limit whose probability generating functional is F.



