CHAPTER 1II

The Extension Theories Based on
Regularity

The theme of the present chapter is the construction of contents
and measures from more primitive set functions. The construction is based
on interrelated regularity and continuity conditions. These conditions are
either both of outer or both of inner type. We want to demonstrate that the
outer and inner theories are identical. To achieve this we have to work with
the unconventional notions introduced in the first chapter, with set systems
which avoid the empty set like the entire set, and with isotone set functions
which take values in R or R. We start with the complete development of the
outer extension theory. Then the upside-down transform method initiated
in the first chapter will transform the outer into the inner extension theory.
The chapter concludes with a detailed bibliographical annex.

4. The Outer Extension Theory: Concepts and
Instruments

The Basic Definition

Let & be a lattice in a nonvoid set X. We start with the basic definition
which describes the final aim of the outer enterprise.

DEFINITION. Let ¢ : & —] — 00,00| be an isotone set function # oco.
For e = xo7 we define an outer e extension of ¢ to be an extension of ¢
which is a + content o : 2 — R on an oval 2, such that also &®* C 2 and
that

« is outer regular G°, and
«|G* is upward e continuous; in this connection note that a|&® > —oc.

We define ¢ to be an outer e premeasure iff it admits outer e extensions.
Thus an outer e premeasure is modular and upward e continuous.

The principal aim is to characterize those ¢ which are outer e premea-
sures, and then to describe all outer o extensions of ¢. We shall obtain a
beautiful answer in natural terms. Our approach will be based on two for-
mations due to Carathéodory: On the one hand the so-called outer measure,
and on the other hand the so-called measurable sets. Both of them need
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substantial reformulation. These two tasks will be attacked in the present
section.

The restriction ¢ > —oco imposed in the definition will be justified by
success. Without it the presentation would be burdened, at least in the cases
e = o7, with useless and unpleasant complications. We shall not pursue this
point.

The Outer Envelopes

Let ¢ : & — R be an isotone set function on a lattice & in X. It is natural
to form its crude outer envelope ¢* : P(X) — R, defined to be

¢*(A) =inf{p(S) : S € & with § D A} for AC X.

However, this set function does not allow an adequate treatment of our outer
e extension problem for e = 7. The decisive idea is to form for ¢ = o the
set function ¢ : P(X) — R, defined to be

¢’ (A) = inf{llim ©(S1) : (S1); in & with S; 1D A} for A C X.

It is a variant of the traditional Carathéodory outer measure which itself will
not be used below. One of the benefits of ¢7 is that it has an immediate
nonsequential counterpart. This is the set function ¢ : P(X) — R, defined
to be

@’ (A) = inf{sup p(S) : M paving C S with M 1D A} for A C X.
Sem

These are the three outer envelopes ¢°® : P(X) — R of ¢ for @ = o7
which will dominate the outer extension theory. From 1.3 we obtain the
common formula

©*(A) = inf{sup¢(S) : M paving C & of type o with M 1D A}.
Sem

We turn to the basic properties of these formations.

4.1. PROPERTIES. 1) ¢*|& = ¢. 2) o* 2 ¢7 2 ¢". 3) ¢° is isotone. 4)
©® is outer regular [p®|&® < o0] C G°®. 5) Assume that ¢ is submodular +.
Then ©* is submodular 4+, and ©® for e = o is submodular + when either
p > —00 or p*® < 0.

Proof. 1)2)3) are obvious. 4) Fix A C X with ¢*(A4) < co. For fixed
real ¢ > ¢®(A) there exists a paving 9 C & of type o such that 9t T some

M D Aand sup ¢(S) < ¢. Then M € &°, and by definition ¢®(M) < ¢. The
Sem
assertion follows. 5) Fix A, B C X. We can assume that ¢*(A), ¢*(B) < occ.

For fixed real a > ¢*(A) and b > ¢*(B) there exist pavings M, N C & of
type e such that

M 7 some M D A and supp(S) < a, M Tsome N O B and sup(T) < b.
Sem Sem
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From them we have the pavings
{SuT:SeMandT eN} 1 MUN DAUB,
{SNT:SeMandT eN} 1 MNNDOANB.

Now we start with ¢ = x. Here M € 9t and N € 9. Thus we have
©*(AUB) S p(MUN) and ¢*(AN B) < (M N N). It follows that

P*(AUB)H¢* (AN B) £ (M UN)+o(M N N) £ p(M)+o(N) S a+b,

and hence the assertion. We turn to the cases = o7. We fix

P,Q € M and then S € M with P,Q C S,
UV eNand then T e M with U,V C T,

and obtain
P(PUU)+0(QNV) S p(SUT)Hp(SNT) = (S)+e(T) S a+b.
Therefore p(PUU),p(Q NV) < co. If some p(QNV) is € R then
©*(AUB) £ sup{p(PUU): PeMand U € N} € R,
e*(ANB) = sup{p(@NV):QeMand V € N} € R,

and hence ¢*(A U B)+¢*(AN B) < a+b. If not then p*(A N B) = —oo,
and by assumption ¢®*(A U B) < co. Both times the assertion follows.

We shall later need a counterpart of the first assertion in 4.1.5) for
supermodular +.

4.2. REMARK. Let ¢ be supermodular +. Assume that A,B C X are
separated & in the sense that

for each M € 6 with ANB C M
there exist S, T € & with A C S and B CT such that SNT C M.

Then o*(AU B)+¢*(AN B) = p*(A)+¢*(B).

Proof. We can assume that ¢*(A U B) < oo and hence all other values
©*(+) < 0o as well. Fix M, N € & with

M>ANBand o(M) <oo, N DAUB and ¢(N) < 0.
Then choose S, T € & as assumed. It follows that
P(N)+o(M) = o(NN(SUT))+e(NN(SNT))
= o(NNSUNNT))+e(NNS)N(NNT))
2 e(NNS)+e(NNT) z ¢*(A) + ¢*(B).

This implies the assertion.

4.3. EXERCISE. Let @ € & and ¢(@) = 0 and ¢ be superadditive. As-
sume that A, B C X with AN B = & are separated &, that is

there exist S,T € & with A C S and B C T such that SNT = &.
Then ¢*(AU B) =2 ¢*(A) + ¢*(B).
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4.4. EXERCISE. The second assertion in 4.1.5) becomes false without
additional assumptions. Hint for an example: Let X be the disjoint union
of two infinite countable subsets U and V, and let & consist of its finite
subsets. Define ¢ : & — [—00,00] to be ¢(S) = #(S) if S meets both U
and V', and ¢(S) = —oo otherwise.

In contrast to ¢*|6& = ¢ the relation ¢*|& = ¢ need not be true for
e = g7. It can be characterized as follows.

4.5. PROPOSITION. For an isotone set function ¢ : & — R and @ = oT
the following are equivalent.

1) 016 = ¢;

ii) @ is upward e continuous.
In this case we have furthermore

ili) p*|&*® is upward e continuous;
iv) if {S € &°: p*(S) < 0} C & then ¢* = ¢*.

Proof. i) = ii) Let A € & and 9 C & be a paving of type e with 9 T A.
By i) and the definition of ©°® then

w(A4) = ¢*(A) < supp(S) and hence = sup(S5).
Sem Sem
ii) = i) Let A € & and 9 C & be a paving of type e with 9t 1D A. Then
{SNA:SeM}isapaving C S of type ® with T A. By ii) therefore

¢(A) = supp(SNA) < supp(S).
Sem sem

It follows that p(A) < ¢*(A), and hence from ¢*(A) < ¢*(A4) < ¢(A) the
assertion. i) = iv) Assume that this is false. Fix A C X with ¢*(A) <
¢*(A). By 4.1.4) there exists S € &® with § D A and ¢*(S) < ¢*(A). By
assumption then S € & and ¢(S) = ¢*(S) < ¢*(A). This is a contradiction.

The most involved part of the proof is for the implication i) = iii). We
first prove a lemma.

4.6. LEMMA. Let M C &° be a paving of type o with MM T A. Then of
course A € &°. Furthermore there exists a paving M C & of type o with
N 1T A such that N C (C M).

Proof. Nontrivial are the cases e = o7. The case e = ¢: Choose a
sequence (M), in 9 with M, 7 such that each member of 9 is contained
in some M,,. Then M,, T A. Now for each n € N there exists a sequence (Sfl)l
in & with Sfl T M,. We put 5] := SiU~'US’ZI € &. Then S; Tsome S C X.
We have on the one hand S; C My U ---U M; = M, and on the other hand
Sy > S for 1 <n < 1. Tt follows that S € A and S D M, for all n € N, so
that S = A. Thus the paving 9 := {S; : | € N} C & is as required. The
case ® = 7: Define M :={S € &: 5 Csome M € M} C &. Then N is
nonvoid and has U and is therefore upward directed. Furthermore
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Us=U U s=Jm=4a

SeNn MeMm Ses,SCM MeMm
Thus I is as required.
Proof of 4.5.i)) = iii). Consider a paving 9 C &° of type e with 9t 7
A € G&°, and take 91 C & as obtained in 4.6. By i) then

©(S) = p*(S) £ sup ¢*(M) for each S € M,
Mem

and therefore by definition
¢*(A) = supyp(S) = sup ¢*(M).
Sen Mem
The assertion follows.

The most remarkable fact about the outer envelopes is the sequential
continuity theorem which follows. Note that there is no continuity assump-
tion on the set function ¢ itself.

4.7. THEOREM. Assume that ¢ : & — R is isotone and submodular +.
Then ©% and ¢ are almost upward o continuous.

4.8. LEMMA. Assume that ¢ : & — R is isotone and submodular 4. For
Prye s Py Q € 6 with o(Pr), -+, ¢(Pa), 9(Q) < 00 then p(PrU---U P, U
Q) < oo and

n n
P(PLU--UP,UQ)+ > @(PNQ) éZ (P) +#(Q
=1 =1

Proof of 4.8. The case n = 1 is obvious. The induction step 1 < n =
n+1: Let Py, Pr,---, P, Q € & with SD(PO)a(P(Pl)z"' 7@(Pn),@(Q) < 0.
We know from 2.4 that [¢ < oo] is a lattice. Thus from the induction
hypothesis we obtain

so(Pouplumupnu@+l§0¢<PmQ>

sa(Plu~~upnu<Pou@>>+lzf:1so<PmQ>+¢<Pomc2>

NE

< S (P) +o(PoUQ) + (PN Q) < és@(ﬂ) +0(Q).

~

1

Proof of 4.7. We fix a sequence (A,), of subsets of X with A, T A
and ¢*(A4,) > —oco Vn € N. Then ¢*(A,) T R =< ¢*(A). To be shown is
¢*(A) < R. We can assume that R < oo, so that the ¢*(4,) and R are
finite. We fix ¢ > 0, and then for each n € N a paving 9(n) C & of type o
such that 9(n) 7 some M,, D A, and

sup @(S) < p*(A,) 427 L
SeM(n)

1) We claim that
e(S1U---US,)<R+e for S;eml)(l=1,---,n) and n € N.
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To see this fix [ € {1,--- ,n}. Then {PNQ: P e M() and Q € M(n+ 1)}
is a paving C & of type e which T M;NM,+1 D AjNA,+1 = A;. Hence there
exist P € M(I) and Q; € M(n + 1) such that o(P,NQ;) = ¢*(4;) — 27171
We can assume that P, D S;. Also there exists @ € MM(n + 1) with @ D
QL U---UQy,. It follows that

e(PNQ)= " (A) —e277 (1 =1,--- ,n).
Now from 4.8 we have (P U---U P, UQ) < oo and

Pp(PLU--UPUQ)+ ) w(RNQ) =Y ¢(P)+¢(Q).

=1 =1

From the above we see that in this formula

n

the left sideis = (S U---US,) + Z(W.(Al) _ 52—1—1)7
=1

V

n

the right side is < Z(‘p.(Al) 42 o (" (Angr) + 22772,
1=1

A

It follows that
n+1
P(S1U--USy) <@ (An1) + > 2 < R+e.
=1

2) Let 9 consist of all unions S; U ---U S, with S; € M) (I =1,---,n)

and n € N. Then 901 is a paving C & of type o. It is clear that 91 is upward
o o0

directed and M 1 U M,, O | 4, = A. Thus we have ¢*(A) < sup p(S).
n=1 n=1 Sem

Combined with 1) we obtain ¢®*(A) £ R+ ¢ for all € > 0 and hence the

assertion.

Complements for the Nonsequential Situation

The sequential continuity theorem 4.7 has no nonsequential counterpart.
The present subsection is a short discussion of the complications which arise
from this fact.

4.9. REMARK. Let & be a lattice with @ € & and ¢ : & — [0,00] be
an isotone and modular set function with ¢(2) = 0 which attains at least
one finite positive value. Assume that ¢ is upward 7 continuous and that
G™ = &. Then 4.5 implies that ¢™ = % = ¢* 2 0. In this situation it
can happen that ¢ = ¢? = ¢* is not upward 7 continuous. For example
this is obvious when @7 (F) = ¢7(F) = ¢*(F) = 0 for all finite F C X. As
the simplest example we anticipate from 5.14 the Lebesgue measure on R"
restricted to Op(R™).

However, the outer e main theorem requires a certain touch of upward
e continuity which is trivial for ¢ = x and a consequence of 4.7 for ¢ = ¢.
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Let us define an isotone set function ¢ : & — R to be upward e essential
iff

p*(4) = sup{p*(ANS):
00> p*(A) = sup{p®*(ANS):

Then we obtain what follows.

Sep<oo]} forall AC X with
S € [p < oo} > —o0.

4.10. PROPOSITION. Let ¢ : & — R be isotone. *) ¢ is upward x essen-
tial. o) If  is submodular + then it is upward o essential. T) Assume that

¢ is submodular + and such that each A C X with ¢™(A) < oo is upward
enclosable [p < 00]?. Then ¢ is upward T essential.

Proof. x) is obvious since ¢*(A) < oo implies the existence of some
S € [p < oo] with S D A and hence AN S = A. o)1) We prove for e = o7
and ¢ submodular + an intermediate assertion which implies both results:
If A C X is upward enclosable [¢p < 0] and fulfils

sup{p*(ANS): S € [p < oo]} > —oo then
©*(A) =sup{p*(ANS):S e [p <]}

In fact, let (S;); be a sequence in [p < oo] with S} 1D A, and let T' € [ < ]
with ©*(ANT) > —oco. Then S;UT € [p < oo] since ¢ is submodular +.
Furthermore AN (S;UT) T A and ¢*(AN (S;UT)) > —oo. Thus we obtain
(AN (S;UT)) T ¢*(A) from 4.7.

