Chapter 1. Outline of the Book

This chapter gives an overview of the topics treated in this book. The cen-
tral objects in the book are polytopes and cones related to cuts and metrics.
Interesting problems concerning these polyhedra arise in many different areas
of mathematics and its applications. Surprisingly, these polyhedra have been
considered independently by a number of authors with various mathematical
backgrounds and motivations. One of our objectives is to show on the one hand,
the richness and diversity of the results in connection with these polyhedra, and
on the other hand, how they can be treated in a unified way as various aspects
of a common set of objects. Research on cuts and metrics profits greatly from
the variety of subjects where the problems arise. Observations made in different
areas by independent authors turn out to be equivalent, facts are not isolated,
and views from different perspectives provide new interpretations, connections
and insights.

This book is subdivided into five parts, each treating seemingly diverse topics.
Namely, Parts I to V contain results relevant to the following areas:

1. the theory of metrics; more precisely, isometric embeddings into the Banach
£1-space,

2. the geometry of numbers; more precisely, lattices and Delaunay polytopes,
3. graph theory; more precisely, the hypercube and its isometric subgraphs,

4. design theory; more precisely, the designs arising in connection with the
various hypercube embeddings of the equidistant metric, together with
complexity aspects of the hypercube embeddability problem,

5. geometry of polyhedra; more precisely, geometric questions on the cut and
metric polyhedra (e.g., description of their facets, adjacencies, symme-
tries, etc.); applications to the solution of some problems such as Borsuk’s
problem, or completion problems for positive semidefinite matrices and
Euclidean distance matrices.

We have made each of the five parts as self-contained as possible. For this reason,
some notions and definitions may be repeated in different parts if they are central
there. In principle, a reader who is interested, for instance, only in the aspects
of geometry of numbers of cuts may consult Part II without any prior reading of
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Part I. Chapter 2, however, contains some basic notation on graphs, polyhedra,
matrices and algorithms that will be used throughout the book.

In what follows we give a brief overview of the material covered in Parts I to
V. This introductory treatment is meant to provide an orientation map through
the book for the reader. We already define here several notions, but all of them
will be redefined later in the text as they are needed.

1.1 Outline of Part I. Measure Aspects:
/;-Embeddability and Probability

In Part I we study the distance spaces that can be isometrically embedded into
the ¢;-space (R™,dy, ) for some integer m > 1. Here, dy, denotes the ¢;-distance
defined by
d, (z,y) == Y |z —yi| for z,y e R™.
1<i<m

One of the basic results is a characterization in terms of cut semimetrics. Given
a subset S of the set V,, := {1,...,n}, the cut semimetric §(S) is the distance
on V,, where two elements ¢ € S, j € V,,\ S are at distance 1, while two elements
1,7 € S,or 1,7 € Vo \ S, are at distance 0. Every cut semimetric is obviously
isometrically ¢1-embeddable. In fact, a distance d is isometrically ¢;-embeddable
if and only if it can be decomposed as a nonnegative linear combination of cut
semimetrics. In other words, if CUT,, denotes the cone generated by the cut
semimetrics on V,,, then

d 1is isometrically £;-embeddable <= d € CUT,,.

The cone CUT,, is called the cut cone. We also consider isometric embeddings
into the hypercube. Call a distance d on V,, hypercube embeddable if the distance
space (Vy,d) can be isometrically embedded into the space ({0,1}™,d,,) (for
some m > 1), i.e., if we can find n binary vectors vy, ..., v, € {0,1}™ such that

d(i,7) = dg, (vs,v;) foralli,j € V.

In fact, the hypercube embeddable distances on V,, are the members of the cut
cone CUT,, that can be written as a nonnegative integer combination of cut
semimetrics.

Let CUTY denote the cut polytope, which is defined as the convex hull of the
cut semimetrics §(S) for S C V,,. That is, CUTy consists of the distances that
can be decomposed as convex combinations of cut semimetrics. The cut cone and
polytope also admit the following characterization in terms of measure spaces:
A distance d belongs to the cut cone CUT,, (resp. the cut polytope CUTy) if
and only if there exist a measure space (resp. a probability space) (2, A, 1) and
n events Aj,...,Ap, € A such that

d(i,§) = p(A;A4;) for all i, j € V.
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(See Section 4.2 for the above results.)

