
∞
−

↘

↘

∑ ( ) ( )

√ √ √

[ ]

∑

= +2
even

2+
2

0

0 2

2 2 2

=1

19-11

19-27

20-5

20-6

20-15

For Chapter 20

For Chapter 21

j n
j

j

n

π
π

u

w

n n n n

n n

n n

n n n

i

i

i j

j j

j j

m

i

i i j j j

40 SOLUTIONS, ANSWERS, AND HINTS FOR SELECTED PROBLEMS

−

≈

−
√ √

−
√

√

−

| − | | − | ≤ | − | − →

| | ≤ | | | − | | |

| | ≤ | | | − |
≤ | | | − | | |

− −

−

〈 〉 〈 〉 〈 〉

j

j

j/

n

n/

n

n

.

ab

a u b u a b u

u a b u
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E X

E X X E X X E X X E E X X .

E X E X E X X E X

E X E X E X X

E X E X X E X ,

E V i E Z E X

E X Z E X Z Y

i Y V

E X Z

E XV E ZV j

Z

E ZV X, E V X, V E V V X, V E XV .

A straightforward induction proof that

1

1 2

1

2
=

2
2

completes the proof. [For = 0 (the starting value for the induction proof), the left

side equals the probability—namely 1 —that the time of first return to 0 equals some

finite value, and 1 is also the value of the right side when = 0.]

. 0 82

. We need to show that the value of the derivative of the moment generating

function at 0 equals . By definition, the derivative there equals

lim
sinh( 2 ) + sinh( 2 ) sinh(( + ) 2 )

sinh(( + ) 2 )

= lim
2[sinh( ) + sinh( ) sinh(( + ) )]

sinh(( + ) )

Now three applications of the l’Hospital Rule yield the desired result.

. ( )

. Proof of (iv): By the Cauchy-Schwarz Inequality

( ) = ( 1) ( ) (1 ) = (( ) ) 0

Proof of (iii), using (iv):

lim sup ( ) ( ) + limsup ( ) = ( )

and

( ) lim inf ( ) + ( )

lim inf ( ) + lim sup ( ) = lim inf ( )

from which the desired conclusion follows.

. By the sentence preceding the problem, ( ) = 0 for each and ( ) = ( ).

Hence, ( ) = 0. Our task has become that of showing (( ) ) = 0 for

each . In view of the fact that each is a linear combination of 1 and the various

and that we have already shown that (( )1) = 0, we can reformulate our task

as that of showing that ( ) = ( ) for each .

From the definition of we obtain

( ) = 1 ( ) + ( ) = = ( )
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P B I , , P Y

, , P

E I P B I Y .

E I P B I Y .

I Y

P B

X P B I

X C

E XI P A B C .

E P B I P B A C .

A C

P B

, , P

X σ C

σ C

E XI P A

E XI
P A C

P C
E I I P A C

E XI
P A C

P C
E I I P A C .

E XI E XI E XI P A C P A C P A .

ω

ω ω ω ω

ω ω ω ω

ω ω ω ω

ω

ω
ω ω ω ω

ω

. By Definition 1: Clearly, ( ) is a member of (Ω ). Let

(Ω ). To finish the proof we must show

[ ( ) ] = 0

That is we must show that

[ ( )] [ ] = 0

In view of the fact that is -measurable, this statement follows from the definition

of ( ).

By Proposition 2: Let = ( ) . Condition (i) of Proposition 2 is clearly

satisfied by . To check condition (ii), let . Then we must show that

( ) = (( ) )

That is, we must show that

( ( ) ) = ( ( ))

In view of the fact that , this last statement follows from Proposition 2

applied to ( ).

[Comment: Notice the similarity between the two proofs. Proposition 2 says that

the orthogonality condition entailed in Definition 1 need only be checked for indicator

functions of members of rather than for every member of (Ω ).]

. The right side of (21.1) is obviously ( )-measurable. To check the sec-

ond condition in Proposition 2 we only have to consider the four members of ( ).

Obviously ( ) = 0 = ( ). Also,

( ) =
( )

( )
( ) = ( )

and similarly,

( ) =
( )

( )
( ) = ( )

Finally,

( ) = ( ) + ( ) = ( ) + ( ) = ( Ω)

. (ii)

1 if + + + = 4

if + + + = 2

if + + + = 0

0 otherwise

for the particular given

(v)

if + + + = 0

0 otherwise

for the particular given
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m ω ω
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v v

Q Y δ x

ω,B Q X ω , δ B Q B ,X ω .

