Chapter 31. Geometric Properties

This chapter contains several results of geometric type for the cut polytope
CUTY. One of our objectives here is to study the geometric shape of CUTY, in
particular, in connection with its linear relaxation by the semimetric polytope
METY and with its convex (nonpolyhedral) relaxation by the elliptope &,.

We have already seen (in Section 26.3.3) that the polytope CUTY has a lot of
symmetries. We are interested, for instance, in the following further questions:
What are the edges of the polytope CUT, ? More generally, what is the structure
of its faces of small dimension ? We can, in some sense, give an answer to this
question up to dimension log, 7. Indeed, it turns out that CUTE has a lot of
faces of dimension up to logy 7 in common with its relaxations METS and &,
that arise by taking sets of cuts in general position (see Theorems 31.5.9 and
31.6.4).

As we have seen in the rest of Part V, CUT,':L' has a great variety of facets,
most of them having a very complicated structure. A legitimate question to ask
is which ones are the most important among them ? Giving a precise definition
of the word “important” in this question is not an easy task. However, it is
intuitively clear that some facets are more essential than others; some facets
have indeed a “big area” while some others contribute only to rounding off some
little corners of the polytope. One way of measuring the importance of a facet
is by computing the Euclidean distance of the hyperplane containing the facet
to the barycentrum of CUTY. It seems intuitively clear that facets that are
close to the barycentrum are more important than facets that are far apart. It is
conjectured that the triangle facets are the closest facets to the barycentrum; see
Section 31.7 for results related to this conjecture. We remind from Chapter 27
that triangle inequalities share several other interesting properties.

The cut polytope is not a simplicial polytope (if n > 5) as some of its facets
are not simplices. However, it seems that the great majority of its facets are
simplices. This has been verified for n < 7, where it has been computed that
about 97% of the facets are simplices. We group in Section 31.8 results on the
simplex facets of CUTS.

Section 31.5 presents several geometric properties of the elliptope &,, which
was defined in Section 28.4.1 as the set of n X n symmetric positive semidefinite
matrices with an all-ones diagonal. Up to a simple transformation, &, is a
(nonpolyhedral) relaxation of the cut polytope CUTE.

One more interesting interpretation of the cut polytope is mentioned in Sec-
tion 31.2; namely, the fact that the valid inequalities for CUTY, yield inequalities
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for the pairwise angles among a set of n unit vectors in R*. (This is essentially a
reformulation of the fact, stated in Section 6.4, that spherical distance spaces are
{;-embeddable.) We describe in Section 31.3 some further implications of this
result in connection with the completion problem for partial positive semidefinite
matrices. In fact, this problem amounts to the description of projections of the
elliptope &,. In general, the projected elliptope £(G) is contained in the image
of CUT"(G) under the mapping z — cos(nz). It turns out that both bodies co-
incide when the graph G has no K4-minor (see Theorem 31.3.7). Further results
are given for larger classes of graphs in Section 31.3.

In Section 31.4 we consider the analogue completion problem for Euclidean
distance matrices. In fact, this problem is nothing but the problem of describing
projections of the negative type cone NEG,,. It turns out that there are several
results for this problem, which are in perfect analogy with the known results
for the positive semidefinite completion problem. We mention in Section 31.4.2
how the two completion problems can be linked (using, in particular, one of
the metric transforms which was exposed in Chapter 9, namely, the Schoenberg
transform).

In Section 31.1 we describe how cuts have been used for disproving a long
standing conjecture of Borsuk.

31.1 Disproval of a Conjecture of Borsuk Using Cuts

The following question was asked by Borsuk [1933] more than sixty years ago:

Given a set X of points in R, is it always possible to partition X
into d + 1 subsets, each having a smaller diameter than X ?

We recall that the diameter' of a set X C R? is defined as

diam(X) := max || z -y ll2,

the maximum Euclidean distance between any two points of X. Borsuk’s ques-
tion has been answered in the negative by Kahn and Kalai [1993], who con-
structed a counterexample using cut vectors. We present here a variation of
their counterexample, which is due to Nilli [1994].

Let n = 4p where p is an odd prime integer, and d := (). As set of points
X C R?, we take the set

X :={6(S)|SCVy, |S|iseven and 1 € S}

of all even cut vectors in K,; hence, | X| = 2"2. Then, X provides a counterex-
ample to Borsuk’s question in the case when

1For a polytope P, there is another notion of diameter besides the geometric notion con-
sidered here. Namely, the diameter of P is also sometimes defined as the diameter of its
1-skeleton graph; for instance, the diameter (of the 1-skeleton graph of) the cut polytope is 1
(see Section 31.6).
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on—2 n
(31.1.1) > ( ) +1.
25’:01 (nz 1) 2
The smallest counterexample occurs in dimension d = (%) = 946 for n = 44,
p = 11. The proof is based on the following result of Nilli [1994].

Lemma 31.1.2. Let n = 4p with p odd prime and let £ denote the set of vectors
z € {£1}"™ such that 1 =1 and = has an even number of positive components.
If F C € contains no two orthogonal vectors, then |F| < 25;(1) .
Proof. Observe that the scalar product of two elements a,b € £ is divisible by 4.
Hence, by the assumption, a’'d # 0 (mod p) for any a # b € F. For each a € F,
we consider the polynomial P, in the variables X,..., X, defined by

p—1 n

Po(X) =[O a;X; —4).

=1 j=1
Then,
(i) P,(b) =0 (mod p) for all a # b € F,
(ii) Pa(a) # 0 (mod p) for all a € F.

Let @, denote the polynomial obtained from P, by developing it and repeatedly
replacing the product X? by 1 for each i = 1,...,n. Hence, Q.(z) = P,(z) for
all z € {£1}™. Therefore, Q, also satisfies the relations (i),(ii) above. These
relations permit to check that the set {Q, | a € F} is linearly independent over
the field GF(p). Hence, |F| is less than or equal to the dimension of the space
of polynomials in n — 1 variables (as z; = 1) of degree at most p — 1 over GF(p),
which is precisely Zf:_(} ("171). 1

We now show that the set X of all even cut vectors cannot be partitioned
into d + 1 subsets of smaller diameter. It turns out to be more convenient to
work with £1-valued vectors rather than with the (0,1)-valued cut vectors. In
other words, we show that the set

X, :={zzT |z €&}

cannot be partitioned into d 4+ 1 subsets of smaller diameter if the condition
(31.1.1) holds (€ is defined as in Lemma 31.1.2). (Note that zz” is the n x n
symmetric matrix with entries z;x; and, thus, all its diagonal entries are equal
to 1. Hence, the vectors 22T (z € {£1}") lie, in fact, in the space of dimension
d.) Given z,y € £, we have

(Il 22 = yy" |l2)?* = 2n? — 2(zTy)* < 2n?

with equality if 7y = 0. Hence, the diameter of X is equal to nv/2. Suppose
that X, is partitioned into s subsets Y1 U...UY?*, where each Y* has diameter <
n+/2. Then, no two vectors in Y* are orthogonal. We deduce from Lemma 31.1.2
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that [Y?| < Y95 (") for all i. This implies that 2"~2 < s 327§ (*7!). There-
fore, the condition (31.1.1) implies that s > (3) + 1 = d + 1. This shows that,
under the condition (31.1.1), the set X3 (or X) cannot be partitioned into d + 1
subsets of smaller diameter.

31.2 Inequalities for Angles of Vectors

Let v1,...,v, be n unit vectors in R™ (m > 1). Set

0;; := arccos(vlv;) for1<i<j<n.
We consider the question of determining valid inequalities that are satisfied by
the angles 6;;. A classical result in 3-dimensional geometry asserts that

012 < 613 + 093, 013 < 012 + 023, 023 < 012+ 013, 012+ 013+ 023 < 27

for the pairwise angles among three vectors in R® (see Theorem 31.2.2 below).
Observe that the above inequalities are nothing but the triangle inequalities (for
the variable ;’}). An analogue result holds in any dimension m > 3, as was shown
in Theorem 6.4.5. We repeat the result here for convenience.

Theorem 31.2.1. Let vy,...,v, be n unit vectors in R™ (mn > 3, m > 1).
Let a € RE~ and ap € R such that the inequality aTx < ag is valid for the cut
polytope CUTS. Then,

Z a;j arccos(v,T'uj) < Tay.
1<i<j<n

Therefore, the valid inequalities for the cut polytope CUTY have the following
nice interpretation: They yield valid inequalities for the pairwise angles among
a set of n unit vectors. A whole wealth of such inequalities have been presented
in the preceding paragraphs. As an example,

Z arccos(v} v;) < [gj [g} 0y
1<i<j<n
for any m unit vectors vi,...,v,. The question of determining the maximum
value for the sum of pairwise angles among a set of vectors was first asked by
Fejes T6th [1959]; he conjectured that the above inequality holds and proved
that this is the case for n < 6. The even case n = 2p was settled by Sperling
[1960] and the general case by Kelly [1970b].

In case n = 3 the statement from Theorem 31.2.1 can, in fact, be formulated
as an equivalence?.

Theorem 31.2.2. The following assertions are equivalent for o, 8,7 € [0, 7).

2This fact has been known since long; see, e.g., Blumenthal [1953] (Lemma 43.1), or Berger
[1987] (Corollary 18.6.10) or, more recently, Barrett, Johnson and Tarazaga [1993].
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(i) The matriz
1 cosa cosf
A:=| cosa 1 cosy
cosf3 cosvwy 1
is positive semidefinite.

(ii) There exist three unit vectors vy,vq,v3 € R® such that o = arccos(v] vp),
B = arccos(v] v3) and vy = arccos(v] v3).

(iii) a < B+v, <L a+y,y<a+pfand a+ f+v < 2m.
Proof. Clearly, (i) <= (ii). Now, det A can be expressed as:

detA =1+42cosa-cosf-cosy— cos?a — cos?  — cos? vy
= (1 — cos? B — cos?y + cos? B3 - cos? v)
- (cos2a+cos2ﬂ'cos2'y— 2cosa - cos B - cosv)
= (1 — cos? B)(1 — cos®y) — (cosa — cos (3 - cos y)?
=sin? 3 - sin? y — (cos @ — cos 3 - cos y)?
= (cos(B — ) — cosa) - (cosa — cos(B + 7))

Hence, A = 0 <> det A > 0 <= | —v| < @ < f+ v < 27 — @, which is
equivalent to (iii). 1

Some generalizations of this result will be presented in the next subsection;
see, in particular, Theorem 31.3.7.

31.3 The Positive Semidefinite Completion Problem

We consider here the elliptope &, and its projections on subsets of the entries.
We recall from Section 28.4 that

En ={Y n x n symmetric matrix | Y = 0, y; =1Vi=1,...,n}.

Given a subset E of E, := {ij | 1 <i < j < n}, consider the graph G := (V,,, E)
and the projection £(G) of &, on the subspace RE, i.e.,

E(G) := {z € RF | IY = (y;;) € &, such that z;; = y;; Vij € E}.

Hence, &, and £(K,) are in one-to-one correspondence as the elements of £(K,)
are precisely the upper triangular parts of the matrices in &,.

Given a graph G = (V,,, E) and z € RP, denote by X the partial symmetric
n X n matrix whose off-diagonal entries are specified only on the positions corre-
sponding to edges in G (and the symmetric ones); the ijth-entry of X is x;; for
ij € E and the diagonal entries of X are all equal to 1. Then, z € £(G) if and
only if the partial matrix X can be completed to a positive semidefinite matrix.
Hence, the positive semidefinite completion problem, which was introduced in
Section 28.4, is the problem of testing membership in the elliptope £(G).
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This problem has received a lot of attention in the literature, especially within
the community of linear algebra. This is due, in particular, to its many appli-
cations (e.g., to probability and statistics, engineering, etc.) and to its close
connection with other important matrix properties such as Euclidean distance
matrices. (See, e.g., the survey of Johnson [1990] for a broad survey on com-
pletion problems.) We present here some results about the positive semidefinite
completion problem that are most relevant to the topic of this book, namely, to
cut and semimetric polyhedra. Indeed, it turns out that, for some graphs, the
elliptope £(G) has a closed form description involving the cut and semimetric
polytopes of G. We give here a compact presentation covering results obtained
by several authors. The exposition in this section as well as in the next Section
31.4 follows essentially the survey paper by Laurent [1997d].

