Reader Guidelines

The basic question each author should pose him/herself, preferably in the
future tense before starting, is

Why have we written this book?

In our case the motivation came from many discussions we had with mathe-
maticians, economists, engineers and physicists, mainly working in insurance
companies, banks or other financial institutions. Often, these people had as
students learnt the more classical theory of stochastics (probability theory,
stochastic processes and statistics) and were interested in its applications to
insurance and finance. In these discussions notions like extremes, Pareto, di-
vergent moments, leptokurtosis, tail events, Hill estimator and many, many
more would appear. Invariably, a question would follow, “Where can I read
more on this?” An answer would usually involve a relatively long list of books
and papers with instructions like “For this, look here, for that, perhaps you
may find those papers useful, concerning the other, why not read ...”. You
see the point! After years of frustration concerning the non—existence of a rel-
evant text we decided to write one ourselves. You now hold the fruit of our
efforts: a book on the modelling of extremal events with special emphasis on
applications to insurance and finance. The latter fields of application were
mainly motivated by our joint research and teaching at the ETH where var-
ious chapters have been used for many years as Capita Selecta in the ETH
programme on insurance mathematics. Parts of the book have also formed
the basis for a Summer School of the Swiss Society of Actuaries (1994) and
the Master’s Programme in Insurance and Finance at ESSEC, Paris (1995).
These trials have invariably led to an increase in the size of the book, due to
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questions like “Couldn’t you include this or that?”. Therefore, dear reader,
you are holding a rather hefty volume. However, as in insurance and finance
where everything is about “operational time” rather than real time, we hope
that you will judge the “operational volume” of this book, i.e. measure its
value not in physical weight but in “information” weight.

For whom have we written this book?

As already explained in the previous paragraph, in the first place for all
those working in the broader financial industry faced with questions con-
cerning extremal or rare events. We typically think of the actuarial student,
the professional actuary or finance expert having this book on a corner of
the desk ready for a quick freshen—up concerning a definition, technique, es-
timator or example when studying a particular problem involving extremal
events. At the same time, most of the chapters may be used in teaching
a special-topics course in insurance or mathematical finance. As such both
undergraduate as well as graduate students interested in insurance and/or
finance related subjects will find this text useful: the former because of its
development of specific techniques in analysing extremal events, the latter
because of its comprehensive review of recent research in the larger area of
extreme value theory. The extensive list of references will serve both. The
emphasis on economic applications does not imply that the intended read-
ership is restricted to those working on such problems. Indeed, most of the
material presented is of a much more general nature so that anyone with
a keen interest in extreme value theory, say, or more generally interested in
how classical probabilistic results change if the underlying assumptions allow
for larger shocks in the system, will find useful material in it. However, the
reader should have a good background in mathematics, including stochastics,
to benefit fully. This brings us to the key question

What is this book about?

Clearly about extremal events! But what do we mean by this?

In the introduction to their book on Qutliers in Statistics, Barnett and
Lewis [51], the authors write: “When all is said and done, the major problem
in outlier study remains the one that faced the very earliest research workers
in the subject — what is an outlier?” One could safely repeat this sentence for
our project, replacing outlier by extremal event. In their case, they provide
methodology which allows for a possible description of outliers (influential
observations) in statistical data. The same will be true for our book: we will
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mainly present those models and techniques that allow a precise mathemat-
ical description of certain notions of extremal events. The key question to
what extent these theoretical notions correspond to specific events in prac-
tice is of a much more general (and indeed fundamental) nature, not just
restricted to the methodology we present here. Having said that, we will not
shy away from looking at data and presenting applied techniques designed
for the user. It is all too easy for the academic to hide constantly behind
the screen of theoretical research: the actuary or finance expert facing the
real problems has to take important decisions based on the data at hand. We
shall provide him or her with the necessary language, methods, techniques
and examples which will allow for a more consistent handling of questions in
the area of extremal events.

Whatever definition one takes, most will agree that Table 1, taken from
Sigma [582] contains extremal events. When looked upon as single events,
each of them exhibits some common features.