B ω ω

B

Q

X δ c

g X

g w
δ δ f w f w

Q f w f w .

ω, x

e X ω t , x t

e X ω < t , x t

. The general formula is

16 ( )

where

= : = 2 1 = 2 1 = 2 1 = 2 1

(ii)

1 if + = 2

0 otherwise

0 for the particular given

(v) same answer as problem 8

. For each positive integer and almost every ,

(lim sup )( ) ( ) ( )( )

For those for which the sum on the right is finite, that sum can be made arbitrarily

close to 0 by choosing sufficiently large (depending on ). For such an the proba-

bility on the far left must equal 0 since it does not depend on . This completes the

proof of the first of the two assertions in the problem.

.

. It is possible that the image of is not a measurable subset of Ψ.

.

. With denoting the distribution of and the delta distribution at , a

conditional distribution is the function

( ) [ ( ) ) ( ) + ( ( )

(Various functions are presented via this notation: one function of two variables, func-

tions of for various fixed values of , and functions of for various fixed values of

.)

. With denoting any fixed distribution [for instance, the (unconditional) dis-

tribution of and denoting the delta distribution at , a conditional distribution is

, where

( ) =
+ if ( ) + ( ) = 0

if ( ) + ( ) = 0

.

( )

if ( )

if ( ) 0

0 otherwise
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y x x e
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γ γ

γ Y ω γ

x , x x Y ω Y ω >

X , . . . ,X Y ω

σ σ

, σ ,
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X X ,X ,X X X
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X
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n

S ω / n S ω / p

, ,

, ,

I I I

I n m n m

I I x , y

, c

x , y c

c

. The density is

( )
( )

Γ( ) Γ( )

for 0 + + .

Let = + + . A conditional density of ( ) given ( ) is

( ( ))

1 Γ( + + )

Γ( ) [ ( )] Γ( )

for 0 + + ( ) if ( ) 0 and the unconditional density of

( ) if ( ) 0. [Note the relationship to the Dirichlet distribution which

is described in an optional section of Chapter 10.]

. Let Ω consist of the four points corresponding to two independent fair coins.

Let denote the -field generated by the first coin and the -field generated by the

second coin. By definition, ( ) is an independent pair and it is clear that ( )

consists of all subsets of Ω. Thus, any -field consisting of subsets of Ω is a sub- -field

of ( ). Let be the -field generated by the event that exactly 1 head is flipped.

Given the conditional probability of any member of different from and Ω equals

as does the conditional of any such member of . But, there is no event that has

conditional probability given equal to = .

. If were to exist so that ( ) is exchangeable, then, since + = 0

with probability 1, it would follow that + = 0 and + = 0 with probability

1. By solving three equations in three unknowns it would then follow that = 0 with

probability 1, a contradiction.

. Apply ( ( )) = ( ) for various choices for .

. uniform on the set of those sequences of 1’s that contain [ +

( )] 2 1’s and [ ( )] 2 1’s. [Comment: The answer does not depend on .]

. first term equals 1 with probability . conditional distribution of second

term given first term: equals 1 with probability if first term equals 1 and equals

1 with probability if first term equals 0. distribution of first two terms: equals

(1 1) with probability and equals (0 0) with probability

and equals (1 0) and (0 1) each with probability

. By exchangeability, the correlation of and is the same as that of and

if = ; of course, it equals 1 if = .

The correlation of and equals , which approaches 0 as ( )

( ) and approaches 1 as .

For large ( ) the knowledge of the color of a fixed number of balls in the urn

hardly influences the probability that a blue ball will be drawn. For large , the second
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a < b c

P I n > m E P I n > m σ X , Y

E
Y n m c

X Y n m c

E

m

P ω I ω P ω I ω

P ω I ω

,

I n , , . . .

S n , m

ω , σ P X

nI X ω ω E X

σ , m , , . . . .

Y ω X E Y ω

< ω E Y ω < ω

E X

ω ω

E X ω n >

b

b

b X Y

Y X b X Y

ball drawn is very likely to be of the same color as the first ball since after the first ball

is drawn almost all the balls in the urn will have the same color as the first ball.