31.3.1 Results

Let G = (Vp, E) be a graph and let z € RF with corresponding partial matrix
X. Clearly, if z € £(G) then every principal submatrix of X whose entries are
all specified is positive semidefinite. In other words, if K C V,, induces a clique
in G then the projection zx of z on the edge set of G[K|] belongs to the elliptope
E(K) of the clique K. (Here, we use the same letter K for denoting the clique
as a node set or as a graph.) Hence,

(31.3.1) =z € E(K) for each clique K in G

is a necessary condition for z € £(QG), called clique condition. Another necessary
condition for membership in £(G) can be deduced from the result in Section 31.2.
Clearly, all the components of z € £(G) belong to the interval [—1,1]; hence, z
can be parametrized as

z = cos(ma), i.e., Te = cos(mae) for all e € E,
where 0 < a., <1 for all e € E. Then, Theorem 31.2.1 can be reformulated as

E(Ky) C cos(mCUTY) := {cos(ma) | a € CUTS}.

By taking the projections of both sides on the subspace R” indexed by the edge
set of G, we obtain

E(G) C cos(rCUT?(G)) := {cos(ma) | a € CUT"(G)}.

In other words,
(31.3.2) @€ CUT"(G)

is a necessary condition for z = cos(wa) € £(QG), called cut condition. As
CUT®(G) € MET"(G) (by (27.3.1)) we deduce that

(31.3.3) a € MET?(G)
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is also a necessary condition for z = cos(ma) € £(G), called metric condition.

None of the conditions (31.3.1), (31.3.2), or (31.3.3) suffices for characterizing
&(G) in general. For instance, let C = (V,, E) be a circuit on n > 4 nodes and
let z € R be defined by z, := 1 for all edges except z. := —1 for one edge of C.
Then, z satisfies (31.3.1) but z ¢ £(C). As another example, consider the 4 x 4
matrix X with diagonal entries 1 and with off-diagonal entries —%. Then, X ¢ &4
(as X is not positive semidefinite because Xe = —%e, where e denotes the all
ones vector). Hence, the vector z := (—1,..., 1) € RF(X4) does not belong to
E(Ky4), while Larccosz = (%,..., 2) belongs to MET"(K,) = CUT"(Ky).

Hence arises the question of characterizing the graphs G for which the con-
ditions (31.3.1), (31.3.2), (31.3.3) (taken together or separately) suffice for the
description of £(G). Let Pk (resp. Pas, Pc) denote the class of graphs G for
which the clique condition (31.3.1) (resp. the metric condition (31.3.3), the cut
condition (31.3.2)) is sufficient for the description of £(G).

We start with the description of the class Px. Recall that a graph is said
to be chordal if every circuit of length > 4 has a chord. We will also use the
following characterization from Dirac [Di61]: A graph is chordal if and only if it
can be obtained from cliques by means of clique sums.

Clearly, every graph G € Pk must be chordal. (For, suppose that C is a
chordless circuit in G of length > 4; define z € R¥ by setting z. := 1 for all
edges e in C except z,, := —1 for one edge ey in C, and z, := 0 for all remaining
edges in G. Then, z satisfies (31.3.1) but =z ¢ £(G).) Grone, Johnson, S4, and
Wolkowicz [1984] show that Pg consists precisely of the chordal graphs. Namely,

Theorem 31.3.4. For a graph G = (V, E), we have
Q) ={z e R |z € £(K) VK clique in G}
if and only if G is chordal.

The proof relies upon Lemma 31.3.5 below, since cliques belong trivially to Pg
and every chordal graph can be build from cliques by taking clique sums.

Lemma 31.3.5. The class Pk is closed under taking clique sums.

Proof. Let G = (V, E) be the clique sum of two graphs G; = (V4,E1) and
Gy = (Va, E3). Suppose that G1,Gy € Pk; we show that G € Pk. For this,
let 2 € RF such that zx € £(K) for every clique K in G. Then, for i = 1,2,
the projection of z on the subspace RP: belongs to £(G;) and, thus, can be
completed to a positive semidefinite matrix of order |V;|. Hence, we can find
vectors u; € RF (j € V4) and v; € RF (j € V3) such that z;; = ulu; for all
1,7 € V1 and z;5 = vf v; for all 4, € V3. Now, by looking at the values on the
common clique V; N V3, we have that uTu; = vTv; for all 4,5 € Vi N V2. Hence,
there exists an orthogonal k£ x k matrix A such that Au; = v; for alli € V; N V;.
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Now, the Gram matrix of the system of vectors: Au; (¢ € V1), v; (i € Vo \ V1)
provides a positive semidefinite completion of z, which shows that z € £(G). |

Figure 31.3.6: The elliptope £(K3) of the complete graph on 3 nodes

We now turn to the description of the classes Pys and Pc. Obviously,
Pum C Pe.

By Theorem 31.2.2 the graph K3 belongs to Pjs. In other words, £(K3) =
cos(TMETg). Thus, £(K3) is a ‘deformation’ via the cosine mapping of the
3-dimensional simplex METj; see Figure 31.3.6 for a picture of the elliptope
E(K3). As was observed earlier, the graph K4 does not belong to Pc. Laurent
[1997b] shows that the classes Pps and P¢ are identical and consist precisely of
the graphs with no K4-minor.

Theorem 31.3.7. The following assertions are equivalent for a graph G:
(i) £(G) = {z = cos(ma) | a € CUT(G)}.
(ii) £(G) = {z = cos(ma) | a € MET"(G)}.

(iii) G has no K4-minor.

The proof relies essentially upon the following decomposition result for graphs
with no Ky-minor3 4 (see Duffin [1965]): A graph G has no K4-minor if and

3A graph with no K4-minor is also known under the name of (simple) series-parallel graph.
We stress ‘simple’ as series-parallel graphs are allowed in general to contain loops and multiple
edges. But, here, we consider only simple graphs.

“From this follows that every graph with no K4-minor is a subgraph of a chordal graph (on
the same node set) containing no clique of size 4.
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only if G = K3, or G is a subgraph of a clique k-sum (k = 0, 1,2) of two smaller
graphs (i.e., with less nodes than G), each having no K4-minor. We state two
intermediary results.

Figure 31.3.8

Lemma 31.3.9. FEach of the classes Pys and Pc is closed under taking minors.

Proof. Let G = (V, E) be a graph on n = |V| nodes, let e = uv be an edge in G
and let G’ be the graph obtained from G by deleting or contracting the edge e.
We show that G’ € Py (resp. G' € Pc) whenever G € Py (resp. G € Pg).

We first consider the case when G' = G\e is obtained by deleting e. We
suppose first that G' € Pas; we show that G’ € Pyy. For this, let a € MET?(G);
we show that cos(ma) € £(G'). Let b € MET"(G) whose projection on the edge
set of G’ is a. Then, cos(7b) € £(G) as G € Py, which implies that its projection
cos(ma) on the edge set of G’ belongs to £(G").

Suppose now that G € P¢; we show that G’ € P¢. The reasoning is similar.
Indeed, if a € CUT™(G’), let b € CUT®(G) whose projection on the edge set of
G is a; then, cos(wb) € £(GQ) which implies that cos(ra) € £(G').

We consider now the case when G’ = G/e is obtained by contracting edge e.
Let w denote the node of G’ obtained by contraction of edge e = uv. The proof
is based on the following simple observation: Given a € RE' define b € R¥ by
setting by, 1= 0, bjy, := a4y, if 7 is adjacent to u in G, by, := a4y, if 7 is adjacent to
v in G, and by := ay for all remaining edges f of G. Then, b € MET"(G) (resp.
b € CUT"(G)) whenever a € MET"(G') (resp. a € CUT"(G")). Suppose that
G € Pu, let a € MET"(G') and let b € MET"(G') be defined as above. Then,
cos(mb) € £(G). Hence, there exists a matrix B € &, extending cos(wd). If A
denotes the matrix obtained from B by deleting the row and column indexed by
u and renaming v as w, then A € £,_; and A extends cos(wa), which shows that
cos(ma) € E(G"). The proof is identical in the case of Pc. |

Lemma 31.3.10. The class Pus is closed under taking clique sums.

Proof. Let G1 = (V1,FE1) and Gy = (Va, Ey) be two graphs in Py such that
K := V1NV, induces a clique in both G; and G and there are no edges between



520 Chapter 31. Geometric Properties

V1\ Va2 and Vo \ V5. Let G = (V1 UVy, E1 U E3) denote their clique sum. We show
that G € Pyy. For this, let a € MET"(G). The projection a; of a on R¥ belongs
to MET"(G;), which implies that cos(ma;) € £(G;) for i = 1,2. Hence, there
exists a matrix A; € &,, (n; := |Vi|) extending cos(ma;). Consider the partial
symmetric matrix M shown in Figure 31.3.8, whose entries my, (u € V; \ Vs,
v € Vo \ V1) remain to be specified. Hence, the entries of M are specified on
the graph H defined as the clique sum (along K) of two complete graphs with
respective node sets V; and V3. As H is chordal, we deduce from Theorem 31.3.4
that M can be completed to a positive semidefinite matrix. This shows that
cos(ma) € £(G) as M extends cos(7a). |

Proof of Theorem 81.3.7. As Py C Pgc, it suffices to verify that a graph in
Pc has no Ky-minor and that a graph with no K4-minor belongs to Pps. The
statement that a graph in P¢ has no K4-minor follows from Lemma 31.3.9 and
the fact that K4 ¢ Po. Conversely, suppose that G has no K4-minor. We show
that G € Py by induction on the number of nodes. If G = K3 then G € Py,
by Theorem 31.2.2. Otherwise, G is a subgraph of a clique sum of two smaller
graphs G1 and G2 with no Ky4-minors. Now, G; and Gy belong to Pjs by the
induction assumption. This implies that G € Pjps, using Lemmas 31.3.9 and
31.3.10. 1

Let us now consider the class Pk s (resp. Pkc) consisting of the graphs G
for which the clique and metric conditions (31.3.1), (31.3.3) (resp. the clique
and cut conditions (31.3.1), (31.3.2)) taken together suffice for the description
of £(G). In view of the above results, it suffices here to assume that the clique
condition (31.3.1) holds for all cliques of size > 4. Obviously,

Prm € Pke.

In fact, the two classes Px s and Pk coincide. Several equivalent characteri-
zations for the graphs in this class are known; they are presented below. First,
we need some definitions.

Call splitting the converse operation to that of contracting an edge; hence,
splitting a node u in a graph means replacing u by two adjacent nodes v’ and
u" and replacing every edge uv in an arbitrary manner, either by «'v, or by u"v
(but in such a way that each of v’ and u” is adjacent to at least one node).
(This operation can be seen as a special case of the splitting operation defined
in Section 26.5.) See Figure 31.3.12 for an example. Subdividing an edge e = uv
means inserting a new node w and replacing edge e by the two edges uw and wv.
Hence, this is a special case of splitting. A graph that can be constructed from
a given graph G by subdividing its edges is called a homeomorph of G. Note
that splitting a node of degree 2 or 3 amounts to subdividing one of the edges
incident to that node. (Therefore, homeomorphs of K4 and splittings of K, are
the same notions; in particular, a graph has no K4-minor if and only if it contains
no homeomorph of K, as a subgraph.) Figure 31.3.11 shows a homeomorph of
Ky; the dotted lines indicate paths.
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d

Figure 31.3.11: A homeomorph of K4

Let W, := VC,,_1 denote the wheel on n nodes, obtained by adding a new
node adjacent to all nodes of a circuit of length n — 1. Hence, Wy = Kjy.
Figure 31.3.12 (a) shows the wheel W7 and (c) shows the graph W, obtained
from K, by splitting one node. Clearly, W, (n > 5) and any splitting of W,
(n > 4) do not belong to Pxc (by Theorem 31.3.7, since these graphs do not
contain cliques of size 4 while having a K4-minor).

(@ ©

Figure 31.3.12: (a) The wheel W7; (b) Splitting node u in Wr;
(c) The graph Wy

Several equivalent characterizations for the graphs in Pgjs have been dis-
covered by Barrett, Johnson and Loewy [1996]; more precisely, they show the
equivalence of assertions (i), (iii), (iv), (v) in Theorem 31.3.13 below. Building
upon their result, Johnson and McKee [1996] show the equivalence of (i) and
(vi); in other words, the graphs in Pg s arise from the graphs in Pg and Pus
by taking clique sums. Laurent [1997c] observes moreover the equivalence of (i)
and (ii); hence, the two classes Pxas and Pgc coincide even though the cut
condition (31.3.2) is stronger than the metric condition (31.3.3). We delay the
proof of the next result till Section 31.3.2.