In view of these results an isotone and submodular + set function ¢ :
S — R will be called upward essential instead of upward 7 essential.

We conclude with an example which will illuminate the outer 7 main
theorems in the next section.

4.11. EXAMPLE. We fix & in X and ¢ : & — [0, 00| as described in 4.9
above. Define Y to consist of two disjoint copies of X, that is Y := X x{0, 1}.
We write the subsets A C Y in the form A = A% U A! with A% A' C X.
Define T to consist of the subsets A = A% 1 A C Y with A° € & and A'
finite € A°. Thus ¥ is a lattice in Y with @ € . Furthermore T” consists
of the subsets A = A 1 A C Y with A° € & and A' ¢ A% Then define
YT — [0,00] to be (S) = p(S°) for S = S° 1S € T. Thus 7 is isotone
and modular with (@) = 0. Also ¢ is upward 7 continuous. We prove
three assertions.

1) 9 has no outer 7 extension.
2) p7(A) = p" (AP U AY) for A= AU AL CY.
3) 1 is not upward T essential.

For 3) we use that ¢”(F) = 0 for all finite F' C X.

Proof of 1). Let a : % — R be an outer 7 extension of ¢. Then
@ € A and a(@) = 0, so that « is a ccontent on a ring 2. Furthermore
a(A) = p(A) = p(A%) for A = AU A! € T, and hence a(A) = p(A°) for
A= A" A € T7 since a|T7 is upward 7 continuous. Now fix £ € & with
c:= ¢(F) €]0,00[. Then on the one hand
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EUuge® witha(FUZ)=¢(E)=c,
EUE €% with a(EUE)=¢(E) =c.
On the other hand @ LI EF € 2 since A is a ring, and
a(@UE) = inf{a(Ad): Aec 3" with AD U FE}
= inf{p(A%) : A" € & and A' C A° with A' O E}
= »(E)=q
since «a is outer regular 7. These values combine to contradict the fact that
« is modular.

Proof of 2). Both directions £ and 2 are routine verifications. Proof
of 3). Fix as above F € & with ¢ := ¢(F) €]0,00[. For A:=gUFE CY
then ¥ (A) = ¢"(F) = p(E) = ¢. On the other hand we obtain for S =
SYUSt €T that v (ANS) =y (U (ENSY)) = ¢"(ENSY) =0 since S*
is finite. The assertion follows.

The Extended Carathéodory Construction

We turn to the second task of the present section. We consider a set function
¢ P(X) — H, defined on the full power set P(X) of a nonvoid set X, and
with values in a nonvoid set H which carries an associative and commutative
addition +. We shall define and explore the so-called Carathéodory class
€(¢) of ¢, a paving in X. The definition is classical in case that H has
the neutral element 0 and ¢(2) = 0. But in the present context there is
no restriction for ¢(&), it can in particular be a non-cancellable element of
H. Recall that a € H is named cancellable iff for each pair u,v € H the
implication u + a = v+ a = u = v holds true. Thus H = R with + or +
has the non-cancellable elements F-oco.

The new situation requires a drastic modification of the classical defi-
nition. We define the Carathéodory class €(¢) of ¢ to consist of those
subsets A C X which fulfil

d(U) + ¢(V) = ¢(U|A|V) + p(U|A'|V) forall U,V C X.
We proceed to list its basic properties.

4.12. PROPERTIES. 1) @, X € €(¢). Also €(¢) has L. 2) Assume that
E C X has cancellable value ¢(E) € H. Then €(¢) consists of the subsets
A C X which fulfil

&(P) + ¢(E) = ¢(P|A|E) + ¢(P|A'|E) for all P C X.

3) In particular assume that (@) = 0 is neutral in H. Then €(¢) consists
of the subsets A C X which fulfil

d(P)=¢(PNA)+¢(PNA) foralPCX.

Thus we come back to the traditional definition of the class €(¢). 4) If
A € €(¢) then

(+) d(P)+ ¢p(A) =p(PUA)+o(PNA) forall PCX.
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On the other hand a subset A C X which satisfies (+) need not be in €(p);
by 2) it is in €(¢p) when ¢p(A) € H is cancellable. 5) Assume that there exists
an E C X such that ¢(E) € H is cancellable. Then €(¢) is an algebra.

Proof. 1) is obvious. 2) Let A C X be as described above. In order to
see that A € €(¢) we fix P,Q C X and form U := P|A|Q and V := P|A’|Q.

By assumption
(6(U) + &(E)) + (o(V) + 6(E))
(¢(U|A|E) +¢ UIA’|E ) + ((VIAIE) + o(V|A'|E))
= (6(PIAIE) + (QIA'|E)) + ($(QIAIE) + ¢(P|A'|E))
(¢(P|A|E) +o(P|A'|E)) + (6(QIAIE) + 6(Q|A'|E))
= (6(P) + ¢(E)) + (¢(Q) + 6(E)),
)+

and hence ¢(U) + (V) = ¢(P) + ¢(Q) since ¢(F) is cancellable. This is the
assertion. 3) is an obvious special case of 2). 4) For A € €(¢) the equation
(4) is the definition with V' := A. For the converse a counterexample will
be in exercise 4.13 below. The last assertion is obvious. 5) We have to prove
that €(¢) has U. Fix A, B € €(¢). For P C X we form U := P|[AU B|E
and V := P|(AUB)'|E. With the notations M := P|A|E and N := P|A'|E
one computes that
M|BIE = (MnB)U(ENDB)
PNANB)YU(ENANB)U(ENB)
PN(AUB))U(EN(AUB)) =P|AUBI|E =T,

(
(
(
M|B|E = (MNB)U(ENB)
(
(
(

PNANB)U(ENANB)U(ENDB)
PNANB)UENANB)U(ENA)
VNANB)UWVNANB)U(ENA)
= (VNnA)U(EnA)=V|AE,
N = P|AIE=V|A|E.
Since A, B € €(¢) it follows that
$(U) + (8(V) + o(E)) = ¢(U) + (¢(VIAIE) + ¢(V|A'|E))

= (¢ (MlBIE)+¢(M|B'|E)) ( )= ( ( )+¢( )) + 6(N)

= (6(PIAIE) + o(P|A'|E)) + = (o(P E)) + ¢(E),
and hence that ¢(U) + ¢(V) = ¢(P ) + (b( ). By 2) thls is the assertion.

4.13. EXERCISE. Construct an example ¢ : P(X) — H such that there

exists a subset A C X which fulfils (+) but is not in €(¢), and that fur-
thermore there exists a subset £ C X with cancellable value ¢(E) € H.
Hint: Let H := [0,00]| with the usual addition, and let X =Y U Z with
nonvoid disjoint Y and Z. Define ¢ : P(X) — H to be ¢p(Y) = ¢(Z) =0
and ¢(A) = oo for all other A C X. Then proceed as follows. 0) For

E CX:¢(E) € H is cancellable iff E =Y or Z. 1) For A C X : A fulfils
(H)if A#Y,Z. 2) For ACX:Ae€(¢)if A=2 or X.
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In the sequel we concentrate on the particular case that H = R with
one of the additions + and +. For a set function ¢ : P(X) — R we then
write (¢, +) No specification + is needed when ¢ attains at most one of
the values £o0.

4.14. REMARK. €(¢,+) is an algebra.

Proof. By the above 4.12.5) it remains to consider the cases that the
value set of ¢ is one of the singletons {+o00} or {—00, c0}. Then it suffices to
note that on {—o0, 0o} the element —oco is cancellable for + and the element
oo is cancellable for +.

4.15. EXERCISE. €(¢,+) = €(¢L,+).
4.16. REMARK (Symmetrization). Assume that A C X salisfies
$(P)+6(Q) 2 ¢(PIAIQ)+o(P|A'|Q) for all P,Q C X.
Then A € €(¢,+).

Proof. We know from 1.1.5) that U := PJA|Q and V := P|A’|Q have
U|A|V = P and UJA'|V = Q. It follows that
¢(P|A|Q)+o(P|A'|Q) ¢(U)+6(V)
S(UAIV)+o(UIA'|V) = ¢(P)+6(Q),

I\

and hence the assertion.
The Carathéodory Class in the Spirit of the Outer Theory

We proceed to consider the Carathéodory class €(¢,+) of an isotone set
function ¢ : P(X) — R under assumptions in the spirit of the outer the-
ory. We shall see that the definition of €(¢,+) then admits substantial
simplifications. We start with a simple remark.

4.17. REMARK. Let T be a paving in X and ¢ : P(X) — R be isotone
and outer reqular T. If A C X satisfies

¢(P)+6(Q) = ¢(P|AIQ)+¢(PIA'|Q)  for all P,Q € T,

then A € €(¢,+).
Proof. By symmetrization it suffices to prove that

p(U)+o(V) 2 ¢(U|AIV)+o(U|A'|V) for all U,V C X.
We fix U,V C X and can assume that ¢(U),¢(V) < oo. For fixed real
¢ > ¢(U)+ ¢(V) there are a,b € R with ¢ = a + b and with ¢(U) < a
and ¢(V) < b. By assumption there exist P,Q € ¥ such that P D U and
?(P) <a, @DV and ¢(Q) < b. Hence
H(UIAIV)FOUIAV) < G(PIAIQ)HO(PIA|Q) < 6(P)F6(Q) < a+b =c.

The assertion follows.

4.18. EXERCISE. Let o : A — R be a content + on an oval A. Then
A C €(a*, +).
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The main point is that the verification of A € €(¢,+) can be reduced to
certain pairs of subsets P C @ of X. The basis is the fundamental lemma
which follows. We use the abbreviation P — Q :={P} C {Q} ={A C X :
PcCAcCQ}.

4.19. LEMMA. Let P C Q C X. Assume that ¢ : P C Q — R is
submodular. If A C X satisfies

¢(P) +¢(Q) 2 p(PIA|Q) + ¢(PIA|Q),
then
o(U) 4+ (V) = p(U|A|V) + o(U|A'|V)  for all U,V € PC Q.

Proof. By symmetrization it suffices to prove the assertion with 2. Fix
U,V € PC Q. i) From the assumption we have

P(P) +¢(Q) +20(U) 2 (2(PlAIQ) + ¢ (U)) + (¢(PIAQ) + ¢(U)).
Since ¢ is submodular and P C U C @ this is
2 (¢(UIAIQ) + ¢(PIAIU)) + (2(UA|Q) + o(P|A|U));

and when we use submodularity for the two first terms in the brackets and
repeat the two second terms this is

2 $(Q) +9(U) + ¢(PIAID) + ¢(PIAU).
Thus we have

P(P) +(U) 2 o(P|A|U) + ¢(P|A|U).
Of course we have likewise

P(P) + (V) 2 ¢(P|A|V) + (P|A'|[V).

ii) We add the last two inequalities and use submodularity twice on the right
for the two pairs of terms which were in crosswise position. Then we obtain

20(P) + ¢(U) +¢(V) 2 (o(VIAIU) + ¢(P)) + (p(UIA]V) + ¢(P)),
and hence the assertion.

From the lemma we deduce the next result which looks somewhat tech-
nical but will be a powerful tool.

4.20. PROPOSITION. Assume that ¢ : P(X) — R is an isotone set func-
tion. Let B | and Q T be pavings in X with nonvoid P T Q such that

O|B and ¢|Q are finite, and PP C Q is submodular.
Furthermore let $ T be a paving in X with Q C $ such that
¢ is outer reqular P C 9,
qS(T):Su%ng(TﬁQ) forallT € PC H.
€

If A C X satisfies

o(P)+6(Q) = ¢(PlA|Q) + ¢(P|A|Q)
for all P € B and Q € Q with P C Q,
then A € €(¢,+).
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Proof. i) We know from 1.8.1x) that P C Q and P C § are ovals. ii)
For each pair P € 3 and Q € Q there exists a pair A € 9 and B € Q with
A C P and Q C B such that A € B. In fact, by assumption there exist
UePand V € Q with U C V. Then by directedness there are A € 3 with
A C P,U and B € Q with B D Q,V. It is obvious that A and B are as
required. iii) For each pair P € P and Q € Q with P C Q we see from 4.19
that

d(U) + ¢(V) = d(UJA|V) + p(U|A'|V) forall U,V € PC Q.
By directedness it follows that
d(U) + d(V) = d(UJA|V) + o(U|A'|V) forall U,V € P C Q.
Note that UJA|V and U|A'|V are in P C Q as well. iv) In view of 4.17
applied to ¥ := P C § it suffices to prove that
d(U) + d(V) = ¢(UIA|V) + ¢p(U|A'|V) forall U,V € %.

Note that U|A|V and U|A’|V are in T as well, and that ¢|T > —c0. v) Fix
UV e%. Also fix M, N € Q and then Q € Q with M, N C Q. By ii) we
can assume that @ is downward enclosable . Thus UNQ,VNQ € P C Q.
By iii) therefore

P(U) + (V)

PUNQ)+o(VNQ)
P(UNQIAIVNQ)+o(UNQIATVNQ)
((UIAV) N Q) +o(UIAV) N Q)
2 S(UIAIV)NM)+¢((UIA|V)NN).
Now the supremum over M, N € Q of the right side is = ¢(U|A|V) +

¢(U|A’|V) since the two partial suprema are both > —co. By iv) the proof
is complete.

4.21. ADDENDUM. Assume in addition that ¢|B C Q is upward o con-
tinuous. Then €(¢,+) is a o algebra.

Proof. Let (4;); be a sequence in €(¢,+) with 4; 1 A. To be shown is
A€ €(¢p,+). Fix P € P and Q € Q with P C Q. By assumption we have
(P)+¢(Q) = ¢(PlAIQ)+ ¢(P|A]|Q)
= o(PUQNA)) +¢(PU(QNA))
= $(PU@QNA)) +¢(PU@QnNA)),

since A; C A and hence A] D A’. Here all arguments are in P T @ and
hence all values are finite. By assumption it follows that

$(P)+¢(Q) 2 o(PU(QNA)+o(PU@QNA))
¢(P|AIQ) + ¢(P|A'Q).
Thus from 4.20 we obtain A € €(¢, +).
We include another addendum to 4.20 for the sake of chapter VI.
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4.22. ADDENDUM. Assume in addition that 6 : B(X) — R is an isotone
set function with 0 = ¢ such that

0B = o|B and 0|Q = ¢|Q,
OT)=sup 0(TNQ) foralTePLCH.
Qe

Then @|€(p,+) is an extension of O|€(,+).