. Using the fact that = 0 if 0 and 0 , we have

[ = 0 for ] = ( [ = 0 for ( )])

=
+ ( 1)

+ + ( 1)

= (0) = 0

for each fixed . Hence

(lim inf : ( ) = 0 ) = : ( ) = 0

: ( ) = 0

= 0 = 0

from which it follows that the first event in the problem has probability 1. That the

second event given there also has probability 1 follows by applying the result already

proved to the sequence ((1 ) : = 1 2 ), an application which is seen to be valid

by interchanging the colors of the balls.

. ( 1) ( 1)

. Use Problem 14 of Chapter 5.

. Let = (0 1], the Borel -field, and Lebesgue measure. Let =

. Then ( ) 0 for every and ( ) = 1, so the (unconditional) Domi-

nated Convergence Theorem must not apply. Let

= (2 2 ] : = 1 2

The random variable ( ) = dominates every and satisfies ( )( ) =

2 log 2 for 2 2 . In particular ( )( ) for every . Hence

the Conditional Dominated Convergence Theorem applies. We conclude that (

)( ) 0 for almost every , a fact that we could have also obtained by directly by

observing that ( )( ) = 0 for .

. Problem 21 of Chapter 21

. (for all ), which is larger than , the (unconditional) expectation. The

following paragraphs present various ways of looking at the situation.

Fix . If, before the random experiment begins, it is understood that one will be told

whether or not is between and , one will clearly want to assign a larger value to

the expectation of in case is between and and a smaller value otherwise.
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A ω E E X I ω < .

ω A

xZ ω, dx < ,

Z E X I E Z , I

P ω E X I ω A .

E E X E X I ω

An appropriate weighted average of these two numbers equals , so, as expected, the

first of these two numbers is larger than .

Knowing that exactly one of two order statistics from the uniform distribution on

(0 1) is larger than gives no reason for biasing one’s estimate for it among the various

values larger than . Thus, the conditional mean of its excess over is half the distance

from to 1 —namely, . Similarly the conditional mean of the difference between

and the smaller of the two order statistics is . The sum of these two conditional

expectations is , independently of .

Here is a second method of getting an intuitive feel for the value . Fix the number .

Pick three iid points , , and on a circle of circumference 1. Cut the circle at

in order to straighten it into a unit interval with the counterclockwise direction on the

circle corresponding locally to the direction of increase on the unit interval. Then set

the smaller of and equal to and the larger equal to . The condition that be

between and is the condition that as one traverses the circle counterclockwise the

contacts with either or alternate with the contacts with either or . Among

such possible arrangements, there is probability that lies in the long interval and

in the short interval determined by and and probability that the opposite

relations hold. So the average length of the interval in which lies is .

. By Problem 27 and Proposition 6, there exist choices of ( ) and

( ) such that

( ( ) )( ) = ( ( ) )( ) = ( )( )

and

( ( ) )( ) = ( ( ) )( ) = ( )( )

for every sample point . Subtraction gives

( ( ) )( ) ( ( ) )( )

= ( )( )
(7.9)

for every for which the right side of (7.9) [that is, the right side of (23.9)] exists. At

such an at least one of the two terms on the left side is finite.

We will focus on

= : ( ( ) )( )

For each ,

( )

where is the conditional distribution of ( ) . So ( ( ) ) = 0. From

the definition of conditional probability we then obtain

: [ ( ) ]( ) = = 0

Therefore the left side of (7.9) can be rewritten as

[ ( ) ( )] ( )(7.10)



+1

+1

n n

n n

n

Hint:

−

−

−

−

−

− − −

For Chapter 24

( ) ( )( )

( )
( )

( )

23-42

24-2

24-8

24-10

+( 1)

+( 1)

+ + +( 1)

+( 1)

0

1 2

+1 +1

+1

1

1 1 1

0 0 0 0

∞
−∞

∞

∞−∞

| F ≥

F ⊆ F

| F | F | F
≥ | F ≥

F

| F | F

| F

− −

− F

− − | F −

−

46 SOLUTIONS, ANSWERS, AND HINTS FOR SELECTED PROBLEMS

n m n n

n n m

n m n n m n m n

n m n n

n n

n n n

iuS iuX
n

n

iuS iuX
n

n

iuS
n

n

n

n n n n

n n n

n n n n n n n

n n

n n

ω

ω

ω

ω

n

m

m m >

E X X

E X E E X

E X X

σ S , . . . , S

X ,X , . . .

E Y
ϕ u

E e e

ϕ u
e E e

ϕ u
e Y .

Y n , , . . .