— Their (financial) impact on the (re)insurance industry is considerable. As
stated in Sigma [582], at $US 150 billion, the total estimated losses in
1995 amounted to ten times the cost of insured losses — an exceptionally
high amount, more than half of which was accounted for by the Kobe
earthquake. Natural catastrophes alone caused insured losses of $US 12.4
billion, more than half of which were accounted for by four single disasters
costing some billion dollars each; the Kobe earthquake, hurricane “Opal”,
a hailstorm in Texas and winter storms combined with floods in Northern
Europe. Natural catastrophes also claimed 20 000 of the 28 000 fatalities
in the year of the report.

— They are difficult to predict a long time ahead. It should be noted that 28
of the insurance losses reported in Table 1 are due to natural events and
only 2 are caused by man—made disasters.

— If looked at within the larger context of all insurance claims, they are rare
events.

Extremal events in insurance and finance have (from a mathematical point
of view) the advantage that they are mostly quantifiable in units of money.
However most such events have a non—quantifiable component which more
and more economists are trying to take into account. Going back to the data
presented in Table 1, extremal events may clearly correspond to individual (or
indeed grouped) claims which by far exceed the capacity of a single insurance
company; the insurance world’s reaction to this problem is the creation of
a reinsurance market. One does not however have to go to this grand scale.
Even looking at standard claim data within a given company one is typically
confronted with statements like “In this portfolio, 20% of the claims are
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Losses | Date | Event | Country |
16 000 | 08/24/92 | Hurricane “Andrew” USA
11 838 | 01/17/94 | Northridge earthquake in California USA
5724 | 09/27/91 | Tornado “Mireille” Japan
4931 | 01/25/90 | Winterstorm “Daria” Europe
4749 | 09/15/89 | Hurricane “Hugo” P. Rico
4528 | 10/17/89 | Loma Prieta earthquake USA
3427 | 02/26/90 | Winter storm “Vivian” Europe
2373 | 07/06/88 | Explosion on “Piper Alpha” offshore oil rig | UK
2282 | 01/17/95 | Hanshin earthquake in Kobe Japan
1938 | 10/04/95 | Hurricane “Opal” USA
1700 | 03/10/93 | Blizzard over eastern coast USA
1600 | 09/11/92 | Hurricane “Iniki” USA
1500 | 10/23/89 | Explosion at Philips Petroleum USA
1453 | 09/03/79 | Tornado “Frederic” USA
1422 | 09/18/74 | Tornado “Fifi” Honduras
1320 | 09/12/88 | Hurricane “Gilbert” Jamaica
1238 | 12/17/83 | Snowstorms, frost USA
1236 | 10/20/91 | Forest fire which spread to urban area USA
1224 | 04/02/74 | Tornados in 14 states USA
1172 | 08/04/70 | Tornado “Celia” USA
1168 | 04/25/73 | Flooding caused by Mississippi in Midwest | USA
1048 | 05/05/95 | Wind, hail and floods USA
1005 | 01/02/76 | Storms over northwestern Europe Europe
950 | 08/17/83 | Hurricane “Alicia” USA
923 | 01/21/95 | Storms and flooding in northern Europe Europe
923 | 10/26/93 | Forest fire which spread to urban area USA
894 | 02/03/90 | Tornado “Herta” Europe
870 | 09/03/93 | Typhoon “Yancy” Japan
865 | 08/18/91 | Hurricane “Bob” USA
851 | 02/16/80 | Floods in California and Arizona USA

Table 1 The 30 most costly insurance losses 1970-1995. Losses are in million $US
at 1992 prices. For a precise definition of the notion of catastrophic claim in this
context see Sigma [582].

responsible for more than 80% of the total portfolio claim amount”. This is
an extremal event statement as we shall discuss more in detail in Section 8.2.

By stating above that the quantifiability of insurance claims in monetary
units makes the mathematical modelling more tractable, we do not want to
trivialise the enormous human suffering underlying such events. It is indeed
striking that, when looking at the 30 worst catastrophes, in terms of fatalities
over the same period in Table 2 only one event (the Kobe earthquake) figures
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Fatalities | Date/start | Event | Country |
300 000 | 11/14/70 Hurricane Bangladesh
250 000 | 07/28/76 Earthquake in Tangshan China
140 000 | 04/29/91 Hurricane “Gorky” Bangladesh