Proof. Fix A € €(#,+). i) In order to prove that A € €(¢,+) let P € P
and Q € Q with P C Q. Then
¢(P) +6(Q) =0(P)+0(Q) = 0(P|AQ)+0(P|A|Q)
2 ¢(PAIQ) + ¢(P|A'|Q).
From 4.20 the assertion follows. ii) We claim that 8(P|A|Q) = ¢(P|A|Q) €
R for all P € B and @ € Q. This follows at once from

P(P) +6(Q) =0(P)+0(Q) = 0(P|A|Q)+0(P|A'|Q)
= ¢(PlA|Q)+o(P|AQ) = ¢(P) + ¢(Q).
iii) It remains to prove that 8(A) < ¢(A) and hence 0(A) = ¢(A). We fix

VePC Hwith V O A and have to show that §(A) < ¢(V). Let P € P
with P C V and @ € Q. Then on the one hand

0(PIA|Q) 2 (P NQIAIV N Q) =0((PIAIV) N Q),

so that from the assumption and PJ|A|V € P C $H and from P|A|V D
V' N A= A we obtain

sup 0(P|A[Q) = 0(P|A|V) = 0(A).
QEN

On the other hand we have P|A|Q C PU A C V and hence
sup ¢(P|A[Q) = ¢(V).
Qe

From ii) the assertion follows.

5. The Outer Extension Theory: The Main
Theorem

The Outer Main Theorem

In the last section we have developed the concepts and instruments which
we need in order to reach our principal aim as formulated after the basic
definition. The first theorem below is a clear hint that these devices are
adequate.

The present subsection is under the assumption that ¢ : & —] — 00, 0]
is an isotone set function Z oo on a lattice & in X.

5.1. THEOREM. Assume that o : A — R is an outer o extension of .
Then « is a restriction of ¢®|€(¢®, +).



46 II. THE EXTENSION THEORIES BASED ON REGULARITY

Proof. i) ¢ = a|G is upward e continuous, and hence p = ¢*|& by 4.5.
Then o = ¢ = ¢* on G implies @ = ¢* on &° by 4.3.iii), and hence a = *®
on 2 by 4.1.4). ii) It remains to prove that % C €(¢*,+). Fix A € 2. For
P, Q € &° then

a(P)+a(Q) = a(P|A|Q)+HPIA'|Q),

where all arguments are in 2 since 2 is an oval. In fact, since a is modular
+ both sides are = (P U Q)+a(P N Q). Since now a = * on A by i) we
obtain A € €(p*, +) from 4.17 applied to ¢ := ¢*® and T := &°.

We prepare the outer main theorem with the important next result.

5.2. PROPOSITION. Let ¢ be submodular with ¢©*|& > —oo, and upward
essential in case @ = 7. Fiz pavings

P C [p < 00| downward cofinal, that is such that [p < co] C (T B),

Q C [p < 0] upward cofinal, that is such that [p < oo] C (C Q).
If A C X satisfies

P (P)+¢°(Q) 2 ¢ (PIAIQ) + ¢ (PIA1Q)
for all P € B and Q € Q with P C Q,
then A € €(p®, +).
5.3. ADDENDUM. For e = o7 the class €(¢®, +) is a o algebra.

Proof of 5.2 and 5.3. We deduce the assertions from 4.20 and 4.21. 1)
[ < oo] is a lattice by 2.4 and nonvoid by assumption. Therefore 3 |
and 9 T, and P C Q D [p < o0] is nonvoid. ii) ¢ := ¢°* is isotone and
submodular + by 4.1.3)5). By assumption and 4.1.1)2) ¢ is finite on [ < od]
and hence on P T Q. iii) We define § = [¢*|6®* < oo] and note that
©*|6°® > —o0. Then [p < oo] C H and hence Q C . By ii) and 2.4 § is
a lattice and hence $) 1. iv) O contains [¢ < oo] and hence &, therefore
G°® and in particular ). Thus $ C P C H. By 4.1.4) therefore ¢ is outer
regular P C H. v) For T € P C H we have by definition p*(T) < oo and
sup{¢*(T'NS) : S € [p < o0]} > —oo. Since ¢ is upward e essential by
4.10.%)0) and by assumption we have

O(T) =sup{dp(T'NS): S €p <oo]}=sup{d(T'NS):S e}
vi) After this the assertions follow from 4.20 and 4.21.

5.4. CONSEQUENCE. Let ¢ be submodular with ©*|& > —oo, and upward
essential in case @ = 7. Assume that Q C [p < 00| is upward cofinal. Then

QTE(p*, +) C Cp®, +).

Proof. We put P := [p < oo]. Fix A € QT¢€(¢®,+). For P € P and
Q € Q we have ANQ € €(p*, +) and hence

P*(P)+¢*(Q) = 9" (PIANQIQ) + ¢*(P|(AN Q)|Q).
In case P C @ the right side is = ¢*(P|A|Q) + ¢*(P|A'|Q). Thus from 5.2
we obtain A € €(¢®,+).
We come to the central result of the present chapter.
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5.5. THEOREM (Outer Main Theorem). Let ¢ : & —] — 00, 00] be an
isotone and submodular set function # co on a lattice &. Fiz pavings

P C [p < x| downward cofinal, and
Q C [p < 00| upward cofinal.

Then the following are equivalent.
1) There exist outer o extensions of @, that is ¢ is an outer e premeasure.

2) ©*|€(¢®, +) is an outer o extension of ¢. Furthermore

ife=x% : ©*|€(¢°% +) is a content + on the algebra €(p°,+),
ife=01 : ¢*|€(¢® +) is a measure + on the o algebra €(¢*,+).

3) ©°*|€(p®, +) is an extension of ¢ in the crude sense, that is & C €(p®, +)
and p = ¢°*|6.

4) o(U) + p(V) = p(M)+*(U|M'|V) for allU C M CV in &; note that
M =U|M|V. In case ® = T furthermore ¢ is upward essential.

5) v =¢*|6; and p(P) + p(Q) Z (M) + ¢*(P|M'|Q) for all P C M C Q
with P € P,Q € Q, and M € & and hence € [p < o0]. In case @ = T
furthermore ¢ is upward essential.

Note that 5.4 then implies QTS® C €(¢®, +).

A posteriori it turns out that condition 5) is independent of the pavings
P and Q. But the present formulation is important for later specializations.

Proof. We prove 2)=1)=3)=4)=5)=2). The implication 2)=1) is
obvious, and 1)=-3) follows from 5.1. 3)=-4) The first assertion follows from
the definition of €(¢®, +). It remains to show in case @ = 7 that ¢ is upward
7 essential. If not, then there exists A C X such that

00> ¢ (A) >sup{p"(ANS):S € [p <]} > —o0.

Let ¢ := ¢7(A) —sup{p"(ANS): 5 € [p <oo]} > 0. For § € [p < o0 then
e(S)=¢"(S) € Rand S € €(¢", +). Therefore

0" (S)+e"(A) = ¢"(S|S|A)+¢7(S]S']A) = ¢" (AN S)+¢" (AU S),
with all terms finite, and hence

P(S) +¢T(A) = ¢"(A) —e+ ¢ (AUS), or p(F) +e = ¢ (AUS).
Fix a paving MM C [p < oo] with M T M D A and sup ¢(S) < oo. By 4.5.iii)
then M € &" and glelgt(S) =¢"(M) e R Tt ff)fl?ws that ¢" (M) + ¢ <

@7 (M) and thus a contradiction. 4)=5) For V€ & and U = M € [p < o]
contained in V' we obtain from 4) that (V) = ¢*(V).

It remains to prove the implication 5)=2). For the remainder of the
proof we assume 5). Then the assumptions of 5.2 and 5.3 are fulfilled. i)
€(p®, +) is an algebra by 4.14, and « := ¢®|€(*®, +) is isotone and modular
+ by 4.12.4). For e = o7 the class €(¢®, +) is a o algebra by 5.3.
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ii) We conclude from 5.2 that &° C €(¢°®,+). Fix A € &°*. Then let
M C G be a paving of type e with 9 T A. Furthermore fix P € 8 and
Q € Q with P C Q. For S € 9 we form

M:=P|S|IQ=PU(@nNS)eGwith PC M CQ,
so that from 5) we obtain p(P) + ¢(Q) = ¢(M) + ¢*(P|M'|Q). Here
PIM'|Q = PU@QNM)=PU(QNP' nQUS))
= PU@QNPNS)y=PUu@nS)>Pu(@nAd)=PA|Q,
so that
e(P) +¢(Q) 2 o(PU(QNS)) +¢*(PA]Q).

Now {PU(QNS):SeM} T PU(QNA)=P|A|Q. From 4.5.iii) it follows
that

e(P) +¢(Q) 2 ¢*(P|A|Q) + ¢*(P|A]Q).
Thus 5.2 implies that A € €(¢®, +) as claimed.

iii) In particular & C €(*®, +), so that « is an extension of ¢. Thus «
attains at least one finite value and hence is a content +. Furthermore «
is outer regular &° by 4.1.4), and «|&*® is upward e continuous by 4.5.iii).
Therefore o is an outer e extension of ¢. iv) It remains to prove that o
is a measure + when @ = o7. By 4.7 « is almost upward o continuous.
Thus by 2.11 « is almost downward o continuous as well, provided that it
is semifinite below, that is outer regular [« > —o0]. But we know from ii)
that &° is in €(¢®,+) and hence in [@ > —oc]. Thus « is outer regular
[@ > —oo]. The proof is complete.

The above outer main theorem fulfils the promise made after the basic
definition: Conditions 4) and 5) characterize the outer e premeasures. Com-
bined with 5.1 we see that for an outer e premeasure ¢ all outer e extensions
are restrictions of a unique maximal one, which is ©*|€(¢®, +). Thus we ar-
rive at a natural and simple situation, and our concepts and instruments
prove to be adequate. We want to put particular emphasis on the role of
the Carathéodory class, because its initial creation was not at all connected
with regularity.

5.6. REMARK. The outer main theorem would be false in case = 7 if
in 4)5) the condition that ¢ be upward essential would be omitted. To see
this we return to example 4.11 and adopt the former notations. The set
function ¢ : T — [0, 00| then violates 1) as shown in 4.11.1). On the other
hand we anticipate from 5.14 that we could have started from a set function
@ : 6 — [0,00] as described in 4.9 with " (F) = 0 for all finite FF C X
which has an outer 7 extension and thus is an outer 7 premeasure. Then
the set function ¢ : ¥ — [0, 00] fulfils the first part of 4). In fact, we see
from 4.11.2) and since ¢” is submodular that this condition reads

o(U) + (V) = o(M) + " (UM'|V) forallUCc M CV in &,

and therefore is satisfied.
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5.7. SPECIAL CASE (Traditional Type). Assume that & is an owval.
Then condition 5) simplifies to

50) ¢ = ¢*|6; and ¢ is supermodular. In case ® = T furthermore @ is
upward essential.

Proof of 50)=5). If P C M C Q are as in 5) then P|M'|Q = Q|M|P =:
N € & and hence € [p < o0]. We have M NN = P and M UN = @, and
hence p(M)+¢*(N) = p(M)+¢(N) < ¢(P)+¢(Q). Proof of 5)=-50). One
notes that 5)=-1) = ¢ is supermodular, or that 5) for =9 = [p < 0] =
 is supermodular.

We shall soon turn to the most important special cases. But first we
want to terminate the present context with a short comparison of the three
cases ® = x0T.

Comparison of the three Outer Theories

In the present subsection we assume that ¢ : & —] — 00, 0] is an isotone
and submodular set function # oo on a lattice &.

5.8. PROPOSITION. o) In case ¢ = ¢?|G& we have €(p*,+) C €(¢7,+).
7) In case ¢ = ¢"|& and p upward essential we have €(p?,+) C E(¢7,+).

Proof. Combine ¢* 2 ¢? 2 ¢” with 5.2 for P =0 = [p < 0.

5.9. PROPOSITION. Assume that ¢ is modular. o) In case ¢ = ¢7|6
we have p*(A) = @7 (A) for all A € €(p*,+) with p*(A) < co. T) In case
© = 7|6 we have ¢ (A) = ¢T(A) for all A € (7, +) with ¢ (A) < co.

Proof. o) Fix A € €(p*,+) with p*(A) < co. For P,Q € [p < oo] we
have by 4.1.5)

o(P) + ¢(Q) ¢*(P) +¢*(Q) = ¢*(PIA|Q) + ¢*(P|A|Q)
¢7(PlAIQ) + ¢”(PIA'|Q) 2 ¢ (PUQ) + ¢ (PN Q)
P(PUQ)+¢o(PNQ)=¢(P)+¢(Q),

where all arguments are between PN Q) and P U @ and hence all values are
finite. It follows that

¢"(PIA|Q) = ¢”(P|A|Q) for all P,Q € [p < od.

vl

Since p*(A) < oo there exists Q € [p < oo] with @ D A. Then ¢*(PUA) =
@?(PUA) for all P € [¢ < oo]. Now we have to prove that p*(A4) < ¢7(A)
and can thus assume that ¢7(A) < co. Consider U € &7 with U D A, and
recall that ¢ is outer regular G7. There are subsets P € [¢ < oo] such that
P cU. It follows that

¢ (A) = ¢ (PUA) =7 (PUA) = ¢”(U),
and hence p*(A4) < p7(A).
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7) Fix A € €(¢7,+) with ¢?(A) < oo. For P,Q € [p < oo] we have as
above

o(P) + ¢(Q) ¢7(P) +¢7(Q) = ¢”(P|A|Q) + ¢” (P|A'|Q)
¢ (PIAIQ) +¢"(PIA'|Q) 2 ¢"(PUQ) + ¢ (PN Q)
P(PUQ)+o(PNQ) = p(P)+¢(Q),
where all values are finite. It follows that
@7 (PlA|Q) = ¢ (P|A|Q) for all P,Q € [p < oc].
Since ¢ and ¢” are upward o continuous by 4.7 this implies that
@7 (PIA|Q) = " (P|A|Q) for all P,Q € [p < o0

Since p7(A) < oo there exists @ € [¢ < 00]? with @ D A. Then ¢p?(PUA) =
©"(PUA) for all P € [¢p < c0]?. Now we have to prove that ¢7(A) < ¢"(A)
and can thus assume that ¢7(A) < co. Consider U € &7 with U D A, and
recall that ¢7 is outer regular &”. There are subsets P € [¢ < oo] such that
P cU. It follows that

97 (A) = p?(PUA) =" (PUA) = ¢ (),
and hence 7 (A) < ¢"(A).