Theorem 31.3.13. The following assertions are equivalent for a graph G:

(i) G € Pxu, i.e., E(G) consists of the vectors z = cos(mwa) such that a €
MET"(G) and zx € E(K) for every clique K in G.

(i) G € Pke, i.e., E(G) consists of the vectors x = cos(ma) such that a €
CUT"(G) and zx € E(K) for every clique K in G.

(iii) No induced subgraph of G is Wy, (n > 5) or a splitting of Wy, (n > 4).
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(iv) Ewvery induced subgraph of G that contains a homeomorph of K4 contains
a clique of size 4.

(v) There ezists a chordal graph G' containing G as a subgraph and having no
new clique of size 4.

(vi) G can be obtained by means of clique sums from chordal graphs and graphs
with no K4-minor.

We close the section with a result concerning the graphs whose elliptope is
a polytope. It turns out that this occurs only in the most trivial case, when
E(G) =[-1,1]E. Set

Q. = Conv(zz? | z € {£1}")

and, for a graph G = (Vy, E), let Q(G) denote the projection of @, on the
subspace R indexed by the edge set of G. Hence, @, (resp. Q(G)) is nothing
but the image of the cut polytope CUTY (resp. CUT"(G)) under the mapping
z +— 1 — 2z. Clearly,

Qn C&n, Q(G) CE(G).

The following result of Laurent [1997b] characterizes the graphs for which equal-
ity Q(G) = &(G) holds; its proof is along the same lines as that of Theo-
rem 31.3.7.

Theorem 31.3.14. For a graph G, equality Q(G) = E(G) holds if and only if
G has no Kz-minor, i.e., if G is a forest. Then, £(G) = [-1,1]. |

As the class of graphs G for which £(G) is a polytope is closed under taking
minors, we deduce:

Corollary 31.3.15. The elliptope E(G) of a graph G is a polytope if and only
if G is a forest; then, £(G) = [-1,1]F. ]

31.3.2 Characterizing Graphs with Excluded Induced Wheels

We give here the full proof® of Theorem 31.3.13, which states several equivalent
characterizations for the graphs containing no splittings of wheels as induced
subgraphs. We show the following implications:

(il) = (i) = (iv) = (v) = (i) and (i) < (vi),

the implication (i) == (ii) being obvious.

5The proof given here follows the exposition in Laurent [1997d]. It is based essentially on
the original proofs of Barrett, Johnson and Loewy [1996] and Johnson and McKee [1996] .
However, several parts have been simplified and shortened; in particular, the implications (iv)
= (v) = (i).
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The following notion of ‘path avoiding a clique’ will be useful in the proof.
Let G = (V, E) be a graph, let K be acliquein Gandlete € K,z € V\ K. A
path P joining the two nodes @ and z is said to avoid the cliqgue K if P contains
no other node of K besides a.

We start with some preliminary results.

Lemma 31.3.16. The class Pkc is closed under taking induced subgraphs.

Proof. Suppose G = (V, E) belongs to Pxc and let H = G[U] be an induced
subgraph of G, where U C V. We show that H € Pg¢. Let z be a vector indexed
by the edge set of H satisfying (31.3.1) and (31.3.2); we show that z € £(H).
For this we extend z to a vector y indexed by the edge set of G by setting
Yuv = 0 for an edge uv € E withu € U, v € V\ U and yy, := 1 for an edge
uv € E contained in V \ U. It is clear that y satisfies (31.3.1). By assumption,
a:= 1 arccosz € CUT(H); we verify that b := L arccosy € CUT(G). Indeed,
say
a= Y Asbu(S)

scu
where Ag > 0, > g Ag = 1. Then,

1

b=2

> As(6a(S) + 66U\ S)),
scu

which shows that b € CUT™(G). Hence, y satisfies (31.3.2). Therefore, y € £(G)
which implies that z € E(H). |

Lemma 31.3.17. The class Pi is closed under taking clique sums. 1
We omit the proof which is analogue to that of Lemma 31.3.10.

Lemma 31.3.18. Let G = (V, E) be a graph in which every induced subgraph
containing a homeomorph of K4 also contains a clique of size 4. Let K be a
cliqgue in G with |K| >4, leta,b,c € K, v € V\ K, and let P, (resp. Py, P.) be
a path from a (resp. from b, ¢) to v avoiding the clique K. Then, there ezists a
node w € V \ K lying on one of the paths Py, Py or P. which is adjacent to all
three nodes a, b and c.

Proof. Let W denote the set of nodes lying on the paths P,, P, or P,. Clearly,
there is a path avoiding K from every node w € W to each node in {a,b,c}.
For w € W, define d(w) as the smallest sum |Qq| + |Qs| + |Qc|, Where Qq, Qbs,
Q. are paths avoiding K that join w to a, b, ¢, respectively, in the graph G[W].
Suppose w is a node in W for which d(w) is minimum and let Q,, Qp, Q. be
the corresponding paths, as defined above. Let Wy C W denote the set of nodes
lying on Qq, Qp or Q.. Then,

V(Qa) NV(Qp) = V(Qa) NV(Qc) = V(@) NV(Qc) = {w}
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Indeed, if z is a node in V(Q,) N V(Q,) distinct from w, then it is easy to see
that d(2) < d(w). Hence, the three paths Qq, Qs, Q. together with the edges ab,
ac and bc form a homeomorph of K4 contained in G[W;]. By the assumption,
G[Wy] must contain a clique S of size 4. We show that

S ={w,a,b,c}.

Suppose that w € S. Then, S contains two nodes 7, s that lie on a common
path, say, on Qg; say, w, T, s, a lie in that order along Q,. Let t € S\ {r,s}. We
can suppose that ¢ lies on Qp (as ¢ does not lie on @Q,, by minimality of d(w)).
Then, ¢t = b (else, we would have d(t) < d(w)). Hence, S is of the form {r,s,b,c}
which implies that d(r) < d(w), a contra diction. Therefore, the set S contains
w; so, S = {w,r,s,t} where r,s,t lie on Qq, Qp, Q., respectively. Now, 7 = @
(else, d(r) < d(w)); similarly, s = b and ¢ = ¢. This shows that S = {w,a,b, c}.

1

Proposition 31.3.19. Let G = (V, E) be a graph satisfying the following con-
ditions:

(i) Ewvery induced subgraph of G containing a homeomorph of K4 contains a
clique of size 4.

(ii) G contains a clique of size 4.

(iii) For every mazimal cligue K in G, a € K and v € V' \ K, there exists a
path avoiding K from a to v.

Then, G is chordal.

Proof. We show the result by induction on the number n of nodes in G. The
result holds trivially if n = 4 (as G = K4). Let n > 5 and let K be a maximal
clique in G of size > 4. We can assume that the subgraph G[V \ K| induced by
V' \ K is connected. (Else, letting W1,..., W), denote the connected components
of GIV\K], then G; := G[KUWj] is chordal for each i = 1, ..., p, by the induction
assumption. Hence, G is chordal as it is a clique sum of chordal graphs.) We
show that K = V|, i.e., that G is a complete graph. For this, suppose K # V.
For each z € V' \ K, let N(z) denote the set of nodes in K that are adjacent to
z. We claim:

(a) If z,y € V \ K are adjacent and if N(z) € N(y),N(y) € N(z),
then N(z) N N(y) =0, |N(z)| = |N(y)| = 1.

Indeed, let @ € N(z)\ N(y) and b € N(y)\ N(z). Suppose first that there exists
¢ € N(z) N N(y). Then, the subgraph of G induced by {a,b,c,z,y} contains
a homeomorph of K4 but no clique of size 4, contradicting (i). If |[N(z)| > 2,
we obtain again a contradiction with (i) by choosing now ¢ in N(z) \ {a}. This
shows (a). Next, we have:

(b) IfzeV\K and |N(z)| =1, then N(z) C N(y) for some y € V' \ K.
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Say, N(z) = {a}. Let b,c € K \ {a} and let P,, P,, P, be paths from z to a, b,
¢, respectively, that avoid K. By Lemma 31.3.18, there exists a node y € V' \ K
lying on one of these paths which is adjacent to a, b and ¢. Hence, N(z) C N(y).

Call a set N(z) (z € V\ K) mazimal if N(z) = N(y) whenever N(z) C N(y)
for y € V'\ K. We show:

©) Let £ # y € V' \ K for which N(z) and N(y) are both maximal.
¢ Then, N(z) = N(y).

Suppose that N(z) # N(y). Then, by (a) and (b), z and y are not adjacent. Let
(z,21,...,2p,y) be a path of shortest length joining z and y in G[V' \ K]. Then,
N(z1) € N(z) and N(2z,) C N(y). Let us first assume that N(z;) € N(z) for
some ¢ =1,...,p. Let ¢ be the smallest such index. Then, N(2;)U...UN(z;—1) C
N(z) and N(z;) € N(z). Let a € N(z) \ N(2;) and b € N(z) \ N(z). We claim
that N(z1) U... U N(zi—1) C {a}. For, suppose that there exists an element
a' € N(21) U...UN(z—1) with a’ # a. Then, applying Lemma 31.3.18, we find
a node w € {z,z,..., 21,2} which is adjacent to all three nodes a, b and a'.
This implies that w = 2; (j < 1) and, thus, b € N(2;) C N(z), a contradiction.
Therefore, N(z1) U...UN(zi—1) C {a}. Let ¢ € N(z) \ {a}; then the subgraph
of G induced by {a,b,¢,z,21,..., 21, 2} contains a homeomorph of K4 but no
clique of size 4, contradicting (i). When N(z;) € N(y) for some i = 1,...,p,
we obtain a contradiction in the same manner as above. Hence, we have that
N(z1)U...UN(z,) C N(z) N N(y). Taking a € N(z) \ N(y), b € N(y) \ N(z),
¢ € N(z) \ {a}, the subgraph of G induced by {a,b,¢,, 21, ..., 2, y} contains a
homeomorph of K4 but no clique of size 4, yielding again a contradiction. Hence,
(c) holds.

We can now conclude the proof. Let N(zy) denote the unique maximal set
of the form N(z) (z € V' \ K). Then, N(z¢) = K (by (iii)). Hence, K U {zo} is
a clique, which contradicts the maximality of K. |

Proof of Theorem 31.3.13.

The implication (ii) = (iii) follows from Lemma 31.3.16 since W,, (n > 5) and
a splitting of W, (n > 4) do not belong to Pxc. The implication (vi) = (i)
follows from Lemma 31.3.17 and the fact that chordal graphs and graphs with
no K4-minor belong to Pk .

(v) = (i) Suppose G = (V, E) is a graph satisfying (v). Let G’ = (V, E’) be
a chordal graph such that F C E’ and every clique of size 4 in G’ is, in fact,
a clique in G. We show that G € Pk . For this, let £ = cos(ma) € RF such
that ¢ € MET®(G) and 2k € £(K) for all cliques K in G. Let b € MET(G')
extending a and set y := cos(wb). Then, y satisfies the clique condition (31.3.1)
(as yxg = zx € E(K) for each clique K of size > 4 in G'). As G' is chordal, we
deduce that y € £(G’) and, thus, z € £(G).

(iii) = (iv) Suppose G = (V, E) is a graph for which there exists a subset U C V
such that G[U] contains a homeomorph of K4 and contains no clique of size 4.
Choose such U of minimum cardinality; set G' := G[U] := (U, E'). Moreover, let
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H = (W, F) be a homeomorph of K, contained in G’ having minimum number
of edges. Then, W = U (by minimality of |U|) and H # K, (by assumption).
To fix ideas, suppose H is the graph shown in Figure 31.3.11; so, H consists of
the six paths Py, Pac, Poc, Pad, Poa and P,y (where Py, denotes the path joining
the nodes a and b, etc.); let us refer to the nodes a,b,c, d as the ‘corners’ of H.

We show that G’ is a wheel or a splitting of a wheel. This is obvious if
|E'\ F| < 1. So, we can suppose that |E’ \ F| > 2. A first observation is:

(a) The end nodes of an edge e € E'\ F do not lie on a common path in H.