There is another set of polyhedra that are closely related to cut polyhedra
and for which the above interpretation in terms of measure spaces takes a nice
form. Given a subset S of V;,, its correlation vector w(S) is defined by 7(S);; = 1
if both ¢,j belong to S and w(S);; = 0 otherwise, for ¢,j € V,. The cone
generated by the correlation vectors 7(S) for S C V,, is called the correlation
cone and is denoted by COR,,. Similarly, CORY denotes the correlation polytope,
defined as the convex hull of the correlation vectors. These polyhedra admit the
following characterization (see Section 5.3): A vector p belongs to the correlation
cone COR,, (resp. the correlation polytope CORY) if and only if there exist a
measure space (resp. a probability space) (2, 4, 1) and n events A;,..., A4, € A
such that

pij = p(AiNA;) for all 4,5 € V.

Hence, the members of the correlation polytope are nothing but the pairwise joint
correlations of a set of n events; this explains the name “correlation” polyhedra.

In fact, this result is an analogue of the similar result mentioned above for
the cut polyhedra. The point is that the correlation polyhedron COR,, (or
CORY) is the image of the cut polyhedron CUT,41 (or CUTG, ) under a linear
bijective mapping (the covariance mapping; see Section 5.2). This is a simple
but interesting correspondence as it permits to translate results between cut
polyhedra and correlation polyhedra. One of our objectives in this book will
be to bring together and give a unified presentation for results that have been
obtained by different authors in these two contexts (cut/correlation).

The correlation polytope provides the right setting for a classical question
in probability theory, often referred to as the Boole problem and which can be
stated as follows: Given n events A;,..., A, in a probability space (£, .4, 1) find
a good estimate of the probability u(A; U... U A,) that at least one of these
events occurs using the fact that the pairwise correlations p(A; N A;) are known.
Tight lower bounds for u(A;U...UA,) can be derived from the valid inequalities
for CORY (see Section 5.4).

We have now seen that the /;-embeddable distances on V;, are the members
of the cut cone CUT,,. Hence, testing /;-embeddability amounts to testing mem-
bership in the cut cone. This problem turns out to be NP-complete. Moreover,
characterizing ¢;-embeddability amounts to finding a description of the cone
CUT,, by a set of linear inequalities. As CUT, is a polyhedral cone (since it is
generated by the finite set of cut semimetrics), we know that it can be described
by a finite list of inequalities. However, finding the full list for arbitrary n is an
‘impossible’ task if NP # co-NP. Nevertheless, large classes of valid inequalities
for CUT,, (or CUT) are known. We give an up-to-date survey of what is known
about the linear description of the cut polyhedra in Part V. Among the known
inequalities, the most important ones are the hypermetric inequalities and the
negative type inequalities, which are introduced in Section 6.1. They are the
inequalities of the form:

Z bibjzi; <0

1<i<j<n
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where by, . .., by, are integers with sum Y7 ; b; = 1 (hypermetric case) or Y 1 b; =
0 (negative type case). Part II will be entirely devoted to hypermetric inequalities
and, more specifically, to their link with Delaunay polytopes in lattices. The hy-
permetric inequalities provide necessary conditions for £;-embedability. In fact,
hypermetricity turns out to be a sufficient condition for £;-embeddability for sev-
eral classes of metrics. Several such classes are presented in Chapter 8; they con-
sist of metrics arising from valuated poset lattices, semigroups and normed vector
spaces. The negative type inequalities are implied by the hypermetric inequali-
ties. Hence, they provide a weaker necessary condition for ¢;-embeddability.

Negative type inequalities are classical inequalities in analysis. They were
already used by Schoenberg in the thirties for characterizing the distance spaces
that are isometrically #o-embeddable; namely, Schoenberg proved that a distance
d is isometrically fo-embeddable if and only if the squared distance d? satisfies
the negative type inequalities. Moreover, the negative type inequalities define a
cone which is nothing but the image of the cone of positive semidefinite sym-
metric matrices (of order n — 1 if the inequalities are on n points) under a linear
bijective mapping (in fact, the same mapping that made the link between cut
and correlation polyhedra). These results are presented in Sections 6.2 and 6.3,
together with further basic facts on #;-spaces.