σ σ

Y
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Z Y
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U V n

for almost every for which the right side of (7.9) is less than . Similarly, this can

be done for almost every for which the right side of (7.10) is greater than , in

particular for almost every for which the right side of (7.9) equals .

The upshot is that for almost every for which the right side of (7.9) exists, the

left side of (7.9) can be rewritten as (7.10) in which the inside difference between two

conditional expectations is not of the form . Therefore linearity of conditional

expectation may be used to complete the proof.

. Apply the Conditional Chebyshev Inequality and then take (uncondi-

tional) expectations of both sides.

. The ‘if ’ part is obvious. For the proof of ‘only if ’ fix . The inequality in the

problem is obviously true with equality in case = 0 and it is true by definition if

= 1. To complete an inductive proof, let 1 and assume that

( ) a.s.

Since ,

= ( )

a.s.

. We treat the real and imaginary parts simultaneously. Let = ( )

and denote the steps of the random walk by . Then

( ) =
1

( ( ))

=
1

( ( ))

=
1

( ( ))
=

[Remark: We have proved that the real and imaginary parts of ( : = 0 1 )

are martingales with respect to the minimal filtration for the random walk, which may

possibly contain larger -fields than the corresponding -fields in the minimal filtration

for the sequence ( ).]

. Proof of uniqueness: Suppose that conditions (i)-(iv) of the proposition hold

as stated and that they also hold with some sequences and in place of and ,

respectively. By subtraction

=

Thus is -measurable, and, hence,

= ( ) =

This fact combined with = 0, a consequence of = = 0, gives = ,

and therefore = for every .
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σ Y, .

X n A X > r
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E X A E E Y A E E Y A

E Y A mP A E Y Y > m .

m

P B P C

. Let = ( ). Then

( ) = ( ) + 2 ( )

0 + 2 ( ) = 0

as desired. [Remark: See the remark in the solution of Problem 8.] = Var( ).

. =

. Use two relevant previous results; do not do any hard work.

. The sequence ( : 0), being uniformly bounded, is uniformly integrable.

By Theorem 12 and the Optional Sampling Theorem, ( ) ( ) = ; Clearly

( ) [ = ]. Hence [ = ], as desired.

.

([ ] ) = Var( ) ( ) = 2 [1 2 ] 2 = ([ ] )

Var( ) = 2 [1 2 ] 0 = Var( )

Var( ) = 2 0 = Var( )

For 1, Var( ) ( ) ( ), thus highlighting the importance of the assump-

tion in Theorem 15 of mean 0 for the steps.

. Suppose that is a uniformly integrable martingale. By the theorem it has

an almost sure limit = such that ( : +) is both a submartingale and

a supermartingale—that is, a martingale. Hence ( ) = . Moreover, is

-measurable, so ( ) = .

For the converse, suppose that has finite expectation and

= ( )

for each . Take expectations of both sides to obtain ( ) = ( ), which is

finite. For ,

= ( ) = =

Therefore with = , ( : ) is a martingale with respect to the filtration

( : ), where = for and

= ( )

To prove that : is uniformly integrable we let = [ ] and

note that, for any 0,

; = ( ) ; ( ) ;

= ; ( ) + ( ; [ ])

Since, by dominated convergence, the second term approaches 0 as , we can

finish the proof of uniform integrability by showing that ( ) + ( ) 0 as
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−∞
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n,r n n,r n,r

n
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D n D n n

D

n n

n

n

n

n n n

n n

n

n n n n

r s r

p

k k m

k k k k

p p p

r n B X > r C X < r

P B
r
E X B

r
E Y B

r
E Y ,

P C
r
E X C

r
E Y C

r
E Y ,

E Y r n

X ,X , . . . Z

Z E Y E Z Y D

D D

E Z Y D E E Z Y D

E I E Z Y E I X X ,

I D

D

D

E Y Z D Y Z

V n

V V

V V n

Y , E Y

X Y n X ω Y ω ω n , , , . . . σ Y

n , , , . . . X n , , , . . .

E X > n

E X X X

X ,X , . . .

T T

x , . . . , x x p

t , t , . . . , t t

t m > t x .

P T T t t k p

T T > r s t ,

uniformly in , where = [ ] and = [ ]. That this is so

follows from

( )
1

( ; ) =
1

( ; )
1

( )

( )
1

( ; ) =
1

( ; )
1

( )

and the observation that ( ) is a finite number independent of and . From the

theorem ( ) has an and a.s. limit that is measurable.