Indeed, suppose that the end nodes z and y of e lie, say, on the path Pp. Let
P,y(z,y) denote the subpath of P, joining z and y. Then, the graph obtained
from H by deleting Py (z,y) and adding the edge e is again a homeomorph of Ky
contained in G’ but having less edges than H. This contradicts the minimality
of H. Hence, (a) holds.

There are two possibilities for an edge e = zy € E'\ F: Either, (I) e lies
within a face of H (i.e., z and y lie on two paths in H sharing a common end
node) or, (II) e connects two disjoint paths in H. We make two observations:

(b) Let e = zy € E' \ F where z,y are internal nodes in P, P.q,
respectively. Then, |Pye| = |Poc| = |Pad| = |Poa| = 1.

Indeed, suppose |P,c| > 1. Then, the graph obtained from H by adding e and

deleting P, is a homeomorph of K, (with corners z,y, b, d) contained in G' with

less edges than H. Similarly,

Let e =zy € E'\ F lying in a face of H. Say, z,y lie on P, Py,
respectively. Then, (ci) za,ya € E, |Py| = |Pod| = |Ped| = 1,

or (cii) y = ¢, |Pac| = |Poc| == |Peal = 1,

or (ciii) z = b, | Pap| = |Poc| = |Poa| = 1.

(c)

Suppose first that there exists an edge e € E'\ F of type (II). Say, e = zy where
z,y are internal nodes on P, P.g4, respectively. Let €/ = z'y’ be another edge
in E'\ F. Then, € is of type (I). (Indeed, if €' is of type (II) then e’ connects
the same paths Py, and P4 - this follows from (b) and the fact that H # Kjy.
Say, ¢ # z' and d,9',y, c lie in that order along P.;. Then, adding e, e’ to H and
deleting P,4, Pyq and the subpath P.4(d,y') creates a homeomorph of K; with
less edges than H.) We can suppose without loss of generality that e’ lies within
the face of H containing a,b,c. By (c), €’ is of the form cz where 2 lies on Pgy.
Say, z lies between a and z. Then, adding e, e’ to H and deleting Ppq, P, and
P,p(a, z) creates a smaller homeomorph of K4 than H.

Hence, we can now suppose that every edge in E’ \ F is of type (I), i.e., lies
within a face of H. If E'\ F contains an edge as in (ci), then it is easy to see that
one can always find a smaller homeomorph of K4 in G'. Hence, we can suppose
that all edges in E’ \ F are as in (cii) or (ciii). Let e = cz € E'\ F, where z
is an internal node of P,;. This implies easily that every other edge ¢/ € E' \ F
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is of the form cz, where z lies on P,p, Pyg or P,y. Therefore, G’ is a wheel or a
splitting of a wheel.

(iv) = (v) Suppose that G satisfies the assumption (iv). We show that (v) holds
by induction on the number of nodes in G. We can suppose that G contains a
homeomorph of Kj; else, the result holds. By (iv), G has a clique of size 4. We
can suppose, moreover, that there exist a maximal clique K in G, ay € K, and
zg € V' \ K such that no path avoiding K from a to z exists; for, if not, G is
chordal by Proposition 31.3.19 and we are done. Let S denote the set of nodes
b € K for which there exists a path from z( to b avoiding K. Moreover, let
T denote the set of nodes z € V' \ K that can be joined to all nodes of S by
some path avoiding K, and that cannot be joined to any other point of K \ S
by a path avoiding K. Then, S # K (as ay € S) and T # @ (as zg € T).
Moreover, there is no edge between T and (V \ K)\ T, or K \ S. Consider the
induced subgraphs G[S UT] and G[V \ T]; both are proper subgraphs of G. By
the induction assumption, there exists a chordal graph H; (resp. Hs) containing
G[SUT] (resp. G[V \ T)]) as a subgraph and having no new clique of size 4. Let
H := H; U H, denote the graph with edge set E(H;)U E(Hz). Then, H contains
G as a subgraph. Moreover, H is chordal and H contains no new clique of size
4. This follows from the fact that H is, in fact, the clique sum of the two graphs
H, and H, (along the clique S). Hence, G satisfies (v).

(i) = (vi). Let G be a graph in Pgps. We show that G satisfies (vi) by induction
on the number of nodes. We can suppose that G is connected (else, the result
follows by induction) and that G contains a homeomorph of K. It suffices now
to show that G contains a clique cutset, i.e., a clique K such that G[V \ K] is
disconnected. If G contains a simplicial® node v, then the set of neighbors of v
forms a clique cutset. Suppose now that G contains no simplicial node. Using
the implication (i) = (iv) (already shown above), we know that G contains a
clique of size 4. Let K be a maximal clique in G of size > 4 such that G[V \ K]
is connected (else, we are done). Observe that, for every a € K and z € V \ K,
there exists a path from a to z avoiding K. (Indeed, as a is not a simplicial node,
a is adjacent to some node w € V'\ K. Now, v and w can be joined by some path
in G|V \ K], which yields a path from v to a avoiding K.) Hence, the graph G
satisfies the conditions (i)-(iii) from Proposition 31.3.19. Therefore, G is chordal.
This yields a contradiction as every chordal graph contains a simplicial vertex.
This concludes the proof for (i) = (vi). |

31.4 The Euclidean Distance Matrix Completion
Problem
Let (Va,d) be a distance space with associated distance matrix D. We remind

that D is said to be a Euclidean distance matrix when (Vj,,v/d) is isometrically
£y-embeddable; that is, when d belongs to the negative type cone NEG,,.

8A node v in graph G is said to be simplicial if its set of neighbors induces a clique in G.
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Given a subset E of E, = {ij | 1 < i < j < n}, consider the graph G =
(Vp, E). Denote by NEG(G) the projection of the negative type cone NEG,, on
the subspace RE indexed by the edge set F of G. Hence, a vector d = (dij)ijeE
belongs to NEG(G) if and only if there exist vectors u;,...,u, € R™ (for some
m > 1) such that

(31.4.1) V/dij =Il ui —u; ||z for all ij € E.

To d € RF corresponds a partial symmetric n xn matrix M = (m;;) whose entries
are specified only on the diagonal positions and on the positions corresponding
to edges in E; namely, m;; := 0 for all i € V,, and m;; = mj; := d;; for all ij € E.
Then, d € NEG(G) if the unspecified entries of M can be chosen in such a way
that one obtains a Euclidean distance matrix; that is, if M can be completed
to a Euclidean distance matrix. Therefore, the completion problem for partial
Euclidean distance matrices is that of characterizing membership in projections
of the negative type cone.

Barvinok [1995] shows that, for d € NEG(G), there exists a system of vectors
U,. .., U, € R™ satisfying (31.4.1) in dimension m bounded by

(3142)  m< {__WJ

2

A short proof for this fact can be given using Theorem 31.5.3 from the next
section.

Proof of relation (31.4.2). For d € RE we have:

Juy,...,u, € R™ such that dij = (|| u; — u; ||2)? for all ij € E

3 symmetric n X n matrix A > 0 with rank < m such that
dij = az + aj; — 2a;; for all ij € E.

Consider the convex set K := {X | X > 0, z; + zj; — 2z;5 = d;j for ij € E}.
If K # 0 (that is, if d € NEG(G)) and if d # 0 (then, K has extreme points),
then any matrix A € K which is an extreme point of K has rank r satisfying
(Tzl) < |E| (by Theorem 31.5.3). This condition is equivalent to the inequality
in (31.4.2). 1

We present in this section a closed form description of the projected negative
type cone NEG(G) for several classes of graphs. In fact, one can formulate nec-
essary conditions for membership in NEG(G) that are similar to the conditions
(31.3.1), (31.3.2) and (31.3.3) considered in Section 31.3 for the positive semidef-
inite completion problem. Moreover, these conditions are sufficient for precisely
the same classes of graphs as those coming up in Section 31.3.

In a first step, we formulate the results concerning the Euclidean distance
matrix completion problem. Then, we show how they can be derived from the
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corresponding results for the positive semidefinite completion problem; here are
used essentially the techniques on metric transforms developed in Chapter 9.

The exposition in this section follows again essentially the survey paper of
Laurent [1997d].

31.4.1 Results

We formulate here some results for the Euclidean distance matrix completion
problem; proofs are delayed till Section 31.4.2.

Let K C V, be a subset of nodes that induces a clique in G. For d € RE
denote by dk its projection on the edge set of G[K]. Clearly, if d € NEG(G)
then dg € NEG(K). Therefore, the condition

(31.4.3) dx € NEG(K) for every clique K in G

is a necessary condition for d € NEG(G), again called clique condition. Bakonyi
and Johnson [1995] characterize the graphs G for which the condition (31.4.3) is
sufficient for the description of NEG(G). They show:

Theorem 31.4.4. For a graph G = (V,, E), we have
NEG(G) = {d € RF | dg € NEG(K) VK clique in G}
if and only if G is chordal.

The condition (31.4.3) is not sufficient for the description of NEG(G) when G
is not chordal. Indeed, suppose that G has a chordless circuit C of length > 4.
Let z € RF be defined by z. := 0 for all edges e in C except x,, := 1 for one
edge e in C, z;; := 1 for all edges ij with ¢ € V(C), j € V\V(C), and z;; := 0
for all edges ij with 4,5 € V' \ V(C). Then, z satisfies (31.4.3) but z ¢ NEG(G).
Another necessary condition can be easily formulated in terms of the cut cone.
Namely, the condition

(31.4.5) Vid € CUT(G)

is a necessary condition for d € NEG(G), called cut condition; this follows from
the fact that “4o = £;” (recall Proposition 6.4.12) and taking projections.
Therefore,

(31.4.6) Vd € MET(G)

is also a necessary condition for d € NEG(G), called metric condition. The
condition (31.4.6) characterizes NEG(G) in the case when G = K3. This result
has, in fact, already been mentioned in Remark 6.2.12; we repeat the proof for
clarity.
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Lemma 31.4.7. NEG3 = {d € R} | v/d € MET3}.

Proof. Let d be a distance on V3 and set dio := a, di3 := b, do3 := ¢. Let us
consider the image of d under the covariance mapping (pointed at position 3)
and the corresponding symmetric matrix

b btc—a
btc—a c .
2

We use the fact that d € NEG3 if and only if P > 0 (recall Figure 6.2.3). Now,
P > 0 if and only if det P > 0, i.e., if 4bc — (b + ¢ — a)? > 0. The latter
condition can be rewritten as: a? — 2a(b + c) + (b — ¢)? < 0, which is equivalent
to b+ ¢ — 2vbe = (Vb — €)? < a < b+ c+ 2vbe = (Vb + +/c)2. Hence, we find
the condition that v/d € METs;. |

More generally, Bakonyi and Johnson [1995] observe that the condition (31.4.6)
suffices for the description of NEG(G) if G is a circuit. In fact, the following
result holds, which is an analogue of Theorem 31.3.7 (Laurent [1997c]).

Theorem 31.4.8. The following assertions are equivalent for a graph G:
(i) NEG(G) = {d € RZ | vd € CUT(G)}.
(ii) NEG(G) = {d € R¥ | Vd € MET(G)}.

(iii) G has no K4-minor.

The next result identifies the graphs for which the clique and metric con-
ditions (resp. clique and cut conditions) suffice for the description of the cone
NEG(G). The equivalence of (i) and (iii) is due to Johnson, Jones and Kroschel
[1995] and that of (ii) and (iii) to Laurent [1997c].

Theorem 31.4.9. The following assertions are equivalent for a graph G:
(i) NEG(G)={d € Rﬂf | Vd € MET(G) and dg € NEG(K) VK clique in G}.

ii) NEG(G) = {d € R® | Vd € CUT(G) and dx € NEG(K) VK clique in G}.
+

(ili) No induced subgraph of G is a wheel W, (n > 5) or a splitting of a wheel
Wn (n>4).

We conclude this section with a result of geometric flavor given in Bakonyi
and Johnson [1995]; it follows as a direct application of Theorem 31.4.4.

Proposition 31.4.10. Let G = (V,,FE) be a chordal graph, let Ki,...,K;
denote its mazimal cliques and let d € RE, R > 0. Suppose that there exist
vectors ui,...,un € R* satisfying (i) and (ii):

(i) Il i —uj |l2= ds; for all ij € E,
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(ii) for everyr =1,...,s, the vectors u; (i € K, ) lie on a sphere of radius R.