1AVl

5.10. EXERCISE. ¢) Construct an example which shows that 5.9.0) be-
comes false without the condition ¢*(A) < oo. Hint: Let & consist of the
finite subsets of an infinite countable X, and let ¢ = 0. Determine &(*, +)
with the aid of 5.2. 7) Do the same for 5.9.7).

However, we shall see that the three properties of ¢ to be an outer
e premeasure for ¢ = xo7 are independent, except that as a consequence
of 5.5.5) the combination + — + of these properties cannot occur. The
independence is plausible after 5.5.5): This condition can be subdivided
into two partial ones, such that the one increases and the other decreases
with e = xo7. We shall come back to this point in 5.15 in the frame of the
conventional outer situation.

The Conventional Outer Situation

The above central theorem of the chapter will be most important in two
particular cases. These are the specializations

@ € 6 and (@) =0, and
X € Gand p(X) =0.

The first one is called the conventional outer situation. It will be the theme of
the present subsection. This specialization contains, and unifies and clarifies
those earlier extension procedures which were in visible or invisible manner
based on outer regularity. The other one is what later will become the con-
ventional inner situation. It will achieve the same for the earlier extension
procedures based on inner regularity. It is obvious that this specialization
should be treated via the upside-down transform method. However, it seems
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more natural to perform the upside-down procedure for the entire develop-
ment, and then to specialize to the case @ € & and p(&) = 0 as before.
This will be done in the next section.

For the present we consider a lattice & with @ € & and an isotone
set function ¢ : & — [0, 00] with (@) = 0. There are certain immediate
simplifications: An outer e extension of ¢ is an extension of ¢ which is a
ccontent « : A — [0, 00] on a ring 2, with the further properties as above.
Furthermore we have ¢* : P(X) — [0, 00] with ¢*(@) = 0. Thus we can
write €(¢®) instead of €(¢® +). Also the definition of upward essential
simplifies in an obvious manner. It is natural to specialize 5.2 and 5.5 to
B = {2}, and for simplicity we take Q = [¢p < co|. Let us then rewrite the
outer main theorem with these simplifications.

5.11. THEOREM (Conventional Outer Main Theorem). Let & be a lattice
with @ € &, and ¢ : & — [0,00] be an isotone and submodular set function
with (&) = 0. Then the following are equivalent.

1) There exist outer ® extensions of ¢, that is ¢ is an outer e premeasure.
2) ©*|€(p®) is an outer e extension of . Furthermore
ife=x : ©*|€(p®) is a ccontent on the algebra €(v*),
ife=o01 : ©*|€(®) is a cmeasure on the o algebra E(p*).

3) ¢°*|€(¢®) is an extension of ¢ in the crude sense, that is S C €(®) and
P =¢°6.
4) p(B) = ¢(A)+¢*(B\ A) for all AC B in &. In case @ = T furthermore
@ s upward essential.
5) ¢ = ¢*|6; and p(B) = p(A) + ¢*(B\ A) for all AC B in [p < c0]. In
case ® = T furthermore ¢ is upward essential.
Note that 5.4 then implies [¢ < 00] TG&® C €(¢°).

Assume that G is a lattice with @ € &. We define an isotone set function
v : 6 — [0, 00] with ¢(&) = 0 to be outer e tight iff it fulfils

o(B) 2 (A)+¢*(B\A) forall AC Bin &,
as it appears in condition 5) above. It is obvious that
outer x tight = outer o tight = outer 7 tight .

We show on the spot that both converses <= are false. The counterexamples
will be isotone and modular set functions ¢ : & — [0, 00[ with ¢(@) = 0
which are upward 7 continuous.

5.12. EXERCISE. We recall from 2.3.1) for a € X the Dirac set functions
dq : P(X) — {0,1}. §, is a cmeasure and upward and downward 7 continu-
ous. Now assume that X is a Hausdorff topological space. We consider the
set functions ¢ := §,|Op(X) and ¢ := §,|C1(X). 1) We have ¢* = §, for all
e = xo7. Therefore ¢ is outer e tight and an outer e premeasure. 2) We
have the equivalences

¢ outer o tight <= ¢*({a}’) =0 <= {a} € (Op(X))s.
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The condition on the right side can be different for ¢ = xo7: For ¢ = %
it means that a is an isolated point of X. For e = ¢ it means that in
classical notation {a} is a G5 set. For ¢ = 7 it is always fulfilled. Thus we
obtain obvious counterexamples as announced above. Furthermore ™ = §,;
therefore v is upward essential and hence an outer 7 premeasure.

5.13. SPECIAL CASE (Traditional Type). Assume that & is a ring.
Then condition 5) simplifies to
50) ¢ = ¢°*|6; and ¢ is supermodular. In case ® = T furthermore o is
upward essential.

The conventional outer main theorem will henceforth be one of our sys-
tematic tools. A fundamental achievement will be the extension 7.12.1) of
the last special case. For the present it will be applied to the former main ex-
ample A : & = Comp(R") — [0, oo[ in order to obtain the Lebesgue measure
on R™ and its basic properties in the spirit of the outer theory.

The decisive fact follows from a simple observation which will be system-
atized below: For each pair A C B in 8 we have B\ A € 87, that is there
exists a sequence (K;); in K such that K; T B\ A. Then AN K; = @ and
AUK; 1 B. We conclude from 2.26 that A\(A) + A(K;) = M(AU K;) < A(B)
and hence

N7(B\ A) < Jim \(K7) £ A(B) — M(A);
— 00

note that 2.27 even implies that A(AUK;) T A(B) and hence A\(K;) T A(B) —
A(A). Thus A is outer o tight. From 2.27 it follows that A is an outer o
premeasure. The achievement of the conventional outer main theorem is
then the cmeasure

A= NJEA) =M€ on £:=¢(\),

defined to be the Lebesgue measure on R”. The last assertion in 5.11
furnishes

CI(R") CRATRC RTR? C €(A\?) = £ and hence Bor(R") C £.

The restriction A|Bor(R"™) is called the Borel-Lebesgue measure on R™.
All this is the first statement in the comprehensive theorem which follows.

5.14. THEOREM. 1) A : 8 = Comp(R") — [0, 00[ is an outer o premea-
sure. The Lebesgue measure A := \7|€(A\?) has the domain £ := €(\7) D
Bor(R™). 2) X is not upward T continuous and hence not an outer T pre-
measure. 3) A is not outer x tight and hence not an outer x premeasure.

4) X7 and hence A are outer regular Op(R™). 5) A is inner reqular
£ = Comp(R"). 6) A|Op(R") is upward T continuous. 7) AJOp(R™) =: w
is an outer e premeasure for all @ = xor. It satisfies w® = \° and hence
w*|C(w®) = A.

Proof. 1) has been proved above. 2) is obvious since A\(F) = 0 for all
finite F' C R™. The next proofs require the preparations which follow. i)
For K € R and € > 0 there exists an open U D K with A(U) < A(K) +e.
In fact, for K # @ and K(J) := {z € R" : dist(z, K) < §} we see from
2.24 that A(IntK(9)) | A(K) for 6 | 0. ii) For A € R with A(4) < oo
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and € > 0 there exists an open U D A with A(U) = A(A) + e. To see this
choose a sequence (Kj); in & with K; T A and open subsets U; D K; with
AU) £ XN(K;) +€27% For the V; := Uy U - -- U U one obtains via induction
A(V) £ MIG) +e(1 —27%). Thus V; 7 V furnishes an open V O A with
A(V) S A(A) +e.

3)Let B:={z €R":0=Z 1, -+ ,2, £ 1} be the unit cube of R™ and
D C IntB be a countable dense subset. From A(D) = 0 and ii) we obtain
an open subset U D D of IntB with A(U) < 1. Note that A*(U) = 1. Thus
for the compact A:= B\ U C B we have U = B\ A and

A(B) = MA) + A(U) < A(A) +1 = A(A) + X*(B\ A).

It follows that A is not outer x tight. 4) follows from 4.1.4) and the above
ii). 5) Since R™ is in K7 we can restrict ourselves to A € £ such that
A C some K € R Fix ¢ > 0. By 4) there exists an open U D K N A" with
AU) S AKNA")+e. Then K NU' is compact C A, and we have

AA) +AKNU) £ AA)+AU) SAA) +AKNA) +¢
= MK)+e=ANKNU)+AKNU) +e,

and hence A(A) S M(KNU') +e. 6) Let A € Op(R™), and M C Op(R")
be a paving with 9 T A. For real ¢ < A(A) we obtain from 5) a compact
K C Awith ¢ < A\(K). Now K C some M € M, and hence ¢ < sup{A(M) :
M € 9M}. The assertion follows. 7) We see from 4)6) that A is an outer o
extension of w, so that w is an outer ® premeasure. Now w® and A7 coincide
on Op(R™) and are both outer regular Op(R™). Therefore w® = A?. The
proof is complete.

5.15. EXERCISE. We can now prove that for the isotone and modular
set functions ¢ : & — [0, 00[ with ¢(@) = 0 the three properties to be an
outer e premeasure for ¢ = xo7 are independent, as announced at the end
of the last subsection. There are 23 = 8 combinations of these properties.
We know that the combination + — 4 cannot occur. 1) Deduce examples
for — —+ and —++ from 5.12.2). 2) Deduce examples for — — — and +——
from 3.11. 3) Deduce examples for — + — and + + + and also for + + —
from 5.14.

6. The Inner Extension Theory

The basic part of the present section obtains the inner extension theory
as a mere transcription of the outer extension theory via the upside-down
transform method. Thus the two extension theories are in fact identical.
We shall add a subsection on further results in the 7 case, which in practice
is much more important in the inner than in the outer situation. Then we
specialize to the conventional inner situation as announced.
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The Basic Definition

Let as before & be a lattice in a nonvoid set X.

DEFINITION. Let ¢ : & — [—00,00[ be an isotone set function # —oo.
For e = xo7 we define an inner e extension of ¢ to be an extension of ¢
which is a + content « : 2l — R on an oval 2, such that also &, C 2l and
that

« is inner regular G,, and
|6, is downward e continuous; in this context note that a|G. < oo.

We define ¢ to be an inner e premeasure iff it admits inner e extensions.
Thus an inner e premeasure is modular and downward e continuous.

As before the principal aim is to characterize those ¢ which are inner o
premeasures, and then to describe all inner e extensions of ¢.

6.1. EXERCISE. Let ¢ : & — [—00, 00[ be an isotone set function # —oo,
and hence pl : 6L —] — 0o, 00| an isotone set function # oco. Then a
set function o : A — R is an inner o extension of ¢ iff the set function
al : A1 — R is an outer e extension of L.

We also refer to the instructive exercise 9.21 below. It is ab-ovo and
could have been placed here, but will be postponed until it will be needed.

The Inner Envelopes

Let ¢ : @ — R be an isotone set function on a lattice &. As before we define
its crude inner envelope ¢, : P(X) — R to be

0x(A) = sup{p(S) : S € & with S Cc A} for A C X.

Likewise we define the inner envelopes ¢,, ¢, : B(X) — R as the coun-
terparts of the respective outer formations to be

ws(A) = sup{llim ©(Sy) : (S)); in & with §; [C A} for A C X,
o (4) = sup{gngncp(S) : M paving C & with M |C A} for A C X.
€

As before we have for @ = xo7 the common formula

we(A) = sup{élngngo(S) : M paving C & of type e with 9 |[C A}.
€

6.2. EXERCISE. (@)L = (¢L1)® for e = x0oT.

The upside-down transform method thus furnishes the inner counter-
parts of the respective properties proved in the outer situation. For conve-
nience we list the basic ones.

6.3. PROPERTIES. 1) 04|G = . 2) ¢y < 05 < @r. 3) we is isotone. 4)
e 18 inner reqular [pe|Ge > —o0] C B,o. 5) Assume that p is supermodular
+. Then ¢y is supermodular +, and e for @ = o7 is supermodular + when
either o < 00 0r (pg > —00.
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6.4. EXERCISE. Let ¢ be submodular +. Assume that A,B C X are
coseparated & in the sense that
for each M € & with M C AUB
there exist S, T € & with S C A and T C B such that M C SUT.

Then ¢,(AU B)+ou(AN B) £ 0. (A)+¢.(B).

6.5. PROPOSITION. For an isotone set function ¢ : & — R and @ = oT
the following are equivalent.

1) (p°|6 =¥

ii) ¢ is downward e continuous.
In this case we have furthermore

iil) pe|Ge is downward e continuous;

iv) if {S € Go: pe(S) > —00} C & then o = @y.

6.6. LEMMA. Let M C &, be a paving of type o with MM | A. Then of

course A € &,. Furthermore there exists a paving M C & of type o with
M| AandNC (M.

6.7. THEOREM. Assume that o : & — R is isotone and supermodular +.
Then ¢, and @, are almost downward o continuous.

6.8. LEMMA. Assume that ¢ : & — R is isotone and supermodular +.
For P1,-+ , P,,Q € & with o(Py),--+ ,0(Py), o(Q) > —o0 then o(PyN---N
P,NQ) > —c0 and

e(PiN---NPNQ) +Z@quc2 zz (P) +¢(Q
=1 =1

Next we define an isotone set function ¢ : & —>_IR to be downward e
essential iff its upside-down transform ¢ L : G 1L — R is upward e essential.
One verifies that this means that

ve(A) = inf{pe(AUS):S5€p>—o0]} forall AC X with
—00 < pe(A) £ inf{pe(AUS):S € [p>—00]} < 0.
We obtain the counterpart of the former result.

6.9. PROPOSITION. Let ¢ : & — R be isotone. %) ¢ is downward x
essential. o) If ¢ is supermodular + then it is downward o essential. T)
Assume that ¢ is supermodular + and such that each A C X with ¢, (A) >
—o00 is downward enclosable [p > —o0],. Then ¢ is downward T essential.

Therefore an isotone and supermodular + set function ¢ : & — R will
be called downward essential instead of downward 7 essential.

After these transcriptions we conclude the subsection with some simple
but important relations which involve envelopes of both kinds.

6.10. PROPOSITION. 1) We have ¢* < ¢, on &°. Therefore ¢* <
(p«|B®)*. 2) The following are equivalent. i) ¢ = @*|&. ii) ¢* = ¢,
on &° and hence ¢* = p, on G°. iil) ¢* 2 .. 1v) ¢* 2 (pu|6*)* and
hence ©* = (p.|G*)*.
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Proof. 1) Let A € &® and 9 C & be a paving of type e with 9 T A.
By definition then ¢(S) =< ¢,(A) VS € M and hence

©*(A) = supp(S) = ¢, (A).
Sem

The second relation is then clear. 2) The implications iii)=-iv)=-ii)=1) are
obvious. i)=+ii) Let A C X. For § € & with S C A then ¢(S) = ¢*(5) <
©*(A). Thus p.(A4) < ¢*(A).