60 000 | 05/31/70 Earthquake Peru

50 000 | 06/21/90 Earthquake Iran

25 000 | 12/07/88 Earthquake in Armenia former USSR

25000 | 09/16/78 Earthquake Tran

23 000 | 11/13/85 Volcanic eruption “Nevado del Ruiz” | Columbia

22 000 | 02/04/76 | Earthquake Guatemala

15 000 | 09/19/85 Earthquake in Mexico City Mexico

15 000 | 08/11/79 Damburst India

15 000 | 09/01/78 Flood India

10 800 | 10/31/71 | Flood India

10 000 | 05/25/85 Hurricane Bangladesh

10 000 | 11/20/77 Tornado India
9500 | 09/30/93 Earthquake in Marashtra state India
8 000 | 08/16/76 Earthquake on Mindanao Philippines
6304 | 11/05/91 Typhoons “Thelma” and “Uring” Philippines
6000 | 01/17/95 Great Hanshin earthquake in Kobe Japan
5300 | 12/28/74 Earthquake Pakistan
5000 | 04/10/72 Earthquake in Fars Iran
5000 | 12/23/72 Earthquake in Managua Nicaragua
5000 | 06/30/76 Earthquake in Westirian Indonesia
4800 | 11/23/80 | Earthquake Ttaly
4 500 | 10/10/80 Earthquake Algeria
4000 | 02/15/72 Storm; snow Iran
4000 | 11/24/76 Earthquake in Van Turkey
3800 | 09/08/92 Floods in Punjab Pakistan
3200 | 04/16/78 Tornado Reunion
3000 | 08/01/88 Flood Bangladesh

Table 2 The 30 worst catastrophes in terms of fatalities 1970-1995, taken from
Sigma [582].

on both lists. Also, Table 1 mainly involves industrialised nations, whereas
Table 2 primarily concerns Third World countries.

Within the finance context, extremal events present themselves spectac-
ularly whenever major stock market crashes like the one in 1987 occur. Or
recent casualties within the realm of derivatives such as the collapse of Bar-
ings Bank, the losses of the Metallgesellschaft, Proctor & Gamble, Kashima
Oil, Orange County, or Sumitomo. The full analysis of events of such grand
scale again goes well beyond the prime content of this book, and any claim
that the managements of financial institutions will find the means of avoid-
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ing such disasters in our book would be absurd. In most of the above cases
the setting—up (both in structure as well as people) of a well-functioning
risk management and control system was called for. On a much smaller scale
however, questions related to the estimation of Profit—-and-Loss distributions
or Value-at—Risk measures have to be answered with techniques presented
in some of the following chapters. Though not providing a risk manager in
a bank with the final product he or she can use for monitoring financial risk
on a global scale, we will provide that manager with stochastic methodology
needed for the construction of various components of such a global tool.

Events that concern both branches are to be found in credit insurance,
mortgage—backed securities, the recent developments around catastrophic in-
surance futures or indeed more generally the problem of securitisation of risk.
In all of these areas, there is an increasing need for modelling of events that
cause larger shocks to the underlying financial system. As an example of how
knowledge of basic underlying stochastic methodology may be used, consider
the problem of potential increases in both the frequency as well as (inflation—
adjusted) sizes of well-defined catastrophic claims. A simple, but at the same
time intuitively clear method, is to plot the successive records in the data.
In Figure 3 we have plotted such records for yearly frequency and insured
loss data both for man—made as well as natural catastrophes over the period
1970-1995. For a precise definition of the underlying data see Sigma [582]. If
the data were independent and identically distributed (iid), what sort of pic-
ture would one expect? An answer to this question is given in Section 6.2.4.
Intuition tells us that successive records for iid data should become more and
more rare as time goes by: it becomes more and more difficult to exceed all
past observations.

By now, the reader should have some idea of the type of problems we
are interested in. The next step would be to dig a bit deeper and explain
which mathematical models we plan to discuss and what methodology we
want to introduce. Before doing so, some general comments on the format of
the chapters is called for.

How is new material to be presented,
and indeed how should one read this book?

As stated before, we typically think of an actuary, a finance expert or a stu-
dent, working on a problem in which a technique related to rare though po-
tentially influential events is to be used. Take as an example a finance expert
in the area of risk management, concerned with Value-at—Risk estimation
for a specific portfolio. The Value-at-Risk may for instance be defined as
the left 5% quantile of the portfolio Profit—Loss distribution. The latter is



Reader Guidelines 7

Frequency

70 74 78 82 86 90 94 70 74 78 82 86 90 94

Insured losses

70 74 78 82 86 90 94 70 74 78 82 86 90 94
Man-made disasters Natural disasters

Figure 3 Record years of catastrophic insurance claims 1970-1995: frequency and
insured losses (in 1992 prices) both for man-made and natural disasters, taken from
Sigma [582]. The graphs show a jump for each year in which a new record occurred.
For instance, one observes 8 records for the frequency of matural disasters and 6
records for the insured losses.

typically skewed with heavy tails both at left (losses) and right (gains); see
Figure 4. So we end up with questions that concern finding relevant classes of
Profit-Loss distributions, as well as statistical fitting and tail estimation. It
is exactly for this type of problems that our book will provide the necessary
background material or indeed specific techniques.