Then there exist vectors vy, ...,v, € R" satisfying (i) and all of them lying on a
sphere of radius R.

31.4.2 Links Between the Two Completion Problems

There is an obvious analogy between the above results for the Euclidean dis-
tance matrix completion problem and the results from Section 31.3 for the pos-
itive semidefinite completion problem. Compare, in particular, Theorems 31.3.4
and 31.4.4, as well as Theorems 31.3.7 and 31.4.8, and Theorems 31.3.13 and
31.4.9. Following Laurent [1997c], we indicate here how to derive the results for
the Euclidean distance matrix completion problem from those for the positive
semidefinite completion problem.

For convenience let us introduce the following classes of graphs: Dg (resp.
D, De) denotes the class of graphs for which the clique condition (31.4.3) (resp.
metric condition (31.4.6), cut condition (31.4.5)) suffices for the description of
NEG(G); and Dk (resp. Dgc) denotes the class of graphs for which the
clique and metric (resp. clique and cut) conditions taken together suffice for the
description of NEG(G).

It is also convenient to introduce a notation for the following classes of graphs,
already encountered in the previous section. The class G.p, consists of all chordal
graphs; the class G4 consists of the graphs that do not contain K4 as a minor;
and the class Gy, consists of the graphs that do not contain a wheel Wy, (n > 5)
or a splitting of a wheel Wy, (n > 4) as an induced subgraph.

Proving Theorems 31.4.4, 31.4.8 and 31.4.9 amounts to showing the equali-
ties: D = Gen, Dyr = Do = G4, and D = Dge = Guwh- For this, it suffices
to verify the inclusions: Dg C Gen, Pk C Dk ; Do C Gk4, Py C Dig; and
Dkc € Guwh, Pxm C Dipy. We do so in Lemmas 31.4.16 and 31.4.17 below.

Crucial for the proof are some links between the negative type cone and the
elliptope. A first obvious link between the cone NEG(VG@G) and the elliptope
£(Q) is provided by the covariance mapping (as defined in (27.3.8)). Namely,
given vectors x € RZ and d € RE(VG) satisfying: d;n41 =1 for all ¢ € V, and
d;j = 2 — 2z;5 for all ij € E, then

(31.411)  z € £(G) <> d € NEG(VG).

Another essential tool is the following property of the Schoenberg transform from
Theorem 9.1.1: For d € RE»,

(31.4.12) d € NEG(K,) <= exp(—Ad) € £(K,,) for all XA > 0.
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(We remind that the notation exp(—Ad) means applying the exponential function
componentwise, i.e., exp(—Ad) = (exp(—Ad;;))s;.) This relation remains valid at
the level of arbitrary graphs. Namely,

Proposition 31.4.13. Let G = (V,,, E) be a graph and d € RE. The following
assertions are equivalent.

(i) d € NEG(G).
(ii) exp(—Ad) € E(G) for all X > 0.
(iii) 1 — exp(—Ad) € NEG(G) for all A > 0.

Proof. (i) = (ii) follows from (31.4.12) and taking projections.

(ii) = (iii) Given X > 0, define the vector D € RE(V®) by D; 11 = 1fori € V,,
and D;; = 2 — 2exp(—Ad;;) for ij € E. Then, D € NEG(VG) (by relation
(31.4.11)) which implies that 1 — exp(—\d) € NEG(G).

(iii) => (i) Let vz < 0 be a valid inequality for the cone NEG(G). We show
that vTd < 0. By assumption, v7(1 — exp(—Ad)) < 0. Expanding in series the
exponential function, we obtain:

(_ ) -1
”T(l —exp(—Ad)) = EijeE vij(2p21 1,: /\pdfj)
—1)P—1)pP

= o1 T Tijepvigdl; < 0.

Dividing by A and, then, letting A — 0 yields: }-;;cpvijdij < 0. This shows
that d € NEG(G), as d satisfies all the valid inequalities for NEG(G). [ ]

From this we can derive the following result” permitting to link the two metric
conditions (31.3.3) and (31.4.6).

Lemma 31.4.14. Let G = (V,,, E) be a graph and d € ]Rfﬁ. Then,
vd € MET(G) = %r—arccos(e_’\d) € MET"(G) for all X > 0.

Proof. Note first that it suffices to show the result in the case when G = K, (as
the general result will then follow by taking projections). Next, observe that it
suffices to show the result in the case n = 3 (as MET(K,) and MET®(K,,)
are defined by inequalities that involve only three points). Now, we have:
vd € MET(K3) <= d € NEG(K3) (by Lemma 31.4.7); d € NEG(K3) <=
exp(—Ad) € £(K3) for all A > 0 (by Proposition 31.4.13); finally, exp(—Ad) €
E(K3) <= L arccos(e *%) € MET"(K3) (by Theorem 31.2.2).

™

One more useful preliminary result is the following.

"The implication in Lemma 31.4.14 holds, in fact, as an equivalence. The converse implica-
2
tion can be shown using the mean value theorem applied to the function f(t) = arccos(e™®")
and letting A tend to zero.
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Lemma 31.4.15. Let W, := VC be a wheel on n nodes, with center uy and
circuit C. Consider the vector d indezed by the edge set of Wy, and defined by
d(ug,u) := 1 for each node w of C, d(u,v) := 4 for each edge uwv of C. Then,
d € NEG(W,,) <= n is odd.

Proof. Let = be the vector indexed by the edge set of C' and taking value —1
on every edge. By (31.4.11), d € NEG(W,) if and only if z € £(C). The latter
holds if and only if % arccos z € MET"(C), that is, if and only if C has an even
length. |

Lemma 31.4.16. We have: Dg C Gen, Do C Gka, and Do C Guh-

Proof. We show the inclusion: Dg C G.. For this, let G = (V, E) be a non-
chordal graph and let C = (V(C), E(C)) be a chordless circuit of length > 4 in
G. We define a vector d € R satisfying (31.4.3) and such that d ¢ NEG(G)
by setting d, := 0 for all edges e € E(C) except de, := 1 for one edge ey in C;
de := 1 for every edge e joining a node of C to a node of V \ V(C); and d. := 0
for every edge e joining two nodes of V' \ V(C).

The example from Lemma 31.4.15 above shows that K4 = Wy does not belong
to De. The inclusion: Do C Gg4 now follows after noting that Do is closed
under taking minors.

We finally check the inclusion: Dx¢ C Gyp. For this, let G = (V) E) be a graph
in Dk and let H := G[U] be an induced subgraph of G where U C V. Suppose
in a first step that H is a wheel Wy, := VC (n > 5) with center ug. Consider
the vector d indexed by the edge set of G and defined in the following manner:
d takes value 4 on every edge of the circuit C' excepet value 0 on one edge if
n is odd; d takes value 1 on every edge joining the center ug of the wheel to a
node of C; d takes value 1 on an edge between a node of C and a node outside
the wheel; d takes value 0 on every remaining edge (i.e., an edge joining g to a
node outside the wheel or an edge joining two nodes outside the wheel). Then
d satisfies (31.4.3) and d ¢ NEG(G) (by Lemma 31.4.15). Moreover d satisfies
(31.4.5), i.e., vd € CUT(G). Indeed, say C is the circuit (ui,...,un_1). Then,
Vd = Y07 66(wi) if n is even and vd = dg({u1,un—1}) + 2057 6c(us) if n is
odd and (uj,upn—1) is the edge of C on which d takes value 0. Finally, if H is a
splitting of a wheel W, (n > 4), extend the above vector d by assigning value 0
to every new edge created during the splitting process. |

Lemma 31.4.17. Px C Dk, Py C Dy, and Pppyr C D

Proof. We first verify the inclusion: Px C Dk . Let G be a graph in Pg; we show
that G € Dg. For this, let d € RF satisfying (31.4.3); we show that d € NEG(G).
By Proposition 31.4.13, exp(—Adg) € £(K) for every clique K in G and every
A > 0. As G € Pk, this implies that exp(—\d) € £(G) for all A > 0. Using
again Proposition 31.4.13, we obtain that d € NEG(G).

Suppose now that G € Pj; we show that G € Dy, Let d € RE satisfy-
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ing (31.4.6), i.e., Vd € MET(G). Then, by Lemma 31.4.14, L arccos(e™?) €
MET®(G) for all A > 0. As G € Py, this implies that exp(—\d) € £(G) for all
A > 0. By Proposition 31.4.13, we obtain that d € NEG(G).

The inclusion Pgpr € Dg o follows by combining the above arguments. |

31.5 Geometry of the Elliptope

In Section 28.4.1 was introduced the convex body J, as a (nonpolyhedral) re-
laxation of the cut polytope CUTS. We remind that

1, n
Jn ={z € REn | KZ bibjzij < Z(Z b;)? for all b € Z"}
<i<j<n =1

={z € RE» | J - 2X > 0}

where J is the all-ones matrix and, for z € RE» | X is the symmetric n X n matrix
with zero diagonal and off-diagonal entries z;;. We also remind that the elliptope
&n is defined as the set of n x n symmetric positive semidefinite matrices with
an all-ones diagonal. Therefore,

€ Jp<=J-2X €&,

Hence, the two convex sets J, and &, are essentially identical (up to the trans-
formation z — 1 — 2z). The convex body 7, is a relaxation of CUT,ELl , l.e.,

CUTS C .

Moreover, J, provides a good approximation for CUTY in the sense of opti-
mization (recall Theorem 28.4.7). In fact, the convex body J, presents several
geometric features, which may explain and provide further insight for its good
behaviour in optimization. One such property is, for instance, the fact that the
only vertices of 7, are the cut vectors. This result is given below as well as sev-
eral other geometric properties. For convenience we will work with the elliptope
&p rather than with 7, itself.

We start with recalling some definitions. Let K be a convex set in R?. Given
a boundary point z¢ of K, its normal cone N(K,zy) is defined as

N(K,zp) :={ce R | Tz < Tz for all z € K}.

Hence, N(K,zg) consists of the normal vectors to the supporting hyperplanes of
K at zo. Then, the supporting cone at g is defined by

C(K,z0) :={z € R | Tz <0 forall c € N(K,z0)}.

The dimension of the normal cone permits to classify the boundary points. In
particular, a boundary point z is called a vertez of K if its normal cone N (K, zg)
is full-dimensional. A subset F' C K is a face of K if, for allz € F, y,2 € K and
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0<a<l z=0ay+(l— a)zimplies that y,z € F. In particular, an element
zo € K is called an extreme point of K if the set {zo} is a face of K. In what
follows we consider the two convex sets &£, and J,. When dealing with &, we
take the space of symmetric n x n matrices as ambient space, equipped with the
inner product:

n
(A, B) := Z a;;b;; for two symmetric n X n matrices A, B
1,j=1

and, when dealing with 7,, the ambient space is the usual Euclidean space
n+1
R("2"). We remind that Tr A := Y i ai for an n X n matrix A.

We begin with the description of the polar of £, and of its normal cones.
These results are established by Laurent and Poljak [1995b, 1996a]; proofs can
be found there.

Theorem 31.5.1. The polar of &, is given by
(&n)°={D—-M| M =0,D diagonal matriz with Tt D = 1}.
For A € &,, its normal cone is defined by
N(&,,A)={D-M|M»0,(M,A) =0,D diagonal matriz}.

Moreover, dim N(&,,A) =n+ ("‘g“), where T is the rank of A. |

Corollary 31.5.2. The only vertices of &, are the ‘cut matrices’ zz, for
xz € {£1}™. In other words, the convez body J, has 2"~ wertices, namely, the
cut vectors 6(S) for S CV,. 1

We remind that, given ¢ € RFr, max(c'z | z € J,) is an upper bound
for the max-cut problem: max(c’z | z € CUTY). Equality holds between the
bound and the max-cut precisely when ¢ belongs to the normal cone of one of
the cut vectors. That the cut vectors are the only boundary points having a full
dimensional normal cone supports the idea that J;, approximates well CUT.
From Theorem 31.5.1 one obtains that the supporting cone C(£,,A) at A € &,
is the set

{X symmetricn xn |z; =0Vi=1,...,n, b Xb>0 for all b € KerA}.