Several additional aspects are treated in Part I, including: operations and
functional transforms of distance spaces preserving some metric properties such
as {1-embeddability, hypermetricity, etc. (see Chapters 7 and 9); for given n,
the minimum dimension of an #;-space permitting to embed any ¢;-embeddable
distance on n points; for given m, the minimum number of points to check in a
distance space in order to ensure embeddability in the m-dimensional ¢;-space
(see Chapter 11).

We consider in Chapter 10 the question of finding Lipschitz embeddings where
a small distortion of the distances is allowed. Bourgain [1985] shows that every
semimetric on n points can be embedded into some #;-space with a distortion in
O(log, n). We present this result together with an application by Linial, London
and Rabinovich [1994] to approximations of multicommodity flows.

1.2 Outline of Part II. Hypermetric Spaces:
an Approach via Geometry of Numbers

Part II is entirely devoted to the study of hypermetric inequalities and of their
link with some objects of the geometry of numbers, namely, lattices and Delaunay
polytopes.

Hypermetric inequalities are the inequalities of the form:

> bibjzmi; <0
1<i<j<n

where by,...,b, are integers with sum > -, b; = 1. They define a cone, called
the hypermetric cone and denoted by HYP,,. Note that triangle inequalities are
a special case of hypermetric inequalities (obtained by taking all components of
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b equal to 0 except two equal to 1 and one equal to —1). Hence, hypermetricity
is a strengthening of the notion of semimetric. As every cut semimetric satisfies
the hypermetric inequalities, we have

CUT, C HYP,,.

This inclusion holds at equality if n < 6 and is strict for n > 7. For instance, the
path metric of the graph K7\ P; is hypermetric but not £;-embeddable. Actually,
the graphs whose path metric is hypermetric are characterized in Chapter 17.

A typical example of a hypermetric space arises from point lattices. Let L be
a point lattice in R¥, that is, a discrete subgroup of R¥. Take a sphere S C RF in
one of the interstices of L, i.e., such that no point from L lies in the closed ball
with boundary S. Blow up S until it is ‘held rigidly’ by lattice points. Then,
the set of lattice points lying on S endowed with the square of the Euclidean
distance forms a distance space which is semimetric and, moreover, hypermetric.
The convex hull of the set S N L of lattice points lying on S forms a polytope,
called a Delaunay polytope. Hence, Delaunay polytopes have the interesting
property that their set of vertices can be endowed with a metric structure which
is hypermetric. In other words, for any Delaunay polytope P with set of vertices
V(P), the distance space (V(P),(de,)?) is a hypermetric space. Even more
striking is the fact that, conversely, every hypermetric distance space on n points
can be isometrically embedded into the space (V' (P), (dg,)?) for some Delaunay
polytope P of dimension k¥ < n — 1. These results are presented in Section 14.1.

The hypermetric cone HYP,, is defined by infinitely many inequalities. How-
ever, it can be shown that a finite number of them suffices to describe HYP,,. In
other words, HYP,, is a polyhedral cone. See Section 14.2 where several proofs
are given for this result. One of them relies essentially on the above link between
hypermetrics and Delaunay polytopes and on Voronoi’s finiteness result for the
number of types of lattices in fixed dimension.

The correspondence between hypermetrics and Delaunay polytopes permits
the translation of several notions from the hypermetric cone to Delaunay poly-
topes. For instance, one can define the rank of a Delaunay polytope as the
dimension of the smallest face of the hypermetric cone containing the corre-
sponding hypermetric distance. One can then define, in particular, extreme
Delaunay polytopes which correspond to extreme rays of the hypermetric cone.
This notion of rank and the correspondence between Delaunay polytopes and
faces of the hypermetric cone are investigated in Chapter 15.

The various types of Delaunay polytopes that may arise in root lattices are
described in Section 14.3. The extreme Delaunay polytopes among them are
classified; there are three of them, namely, the 1-dimensional simplex, the Schlafli
polytope 25; (of dimension 6) and the Gosset polytope 32; (of dimension 7) (see
Section 16.2). Further examples of extreme Delaunay polytopes are described in
Sections 16.3 and 16.4; they arise from other lattices such as the Leech lattice and
the Barnes-Wall lattice. Some connections between extreme Delaunay polytopes
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and equiangular sets of lines or perfect lattices are also mentioned in Sections 16.1
and 16.5.