To prove that = ( ) we only need show that (( ) ; ) = 0 for every

. For we have

(( ) ; ) = (( ) ; )

= (( ) ) = ( ( ) = 0

where denotes the indicator function of . Thus the desired equality is true for all

, a collection that is closed under finite intersections, contains the entire

probability space Ω, and generates . By linearity of expectation the set of for

which (( ) ; ) = 0 is closed under proper differences, and, since and both

have means, dominated convergence shows that it is closed under monotone limits. An

appeal to the Sierpiński Class Theorem completes the proof.

. The martingale ( : ), being bounded, is obviously uniformly integrable.

Hence, lim exists; call this limiting proportion of blue balls . From the fact that

the martingale property is preserved when is adjoined to the sequence ( : ),

we conclude that the expected limiting proportion of blue balls conditioned on the

contents of the urn at any particular time is the proportion of blue balls in the urn at

that time.

. Let be a ( 0]-valued random variable for which ( ) = . Let

= ( ). Then ( ) ( ) for every . For = 0 1 2 , let = ( ).

Then ( : = 0 1 2 ) is a reverse filtration to which ( : = 0 1 2 ) is

adapted. Clearly ( ) for every . The inequality

( ) =

shows that ( ) is a reverse submartingale.

. Define a random sequence by = 0 and (25.1). Fix a finite sequence

( ) such that = 1 and let denote the number of 1’s in this sequence.

Define a finite sequence ( ) by = 0 and

= inf : = 1

Then the probability on the left side of (25.2) equals

[ = for 1

and + ]
(7.11)
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and, since = for some , the probability on the right side of (25.2) equals

[ = for for which ]

[ = for for which

and + ]

If is a random walk, then this product equals (7.11), and so (25.2) holds.

For the converse assume that (25.2) holds. To prove that is a random walk

use Proposition 3 of Chapter 11.

. Since the measure generating function of is we have

= =

= ( ) =
1

1 ( )

for 0 1.

. The function 1+ 4(1 ) is the measure generating function of the given

sequence. Setting this function equal to 1 (1 ) gives the formula ( ) = (2 ) .

To show that the given sequence is a potential sequence, we only need show that as

just calculated is the measure generating function of some probability distribution on

0 . We will do this by expanding in a power series and checking that all the

coefficients are positive, that the coefficient of is 0, and that (1 ) 1. Provided

that all the checks are affirmative we will at the same time get a formula for the waiting

time distribution .

Clearly (1 ) = 1, so if it develops that there is a corresponding waiting time

distribution , then = 0. By the Binomial Theorem,

(2 ) =
4

1
2

=
4

2

2

=
2

2 2
=

1

2

Therefore = ( 1)2 for = 1 2 3 .

. Problem 13 may be useful.

. (ii). yes; 0 = 1, 1 = , = for 2; = 0,

= (1 )

where = 1 (1 )(1 + 3 ) (It may be of some interest that each

is a polynomial function of .)

(v) no, unless =



2

th

n

n
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(vii) yes; 0 = 1, = 0 for odd, = [ (1 )] for 2 and

even; measure generating function of :

1 +
2 1

[ (1 )] =
1

2
+

1

2

1 2
[ 4 (1 ) ]

=
1

2
1 + 1 4 (1 ) ;

measure generating function of :

1 2 (1 ) 1 4 (1 )

2 (1 )
= 2

1 2

+ 1
[ 4 (1 ) ]

=
1

+ 1

2
[ (1 )] ;

= 0 for odd, = [ (1 )] for even, = [Notice

that the coefficient in the formula for , even, is the ( 2) Catalan

number.]

. for a set of consecutive integers, ( ( ) 0) = 1 , in notation of

Problem 12

. , where is mean and (possibly ) is variance

. = 4 , = 4

. The solution of Problem 28 of Chapter 11 gives the measure generating function

of the waiting time distribution for strict ascending ladder times:

( ) =
1 1 4 (1 )

2(1 )

The measure generating function of the waiting time distribution for weak descending

ladder times can then be obtained from Theorem 22:

( ) =
1 + 2(1 ) 1 4 (1 )

2

It is straightforward to use the Binomial Theorem to obtain the waiting time distribu-

tions and potential measures corresponding to these two measure generating functions.

The other two types of ladder times can be treated by interchanging and 1 .

.

( ) = [ ] = ([ ] )

= ( ) = ( ) ( ) = ( )( )

( ) = ( ) ( ) = ( )