In particular, at A = J (the all-ones matrix), the supporting cone is —NEG,,.
At every other vertex of &,, the supporting cone is an affine image of the nega-
tive type cone NEG,, (under the switching mapping). So, this makes one more
connection between the elliptope and the negative type cone.

We now turn to the description of the faces of £,. We remind that &, is
obtained by taking the intersection of the cone PSD,, of positive semidefinite
matrices with the linear space W := {X | z;; =1 Vi =1,...,n}. The facial
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structure of the cone PSD,, is well understood (see Hill and Waters [1987]). It
is, in some sense, rather simple. Indeed, given a matrix A € PSD,, with rank r
the smallest face Fpgp(A) of PSD,, that contains A is given by

Fpsp(A) = {X € PSD,, | KerX D KerA}.

Hence, Fpsp(A) is isomorphic to the cone PSD, and, thus, has dimension (Hz'l).
From this follows the description of the faces of £,. For A € &,, the smallest
face Fg(A) of £, that contains A is equal to Fpsp(A)NW (as W is the only face
of W). In other words,

Fe(A) ={X € &, | KerX D KerA}.

However, computing the dimension of Fg(A) requires more care®. This has been
done by Li and Tam [1994]. For convenience, we state their result in a more
general setting.

Theorem 31.5.3. Let A;,..., A, be nxn symmetric matrices and by,...,by €
R. Consider the convez set

K :={X €PSD, | (X,A;)=b; Vj=1,...,m}.

Let A € K and let Fg(A) be the smallest face of K that contains A. Suppose
that A has rank r and that A = QQT, where Q is an n x 7 matriz of rank .
Then,

dim Fg(A) = (“;1> —rank {QTA4;Q|j=1,...,m}.

Proof. Call a symmetric matrix B a perturbation of A if A+ AB € K for some
A > 0. Then, dim Fg(A) is equal to the rank of the set of perturbations of A.
We claim:

B is a perturbation of A < B = QRQT for some 7 x r symmetric
(a) matrix R and (B, A;) = 0 for all
i=1...,m.

If B = QRQT then A+ AB = Q(I £ AR)QT is clearly positive semidefinite if
A > 0 is small enough. Moreover, the condition: (B, A;) = 0 for all j ensures
that A = AB € K. Conversely, suppose that B is a perturbation of A. So,
A=£)AB € K for some A > 0. This implies that (B, A;) = 0 for all j. Complete Q
to an n x n nonsingular matrix P. Set C := P~'B(P~1)T; that is, B = PCPT.
Then,

_ I, 0\ ,r T _ I, 0 Cn C12)> T
A:tAB—P(O O)P + APCP —P<(0 O)i/\<cl2 Coo P

8Here arises also the question of characterizing the linear subspaces V of R™ such that
V C KerA for some A € £,. Delorme and Poljak [1993b] show that a vector b € R™ belongs
to the kernel of some matrix A € &, if and only if b satisfies: [bi| < Y ... ., |bj| for all
. . s . . <jsn, j#i .
i =1,...,n. An analogue combinatorial characterization for higher dimensional spaces is not
known.
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setting C := (gi; g;z > Hence, ({)T 8) +A (gi; gZ) > 0. This implies

that Ci3 = Cay = 0. Therefore, B = QC1;QT, where C); is a symmetric 7 X 7
matrix. Hence, (a) holds.

Now, every perturbation of A is of the form B = QRQT with (B, A;) = 0 for
all j; that is, (R, QT A;Q) = 0 for all j. Hence, the dimension of Fx(A) is equal
to the dimension of the orthogonal complement of {QTA4,;Q | j = 1,...,m} in
the space of symmetric r x r matrices. Hence, we have the desired formula for
dim Fg(A). ]

Corollary 31.5.4. Let A € &, with rank v, let Fg(A) denote the smallest
face of &€, containing A, and suppose that A is the Gram matriz of the vectors
UL, ..., U, € R'. Then,

r+1

(31.5.5) dim Fg(A) = ( )

)—rank {wiu |i=1,...,n}.

In particular, one obtains bounds for the rank of extreme matrices® of &,.

Corollary 31.5.6. Let A € &, with rank r. If A is an extreme point of &, then
(1'42—1) <n. I

Moreover, as we see below, for every r such that ("$') < n there exists an
extreme matrix in &, having rank r. The formula (31.5.5) can be used for finding
the possible dimensions for the faces of &,, as observed in Laurent and Poljak
[1996a]. Namely,

Proposition 31.5.7. Let A € &, with rank r and set k := dim Fg(A). Then,

r+1 T
max(O,( 0 )—n)gkg <2>

Moreover, for every integers v,k > 0 satisfying the above inequality, there exists
a matriz A € &, with rank v and with dim Fg(A) = k.

Proof. The inequality from Proposition 31.5.7 follows from (31.5.5), after noting
that » < rank {ululT, e ,unug} < n. The existence part relies essentially on
a construction proposed in Grone, Pierce and Watkins [1990], which goes as
follows. Let ey, ..., e, denote the coordinate vectors in R" and set w;; := %(ei +

ej) for 1 <14 < j < r. Then, the (T'gl) matrices: e,-e;f" (i=1,...,7) and wzjwz;

(1 €4 < j <r) are linearly independent. Suppose first that n = (”2”1) — k where

9Solving this question has been the subject of several papers in the linear algebra literature;
for example, by Christensen and Vesterstrgm [1979], Loewy [1980], Grone, Pierce and Watkins
[1990].



538 Chapter 31. Geometric Properties

k < (3). Hence, r <n < (”2'1). Define A as the Gram matrix of the following
n vectors: ey,...,e, together with n — r of the vectors w;;. By construction, A
has rank r and dim Fg(A) = ("}') —n = k. Whenn > ("}!) — k, we can take as
matrix A the Gram matrix of the following n vectors: e; repeated n— ("3")+k+1
times, e3...e., and (3) — k of the w;;’s. 1

Therefore, the range D,, of the possible values for the dimension of the faces

of &, is given by:
k " r+1 T
2 r—hot1 2 2

where k,, is the smallest integer k such that (kf) -n> (kz") +1, ie., 2k, > n;
that is, k, = | %] + 1. For instance,

k3 =2, D3 = [0, 1] U {3},

ks =3, Dy =[0,3] U {6},
ks =3, D5 = [0,3] U [5,6] U {10},
ks = 4, De = [0,6] U [9,10] U {15},
k7 =4, D7 = [0,6] U[8,10] U [14,15] U {21}.

One can verify on Figure 31.3.6 that the proper faces of £ have dimension
0 (extreme points) or 1 (an edge between two cut vectors; there are six such
faces). A detailed description of the faces of &, can be found in Laurent and
Poljak [1995b, 1996a] for n = 3 and n = 4, respectively.

Finally, the possible dimensions for the polyhedral faces of £, are as follows;
they were computed by Laurent and Poljak [1996a].

Theorem 31.5.8. If F is a polyhedral face of &, with dimension k, then
(kgl) < n — 1. Moreover, if all the vertices of F are cut matrices then F is
a simplex. Conversely, for every integer k > 1 such that (k“;l) <n-1, &, has
a polyhedral face of dimension k (which can be chosen to be a simplex with cut

matrices as vertices). 1

Every polyhedral face of £, with cut matrices as vertices yields clearly a face
of the cut polytope. We describe below a construction for such polyhedral faces,
due to Laurent and Poljak [1996a]. We need a definition in order to state the
result.

Let Sy,...,Sk be k subsets of V. The cut vectors 6§(S1),...,68(Sk) are said
to be in general position if the set

N SN NVa\ Si)

i€l igl
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is nonempty, for every subset I C {1,...,k}. This implies that 2¥ < n, i.e.,
k < logy n. Moreover, the cut vectors 6(S1),...,8(Sk) are linearly independent.

Theorem 31.5.9. Let §(S1),...,6(Sk) be k cuts in general position. Then,
the set F := Conv(6(S1),...,0(Sk)) is a face of the convez body J,. (Equiva-

lently, the set Conv(z127,...,zxal) is a face of E,, where z), € R is defined by
zp(3) :=1 if i € Sp and zp (i) := =1 if i € Vo, \ S, for h=1,...,k.) Therefore,
F is also a face of the cut polytope CUTY. |

This result shows that J, and CUTY share fairly many common faces, up
to dimension |logyn|. This supports again the idea that J,, approximates well
the cut polytope CUTS. In fact, the faces considered in Theorem 31.5.9 are also
faces in common with the semimetric polytope METS; see Theorem 31.6.4.

31.6 Adjacency Properties

We now return to the study of the geometry of the cut polytope itself, as well
as with respect to its linear relaxation by the semimetric polytope. We mention
first some results on the faces of low dimension and, then, facts and questions
about the small cut and semimetric polytopes.

31.6.1 Low Dimension Faces

A striking property of the cut polytope CUTY is that any two of its vertices
form an edge of CUTY. In fact, much more is true. In order the formulate the
results, we need some definitions.

Let P be a polytope with set of vertices V. Given an integer £k > 1, the
polytope P is said to be k-neighborly if, for any subset W C V of vertices such
that |W| < k, the set Conv(W) is a a face of P. This implies, in particular,
that every k vertices of P are affinely independent. Hence, every polytope is
1-neighborly and a polytope is 2-neighborly precisely when its 1-skeleton graph
is a complete graph.

Given an integer d and a polyhedron P, we let ¢4(P) denote the set of d-
dimensional faces of P.

Barahona and Mahjoub [1986] show that CUTY is 2-neighborly, i.e., that any
two cut vectors are adjacent on CUTY. In other words, the 1-skeleton graph of
CUTY, is a complete graph. Padberg [1989] shows the following stronger result:
Any two cut vectors are adjacent on the rooted semimetric polytope RMETY, (de-
fined by the triangle inequalities going through a given node; recall Section 27.2).
More generally, Deza, Laurent and Poljak [1992] show the following result.

Theorem 31.6.1. Let W be a set of cut vectors such that |W| < 3. Then, the
set Conv(W) is a simplex face of the semimetric polytope METY.
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Proof. Due to switching, we can suppose that the set W contains the zero cut
vector §(0). Let us first consider the case when |W| = 2; say, W = {§(0), 6(9)},
where S # (3, V.. In order to show that the set Conv(W) is a face of METY, it
suffices to find a vector w € RE» satisfying the following property:

(a) wTz <0 for all z € METY, with equality if and only if z € Conv(W).

For this, set w;; := 0 if 6(S);; = 1 and w;; := —1 otherwise. It is immediate to
verify that w satisfies the desired property.

We now consider the case when |[W| = 3; say, W = {6(0), 6(S),8(T)}, where
6(S) and 6(T) are distinct and nonzero. Set A := SNT, B:=SNT,C:=SNT,
and D := SNT. Again, we should find w € RF» satisfying (a). Let us first
suppose that the sets A, B,C, D are nonempty. Let a € A, b € B, ¢ € C, and
d € D. Define w € RE» by setting wep = Wae = Wpg = Weq = —1, Waq = Whe :=
1, wsj == —1 if  # j both belong to A, or B, or C, or D (denote by E the set
of these pairs 45), and w;; := 0 otherwise. Then, w?§(S) = wT6(T) = 0. Let
x € METY. Then,

wle=— Z Zij + 0,
ijeE
where
0 = Tad + Tbe — Tab — Tbd — Ted — Tac-
We have the relations:
(i) 0 = (Tad — Tac — xcd) + (xbc — Ted — Td) + Ted — Tab < Ted — Tab,
(ii) 0 = (Tad — Tab — Tbd) + (Toe — Tab — Tac) + Tab — Ted < Tap — Teds
(111) g = (xad — ZTac — «'L'cd) + (Zbc — ZTab — xac) + ZTac — bog < Tac — bpa,
(IV) g = (xad — Zab — xbd) + (wbc — Tphd — wcd) + Zpd — Tac < Tbd — Tac-

From (i)-(iv) we deduce that ¢ < 0. Therefore, w’z < 0. Moreover, if w’z = 0,
then z;; = 0 for all ¢j € F and o = 0. Hence, using (i)-(iv), Zap = Tcq = @,
Tae = Tpq := B for some a, 3 > 0, o+ < 1, and 249 = xp. = a + [. From this
follows easily that z = @é(S) + 36(T'), which shows that z € Conv(W).