6.11. EXERCISE. 1) We have pe = ¢* on G,. Therefore po = (¢ |G ).
2) The following are equivalent. 1) ¢ = pe|S. i) pe < ©* on G, and hence

*

Vo = ©* 0N B,. 1il) Yo = ©*. V) Yo = (¢*|G4)x and hence o = (P*|Gae)x-

In some earlier versions of the outer and inner extension theories the
above formations

P = (pu|&%) and @) = ("[6)s
have been used in more or less explicit manner, in places where in the present
text the envelopes p® and @, are the natural means. For some details we
refer to the bibliographical annex to the chapter. Of course ) = ©*
and ¢(,) = px. For @ = o7 the formations ©(®) and ¢(e) are much more

complicated than ¢* and .. For example, it is unclear whether beyond
6.10.2) and 6.11.2) they preserve semimodularity in the appropriate sense.

The Carathéodory Class in the Spirit of the Inner Theory

The second tool in the outer extension theory was the Carathéodory class
¢(-). TIts definition and basic properties were not related to outer/inner
aspects. Thus there is no reason for transcription. However, there was a
subsequent subsection on the Carathéodory class in the spirit of the outer
theory. For the present context this subsection consisted of intermediate re-
sults which need not be transcribed, so that the transcription could proceed
to the next section on the main theorem. But the transcribed versions of
some former results will be needed later, and therefore will be inserted at
this point. For the transcription we refer to the earlier 4.15.

6.12. REMARK. Let T be a paving in X and ¢ : P(X) — R be isotone
and inner regular €. If A C X satisfies

(P)+6(Q) = ¢(PIA|Q)+(PIA|Q)  for all P,Q € %,
then A € (¢, +).

6.13. EXERCISE. Let o : A — R be a content + on an oval ™A. Then
A C &y, +).

6.14. LEMMA. Let P C Q C X. Assume that ¢ : P C Q — R is
supermodular. If A C X satisfies

P(P) +¢(Q) = »(PlA|Q) + »(P|A'|Q),
then
o(U) +o(V) = p(U|AIV) + oU|A'|V)  for allU,V € PC Q.
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6.15. PROPOSITION. Assume that ¢ : P(X) — R is an isotone set func-
tion. Let B | and Q 1 be pavings in X with nonvoid P T Q such that

B and ¢|Q are finite, and PP = Q is supermodular.
Furthermore let $ | be a paving in X with P C H such that

¢ 1s inner reqular $ C Q,
o(T) = Iin‘fpgb(T UP) forallT € HLC Q.
€

If A C X satisfies

o(P)+6(Q) = ¢(PlA|Q) + ¢(P|A|Q)
for all P € P and Q € Q with P C Q,

then A € €(¢,+).
As before we have two addenda.

6.16. ADDENDUM. Assume in addition that ¢|B T Q is downward o
continuous. Then &(p,+) is a o algebra.

6.17. ADDENDUM. Assume in addition that 6 : B(X) — R is an isotone
set function with 0 < ¢ such that

O0|P = o|B and 0|Q = ¢|Q,
0(T)= inf (T UP) foralTecH Q.
Pep
Then ¢|€(¢, +) is an extension of 0|C(6,+).

The Inner Main Theorem

We assume that ¢ : & — [—00,00[ is an isotone set function £ —oo on a
lattice G in X. The assertions which follow are immediate consequences of
their outer counterparts via the upside-down transform method. We recall
6.1 and 6.2, and once more the earlier 4.15.

6.18. THEOREM. Assume that o : 2 — R is an inner e extension of .
Then a is a restriction of Qe|€(@e,+).

6.19. PROPOSITION. Let ¢ be supermodular with 4|6 < 0o, and down-
ward essential in case @ = 7. Fiz pavings

B C [p > —o0] downward cofinal, and
Q C [p > —o0| upward cofinal.
If A C X satisfies

Pe(P) +0e(Q) = ¢e(PIA|Q) + ¢ (P|A'|Q)
for all P € P and Q € Q with P C Q,

then A € €(pq,+).
6.20. ADDENDUM. For e = o7 the class €(ps,+) is a o algebra.

The next assertion does not result from the upside-down technique but
is an immediate consequence of 6.19 as before.
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6.21. EXERCISE. Let ¢ be supermodular with pe|& < oo, and downward
essential in case @ = 7. Assume that Q C [¢ > —oo] is upward cofinal.
Then

QTE(pe, +) C E(ps, ).

After all the upside-down transform method furnishes the inner main
theorem.

6.22. THEOREM (Inner Main Theorem). Let ¢ : & — [—00,00] be an
isotone and supermodular set function £ —oco on a lattice &. Fizx pavings

P C [p > —o0] downward cofinal, and
9 C [ > —o0] upward cofinal.
Then the following are equivalent.
1) There exist inner o extensions of @, that is ¢ is an inner ® premeasure.
2) Qo|€(pa,+) is an inner o estension of p. Furthermore
if @ =% 1 ©4|€(pa,+) is a content + on the algebra €(pe,+),
ife =0T : @u|€(pe,+) is a measure + on the o algebra €(pa,+).

3) ve|C(pe,+) is an extension of ¢ in the crude sense, that is & C €(pa, +)
and ¢ = pe|6.

4) o(U) + (V) = (M) +pe(UIM'|V) for allU C M C V in &; note that
M =U|M|V. In case ® = T furthermore ¢ is downward essential.

5) ¥ = ¢e|S; and p(P) + ¢(Q) = ¢(M) + ¢u(P|M'|Q) for all P C M C Q
with P € B, Q € Q, and M € & and hence € [¢p > —o0]. In case @ = T
furthermore ¢ is downward essential.

Note that 6.21 then implies QT S, C (s, +).

6.23. SPECIAL CASE (Traditional Type). Assume that & is an owval.
Then condition 5) simplifies to

50) ¢ = we|&; and ¢ is submodular. In case ® = T furthermore ¢ is
downward essential.

Comparison of the three Inner Theories

We obtain the inner counterparts of the respective outer results. In the
present subsection let ¢ : & — [—00,00[ be an isotone and supermodular
set function # —oo on a lattice &.

6.24. PROPOSITION. o) In case ¢ = ¢,|6 we have &(p.,+) C €(po,
+). 7) In case ¢ = ¢;|& we have €@y, +) C (7, +).

6.25. PROPOSITION. Assume that ¢ is modular. o) In case ¢ = ps|&
we have o, (A) = o5 (A) for all A € C(py, +) with p.(A) > —oo. 7) In case
© = ¢7|6 we have p,(A) = ¢, (A) for all A € €y, +) with p,(A) > —o0.

However, as before the three properties of ¢ to be an inner e premeasure
for @ = xo7 are independent, except that as a consequence of 6.22.5) the
combination + — + of these properties cannot occur.



6. THE INNER EXTENSION THEORY 59

Further Results on Nonsequential Continuity

In contrast to the ubiquitous ¢ continuity of measures the occurrence of 7
continuity is restricted to particular and foremost situations and bound to
severe limitations. The simplest illustration is as follows.

6.26. EXAMPLE. Let & be a lattice in X which contains the finite subsets
of X, and let ¢ : & — R be isotone with ¢(S) = 0 for all finite S C X. If
is upward 7 continuous then ¢ = 0.

In our extension theories the 7 extensions are defined to possess a certain
T continuity, but it is restricted to the direct descendants of the initial
domain &. In the sequel we deduce two further results on 7 continuity. We
restrict this topic to the inner situation where it is much more important.
In the present subsection we assume  : & — [—00, 0o[ to be an isotone and
supermodular set function # —oo on a lattice S.

The main feature is the occurrence of the transporter GT &, which of
course is = 6, TG, = (&,;)T as well. As a rule the members of §T&, can
be much larger subsets of X than those of &.. We note that for an inner 7
premeasure ¢ we have

6T67— C [QO > _OO}TGT C 6(907'7 +)a
and hence (6T&;)L C &€(pr, +) as well.

6.27. PROPOSITION. Assume that ¢ = ¢.|&. Then the restriction
©r|6TS, is almost downward T continuous.

6.28. PROPOSITION. Assume that ¢ is an inner T premeasure. Then the
restriction o |(6T &)L is almost upward T continuous.

Proof of 6.27. Let 9 C GTS; be a paving with ¢, (M) < oo VM € M
such that MM | H; thus H € 6GTS,. To be shown is

= inf o, (M) < @ (H).
c A}gmw( ) = pr(H)

We can assume that ¢ > —oo and hence ¢ € R. Then ¢,(M) € RVYM € N,
but a priori ¢, (H) = —o0 is possible. Let us fix real € > 0 and A\ > ¢, (H).
i) Fix P € M. By 6.3.4) there exists S € &, with S C P such that
©r(S) > ¢ (P) —e. Note that ¢, (S) < ¢-(P) < co and hence ¢,(S) € R.
ii) By assumption {M NS : M € M} is a paving C &, with | HNS € &,.
By 6.5.iii) therefore

1 = <
Jnf or(MNS) = (HNS) < or(H) <A
Thus there exists @ € M such that ¢ (Q NS) < A. Since M | we can
assume that @ C P, so that QU .S C P. iii) By 6.3.5) we then have
c+ SOT(S) = SOT(Q) + QOT(S) < SOT(Q U S) + @T(Q N S)
©r(P) +¢r(QNS) <r(S) +e+ A

and hence ¢ < € + A\. The assertion follows.

A I
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Proof of 6.28. Let M C (6T S,)L be a paving with ¢, (M) > —oo VM €
9 such that M T H; thus H € (6TS,)L. To be shown is

c:= sup or (M) 2 ¢ (H).
MeMm

We can assume that ¢ < co and hence ¢ € R. Then ¢.(M) € R VM € M,
but a priori ¢, (H) = oo is possible. Let us fix real ¢ > 0 and A < ¢ (H). i)
Fix P € M. By 6.3.4) there exists S € &, with S C P such that ¢.(S) >
—oo and hence ¢, (S) € R. ii) Once more by 6.3.4) there exists T' € &, with
T C H such that ¢ (T") > X and hence ¢,(T) € R. In view of S C P C H
we can assume that S C 7. iii) By assumption {M'NT : M € M} is a
paving C &, with | H'NT = @. Hence {(M'NT)US : M € M} is a paving
C 6, with | S € &;. By 6.5.iii) therefore

A/i[relfm@T((M/ N T) UsS) = e (9).

Thus there exists @ € MM such that o ((Q'NT)US) < ¢, (S) + €. Since
9 T we can assume that Q D P. iv) We have Q € €(¢,,+) and hence

(PT(S) +A < SOT(S) + SOT(T) = SOT(S|Q|T) + (PT(S|Q/|T)
= ¢(Q@NT) + ¢ (Q'NT)US)
er(Q) + ¢r(9) +e = c+ 9 (5) +e,

and therefore A < ¢+ . The assertion follows.

A

The Conventional Inner Situation

The conventional inner situation is defined to be the specialization that
& € 6 and p(@) = 0. Thus we consider a lattice & with @ € & and an
isotone set function ¢ : & — [0, co[ with (@) = 0. Although the full inner
situation is known to be identical with the full outer situation, there are
characteristic discrepancies between the two conventional situations, as it
must be expected from traditional measure theory. Thus we have to assume
this time that ¢ < co. As in the outer situation there are certain immediate
simplifications: An inner e extension of ¢ is a ccontent a : A — [0, 9]
on a ring A, with the further properties as above. Furthermore we have
Ve : P(X) — [0,00] with 0 = (D) = pu(F) = ¢o(D) £ (). Thus as
before we can write €(y,) instead of €(yp,, +).

But there are two essential deviations from the conventional outer sit-
uation. One deviation is that this time all supermodular ¢ are downward
essential. This is obvious from the definition. Therefore the respective con-
dition can be deleted from the conventional inner results.

The other deviation from the conventional outer situation is that ¢e(2)
= 0 is a nontrivial condition when e = g7. This condition will be explored
in the course of the present subsection. We shall see that it is much weaker
than the full condition p4|& = ¢, and that its verification can be much easier
and sometimes even trivial. Therefore it is desirable to have the conventional
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inner main theorem with a variant of condition 5) in which ¢4 (&) = 0 occurs
instead of pe|& = . Of course then the subsequent partial condition in 5)
has to be fortified. For this purpose we need the so-called satellites of the
envelopes o which will be defined next.

For fixed ¢ = xo7 and B € G we define the satellite inner e envelopes
©B P(X) — [0, 00 to be
0B (A) = sup{singﬂap(S) : 9 paving C 6 of type e with
© SC BYS €M and M |C A} for A C X.

We list the basic properties of these satellites.

6.29. PROPERTIES. 1) 8 < o(B) < co. 2) ¢F is isotone. 3) If o is
supermodular then o2 is supermodular. 4) We have

@e(A) =sup{pl(A): Be &} for AC X.
5) Assume that ¢ = @e|&. Then peo(A) = pP(A) for AC B€ .

Proof. 1) and 2) are obvious, and 3) follows from 6.3.5) when one notes
that of = (p|{S € & : S C B}).. 4) We have to prove <. Fix A C X, and
let M be a paving C & of type o such that 9t |C A. For fixed B € 9t then
N:={Se€M:S C B}is apaving C S of type e with M |C A as well, and
we have

. . B

dof o(5) = inf o(5) = v)'(4).
The assertion follows. 5) Fix A C B € &. We have to prove <. Let 9
be a paving C & of type e such that 9t | M C A. For fixed H € 9t then
{SU(HNB): S €M} is a paving C & of type @ with | MU (H N B) =
HN B e 6. Hence by assumption and 6.5

3 < 1 =
S}.Ielafn@(s) < Slélgfﬁgo(SU (HNB)) = ¢(HNB).

Now M :={HNB: H € M} is a paving C & of type e with N | MNB =M
as well. It follows that

inf < inf < oBa
Slgw;P(S) = égmw(S) < o, (A),

and hence the assertion.

The decisive fact on the satellite inner o envelopes is the next lemma.

6.30. LEMMA. Let ¢ be supermodular. Assume that pe(2) =0 and that

©(B) < o(A) +oB(B\A) forallAe & and B € Q with A C B,
where Q C 6 is upward cofinal. Then ¢ = pa|6.