Chapter 17 studies hypermetric graphs in detail, i.e., the graphs whose path
metric is hypermetric. These graphs are characterized as the isometric sub-
graphs of Cartesian products of three types of graphs, namely, half-cube graphs,
cocktail-party graphs and the Gosset graph Gsg. Moreover, £1-graphs are those
for which no Gosset graph occurs in the Cartesian product. Several refined re-
sults are presented; in particular, for suspension graphs and for graphs having
some regularity properties. Further characterizations are discussed for bipartite
graphs equipped with the truncated distance (taking value 1 on edges and value
2 on non-edges).

We encounter in this context the class consisting of the connected regular
graphs whose adjacency matrix has minimum eigenvalue greater than or equal to
—2. This class is well studied in the literature. Beside line graphs and cocktail-
party graphs, it contains a list of 187 graphs, which is subdivided into three
groups. Each of these three groups is characterized by some parameter. In-
terestingly, this parameter has an interpretation in terms of some associated
Delaunay polytope using hypermetricity (see Section 17.2). Hence this is an ex-
ample of a situation where a new approach: hypermetricity, sheds new light on
a classical notion.

1.3 Outline of Part III. Embeddings of Graphs

In Part III we study various metric and embeddability properties of graphs. For a
connected graph G = (V, E) we consider the associated path metric dg defined on
the node set V of G, where the distance between two nodes i,j € V is defined as
the length of a shortest path connecting ¢ and j in G. Our objective in Part III is
to investigate the structure of the graphs whose path metric enjoys some metric
properties such as ¢;-embeddability, hypercube embeddability, hypermetricity,
etc.

The graphs which are isometric subgraphs of hypercubes are well under-
stood. Several characterizations are presented in Chapter 19. One of them
states that the isometric subgraphs of the hypercube are precisely the bipartite
graphs whose path metric satisfies a restricted class of hypermetric inequalities,
namely, the pentagonal inequalities (hypermetric inequalities on five points). Be-
ing an isometric subgraph of a hypercube means being an isometric subgraph of
a Cartesian product of copies of K3. In Chapter 20 we consider isometric em-
beddings into arbitrary Cartesian products. The following is a well-known result
in the metric theory of graphs: Every graph can be isometrically embedded in
a canonical way into a (smallest) Cartesian product, called the canonical metric
representation of the graph. For bipartite graphs, this representation permits to
obtain a decomposition of the path metric as a linear combination of primitive
semimetrics. One of the main tools underlying these various results is an equiv-
alence relation defined on the edge set of the graph. The number of equivalence
classes is an invariant of the graph, called its isometric dimension. The number
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of factors in the canonical representation is precisely the isometric dimension.
Moreover, for a bipartite graph G the isometric dimension of G is equal to the
(linear) dimension of the smallest face of the semimetric cone that contains dg.

In Chapter 21 we study £;-graphs in detail, i.e., the graphs whose path metric
is £1-embeddable. This constitutes a relaxation of hypercube embeddability.
Indeed a graph G is an {;-graph if and only if its path metric dg is hypercube
embeddable up to scale, i.e., if ndg is hypercube embeddable.for some integer 7.
The smallest such 7 is called the minimum scale of the graph. It is shown that
the minimum scale of an £;-graph is equal to 1 or to an even number and that it is
less than or equal to n—2 (n is the number of nodes of the graph). For ¢;-graphs
the factors in the canonical representation are of a very special type; indeed, they
are either half-cube graphs or cocktail-party graphs. This result is already proved
in Section 14.3, using the connection with Delaunay polytopes. Another proof is
given in Chapter 21 which is elementary and has several important applications.
In particular, it yields a polynomial time algorithm for recognizing /;-graphs as
well as as a characterization for £;-rigid graphs (the graphs having an essentially
unique £;-embeding).

The £;-graphs with minimum scale 1 or 2 are precisely those that can be
isometrically embedded into some half-cube graph. They can, moreover, be
characterized in terms of some forbidden isometric subspaces (see Section 21.4).