Finally, let us suppose that one of the sets A, B,C, D is empty. Say, D = 0.
Then, A,B,C # 0; let a € A, b € B and ¢ € C. We now define w € RF» by
Wap = Wac ‘= —1, Wpe := 1, wy; := —1if ¢ # j both belong to A, or B, or C, and
w;j := 0 otherwise. It can be verified as above that w satisfies (a). |

Corollary 31.6.2. The cut polytope CUTY is 3-neighborly. 1

Corollary 31.6.3.
(i) For n > 4, every face of CUTY of dimension d < 5 is a simplez.
(ii) ¢4(CUTR) C ¢a(METY,), for d =0,1,2. |



31.6 Adjacency Properties 541

The results from Corollaries 31.6.2 and 31.6.3 (i) are best possible; that is, CUTZ
is not 4-neighborly and there exists a 6-dimensional face of CUTS (n > 4) which
is not a simplex. Indeed, for n = 4, CUTY itself is a nonsimplex 6-dimensional
face. For n > 5, consider the face F' of CUTS which is defined by the inequality:

Z .’L‘ij 20.

4<i<j<n

Then, F contains the following eight cut vectors §(S) for S = 0, {2}, {3}, {1, 2},
{1,3}, {2,3}, and {1,2,3}. They are not affinely independent as they satisfy:

6({1}) +6({2}) +6({3}) +6({1,2,3}) = 6({1,2}) + 6({1,3}) + 6({2,3}).

Hence, F is a nonsimplex face of dimension 6 of CUTY. (In fact, one can check
that F is also a face of METY.) Hence, the four cut vectors &(0), 6({1,2}),
6({1,3}), and 6({2,3}) do not form a face of CUTS. This shows that CUTY, is
not 4-neighborly.

The result of Corollary 31.6.3 (ii) is also best possible, i.e., there exists a
3-dimensional face of CUTY which is not a face of METY (for n > 5). The
following example is given in Deza and Deza [1995]. Let n > 5. Consider the
face F of CUTY, which is defined by F := CUT for n = 5 and

F = {xeCUTE | Z1; + z2i + z12 =2 and z1; — x93 — 212 =0 for ¢ =6,...,n}

for n > 6. The cut vectors lying in F are of the form 6(S U {1}), where S C
{2,3,4,5}. Therefore, F ~ CUT} is a 10-dimensional face of CUTS, which is
not a face of METY. Consider the set

G = Conv(8({1,2}), 6({1,3}), 6({1,4}),6({1,5}))
and let H denote the face of MET which is defined by the triangle inequalities:
T+ T2 +T12 =2, T1; —To; —T12 =0 (i =6,...,n)

and zy;+ 21+ 255 =2 (2<i<j <5).

Then, G is a 3-dimensional face of CUTY as

G={Z‘EF| Z :z,-j=6andw1i+x1j+z,~j=2for2§i<j§5}.
1<i<j<5

But, G is not a face of METY. To see it, consider the point z € RF» defined by
z1; =1, wgi=m3i=x4i=x5i=%fori=6,...,n,:1:,-j=Ofor6§i<jSn,
and z;j = % for 1 <i < j < 5. Then,z € H\G. If G is a face of METY,
then G is a face of H and, thus, there exists a triangle inequality valid for G
and violated by z. Now one can easily check that no such inequality exists. This
shows that G is not a face of METY.

Even though not every d-dimensional face of CUTY is a face of METY when
d > 3, the next result shows that a lot of them remain faces of METE when
d < logy n.
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Given S1,...,Sk C Vq, recall that the cut vectors §(S1),...,6(Sk) are said

to be in general position if the set

N Sin(Va\ Si)

i€l igl
is nonempty, for every subset I C {1,...,k}. Then, k < log,n and the cut
vectors 8(S1),...,08(Sk) are linearly independent. Deza, Laurent and Poljak
[1992] show that cuts in general position form a face; the proof of this result is
along the same lines as that of Theorem 31.6.1, but with more technical details.
Compare the results in Theorems 31.6.4 and 31.5.9.

Theorem 31.6.4. Let 6(S1),...,6(Sk) be k cut vectors in general position.
Then, the set Conv(6(S1),...,86(Sk)) is a face of METS and, thus, of CUTS. 1

Therefore, CUTS and METY, share a lot of common faces, at least up to di-
mension |log, n]. This is an indication that the semimetric polytope is wrapped
quite tightly around the cut polytope.

31.6.2 Small Polytopes

We group here some results and questions related to facets/vertices of the cut
polytope CUTY and the semimetric polytope METE, especially for the small
values of n, n < 7. The reader may consult Deza [1994, 1996] for a detailed
survey on various combinatorial and geometric properties of these polyhedra.

n | # facets # facets # orbits
of CUT, of CUT, | of facets

3 3 4 1

4 12 16 1

5 40 56 2

6 210 368 3

7 38,780 116,764 11

8 | 49,604,520 | 217,093,472 147

Figure 31.6.5: Number of facets of cut polyhedra for n < 8

All the facets of the cut cone CUT,, and the cut polytope CUTY are known
for n < 7; they were described in Section 30.6. The extreme rays of MET,
and the vertices of METS are also known for n < 7; the extreme rays of METY
were computed by Grishukhin [1992a] and the vertices of MET; by Deza, Deza
and Fukuda [1996]. For n < 6, they are very simple. Namely, besides the cut
vectors (that are all the integral vertices), all of them arise from the vector
(2/3,...,2/3) after possibly applying switching'® and gate 0-extensions!!. Fig-

10The metric polytope being preserved under the switching operation, its set of vertices is
partitioned into switching classes. Namely, if z is a vertex of METS, then all vectors in its
switching class {rs(a)(z) | A C Va} are also vertices of MET. For instance, the cut vectors
form a single switching class.

1Given = € IRP» | we remind that its gate 0-extension is the vector y € RE»+1 defined by
Yij = xij for ij € En, y1,n41 := 0, Yi;n41 1= z1; for i = 2,...,n. It can be easily verified that
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ures 31.6.5 and 31.6.6 summarize information on the number of facets/vertices
of the cut and semimetric polyhedra. Data for CUTg and CUTS come from
Christof and Reinelt [1996]. (We remind that orbits are obtained by action of
switching and permutations.)

n | # extreme rays | # vertices | # orbits
of MET,, of METY | of vertices

3 3 4 1

4 7 8 1

5 25 32 2

6 296 544 3

7 55,226 275,840 13

Figure 31.6.6: Number of extreme rays/vertices of semimetric polyhedra for
n<T7

Much information is known about the 1-skeleton graph of METY and about
the ridge graphs!? of METY and CUTY. We quote here some facts and questions
and refer to the original papers or to the survey by Deza [1996] for more details.

The 1-Skeleton Graph of the Semimetric Polytope. As the semimetric
polytope METY, is preserved under the switching operation, this induces a parti-
tion of its vertices into switching classes. The cut vectors form a single switching
class, which is a clique in the 1-skeleton graph of METY (by Theorem 31.6.1).
On the other hand, it is shown in Laurent [1996c] that every other switching
class of vertices is a stable set in the 1-skeleton graph of METY; that is, no two
nonintegral switching equivalent vertices of METY, form an edge on METY. The
following conjecture is posed by Laurent and Poljak [1992].

Conjecture 31.6.7. Every fractional vertez of METY is adjacent to some cut
vector (i.e., to some integral vertez of METY ). Equivalently, for every fractional
vertex x of METY,, some switching 75(5)() of it lies on an eztreme ray of MET,,.

This can be seen as an analogue of the following property, shared by the facets
of the cut polytope: For every facet of the cut polytope there exists a switching
of it that contains the origin. A consequence of Conjecture 31.6.7 would be that
the 1-skeleton graph of METY has diameter < 3. Conjecture 31.6.7 has been
verified for several classes of vertices (see Laurent [1996¢]) and for n < 7 (see
Deza, Deza and Fukuda [1996]).

Adjacency has been analyzed in detail for some classes of vertices. Given a
subset S C V,, let d(Kg,y,\s) denote the path metric of the complete bipartite
graph with node bipartition (S, V,, \ S). Then, zg := %d(Ks,v,.\S) is a vertex of
METY (taking value % on the edges of the bipartition and value % elsewhere).

y is a vertex of METS_H whenever z is a vertex of METS.
12],et P be a d-dimensional polyhedron. Its ridge graph is the graph with node set the set of
facets of P and with two facets being adjacent if their intersection has dimension d — 2.
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The vertices zs (S C V,,) form a switching class. The adjacency relations between
the cut vectors 6(S) and the vertices zr (for S,T C V,,) are described in Deza
and Deza [1994b]. Namely, the two vertices §(S) and zr are adjacent on METY
if and only if the cut vectors §(S) and §(T") are not adjacent in the folded n-cube
graph, i.e., if |SAT| # 1,n — 1. In the case n = 5, the cut vectors §(S) and the
vectors zp (for S,T C V5) form all the vertices of MET5D. Hence, the 1-skeleton
graph of MET5D is completely known; its diameter is equal to 2.

Deza and Deza [1994b] analyze adjacency among further vertices of the form:
cut vectors 6(S), zr (S,T C V,,) and their gate extensions. This permits, in
particular, to describe the 1-skeleton graph of METg, whose diameter is equal
to 2.

The vertices of METS and their adjacencies are described in Deza, Deza
and Fukuda [1996]; in particular, the 1-skeleton graph of METY has diameter
3. Figure 31.6.8 shows the 13 orbits of vertices of MET?; for each orbit O;, a
representative vertex v; is given as well as its cardinality |O;|, the number A;
of neighbors of v; in the 1-skeleton graph and the number I; of triangle facets
containing v;.

I Orbit i Representative vertex v; I |0;] I I; | A; ]
0. | (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) | 64 | 105 | 55226
0, |2(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1) | 64 | 35 | 896
0s | 2(1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1) | 1344 | 40 | 763
0, |2(1,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1) | 6720 | 45 | 594
0s |2(1,1,1,1,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0) | 2240 | 49 | 496
Os | 1(1,2,3,1,2,1,1,2,2,1,2,1,1,2,3,2,3,2,1,2,1) | 20160 | 30 | 96
0, | 1(1,1,1,1,1,1,2,2,1,1,1,2,1,1,1,1,1,1,2,2,2) | 4480 | 26 | 76
0s | 2(2,1,1,1,1,2,2,1,1,1,1,2,1,1,1,2,1,1,2,1,2) | 23040 | 28 | 57
Oy %(2,2,1,1,1,2,2,1,1,1,1,2,1, 1,1,2,1,1,2,1,2) | 40 320 22 46
Ow | 1(1,1,1,1,1,1,2,2,1,1,1,2,1,1,1,2,1,1,2,2,2) | 40320 | 23 | 39
On | 2(1,2,3,2,1,2,1,2,1,2,1,1,2,1,1,1,2,2,1,1,1) | 40320 | 25 | 30
01 | 1(3,2,3,3,1,1,1,2,2,2,2,3,3,3,3,4,4,2,2,4,2) | 16128 | 25 | 27
O | 1(1,2,4,2,2,2,1,3,3,3,3,2,2,2,4,2,2,2,4,4,4) | 80640 | 23 | 24

Total 275 840

Figure 31.6.8: The orbits of vertices of MET7

The Ridge Graph of the Semimetric Polytope. The ridge graph G, of the
semimetric polytope METY is studied in detail in Deza and Deza [1994b]. The
graph G, has 4(3) vertices and, for n > 4, two triangle facets are adjacent in Gy,
if and only if they are nonconflicting. (Two triangle inequalities are said to be
conflicting if there exists a pair ij such that the two inequalities have nonzero
coordinates of distinct signs at the position ¢j.) For instance, G3 = K4 and
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G4 = K4 x K4. More generally, for n > 4 the complement of G, is locally!3
the bouquet'? of n — 3 copies of K3 x K3 along a common Kj; its valency is
k = 3(2n — 5), two adjacent nodes have A\ € {2(n — 2),4} common neighbors,
while two nonadjacent nodes have p common neighbors with p € {4,6} forn =5
and p € {0,4,6} for n > 6. In particular, the diameter of Gy, is equal to 2 for
n > 4. Note that the complement of the ridge graph G5 of METS provides
an example!® of a regular graph of diameter 2 in which the number of common
neighbors to two arbitrary nodes belongs to {\, u} = {4, 6}.