Proof. Fix A € &. For B € Q with B D A we combine the assumptions
with 6.29.3)1) to obtain

0o (A)+9(B) = 9J(A)+(A) + 9] (B\ A)
S @A) + ¢l (B) +¢7(9) £ p(A) + @(B),
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and hence pZ(A) < p(A). Since 2 (-) is isotone in B € & it follows from
6.29.4) that pe(A) = @(A).

As before it is natural to specialize 6.19 and 6.22 to P = {@} and Q = &.
We then obtain the conventional inner main theorem which follows.

6.31. THEOREM (Conventional Inner Main Theorem). Let & be a lattice
with @ € &, and ¢ : & — [0, 0] be an isotone and supermodular set function
with (@) = 0. Then the following are equivalent.

1) There exist inner o extensions of @, that is ¢ is an inner e premeasure.

2) 0e|C(pe) is an inner o extension of p. Furthermore

if =% : o|l€(pe) is a ccontent on the algebra €(p.,),
if e =0T : @e|€(pe) is a cmeasure on the o algebra €(p,).

3) e|C(pe) is an extension of ¢ in the crude sense, that is & C €(ps) and
© = 6.
4) p(B) = ¢(A) + pe(B\ A) for all AC B in &.
5) ¢ = e|6S; and p(B) = p(A) + pe(B\ A) for all AC B in &.
5) ¢e(2) = 0; and ¢(B) < ¢(A) + pF(B\ A) for all AC B in &.
Note that 6.21 then implies ST Gy C ().

Assume that G is a lattice with @ € &. We define an isotone set function
¢ : 6 — [0,00[ with ¢(&) = 0 to be inner o tight iff it fulfils

©(B) £ p(A) +oB(B\A) forall AC Bin @,
as it appears in condition 5’) above. In case e = % this means that
©(B) £ o(A) + o (B\ A) forall AC Bin G.

It is obvious that
inner x tight = inner o tight = inner 7 tight.

As before we show on the spot that both converses < are false. The coun-
terexamples will be isotone and modular set functions ¢ : & — [0, oo with
(@) = 0 which are downward 7 continuous.

6.32. EXERCISE. Consider the situation of exercise 5.12. We have the
equivalences

@ inner o tight <= @e({a}) =1 <= {a} € (Op(X))..
Thus we obtain obvious counterexamples as announced above.

6.33. SPECIAL CASE (Traditional Type). Assume that & is a ring.
Then conditions 5)5°) simplify to
50) ¢ = we|S; and ¢ is submodular.
570) @e(&) = 0; and ¢ is submodular.
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We next consider the weakened condition ¢e(2) = 0 which occurs in
6.30 and in the conventional inner main theorem. For this discussion we
assume an isotone set function ¢ : & — [0, o] with (@) = 0 on a lattice &
with @ € &. We define ¢ to be e continuous at @ iff

Singﬁap(S) =0 for each paving 9 C & of type e with M | &,
€

and to be almost e continuous at @ iff this holds true whenever ¢(S) <
oo VS € M. It is clear that ¢ is e continuous at & iff pe(2) = 0. In order
to obtain an obvious but famous criterion we define & to be e compact iff
each paving 9 C & of type e with 9 | & satisfies @ € 9. The reason
for this notion is obvious: In each Hausdorff topological space X the lattice
Comp(X) of its compact subsets is 7 compact. The next remark is then
clear.

6.34. REMARK. If & is e compact then each isotone set function ¢ :
S — [0, 00] with (&) = 0 is e continuous at &.

It turns out that for ¢ = o7 the condition ¢e(&) = 0 is much weaker
than ¢ = ©e|&. We shall present a dramatic example at the end of the
subsection. The example will show in particular that the conventional inner
main theorem becomes false when instead of 5)5’) one forms the weaker
condition which combines the first part of 5”) with the second part of 5).

The most important and simplest nontrivial example for the conven-
tional inner situation is the familiar set function A : & = Comp(R") —
[0, 00[. Tt has been an example for the conventional outer situation in 5.14.

6.35. EXAMPLE. 1) A is inner x tight and hence inner e tight for @ = xo7.
In fact, we know that for A C B in R there exists a sequence (Kj); in
R with K; T B\ A and hence A(K;) T A(B) — A(A4). This implies that
M(B\ A) = AM(B) — A(A). 2) X is e continuous at & in view of 6.34; we
even know from 2.25 that A\ is downward e continuous. 3) Therefore the
conventional inner main theorem shows that A is an inner e premeasure for
e = xo7. 4) From 6.5.iv) we have A\, = A\, = A;. We shall see in 7.5
below that the common maximal inner e extension \e|€(As) coincides with
A= \7|€(N\9).

We conclude with the example announced above. It is quite complicated.

6.36. EXERCISE. Construct an example of an isotone and modular set
function ¢ : & — [0,00[ on a lattice © with @ € S and X = |J S # o
Se6
such that
i) & is o compact and hence ¢, (&) = 0, but
ii) ¢ (A) = oo for all nonvoid A C X.

One can proceed as follows. 1) Let E be an infinite set and X := E x N. A
subset A C X is described via its sections A(s) :={m € N: (s,m) € A} CN
for s € E. Define & to consist of the subsets A C X such that

1.i) A(s) C N is finite or cofinite for all s € E;
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1.ii) A(s) = @ for all s € E except a finite subset.
Then ¢ is a lattice with @ € €. Define ¢ : € — [0, 00[ to be

¢(A) =#({s € F: A(s) C N is cofinite}) for A € €.

Then ¢ is isotone and modular with ¢(&) = 0. 2) If E is countable then
there exists a function 6 : X — JB(E) such that

2.i) 6(z) C E is infinite for all x € X;
2.i) for u # v in X we have 6(u) N 0(v) = @;
2iii) E= | 6(z);
rxeX
2.iv) for z = (s,m) € X we have s € 0(z).
Hint: We can assume that £ = NU(—N). Let I : Nx N — N be a bijection.
Define 6 : X — PB(F) to be

0(z) = {-cl(n,I(p,q)):neN}CE
for z = (ep,q) € X with p,q € Nand ¢ € {—1,1}.

Then 0 is as required. For the sequel we fix E and 6. 3) Define & to consist
of the subsets S € € such that

x € X\ S = 5(s) CNis finite for all s € 0(x).

Then & is a lattice with @ € &. Define ¢ := ¢|&. 4) & is o compact. Hint:
Let (S)); be a sequence in & with S; | @. Fix a nonvoid finite subset F C
such that Si(s) = @ for all s € E'\ F. Then let x1,--- ,z, € X such that

Fc U0O(xg). If 21, , 2, € S;, which is true for almost all [ = 1, then S;
k=1

is finite. This implies that S; = @ for almost alll 2 1. 5) Fixa = (p,q) € X
and a nonvoid finite F' C #(a) C E, and note that p ¢ 6(a) and hence p ¢ F.
For T' C N cofinite we define S C X to be

5.4) S(p) :={aq};

5.ii) S(s) :=1T for all s € F;

5.iii)S(s) := @ for all other s € E.
Then S € & with a € S, and ¢(S) = #(F'). Deduce that ¢, ({a}) = #(F).
6) It follows from 5) that ¢,({a}) = oo for all a € X and hence ¢,(A4) =
for all nonvoid A C X.

7. Complements to the Extension Theories

The present section has two independent themes. The first one is to com-
pare the outer and inner extension theories. The other theme is to exhibit
certain classes of lattices with @ on which the relevant tightness conditions
will be automatic facts like on rings, but which are much more natural initial
domains than rings. The idea has been used for the Lebesgue measure in
both the outer and the inner situation. Its systematization will lead to an
essential increase of the frame of applications. The section concludes with a
bibliographical annex.
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Comparison of the Outer and Inner Extension Theories

The main result of the present subsection is for a set function ¢ : & — R on
a lattice © which is both an outer and an inner e premeasure. We restrict
ourselves to @ = xo since the case ¢ = 7 is unrealistic. The result will be
that the two maximal extensions ¢*|€(¢®, +) and ¢e|€(¢e, +) coincide to

the extent which can be expected in view of the classical uniqueness theorem
3.1.

7.1. LEMMA. Assume that ¢ : & — R and a : A — R are isotone set
functions on lattices S and A, and that o extends .

0 prSa= e on, and ¢, < * on P(X).

o) If A is a o lattice and o is almost upward and downward o continuous
then

0o(A) = a(A)  for Ae A when (+) ¢ < 00 or ps(A) < o0;
a(A) £ ¢7(A) for A€ when (—) — oo < p or —oo < @7 (A);
ws(A) £ ¢7(A) for AC X when (+) and (—).

Proof. *) is clear from the definitions. In o) we can for the first assertion
assume that ¢,(A4) > —oo. Let (5;); be a sequence in & with S; | some
U C A. Then by definition ll_i)rgow(Sl) < ¢,(A), so that both times we
can assume that ¢(S5;) < oo VI € N. It follows that U € &, C 2 and
o(S)) = a(S) | a(U) £ a(A). Therefore ¢, (A) < «a(A). The second
assertion is proved in the same manner. In order to prove the third assertion
assume that ¢p7?(A) < p,(A) and fix a real ¢ with ¢7(A) < ¢ < p,(A4). By
4.1.4) and 6.3.4) there are

Ves”cu with V' O A and ¢? (V) < ¢,
UeG,Cc with U C A and ¢,(U) > c.

We can apply the first assertion to U to obtain ¢,(U) < «(U), and the
second assertion to V' to obtain a(V) =< ¢?(V). It follows that a(V) =
¢ (V) <c< ¢s(U) = a(U) and hence a contradiction.

7.2. LEMMA. Assume that ¢ : & — R is an isotone set function on a
lattice G, and that o : A — R is an extension of ¢ which is

fore=x : a content —|— on an oval 2,
fore=o0 : ameasure + on a o oval 2.
Then for S, T € & and A € A we have
a(S|AIT) = *(S|A|T) when A € €(p*, +),
a(S|A|T) = pe(S|A|T) when A € €(pa, +).

Proof. Fix S,7 € & and A € 2. Then S|A|T € A and S|A'|T =
T|A|S € . From 7.1 we obtain

pe(SIAIT) = a(S|AIT) = ©*(SIAIT),
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and the same for A’. Furthermore note that S|A|T is between S N7T and
S UT, and that in case ¢ = ¢ the function ¢ is upward and downward o
continuous. Thus

@*(S|AIT) P*(SUT) =p(SUT) < oo,
ve(S|A|T) Pe(SNT) =p(SNT) > —o0,

so that the above values are all finite. The same is true for A’. Now we have
on the one hand

a(SIAIT) + a(S|AT) = a(S) + a(T) = ¢(S) + »(T),
since by the modularity + of « both sides are = a(SUT) 4+ a(SNT). On
the other hand we have
for A € €(p*,+) : ¢*(S|AIT) +¢*(S|A'|T) = p*(S) +¢*(T) = ¢ (5) + (1),
for A € €(pe, +) : Qa(S|AIT) +@o(S|A|T) = @o(S) +pe(T) = ©(S) +¢(T).

The combination furnishes the assertions.

IAVARIVAN

~— —

The next result says that in a certain sense regularity can be turned
around at the Carathéodory class.

7.3. PROPOSITION. Assume that ¢ : B(X) — R is isotone and sub-
modular + Let ¥ be a paving in X such that ¢ is outer regular %.
If A € €(¢,+) is such that there exists T € T with T C A and —o0 <
d(T) < ¢p(A) < oo then

¢(A) = sup{¢p(P) : P € O(%) with P C A}.

Proof. Fix ¢ > 0. i) By assumption there exists S € ¥ with S D A such
that ¢(S) = ¢(A4) +¢e. Thus ¢(S) € R. Also fix T' € T as described above.
From A € €(¢,+) we conclude that

A(T)+6(S) = S(TIA|S)+o(T|A'|S) = ¢(A)+6(SIA|T).

Therefore ¢(S|A|T) is finite and < ¢(T') +¢. ii) By assumption there exists
H € ¥ with H D S|A|T such that

¢(H) = ¢(SIAT) + & = ¢(T) + 2e.

Thus ¢(H) € R. Note that

HDSATO>DTNA=Tsince T C A,

SNH cSN(S'NAIT)=SNT'NnAC A.
iii) Now define P := S|H|T € O(%). The last inclusions show that 7' C P C
A. Furthermore

PNH=TNH=Tand PUH=(SNH)UH=SUH DS D A.
Since ¢ is submodular + this implies that
¢(A)+o(T) = ¢(PU H)+¢(P N H) = ¢(P)+(H),

and we know that all terms are finite. From this and from ii) it follows that

d(A)+ &(T) < ¢(P) + ¢(T) + 2¢ or ¢(P) = ¢p(A) — 2e. Thus we have the

assertion.

We shall also need the upside-down counterpart.
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7.4. EXERCISE. Assume that ¢ : B(X) — R is isotone and supermodular
+ Let T be a paving in X such that ¢ is inner reqular . If A € €(¢, —l—) is
such that there exists T € T with A CT and —oco < ¢(A) < ¢(T') < oo then

¢(A) = inf{p(P) : P € O(T) with P D A}.
We can now obtain the desired comparison theorem.

7.5. THEOREM. Let & be a lattice and ® = *o. Assume that the set
function ¢ : & — R is both an outer and an inner o premeasure. Then
(¢, +) = €(pe, +) =: €. Furthermore ©*(A) = po(A) for all A € €N
(6o C &°®), except that in case @ = o one has also to admit that ¢ (A) = oo
and py(A) = —o0.

Note that in the conventional situation @ € & and ¢(@) = 0 the latter
exceptional case cannot occur.

Proof. 1) ¢ is isotone and modular and fulfils ¢ = ¢*|6& = @.|6.
Thus 7.1 and 7.2 can be applied to both a = ¢°|€(¢® +) and o =
©e|€(e, +). Each time it follows that pe = ¢* on B(X), and that

©*(S|AIT) = @u(S|A|T) for S, T € & and A € €(¢*,+) N E(pq, +).
In view of SNT C S|A|T C SUT the common value is finite. 2) We claim
that

©*(S|AIT) = pe(S|A|T) for S,T € & and A € €(¢°, +).

To see this one applies 7.3 to ¢ := ¢* and T := &°, and to the subset
S|A|T € €(p°®, +); note that SNT € & C G* is as required in 7.3. It follows
that

*(S|AIT) = sup{®*(P): P € O(6°*) with P C S|A|T}

= sup{¢®*(P): P € O(6&°®) with SNT C P C S|A|T}.
Now for the P € O(&*) of the last kind P = SNT|P|SUT. Furthermore we
have &°* C €(¢°*,+)N&(gl, +) and hence P € O(S*) C €(¢*, +)N & (s, +).
Thus 1) implies that
©*(P)=¢*(SNTIP|SUT) = @e(SNT|P|SUT) = pe(P).