A typical chapter will introduce the new methodology in a rather intuitive
(though always mathematically correct) way, stressing more the understand-
ing of new techniques rather than following the usual theorem—proof path. We
do, however, usually state theorems in their most general form, provided that
this form is practically relevant. Proofs are usually given either as a sketch
of the main ideas, or as a way of showing how new methods can be used in
technical calculations. Sometimes we use them to highlight the instances in
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Figure 4 Profit-Loss (P&L) density function with related Value—at—Risk (VaR).

the argument where classical techniques break down (explaining why), and
how arguments relating to extremal events have to be handled. Each section
ends with Notes and Comments giving the reader further guidance towards
relevant literature on related topics. Various examples, tables and graphs
have been included for illustrative purposes, but at the same time for reasons
of making the text (at least optically) easier to digest. Few readers will want
to read the text from cover to cover; the ideal way would be to read those
sections that are necessary for the problems at hand.

Which basic models in insurance and finance do we consider?

Our main motivation comes from insurance, and consequently a bias towards
problems (and topics) from that field of applications is certainly to be found
in the text. On the other hand, except for Chapters 1 and 8, all chapters are
aimed at a much larger audience than workers in insurance.

Mathematical modelling in finance and insurance can be traced back many
centuries. For our purposes, however, history starts around the beginning of
the 20th century. In 1900, Louis Bachelier showed in his thesis [35] that Brow-
nian motion lies at the heart of any model for asset returns. Around the same
time, Filip Lundberg introduced in his thesis [431] the collective risk model
for insurance claim data. Lundberg showed that the homogeneous Poisson
process, after a suitable time transformation, is the key model for insurance
liability data. Of course, both Brownian motion and the homogeneous Pois-
son process are the prime examples of the wider class of stochastic processes
with stationary and independent increments. We shall treat both examples
more in detail and provide techniques concerning extremal events useful in
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Figure 5 One realisation of the risk process (U(t)).

either case. Embedded in these processes is the structure of a random walk,
i.e. the sum of iid random variables. So a more profound study of extremal
events in the iid case is called for. This forms the basis for classical statistical
theory and classical extreme value theory. More general models can often be
transformed to the iid case; this allows us for instance to analyse general
(linear) time series.
In Chapter 1 we study the classical model for insurance risk,
N(t)
Uty =u+ct—S(t), St)=Y X;, t>0, (1)
i=1

where u stands for initial capital, ¢ for loaded premium rate and the total
claim amount S(t) consists of a random sum of iid claims X;. Here N (¢) stands
for the number of claims until time ¢. It is common to simplify this model
further by assuming (as Lundberg did) that (N (¢)) is a homogeneous Poisson
process, independent of (X;). For a realisation of (U(t)) see Figure 5. The
process (S(t)) and its ramifications have been recognised as a very tractable
(and reasonably realistic) model and a vast amount of literature in risk theory
has been devoted to it. An important question concerns the influence of in-
dividual extremal events, i.e. large claims, on the global behaviour of (U(t)).
In Chapter 1 the latter question will be answered via a detailed analysis
of ruin probabilities associated with the process (U(t)). Under a condition
of “small claims” (see for instance Theorem 1.2.2), the traditional Cramér—
Lundberg estimate for the ruin probability yields bounds which are exponen-
tial in the initial capital u. However, in reality claims are mostly modelled by
heavy-tailed distributions like Pareto, loggamma, lognormal, or heavy-tailed
Weibull. See for instance Figure 6, where the left—hand picture shows those
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Figure 6 Fire insurance data and corresponding erxponential QQ—plot. The claim
sizes are in 1000 SFr.

claim sizes of a portfolio of fire insurance that are larger than a given fran-
chise (1 000 SFr). In the right-hand picture one finds a so—called QQ-plot of
the data, measuring the fit achieved by an exponential distribution function
(df). The curvature (i.e. departure from a straight line) present in the QQ-
plot implies that the tails of the df of the fire data are much heavier than
exponential. For a detailed discussion of these and related plotting techniques
see Section 6.2.1.