Deza and Deza [1994b] also describe the ridge graph Gj, of the semimetric
cone MET,,, which is an induced subgraph of G,. Namely, for n > 4, the
complement of G}, is locally the bouquet of n — 3 copies of the circuit Cg along
a common edge. The graph G}, has diameter 2 for n > 4.

The Ridge Graph of the Cut Polytope. The ridge graph of the cut polytope
CUTY is studied in Deza and Deza [1994a]. (It suffices to consider the case n > 5
as CUTY = METY for n < 4.) The ridge graph of CUT}, is described there for
n < 7. In particular, two facets of CUTS' are adjacent in the ridge graph if and
only if they are nonconflicting, but this is not true for n > 6. The ridge graph of
CUTY has diameter 2 for n = 4,5, diameter 3 for n = 6 and its diameter belongs
to {3,4} for n = 7. The following conjecture is posed in Deza and Deza [1994a).

Conjecture 31.6.9. Every facet of CUTY is adjacent to at least one triangle
facet in the ridge graph of CUTY.

This conjecture would imply that the ridge graph of CUTY has diameter < 4.
The conjecture is shown to hold for n < 7. Further properties and questions,
also concerning the ridge graph of the cut cone, can be found in Deza and Deza
[1994a].

n vol MET,, vol CUTY, ratio p,
3 173 1/3 100%
4 2/45 2/45 100%
5 4/1701 32/14,175 ~ 96%
6 | 71,936/1, 477, 701,225 | 2384/58, 046,625 | ~ 84%

Figure 31.6.10: Volumes of cut and semimetric polytopes for n < 6

Further combinatorial properties of cut and semimetric polyhedra have been
studied. For instance, Deza and Deza [1995] have completely described the face
lattices of both the cut polytope CUTY and the semimetric polytope METS

13The local structure of a graph G is the subgraph induced by the neighbors of any given
vertex, assuming that these induced subgraphs are the same at all the vertices.

Let G = (V,E) be a graph and, for U C V, let H = G[U] be an induced subgraph of G.
Let G; = (Vi, E;) (i =1,...,k) be k isomorphic copies of G such that V;NV; = U for all ¢ # j.
Then, the graph (U?=1V,', Uf=1 E;) is called the bouquet of the k copies of G along H.

15This generalization of the notion of strongly regular graph is studied in Erickson et al.
[1996].
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for n < 5. Deza, Deza and Fukuda [1996] give the edge connectivity of the
adjacency and ridge graphs for cut and semimetric polytopes. To conclude we
mention some facts about the volume of cut and semimetric polyhedra.

A way of measuring the tightness of the relaxation of CUTS by METY could
be by considering the ratio

vol CUTY

Pr = ol METD
of their volumes. Unfortunately, computing the volume of a polytope is a hard
task in general. These volumes have been computed in the case n < 6 in Deza,
Deza and Fukuda [1996]; we report the results in Figure 31.6.10.

31.7 Distance of Facets to the Barycentrum

We are interested here in evaluating what is the minimum possible distance of
a facet to the barycentrum of CUTL. Most of the results here come from Deza,
Laurent and Poljak [1992].

Let b:= (Esgvnllgs 6(5)) /271 denote the barycentrum of CUTY. Then,

b=(1/2,...,1/2).
T

The Euclidean distance from b to the hyperplane defined by the equation: v* z =
« is given by the formula:
[vTb - q
lollz
It can be easily checked that the distance from b to a facet F' remains invariant
if we replace F' by a switching of it. In particular, the distance from b to any

triangle facet is equal to ﬁ The following conjecture is posed by Deza, Laurent

and Poljak [1992].

Conjecture 31.7.1. The distance from the barycentrum b to any facet of CUTS
is greater than or equal to ﬁ, this smallest distance being attained precisely by
the triangle facets.

They show that this conjecture holds for all pure facets, i.e., for all the facets
that are defined by an inequality with 0, +1-coefficients.

Theorem 31.7.2. Let vTz < a be an inequality defining a facet of CUTS and
such that v € {—1,0,1}F». Then, the distance from this facet to the barycentrum
b is greater than or equal to (2/3)~. Moreover, this smallest distance is realized
precisely when vTx < o is a triangle inequality. ]

The proof of Theorem 31.7.2 relies on establishing a good lower bound for the
max-cut problem in the graph K, with edge weights v. For a vector v € RE»,

set
mc(Ky,v) := max(vT6(S) | S C Vi).
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Then, it shown in Deza, Laurent and Poljak [1992] that

mc(Kn,v) 2 ( > %') 2+ | v ||z (2V3)7!

1<i<j<n

for every v € {0,£1}F~. Note that, if one can prove that this inequality remains
valid for any v € R, then Conjecture 31.7.1 would follow.

It may be instructive to evaluate the exact distance to the barycentrum for
some concrete classes of facets. For instance, let D(r,p) denote the distance from
the barycentrum b to the hyperplane defined by the clique-web inequality:

CWiy gr1(L,..y 1, =1,...,-1)Tz <0

(with p coefficients +1 and p — 2r — 1 coefficients —1). Then,

r+1 [p—2r—1
Dne) = =5 gp—r =1

Hence, for r = 0 (hypermetric case), D(0,p) = % -2%11, which is asymptotically

2—1\/—§(> ﬁ) when p — oco. In the case p = 2r + 3 (the case of the bicycle odd

wheel inequality), D(r,2r +3) = ‘/%, which tends to ﬁ(> ﬁ) as T — oo.
One can also check that the distance from b to the hyperplane defined by the

(nonpure) clique-web inequality:

CWriri1)-gr1(7e s =1, =1)T2 <0

(with p coefficients 7 and pr — 2r — 1 coefficients —1) is asymptotically —\}—5 as
T,p — 00.

We show in Figure 31.7.3 what is the exact distance to the barycentrum for
each of the eleven types of facets of CUTY. These eleven types of facets are listed
as in Section 30.6 as F; for ¢ = 1,...,11. The second row in Figure 31.7.3 gives
the exact value for the distance D(F') from the barycentrum b to the hyperplane
containing the facet F. The third row gives an approximate value for D(F)-2+/3,
that is, the ratio Dﬂ(%, where F; is the triangle facet. Hence, the pentagonal
facet is the next closest facet, while the facet Fg is the farthest one.

F | | KR | R Fy Fy F | i | R Fy | Fio | Fu

1 3|11 /6 7 5 9 2 5

dist. | L= 2 1
V3l | 2V 7|2V 11 | 269 2 2V11 | 24133 7 | 2v29
1.24

:
=

ratio| 1 |1.09 113 | 1.28 | 1.46 | 1.73| 2.61 | 1.35 | 1.85| 1.61

Figure 31.7.3: Distance to the barycentrum of the facets of CUTy
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We conclude with two related results, concerning the width and the diameter
of the cut polytope. Given a polytope P, its width is defined as
width(P) := min (maxc’z — minclz).
llcllo=1" z€P z€P
The diameter of P has already been defined in Section 31.1 as maxg yep || z—y [|2-
It is easy to see that it can be alternatively defined as
diam(P) = max (maxc’z — minc’z).
llcllz=1" z€P zeP
In other words, the width and the diameter are, respectively, the smallest and the

largest distance between two supporting hyperplanes for P. G. Rote (personal
communication) has computed the width of CUTS,.

Proposition 31.7.4. The width of the cut polytope CUTY is equal to 1.

Proof. The proof is based on the following inequality: Let a;,...,any € R be N
scalars such that YV, a; = 0 and "N, a? = N. Then,

maxa; —mina; > 2.
k3 2

(Indeed, say, a1 < ... < ay and set s := U2 Ifqy —a; < 2 then [a; —s| < 1
for all 4. Hence, a? + s? — 2a;s < 1 for all i. By summing over i, we obtain that
N 4+ Ns? < N, a contradiction.)

Let ¢ € RE» with || ¢ ||s= 1. For S C V,,, set x5 := e—26(S) (where e denotes the
all-ones vector) and set ag := cTzg. Then, it is easy to check that Ysas =0
and Y g(as)? = N(:= 2"1). Applying the above inequality, we obtain that
2 < maxg ¢ zg — ming ¢’ zg. This shows that 1 < maxg ¢ §(S) — ming ¢ 6(S).
Hence, the width of CUTY is greater than or equal to 1. The value 1 is attained,
for instance, by taking for ¢ a coordinate vector. Hence, CUTE has width 1. I

Hence, the cut polytope has the same width as the unit hypercube. Poljak and
Tuza [1995] have computed the diameter of the cut polytope.

Proposition 31.7.5. The diameter of CUTY is equal to (/| %| [%], that is, to
5 if n is even and to E if n is odd.

Proof. Set o :=,/|%] [%]. Let ¢ € RF» with Euclidean norm 1. Let §(S) and

(T) be two cut vectors realizing, respectively, the maximum and the minimum
of 'z over z € CUTY. Define ¢’ := 4T, i.e., cij = —cij if [T N{i,j}| =1 and
c;j = cij otherwise. Then,

cT'6(S) — cT'86(T) = (¢)T6(SAT) < /|6(SAT)| < a

(the last but one inequality follows from the fact that 3 <;<, i < 4/n for any

vector u € R™ of Euclidean norm 1). On the other hand, the following vector
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c realizes equality. Let S C V,, with |S| = [2]. Set ¢;; := L if §(S);; = 1 and
cij = 0 if §(S);; = 0. Then, maxc’z = « is attained at §(S) and minc’z = 0
is attained at &(0). |

31.8 Simplex Facets

We give here some more information on the simplex faces of CUTL. We have
seen in Section 31.6 that CUTY has lots of simplex faces of dimension up to
[logy n]. In fact, CUTE has also fairly many simplex facets.

Let us summarize the known classes of simplex facets of CUTY; for more
details, we refer to Deza and Laurent [1993a).

For n > 3, the hypermetric inequality:
(31.8.1) Qn(n—4,1,1,-1,...,-1)Tz <0

defines a simplex facet of CUT, (Deza and Rosenberg [1984]; recall Corol-
lary 28.2.12).

For n > 6, the clique-web inequality:
(31.8.2) CWS(n—-4,n—-5n-5-1,...,-1)Tz <0

defines a simplex facet of CUTY, (Deza and Laurent [1992c]). For n = 6, the two
inequalities (31.8.1) and (31.8.2) coincide. Actually, for n < 6, all the simplex
facets of CUTY, arise from (31.8.2) (up to permutation and switching).

For n = 7, in addition to the simplex facets that can be derived from (31.8.1)
and (31.8.2) by permutation and switching, there are four more groups of simplex
facets; namely, the clique-web facets defined by the two inequalities:

CWi(2,2,1,1,-1,—,1,-1)Tz <0,

cwi(1,1,1,1,1,-1,-1)Tz <0,

the facet defined by the parachute inequality (Par7)Tz < 0 (recall (30.4.1)), and
the facet defined by Grishukhin’s inequality (Gr7)Tz < 0 (recall (30.5.1)).

Hence, among the eleven types of facets of CUT?, six of them are simplices,
namely, the ones numbered 6 to 11 in Section 30.6. Therefore, using the data
from Figure 30.6.1, one can count the exact number of simplex facets of CUT?.
Among its 116764 facets, CUT? has 113536 simplex facets. Hence, about 97.2%
of the total number of facets are simplices ! Deza and Deza [1994a] conjecture
that this phenomenon is general, i.e., that the great majority of facets of CUTY
are simplices. They state the following as an attempt to understand the global
shape of the cut polytope:
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“We think that the shape of the cut polytope is essentially given by
the nonsimplex facets, in particular, by its triangle facets, and that
the huge majority of the facets of CUTY, are simplices which only
‘polish’ it.”

Interestingly, each of the simplex facets described above has the following
property (31.8.3) (see Deza and Laurent [1993a] for a proof). Let F' denote such
a simplex facet and let 6(Sg) (1 < k < (5)) denote its roots. Let d € F with
decomposition d = leks(;‘) Ai6(Sk) where A\g > 0 for all k. Then,

d belongs to the cut lattice £,
(i-e., if d € ZE» and satisfies the parity condition (24.1.1)),
4

all \s are integers.

(31.8.3)

In other words, in the terminology of Part IV, the parity condition suffices for
ensuring hypercube embeddability for the class of distances d € F.
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