It follows that ¢*(S|A|T) < pe(S|A|T) and hence = po(S|A|T). Note that
the common value is finite as before. 2’) Likewise we have

©*(S|A|IT) = pe(S|A|T) for S,T € & and A € &(p., +).

The proof is as in 2), but with 7.4 instead of 7.3.
3) We next prove that €(¢®, +) C €(ps,+). In fact, let A € €(p°, +).
For S,T € & we obtain from 2)
P(9) +o(T) = *(8) +¢*(T) = ¢*(SIAIT) +¢*(S]A|T)
= @o(SIAIT) + pu(S|A|T).
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Thus 6.19 implies that A € €(pa,+). 3’) We obtain €(pe,+) C €(¢*, +) as

in 3), but based on 2’) and 5.2 instead of 2) and 6.19. 4) So far we have
proved that €(p*,4+) = €(g., +) =: €, and furthermore that

©*(S|A|T) = @u(S|A|T) €R for S,T € & and A € €.

5) We finish the casc @ = x. f A € €N (6, C &%) =€N (6 C 6) then
S Cc AcC T for some S,T € &. It follows that S|A|T = A and hence

P (A) = u(A).
6) We turn to the case « = 0. Fix A € €N (6, T 67). Thus P C
A C @ where P, | P and Q; T @ for some sequences (P;); and (Q;); in &.
Furthermore fix S € &. From 4) we obtain
P|A|S | P|A]S =SNA and hence ¢°(SNA)=¢,(SNA) <0,
S|A|Q; 1T S|A|Q =SUA and hence 7 (SUA)=p,(SUA) > —o0.

Now 4.12.4) implies that
(S)+¢7(A) = 7 (SUA)+¢7 (SN A),
(S)+¢o(A) = @s(SUA)+p.(SNA).

Thus if 7 (A) # v, (A) then we must have 7 (SUA) = p,(SUA) = co and
(SN A)=¢,(SNA) = —00, and hence ¢?(A) = 0o and ¢, (A4) = —o0.
We shall see in exercise 7.7 below that this indeed can happen.

©(95)
©(95)

7.6. EXAMPLE. For A : & = Comp(R"™) — [0, oo the maximal inner o ex-

tension A\;|€(A,), which is the common maximal inner e extension \e|€(Ae),
coincides with A := A?|€(A7). This fact has been announced in 6.35.

We conclude with the example announced in connection with 7.5.

7.7. EXERCISE. Construct an example which shows that in 7.5 it can
happen that ¢7(A4) = oo and ¢,(A) = —oco. Hint: On X = R define the
paving & to consist of all S € Bor(X) such that S is bounded above and
S" is bounded below. Note that & is an oval. We write R := [0, 00[ and
L :=] — 00,0], and define ¢ : & — R to be

©(S)=A(SNR)—A(S'NL) for S € 6&.
Then show that ¢?(R) = oo and ¢, (R) = —o0.

Lattices of Ringlike Types

We restrict ourselves to the conventional outer and inner situations. The
most unfamiliar notion considered so far is that of tightness. Therefore
it is desirable to have transparent assumptions which ensure the relevant
tightness conditions. The simplest assumption of this type is that the initial
domain be a ring. However, the previous theories allow to work with certain
weaker assumptions which are much more realistic.
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Let G be a lattice in a nonvoid set X and e = xo7. We define & to be

upward e full iff B\ A € &° for each pair A C B in &,
downward e full iff B\ A € &, for each pair A C B in &.

Thus we have

G ring < 6 upward * full
= G upward o full = & upward 7 full;
G ring < 6 downward % full

= G downward o full = & downward 7 full .

If & is upward e full then @ € &, but trivial examples show that this need
not be true if G is downward e full.

7.8. EXAMPLES (for ¢ = ). 1) Let X be a topological space. For the
sublattices CClL(X) and COp(X) of Baire(X) defined in 1.6.4) we refer to
8.1 below. 2) Let X be a semimetrizable topological space. One verifies
that C1(X) C (Op(X)), and hence that Op(X) C (CL(X))?. It follows
that C1(X) is upward o full and Op(X) is downward o full. 3) Let X be a
metrizable topological space. Then 2) implies that Comp(X) is upward o
full. This has been used for X = R" in 5.14.1) and 6.35.

7.9. EXERCISE. Let X be a Hausdorff topological space. Prove that

Cl(X) is always upward 7 full, and downward 7 full iff X is discrete;
Op(X) is always downward 7 full, and upward 7 full iff X is discrete.

This makes clear that the case ® = 7 is much less important than the cases
e — %0,

We come to the decisive point. We start with the upward fullness con-
ditions.

7.10. PROPOSITION. Assume that & is upward e full. Let ¢ : & — [0, 00|
be isotone and modular with (&) = 0. 1) ¢ is outer o tight. 2) If p < 0o
and p = p°*|G then ¢ is inner x tight.

Proof. Fix A C B in 6. By 1.4.1) there exists a paving 9t C & of type o
with 9t T B\ A. 1) To be shown is ¢(A)+¢*(B\A) < ¢(B). We can assume
that ¢(B) < co. For S € M we have p(A) + ¢(S) = p(AUS) < p(B). It
follows that

P(A) +¢*(B\ A) = p(A) + ;g&@(S) = o(B).

2) To be shown is p(B) < ¢(A) + ¢x(B\ A). Now {AUS:SeM} CSis
a paving of type e with T B, so that by assumption sup (AU S) = ¢(B).
Sem

From (AU S) = ¢(A) + p(S) for S € M we obtain

p(B) = ¢(A) + sup p(5) = p(A) + (B \ A).
sSem
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7.11. REMARK. We emphasize that

o) if & is upward o full then ¢ need not be outer * tight;
7) if & is upward 7 full then ¢ need not be outer o tight.

Thus assertion 1) cannot be improved in this respect. For counterexamples
we refer to 5.12: In a Hausdorff topological space X let a € X and ¢ :=
94|Cl(X). o) If X is metrizable then C1(X) is upward o full by 7.8.2). But
if a is not an isolated point of X, that is if {a} ¢ Op(X), then 9 is not
outer * tight by 5.12.2). 7) Cl(X) is always upward 7 full by 7.9. But if
{a} ¢ (Op(X)), then v is not outer o tight by 5.12.2).

The main consequence which follows will be restricted to the case ¢ = o.
The case ® = x would be contained in the earlier 5.13 and 6.33, and the
case ¢ = 7 would be more involved and seems to be without substantial
applications.

7.12. THEOREM. Assume that & is upward o full. Let ¢ : & — [0, 0]
be isotone and modular with ©(&) = 0 and ¢ = ¢7|S. 1) ¢ is an outer o
premeasure. 2) If ¢ < oo then ¢ is an inner o premeasure.

Let us add at once that for ¢ < oo it follows from 7.5 that €(¢?) =
C(ps) =: € and ¢7(A) = p,(A) for all A € €N (C &7).

Proof. 1) is clear from 7.10.1) and the conventional outer main theorem
5.11. 2) By 7.10.2) and the conventional inner main theorem 6.31 we have
to prove that ¢,(@) = 0. By 1) ¢ is an outer o premeasure. Now consider
a countable paving MM C & with MM | @. To be shown is Slggfﬁap(S) =0. We

fix E € M. Then likewise M(E) := {S € M: S C E} C G is a countable
paving with | @. To be shown is of course 5 igjltf(’E)ap(S) = 0. By assumption
€

we have {E\ S : S € M(E)} C &7, and this is a countable paving with
TE €6 C &2 Thus we have

sup ¢7(E\S) = ¢?(E) = ¢(E).
SeM(E)

In view of 07 (E\ S) = ¢(E) — ¢(S) for S € M(FE) this is the assertion.

7.13. EXERCISE. The above theorem becomes false in both parts when
instead of ¢ = ¢7|& one assumes that ¢, (@) = 0. In fact, we shall construct
set functions ¢ : & — [0, oo[ on upward o full lattices which are isotone and
modular with ¢(2&) = ¢,(&) = 0 but do not fulfil p = p7|&.

Let X be a Hausdorff topological space and a € X such that {a} is not
open but € (Op(X)),. 1) Construct a set function ¢ : C1(X) — [0, co[ which
is isotone and modular with ¢(&) = 0 but not upward o continuous. Hint:
Consider on the real vector space B(X,R) of the bounded functions X — R
the sublinear functional ¥ : B(X,R) — R, defined to be

9(f) = limsupf(x) := inf{sup(f|U \ {a}) : @ € U open C X}.
r—a
Let after Hahn-Banach ¢ : B(X,R) — R be a linear functional < ¢. Note
that ¢ < 9 < sup. Then define ¢ : C1(X) — [0, 00[ to be ¢(A) = ¢(xa) for
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A € ClI(X). Consider for a sequence of open U; | {a} the sequence of the
closed subsets U/ U {a}. 2) If in particular X is compact then ¢ must be o
and even 7 continuous at .

Let us reformulate the last theorem in order that it looks like the classical
Carathéodory extension theorem. The latter theorem is the upper closed
path under the assumption that G be a ring, and likewise the earlier 5.13
for e = 0.

7.14. REFORMULATION. Assume that & is upward o full. Let ¢ : & —
[0, 0] be isotone and modular with (&) = 0. Then we have the implications
as shown below (the simple arrows are obvious implications).

@ can be extended to cmeasure on o algebra which is outer regular &%

fr !
@ is upward o continuous <« ¢ can be extended to cmeasure on o algebra
I p<oo T

@ can be extended to cmeasure on o algebra which is inner reqular G,.

We turn to the counterparts for the downward fullness conditions.

7.15. PROPOSITION. Assume that & is downward e full with @ € &. Let
©: 6 — [0,00] be isotone and modular with (@) =0. 1) If ¢ < co then ¢
is inner o tight. 2) If ¢ is almost @ continuous at & then ¢ is outer x tight.

Proof. Fix A C B in &. By 1.4.1) there exists a paving 9 C & of type
e with M | B\ A. We can assume that S C B VS € M. 1) To be shown
is p(B) £ @(A) + pP2(B\ A). For S € M we have AU S = B and hence
©(B) S o(B)+p(ANS) =p(AUS)+9o(ANS) = p(A)+ ¢(S). It follows
that
P(B) < 0lA) + inf o(8) < p(4) + $B(B 4),

2) To be shown is p(A)+¢*(B\ A4) < ¢(B). We can assume that ¢(B) < oco.
Then {ANS : S € M} C & is a paving of type o with | @, and all its
members have ¢(-) < oco. Hence by assumption inf ¢(ANS) = 0. For
S € 9 now sem
P(B) +(ANS) = p(AUS)+p(ANS)
= p(A) +9(8) Z pl(4) + ¢ (B A).
The assertion follows.

7.16. THEOREM. Assume that & is downward o full with @ € &. Let
p : & — [0,00] be isotone and modular with (&) = 0, and almost o
continuous at @. 1) If o < oo then ¢ is an inner o premeasure. 2) If ¢ is
semifinite above then ¢ is an outer o premeasure.

Let us add as before that for ¢ < co we obtain from 7.5 that €(¢?) =
C(po) =: Cand 97 (A) = p,(A) for all A e €N (C &7).

Proof. 1) In view of ¢ < oo we have (@) = 0. Hence the assertion
is clear from 7.15.1) and the conventional inner main theorem 6.31. 2) By
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7.15.2) and the conventional outer main theorem 5.11 we have to prove that
© = ¢7|6. Since ¢7|6G < ¢ by 4.1.1)2) we have to show that ¢ < ¢7|&; and
since ¢ is assumed to be semifinite above it suffices to show that p(A) <
¢7(A) for all A € & with p(A) < co. To achieve this we pass from & to
T := [p < o0] C & which is a lattice and downward o full with @ € ¥ as
well. Also ¢ := ¢|T < oo is isotone and modular with ¥ (&) = 0, and o
continuous at &@. By 1) therefore ¢ is an inner o premeasure. Now fix A € &
with p(A4) < oo, that is A € . We have to show that sup ¢(S) = sup(S)
Sem Sem

is 2 p(A) = ¥(A) for each countable paving MM C & with 9 1 A, which

implies that 9 C ¥. By assumption we have {A\ S : S € M} C %, and

this is a countable paving with | @. Hence gngnz/JU(A \ S) = 0. In view of
€

P (A\S) = P(A) —(S) for S € M this means that sup(S) = ¢ (A). The
proof is complete. Sem

7.17. EXERCISE. Assertion 2) becomes false without the assumption that
© be semifinite above, even if G is a ring. Hint for a counterexample: Let
X be an infinite countable set, and let & consist of its finite and cofinite
subsets. Define ¢ : & — [0, 00] to be p(A) = 0 if A is finite and p(A) = oo
if A is cofinite.

As before we conclude with an obvious but useful reformulation.

7.18. REFORMULATION. Assume that & is downward o full with @ € &.
Let ¢ : 6 — [0, 00] be isotone and modular with (&) = 0. Then we have the
implications as shown below (the simple arrows are obvious implications).

@ can be extended to cmeasure on o algebra which is outer regular G°
1 o semifinite above l
@ s almost o cont at @ «—  can be extended to cmeasure on o algebra

¢ <oo T
@ can be extended to cmeasure on o algebra which is inner reqular S .

Bibliographical Annex

The present subsection attempts to describe the development of the exten-
sion theories for contents and measures on the basis of lattices and of outer
and inner regularity. We shall restrict ourselves to the conventional outer
and inner situations in the above sense, because we know of no prior work
in the full situations of isotone set functions with values in R or R. To be
sure, there has been extensive work devoted to set functions with values
in complete abelian Hausdorff topological groups, after the model of Sion
[1969]. But in these papers the words isotone and regular do not occur,
or at least attain different characters. Therefore we consider this work to
be a domain on its own, and specialize its results to isotone set functions
with values in [0, 00[C R. In compensation, the results will be considered to
include regularity in the relevant sense whenever this can be read from the
context.
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Most of the papers to be discussed fall into the frame of the outer and
inner e extensions for ¢ = x0T, as defined at the outset in sections 4 and
6 above. The exceptions are the paper of Pettis [1951] cited in the intro-
duction, and the extension procedures which follow the traditional two-step
model of topological measure theory, in short from compact subsets via open
subsets to arbitrary subsets. These contributions culminate in the work of
Sapounakis-Sion [1983][1987] which will be discussed hereafter.