Chapter 1 mainly deals with the mathematical analysis of ruin estimation
under precise heavy—tailed model assumptions. Whereas Poisson processes
form the basic building block underlying insurance liability processes, within
finance the basic models can be transformed back to simple random walks.
This is certainly true for the Cox—Ross—Rubinstein and the Black—Scholes
models; see for instance Follmer and Schweizer [242] for a nice account of the
economic whys and wherefores concerning these processes.

The skeleton model in finance, corresponding to the homogeneous Poisson
process in insurance, is without doubt geometric Brownian motion, i.e. the
stochastic process

exp{(0702/2)t+03t} , t>0,

with (B;) Brownian motion. Here ¢ stands for the mean rate of return and
o for the wvolatility (riskiness). It is the solution to an It6 stochastic differ-
ential equation and provides the basis of the Black—Scholes option pricing
formula and many other parts of financial theory. One of the attractions of
the above model is its simplicity; indeed, as a consequence it follows that log-
arithmic returns are iid, normally distributed. At this point, as in insurance,
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Figure 7 Daily IBM common stock closing prices: May 17, 1961-Nov. 2, 1962.

one should ask the question “what do the data tell us?” An answer to this
question would, and indeed does, fill a book. A summary answer, fit for this
introduction, is that, on the whole, geometric Brownian motion is a good first
model. If however one looks more closely at data, one often finds situations
as in Figure 7. In it we observe a clear change in volatility possibly trig-
gered by some extreme returns. A multitude of models for such phenomena
has been introduced including a-stable processes (as heavy-tailed alterna-
tives to Brownian motion), and heavy—tailed time series models, for instance
ARCH and GARCH models. The basic characteristics of such models will be
discussed in later chapters, for instance Chapter 7, Sections 8.4 and 8.8.

From a naive point of view both fields, insurance and finance, have in
common that we can observe certain financial or actuarial phenomena such
as prices, exchange rates, interest rates, insurance claims, claim arrival times
etc. We will later classify these observations or data, but we first want to
consider them simply as a time series or a continuous—time stochastic process,
i.e. we assign to each instant of time ¢ a real random variable X;. One of
our usual requirements is that (X;) itself or a transformed version of it (for
instance the first—order differences or the log—differences) forms a stationary
process (strictly stationary or stationary in the wide sense). In particular,
this includes the important case of iid observations which provides the basis
for classical fluctuation and extreme value theory, as well as for statistical
estimation.

In Chapter 2 we give a general asymptotic theory for sums of iid random
variables (random walk), and in Sections 2.5.1 and 2.5.3 we especially empha-
size random sums like S(¢) in (1). This theory includes classical results such
as the central limit theorem, the law of large numbers, the law of the iterated
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logarithm, the functional central limit theorem and their ramifications and
refinements. They are important building blocks for the asymptotic theory
which is a basic tool of this book. We also introduce two important classes
of continuous—time stochastic processes: Brownian motion and a—stable mo-
tion. Both are continuous—time limits of appropriate partial sum processes.
As such, they can be understood as random walks in continuous time.

After having recalled the basic partial sum theory, in Chapters 3 and
4 we turn to the analogous theory for partial maxima and order statistics.
These chapters are conceived in such a way that the reader can compare and
contrast results for maxima with similar ones for sums. Special attention will
also be given to those questions where both theories complement one another.
As a start we first present extreme value theory for iid sequences, thereby
paving the way for similar results in the case of stationary sequences (X3).
In particular, we will describe and study mazima, minima, records, record
times, excesses over thresholds, the frequency of exceedances and many other
features of such sequences which are related to their extremal behaviour.