1.4 Outline of Part IV. Hypercube Embeddings and
Designs

In Part IV we investigate in detail the hypercube embeddability problem. Given
a distance d on V,, one may ask the following questions: Is d hypercube em-
beddable ? If yes, does d admit a unique hypercube embedding ? If this is the
case we say that d is h-rigid. (Here, “unique” means unique up to certain trivial
operations.) If d is not h-rigid, then what are the possible hypercube embeddings
ofd?

There are some classes of metrics for which the first question has trivially a
positive answer. This is the case, for instance, for the equidistant metric 2t1,
where ¢t > 1 is an integer; 2t1,, denotes the metric on V, taking value 2t for every
pair of distinct points. Then, only the last two questions about the number of
hypercube embeddings are of interest.

On the other hand, there are some classes of metrics for which deciding
hypercube embeddability is a hard task. In fact, testing hypercube embeddability
for general metrics is an NP-hard problem. Nevertheless, for some classes of
metrics, one is able to characterize their hypercube embeddability by a set of
conditions which can be tested in polynomial time. Several such classes are
presented in Chapter 24. Among them, we examine the classes of metrics taking
two distinct values of the form: a, 2a (a > 1 integer), or three distinct values
of the form: a,b,a + b (a,b > 1 integers not both even). For instance, testing
hypercube embeddability for the class of distances on n points with values in
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the set {2,4}, or {1,2,3}, or {3,5,8} can be done in time polynomial in n. On
the other hand, this same problem is NP-complete for the class of distances
with values in the set {2,3,4,6}. We also examine the class of metrics having a
“bipartite structure”; by this we mean the metrics on V,, for which there exists
a subset S of points such that any two points of S (or of its complement) are at
distance 2. One of the main tools used for recognizing hypercube embeddability
for the above classes of metrics is that they contain large equidistant submetrics
that are h-rigid; this fact allows us to infer information on the structure of the
metrics from the local structure of some of their submetrics.

Chapters 22 and 23 deal essentially with the equidistant metric 2¢1,. In
Chapter 22 we give some conditions on n and ¢ under which the metric 2t1,, is
h-rigid. For instance, if n > t2 +t + 3, then 2t1,, is h-rigid. Moreover, for n =
t2 +t+2 with ¢t > 3, the metric 2¢1,, is h-rigid if and only if there does not exist
a projective plane of order ¢. In Chapter 23 we examine the possible hypercube
embeddings of the metric 2¢1,, when it is not h-rigid. An easy observation is that
the possible hypercube embeddings of 2¢1,, correspond to the (2¢,¢,n—1)-designs
(a (2t,t,n — 1)-design being a collection B of subsets of V,,_; such that every
point of V,,_; belongs to 2t members of B and every two points of V,,_; belong
to t common members of B). This leads to the question of finding such designs
with specified parameters. This topic is treated in detail in Chapter 23. For
instance, a well-known result by Ryser asserts that any design corresponding to
a hypercube embedding of 2¢1,, has at least n—1 blocks, with equality if and only
if n = 4¢ and there exists a Hadamard matrix of order 4¢. Hence, two important
classes of designs: projective planes and Hadamard designs, play an important
role in the study of the variety of embeddings of the equidistant metric. An
explicit description of all the possible hypercube embeddings of 2¢1,, is given in
Section 23.4 for the following restricted parameters: ¢t < 2 and (¢ = 3,n = 5).

In Chapter 25 we group results related to cut lattices. The cut lattice consists
of the vectors that can be written as an integer combination of cut semimetrics.
Note that belonging to both the cut cone and to the cut lattice is a necessary
condition for a distance d to be hypercube embeddable. In Section 25.3 we study
the graphs whose family of cuts forms a Hilbert basis; this amounts to studying
(in the context of arbitrary graphs) the case when the above necessary condition
is also sufficient. In Section 25.1 we give a description of the cut lattice and of
several related lattices. Constructions are presented in Section 25.2 for distances
that belong to the cut cone and to the cut lattice but that are not hypercube
embeddable.