At present we start to formulate a scheme in order to describe the results
of the former papers. The scheme is shaped after the conventional outer and
inner main theorems 5.11 and 6.31, except that their properties 5) and 5)5’)
will be dropped and incorporated into 4). Let & be a lattice with @ € &.
Assume that

in the outer situation (=:out): ¢ : & — [0, 00] is isotone and submodular

with (@) =0,
in the inner situation (=:inn): ¢ : & — [0, o[ is isotone and supermodular
with ¢(@) = 0.

For fixed out/inn and & = xo7 we consider the properties of ¢ which follow.

(1) ¢ is an outer/inner ® premeasure, that is ¢ has outer/inner o extensions.

It is equivalent to require that ¢ has an outer/inner e extension which is
for e =% : a ccontent on an algebra,

fore=o01 : a cmeasure on a o algebra.

The other properties of ¢ are with respect to a further isotone set function
¢ P(X) — [0, 00]. The formation €(¢) is as defined above.

(2 for ¢) ¢|€(¢p) is an outer/inner o extension of ¢ which is

for e =% . a ccontent on an algebra,

fore =01 : a cmeasure on a o algebra.

(3 for ¢) ¢|€(p) is an extension of ¢ in the crude sense.

(4 for ¢) (B) = ¢(A) + ¢(B\ A) for all AC B in &.

We consider one more condition for ¢ with respect to ¢.

(U for ¢) Each outer/inner e extension of ¢ is a restriction of ¢|&(¢p).

We note the obvious implications
(2 for ¢) = (1)

| 4 (U for ¢)
(2 for ¢) = (3 for ¢) = (4 for ¢).

The most important of the above properties for ¢ is of course (1). For a
subordinate set function ¢ the most valuable properties are (2 for ¢) and
(U for ¢), because their combination means that ¢ dominates the set func-
tion @ in the formation of extensions of the respective kind. On the other
hand the most direct and simplest of the properties of ¢ relative to ¢ is of
course (4 for ¢). Therefore the most needed implications are (4 for ¢) = - - -,
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in order to obtain sufficient conditions for (1), and (1) = ---, in particular
(U for ¢), in order to have necessary conditions for (1).

Before we describe the historical development we recall that the present
conventional outer main theorem 5.11 asserts that in the outer cases @ = xo7
the properties (1) and (2 for ¢°®), (3 for ¢*), (4 for ¢®) are equivalent,
provided that in case @ = 7 one adds to (4 for ¢") the requirement that ¢
be upward essential. Furthermore 5.1 says that (U for ¢*) holds true. The
present conventional inner main theorem 6.31 combined with 6.18 asserts
the same in the inner cases ® = xo7 with respect to ,, this time without
addendum in case ¢ = 7. A provisional announcement of these facts was
in Ko6nig [1992c]. We do not have to come back to the outer case @ = 7,
because it has not been treated before.

In the outer and inner cases ® = % the results have been in the literature
for quite some time in more or less comprehensive versions. See for example
Topsge [1970b] theorem 4.1 and Adamski [1984b] section 2. But the author
has not seen the complete formulations before Konig [1992b] theorem A13.

We turn to the outer and inner cases ¢ = o. We have to restrict our-
selves to the basic achievements of the individual papers, perhaps with small
simplifications. As the earlierst paper we mention Choksi [1958], because it
comprised several previous results. Its theorem 1 asserts that

inn: (4 for ¢,) and & o compact = (1).

The leap forward around 1970 started in Topsge [1970a] theorem 1 and
[1970b] section 2 (and notes to section 5) with the results

inn: (4 for ¢,) and ¢ o continuous at & = (2 for ¢,) and (U for ¢,),

when & fulfils No,

inn: (4 for ¢,) and ¢ o continuous at & = (2 for ¢(,)),
with ¢(,) and its relatives as defined after 6.10 and 6.11. Kelley-Srinivasan
[1971] proved in corollary 2 that

out: (4 for ¢°) = (2 for ¢°) and hence < (2 for ¢°),
for the Carathéodory outer measure ¢° as defined in the introduction. Thus
of course (4 for ¢°) = (1). The authors claimed without proof that even
(4 for ¢°) < (1), but the present author cannot see this. In propositions 8
and 9 they proved via ¢° that

out: (4 for ¢*) and ¢ upward o continuous < (1), when & fulfils Uo,

inn: (4 for ¢,) and ¢ o continuous at & < (1), when & fulfils No.
Ridder [1971][1973] proved the last implications = under the assumption
that & fulfils both Uos and No. Then Kelley-Nayak-Srinivasan [1973] ob-
tained an independent proof of the result of Topsge [1970b] that

inn: (4 for ,) and ¢ o continuous at @ = (2 for ¢(4)).

The conditions Us and No for & are of course severe restrictions which often
are not fulfilled.

From the present text we know that beyond these restrictions the con-
verses --- = (4 for ¢*) and --- = (4 for ¢,) of the above assertions are all
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false. From 5.14 we see that in the outer situation even A : & = Comp(R") —
[0, 00[ is a counterexample. This expresses the basic inadequacy of the for-
mations ¢* and @, for the treatment of @ = o7.

To this line of papers we add the work of Lipecki [1974], who in the
frame of abstract-valued set functions as described above proved an extended
version of the last-mentioned result.

At last we quote from Adamski [1982] the two results

out: (4 for ¢*) and ¢ upward o continuous = (2 for ¢°),
inn: (4 for ¢) and ¢ o continuous at & = (2 for ¢(,)),

declared as direct counterparts. These results are contained in the former
ones, the first one since its hypothesis implies at once (4 for ¢°). We quote
the results in their combination as an example for the odd kind of monopoly
which the Carathéodory outer measure held in the outer situation, in spite
of what we have said in the introduction. Another example is a note in the
recent book of Kelley-Srinivasan [1988] page 20 which says that, in a certain
sense, the properties (4 for ¢°) and (4 for ¢,) are dual to each other.

We remain in the outer and inner cases ® = ¢. The next papers were
essential improvements, because of results in which ¢* and ¢, as well as °
did no more occur. The main results in Fox-Morales [1983] theorems 3.16
and 3.10 were

out: (4 for ¢(?)) and ¢ upward o continuous = (1),
inn: (4 for ¢(,)) and ¢ downward o continuous = (1).

Then Gaina [1986] proved

out: (4 for ¢(?)) and ¢ upward o continuous < (2 for (@),
inn: (4 for ¢(,)) and ¢ downward o continuous < (2 for ¢(,)).

Both papers were in the frame of abstract-valued set functions, the first one
still based on Sion [1969]. The independent work of Konig [1985] theorems
3.3 with 3.1 and 3.4 with 3.2 obtained

out: (4 for ¢7) < (2 for ¢7), and furthermore (U for ¢7),
inn: (4 for ¢,) < (2 for ¢, ), and furthermore (U for ¢,),

and hence the full results as in the present text. We emphasize that the
important fortified counterparts 7.14 and 7.18 of the classical extension the-
orem can be deduced from the last three papers, but not from the earlier
ones. Their essence is in Konig [1985] theorems 3.8 and 3.9.

In the outer and inner cases ® = ¢ it remains to review the work of
Glazkov [1988] which stands somewhat apart. It assumed an arbitrary
paving & with @ € & and an arbitrary set function ¢ : & — [0, 00| with
©(@) = 0, and defined besides ¢° the somewhat brutal inner counterpart
o : P(X) — [0, 00] to be

wo(A) = Sup{Zgo(Sl) :S1,-++, S, € 6 pairwise disjoint C A}.
=1
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As far as the present author knows, this formation had been considered in
earlier decades, but was later abandoned because of severe unsymmetries
with ¢°. Nevertheless the paper obtained some notable results, based on
appropriate definitions of outer and inner tightness. The outer result says
that ¢°|€(¢°), which is known to be a cmeasure on a o algebra, is an exten-
sion of ¢ iff ¢ is outer tight. However, the inner counterpart on ¢,|€(¢,)
is not an equivalence assertion but restricted to certain sufficient conditions
which, except the requirement that ¢ be inner tight, do not look adequate
for an equivalence assertion. Thus there is not much hope for symmetry
based on the formations ¢° and .

The review of the inner case e = 7 is short. Prior to the present text
we quote the work of Topsge [1970ab], also reproduced in Pollard-Topsge
[1975]. It was our model in that it aimed at a uniform treatment of the
three cases @ = xo7. Thus Pollard-Topsge [1975] theorem B asserts that

inn: (4 for ,) and ¢ e continuous at @ = (2 for ¢,)).

The converse < is false for @ = 7 as it has been for ¢ = o. There are also
parts of the present comparison theorems 6.24 and 6.25 in Topsge [1970b)]
theorem 5.1, and of the present 7 continuity theorem 6.27 inTopsge [1970b)]
lemma 2.3. At last Topsge [1970a] lemma 1 seems to be the ancestor of the
results like the present lemma 6.30.

At the end of the subsection we want to discuss the work of Sapounakis-
Sion [1983][1987] as announced above. The concern here is Sapounakis-Sion
[1987] part I with the fundamental theorem 1.1 and its corollaries. We shall
later comment on certain applications. The reproduction will be a free one
in certain minor points.

The situation is that of a two-step extension procedure. Assume that &
and ¥ are lattices in X which contain @ and fulfil & C €T 1, and let ¢ :
S — [0,00[ be an isotone set function with (&) = 0. We form ) := ¢,|%,
so that ¢ : T — [0, 00| is an isotone set function with (&) = 0. The aim is
to obtain a cmeasure « : A — [0, 00] on a o algebra 2 with the properties

I) A D &, and A D ¥ and hence A D T7;

IT) a|6 = ¢, and « is inner regular & at T and outer regular 7.
Although this task seems to be quite different from those in the present text,
we shall see that it can be incorporated into our extension theories. We do
this with the next theorem which is based on the main results of the present
chapter.

7.19. THEOREM. Assume that & is upward enclosable [tp < co] = [px|T
< o0]. Then there ezists a cmeasure o : A — [0,00] on a o algebra A with
the above properties DII) iff

i) @ is supermodular and inner x tight, and

ii) ¢ = p|T is submodular and upward o continuous.

In this case ¢ is an outer o and x premeasure, and °|€(Y7) is as re-
quired. Furthermore each cmeasure o which is as required is a restriction of

P7|E(7).
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This theorem can serve as a substitute for Sapounakis-Sion [1987] theo-
rem 1.1 and some of the subsequent results. The main differences are that
these authors on the one hand postulate o := ¢°|€(¢)°) from the start, and
on the other hand do not present equivalence theorems in concrete terms
like the above one, but are content with sufficient conditions.

Proof of the theorem. We first assume that a : 2 — [0, 00] is a cmeasure
on a o algebra 2 with the properties I)II). Then «|¥ is an outer ¢ premeasure
with a|T = (a|6)«|T = ¢«|T = 1. Thus 9 is an outer o premeasure, and
hence in particular fulfils ii). We see from 5.1 that « is a restriction of
Y7|€(¢7). Thus ¢7|€(¢7) fulfils I)II) as well. Now we have to prove i).
Since ¢ = «@|& is modular it remains to show that it is inner * tight. To
see this fix A C B in &, and then 7' € ¥ with a(T") = ¢(T) < oo such that
BCT. Inviewof & C TTL we have T\ A € ¥, of course with a(T\ 4) < oo.
We fix ¢ > 0 and then K € & with K C T\ A and (T \ 4) < o(K) + &.
Now
a(B\A)+a(T\B)=a(T\A) L a(K)+e=a(KNB)+a(KNDB)+¢,
with all terms finite. On the other hand

KNBe& with KNBCANB=B\A,
KnNnB' cTnNnB =T\B.
It follows that a(B \ A) < «(K N B) + ¢. Therefore
p(B) —¢(4) = aB)-—a(d)=a(B\A)=a(KNB)+e
= @(KNB)+e=eB\A)+e,
and hence the assertion.

We next assume that ¢ and ¢ fulfil i)ii). We first prove
(0) ex(BNA)+9y*(BNA") S (B) =¢u(B) for AC X and Be T.

We can assume that (B) = ¢.(B) < oo and hence ¢, (BN A) < co. We
fix € > 0 and then S € & with S C BN A such that ¢, (BN A) < ¢(S) + €.
Now

©x(B) = 0u(B) + 0u(@) Z (BN S) + o (BN S,

since @, is supermodular by 6.3.5). Here we have on the one hand
BnNS =S and hence p (BNS) =¢(S) =2 p(BNA) —e.
On the other hand BN S’ € ¥ in view of & C T L; furthermore
BnS > BN A and hence o, (BN S') =¢(BNS) Zy*(BnA).
It follows that ¢4 (B) = p«(BNA) — e+ ¢*(BNA’). Thus (0) is proved.

Now (0) will be applied three times. 1) From (0) for A C B in T we
see that 1 is inner x tight and hence inner o tight. Therefore v is an inner
* and o premeasure. From 5.8.0) we know that €(¢*) C €(¢7), and from
5.9.0) that Y*(M) = (M) for all M € &€(¢*) with ¢*(M) < oo. Thus
a = Y?|€(yY7) is a cmeasure on a o algebra O T which is outer regular 3°.
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Furthermore we know from 5.11 that 61 C T = ITT C €(¢*) C ()
and hence & C €(¢*) C €(¢7).

It remains to prove o|& = . In fact, then we have also (|6),|T =
©«|T = = «|F, that is « is inner regular G at . To see the assertion fix
A € &. By assumption there exists B € [¢p < oo] C ¥ with A C B. 2) From
(0) and ii) with 4.1.5) we have

px(BNA)+¢*(BNA) $(B) = ¢*(B) +¢*(2)
V(BN A)+¢*(BNA),
so that BN A = A furnishes ¢(A) < ¢*(A). 3) From (0) applied to A" and
B and from A € & C €(p,) in view of i) we obtain

0(BNA)+ 9" (BNA) S pu(B) = pu(BNA) + o (BN A),
with all terms finite. Thus BN A = A furnishes ¢*(A4) < p(A). Therefore
we have p(A) = ¢¥*(A) < oo and hence p(A4) = ¥7(A) = a(A). The proof
is complete.

S
S

We mention at last that in Sapounakis-Sion [1983][1987] one requires but
U for & and N for ¥, instead of & and ¥ to be lattices as above. Maurice
Sion has pointed out to the author that it is a benefit of the Carathéodory
outer measure that it permits to start with pavings which fulfil N but need
not be lattices. This aspect can of course become relevant, but it is expected
that the last subsection of the present section 3 will be able to take care of
it as well.
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