Though most of the material of this book can be found scattered over
various textbooks and/or research papers, some material is presented here
for the first time in textbook form. One such example is the study of linear
processes

oo
Xe= > ¥jZi,, tel, (2)
j=—00
for iid innovations Z; with infinite variance. Over the past 20 years meth-
ods have been developed to deal with these objects, and Chapter 7 contains
a survey of the relevant results. The proofs are mostly very technical and
accessible only to the specialist. This is the reason why we omitted them,
but we give a very detailed reference list where the interested reader will find
a wealth of extra reading material. The extreme value theory for the process
(2) is dealt with in Section 5.5 under different assumptions on the innovations
which include the heavy—tailed case. The extremes of more general stationary
sequences are treated in Sections 4.4 and 5.3.2.
In summary, the stochastic processes of main interest can be roughly
classified as follows:

— Discrete time sequences (X¢):cz, in particular stationary and iid sequences
as models for log—returns of prices, for exchange rates, for individual claim
sizes, for inter—arrival times of claims.

— Random walk models, i.e. sums of the X; or continuous-time models such
as Brownian motion (B;);>¢ and a-stable motion, as models for the total
claim amount, aggregated returns or building blocks for price processes
etc.
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— Random sum processes (S(t))i>0 (see (1)) as models for the total claim
amount in an insurance portfolio.

— The risk process (U(t))¢>0; see (1).

— Poisson processes and Poisson random measures as means to describe rare
events in space and time. The homogeneous Poisson process also serves as
a basic model for claim arrival times.

After having introduced our basic models we may ask

Which distributions and stochastic processes
typically describe extremal events in these models?

When we are interested in the extremal behaviour of the models described
above we have to ask how extremal events occur. This means we have to find
appropriate mathematical methods in order to explain events that occur with
relatively small probability but have a significant influence on the behaviour
of the whole model. For example, we may ask about the inter-relation be-
tween the iid individual claim sizes X; and the total claim amount S(¢) in (1).
In particular, under what assumptions and how do the values of the largest
claims determine the value S(¢)? A natural class of large claim distributions
is given by the subexponential distributions. They are extensively treated in
Chapter 1 and Appendix A3.2. Their defining property is:
P(Xi+--+X,>x)

li =
o P (max (X1,...,X,) > )

for every n > 2. Thus the tails of the distribution of the sum and of the
maximum of the first n claims are asymptotically of the same order. This
clearly indicates the strong influence of the largest claim on the total claim
amount.

Whereas in insurance heavy-tailed (i.e. subexponential) distributions are
well recognised as standard models for individual claim sizes, the situation in
finance is much more complicated. The latter is partly due to the fact that
one often works with near continuous—time observed (so—called high—density)
data. At the same time, marginal distributions are heavy-tailed and return
data exhibit clustering of extremes and long-range dependence. There is no
universally accepted nor indeed easy model that explains all these phenom-
ena. In Section 2.4, for instance, we introduce a—stable motion (0 < o < 2)
as a limit of partial sum processes with infinite variance. For a realisation of
a 1.5-stable motion see Figure 8, where also a plot of Brownian motion is
given. The a—stable processes form fundamental building blocks within more
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Figure 8 Paths of Brownian motion and of a 1.5-stable motion.

general model constructions and anyone interested in rare events ought to
know them.

Many distributions of interest in extreme value theory turn out to be
closely related to a—stable distributions. The a—stable laws are the only pos-
sible limit distributions for properly normalised and centred sums of iid ran-
dom variables. The case a = 2 corresponds to the normal limit; we know that
a finite second moment is sufficient for the application of the central limit the-
orem. The case a < 2 arises for infinite-variance iid summands. The infinite
variance property has not prevented practitioners in insurance from working
with such models. A quick simulation of a scenario of the total claim amount
under these heavy—tailed assumptions is helpful for making a decision about
the insurability of such claims. In that sense, a—stable or other heavy—tailed
distributions often can be used as a worst—case scenario.

Extreme value theory is one of the main objectives of this book, and
so when talking about relevant distributions in that context, we have to
mention the extreme value distributions, the Gumbel law A, the Fréchet
law @, and the Weibull law ¥,,. They are the only possible limit distributions
for maxima of properly normalised and centred iid random variables. As such
they essentially play the same role as the a—stable distributions for sums
of iid random variables. Sections 3.2 and 3.3 are devoted to their study.
Furthermore, in Sections 4.1 and 4.2 the theory is extended from maxima to
upper order statistics.

There are of course many more distributions of interest which are some-
how related to extremes. Above we have mentioned the essential ones and
the way they enter applied modelling in the presence of extremal events. We
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will provide lists and examples of particular distributions, densities and tails
in the corresponding sections.