1.5 Outline of Part V. Facets of the Cut Cone and
Polytope
In Part V we survey known results about the facial structure and the geometry

of the cut cone and of the cut polytope.
A fundamental property is that all the facets of the cut polytope CUTY can
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be obtained from the facets of CUTY that contain a given vertex; this is derived
by the so-called switching operation. In particular, all the facets of CUTY can
be derived from the facets of the cut cone CUT,,. Therefore, for the purpose of
investigating the facial structure, it suffices to consider the cut cone. As we have
already mentioned, finding a complete linear description of the cut polyhedra is
probably a hopeless task. Nevertheless, large classes of inequalities are known.
Two classes have already been introduced; they are the hypermetric inequalities
and the negative type inequalities. The negative type inequalities never define
facets of the cut cone as they are implied by the hypermetric inequalities. On
the other hand, the hypermetric inequalities contain large subclasses of facets;
they are investigated in Chapter 28.

Triangle inequalities, a very special case of hypermetric inequalities, are con-
sidered in detail in Chapter 27. Despite their simplicity, the triangle facets
already contain a considerable amount of information about the cut polyhedra.
For instance, they provide an integer programming formulation for cuts. More-
over, the triangle inequalities provide the complete linear description of the cut
cone CUT,, for n < 4. Their projections suffice to describe the cut polyhedron
of an arbitrary graph G if G does not have K5 as a graph minor (and, hence, if
G is planar).

We make in Section 27.4 a detour to cycle polyhedra of binary matroids.
Cycle spaces of binary matroids are nothing but set families that are closed
under taking symmetric differences. Hence, the family of cuts in a graph is an
instance of cycle space. The switching operation applies in the general framework
of binary matroids and there are analogues of the triangle inequalities (in fact,
of their projections) for the cycle polyhedra. Hence, several questions that are
raised for cut polyhedra can be posed in the general setting of binary matroids;
for instance, about linear relaxations by the triangle inequalities or about Hilbert
bases. We review in Section 27.4 the main results in this area.

Hypermetric and negative type inequalities belong to the larger class of gap
inequalities, described in Section 28.4. Although gap inequalities themselves are
not well understood, a weakening of them (obtained by loosening their right-
hand sides) serves as a basis for obtaining very good approximations for the
max-cut problem (see Section 28.4.1).

In Chapter 29 we study the clique-web inequalities, that constitute a general-
ization of hypermetric inequalities. In Chapter 30 we present several other classes
of inequalities: suspended tree inequalities, path-block-cycle inequalities, circu-
lant inequalities, parachute inequalities, etc.. Section 30.6 contains the complete
linear description of the cone CUT,, for n < 7.

Chapter 31 contains several geometric properties of the cut polytope CUTY
and of its relaxation by the semimetric polytope METY (defined by the triangle
inequalities). In Section 31.6 we study adjacency properties of these polytopes.
For instance, any two cuts are adjacent on both the cut polytope and the semi-
metric polytope. Hence, the 1-skeleton graph of the cut polytope is the complete
graph. Moreover, CUTS has many simplex faces in common with METY of di-
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mension up to |[logyn]. This indicates that METY is wrapped quite tightly
around CUTY. In Section 31.7, the Euclidean distance from the hyperplane
supporting a facet of CUTY to the barycentrum of CUTY is considered. It is
conjectured that this distance is minimized by triangle facets. The conjecture
is verified for all facets defined by an inequality with coefficients in {0,1, -1}
and asymptotically for some other cases. Simplex facets are considered in Sec-
tion 31.8. It turns out that for n < 7 the great majority of facets of CUT,, are
simplices. In fact about 97% of the facets of CUTY are simplices ! This may
well be a general phenomenon for any n.

Further geometric results are presented in Sections 31.1-31.4. Borsuk [1933]
asked whether it is possible to partition every set X of points in R¢ into d + 1
subsets, each having a smaller diameter than X. This question was answered
in the negative by Kahn and Kalai [1993] by a construction using cuts, that we
present in Section 31.1. The result in Section 31.2 indicates how to obtain valid
inequalities for pairwise angles among a set of vectors from the valid inequalities
for the cut polytope. This permits in particular to answer an old question of Fejes
T6th [1959] concerning the maximum value for the sum of the pairwise angles
among a set of n vectors. Section 31.3 deals with the completion problem for
partial positive semidefinite matrices. It turns out that necessary conditions for
this completion problem can be obtained from the valid inequalities for the cut
polytope, as a reformulation of the result in Section 31.2. Finally, Section 31.4
deals with the completion problem for partial Euclidean matrices; that is, with
the study of the projections of the negative type cone. These two completion
problems are closely related and have intimate links with the polyhedra under
investigation in this book.
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