We have already encountered the Poisson distribution in the context of
risk theory. Both the Poisson distribution as well as the Poisson process
are key tools in the analysis of extremal events, as we shall see on various
occasions.

In sum, the following classes of distributions are of main importance in
the context of extremal events:

— the subexponential distributions as realistic models for heavy—tailed ran-
dom variables,

— the a—stable distributions for o < 2 as the limit laws for sums of infinite—
variance iid random variables,

— the Fréchet, the Weibull, and the Gumbel distributions, as limit laws for
maxima of iid random variables,

— the normal distribution as limit law for sums of iid, finite-variance random
variables,

— the Poisson distribution as limit law of binomial distributions which rep-
resent a counting measure of rare events.

As important stochastic processes we would like to mention:

— Poisson processes,
— a-stable processes (0 < a < 2) and Brownian motion,
— more general processes using the above as input.

What are the main probabilistic tools?

Besides standard introductory probability theory and the theory of stochastic
processes, many results presented will be based upon a deeper understand-
ing of relevant asymptotic methods. One of the main tools falling into the
latter category is the theory of weak convergence of probability distributions,
both on the real line and in certain function spaces. A short summary of
the methodological background is given in Appendices Al and A2. Abstract
weak—convergence techniques are needed in order to prove that suitable par-
tial sum processes converge towards Brownian motion or a—stable processes.
The strength of this process convergence is illustrated by various examples
in Chapter 2. This theory allows us to characterise those distributions and
processes that may arise as useful stochastic models for certain insurance and
finance data.

The analysis of extremes further requires the framework of point processes.
The general theory for the latter is rather involved, though the benefit for
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applications, especially those towards extremal event modelling, is consider-
able once the whole machinery has been set up. In Chapter 5 we give an
ample number of examples of this. We have tried hard to avoid unnecessary
technical details. Point process techniques are by now an unavoidable tool in
modern extreme value theory, and the results are convincing and give a deep
insight into the structure and occurrence of extremes.

The basic idea of weak convergence of point processes is analogous to
Poisson’s classical limit theorem. Weak limits of the point processes under
consideration (as analogues of binomial random variables) are quite often
(general) Poisson processes or Poisson random measures (as analogues to
the Poisson distribution). These notions will be made precise in Sections 5.1
and 5.2.

Limit theory for sums, maxima or point processes is closely related to
the power law behaviour of tails, of normalising constants, of characteristic
functions in the neighbourhood of the origin etc. Exact power laws mainly
occur in the very limit, but if, for instance, we discuss domains of attraction
of stable laws or of extreme value distributions, power laws do not appear
in “pure” form, but slightly disturbed by slowly varying functions. A power
law times a slowly varying function is called regularly varying. The theory
of regularly varying functions and their generalisations and extensions are
important analytical tools throughout this book. Their basic properties are
given in Appendix A3.1.

In Chapter 7 we provide an analysis of time series with heavy tails. A lean
introduction to the relevant notions of time series analysis is given, but the
reader without the necessary background will certainly have to consult some
of the standard textbooks. The main objects in Chapter 7 are linear processes
with heavy—tailed innovations. That chapter and Section 5.5, where extreme
value theory for linear processes is treated, give quite a complete picture
about this kind of process with heavy—tailed innovations.

To sum up, besides the basic classical techniques and facts from proba-
bility theory our main probabilistic tools are the following:

— weak convergence of distributions of random variables such as sums, ran-
dom sums and maxima of random variables,

— weak convergence of sum processes and maximum processes to their limits
in appropriate function spaces,

— point processes for describing the random distribution of points in space
and time with applications to extreme value theory.

What are the appropriate statistical tools?
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Insurers and bankers are interested in assessing, pricing and hedging their
risks. They calculate premiums and price financial instruments including cov-
erage against major risks. The probable maximal loss of a risk or investment
portfolio is determined by extremal events. The problem we want to solve
may therefore be described in its broadest terms as how to make statisti-
cal inference about the extreme values in a population or a random process.
Quantities like the following may serve as indicators:

— the distribution of the annual extremes,

— the distribution of the largest values in a portfolio,
— the return period of some rare event,

— the frequency of extremal events,

— the mean excess over a given threshold,

— the distribution of the excesses,

— the time development of records.

Every piece of knowledge we can acquire about these quantities from our data
helps us to predict extremal events, and hence potentially protect ourselves
against adverse effects caused by them. In Chapter 6 we present a collection
of methods for statistical inference based on extreme values in a sample.

Some simple exploratory data—analytical methods can be extremely useful
at a descriptive stage. An example has been given in Figure 3 where a plot of
the records manifests a trend in the frequency of natural disasters. Methods
based on probability plots, estimated return periods or empirical mean excess
functions provide first information about the extremes of a data set.

For iid data the classical extreme value distributions, the Gumbel A, the
Fréchet @, and the Weibull distribution ¥, are the obvious candidates to
model the largest values of a sample. We review parameter estimation meth-
ods for extreme value distributions, investigate their asymptotic properties
and discuss their different merits and weaknesses. Extensions to upper order
statistics of a sample are also treated.

Our interest focusses on extremal events of the form {X > z} for some
random variable X and large z, i.e. we want to estimate tails in their far
regions and, also, high quantiles. We survey various tail and quantile estima-
tors which are only to be found rather scattered through the literature. We
also describe a variety of statistical methods based on upper order statistics
and on so—called threshold methods.

Before you start!

We think it a bad idea for a methodological book like this one to distinguish
too strongly between those readers working in insurance and those working
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more in finance. It would be especially bad to do so at the present time, when
experts from both fields are increasingly collaborating either on questions
of related interest (risk management say) or on new product development
involving both insurance and finance features (for instance index—linked life
insurance, catastrophe futures and options, securitisation of insurance risk).
It is important for both sides to learn more about each other’s basic models
and tools. We therefore hope that a broad spectrum of readers will find
various interesting facts in this book.

We start with a somewhat specialised chapter on risk theory; however,
the basic model treated in it reappears in many fields of applications as
for instance queueing theory, dam theory, inventory systems, shock models
etc. Its main purpose is that it provides an ideal vehicle for the introduc-
tion of the important class of subexponential distributions. At the same time,
the liability model that is fundamental to insurance is also discussed. From
Chapter 2 onwards, standard theory is first of all reviewed (Chapter 2 on
sums) before the core material on probabilistic modelling of extremes together
with their statistical analysis are treated in Chapters 3—6. A mathematically
more demanding, though with respect to applications rewarding, excursion
to point process methods is presented in Chapter 5. Typically you would
start with Chapters 2 and 3 and embark first on the statistical methods in
Chapter 6 before coming back for a more detailed analysis of some of the
techniques from Chapter 5. Chapter 7 treats the more specialised topic of
heavy—tailed time series models. It fits into the framework of extremes for
dependent data which earlier appears in Sections 4.4, 5.3 and 5.5. Together,
Chapters 1 through 7 give a sound introduction to one-dimensional extremal
event modelling. Having this methodology at our finger tips, we may start
using it for understanding and solving various related problems. This is ex-
actly what is presented in Chapter 8 on special topics. In it, we have brought
together various problems, all of which use the foregoing theory in some form
or another. Take for instance Section 8.2 where a large claim indez is dis-
cussed, describing mathematically the 20-80 rule of thumb used by actuaries
to specify the dangerousness of certain portfolios. Chapter 8 is also used to
discuss briefly those extensions of the theory which should come next, such
as for instance Sections 8.1 (on the extremal index), 8.4 (on perpetuities and
ARCH processes) and 8.7 (on reinsurance treaties). This chapter could have
grown considerably; somewhere however we had to stop. Therefore, most of
the sections presented reflect somehow our own teaching, research and/or
consulting experience. We have based an extreme value theory course for
mathematics students specialising in actuarial mathematics on most of the
material presented in Chapters 3 to 6, together with some sections in Chap-



Reader Guidelines 19

ter 8. Naturally, the Appendix is there for reviewing those tools from math-
ematics used most often throughout the text and which may not belong to
everybody’s basic toolkit.

Epilogue

You are now ready to start: good luck!

March 1997 P.E., C.K. and T.M.

Note added on the occasion of the 8th printing.

Since its first appearance in 1997, a tremendous amount of work on the
modelling of extremes in finance and insurance has emerged. The following
websites contain numerous relevant research papers and further useful links:

http://www.math.ethz.ch/~embrechts
http://www-m4.ma.tum.de
http://www.math.ku.dk /~mikosch

Some recent development on extreme value software can be found at

http://www-m4.ma.tum.de/pers/cklu/BookEKM.html

March 2007 P.E., CK. and T.M.
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