Preface

The need for a comprehensive survey-type exposition on formal languages
and related mainstream areas of computer science has been evident for some
years. In the early 1970s, when the book Formal Languages by the second-
mentioned editor appeared, it was still quite feasible to write a comprehensive
book with that title and include also topics of current research interest. This
would not be possible anymore. A standard-sized book on formal languages
would either have to stay on a fairly low level or else be specialized and
restricted to some narrow sector of the field.

The setup becomes drastically different in a collection of contributions,
where the best authorities in the world join forces, each of them concentrat-
ing on their own areas of specialization. The present three-volume Handbook
constitutes such a unique collection. In these three volumes we present the
current state of the art in formal language theory. We were most satisfied with
the enthusiastic response given to our request for contributions by specialists
representing various subfields. The need for a Handbook of Formal Languages
was in many answers expressed in different ways: as an easily accessible his-
torical reference, a general source of information, an overall course-aid, and a
compact collection of material for self-study. We are convinced that the final
result will satisfy such various needs.

The theory of formal languages constitutes the stem or backbone of the
field of science now generally known as theoretical computer science. In a
very true sense its role has been the same as that of philosophy with respect
to science in general: it has nourished and often initiated a number of more
specialized fields. In this sense formal language theory has been the origin of
many other fields. However, the historical development can be viewed also
from a different angle. The origins of formal language theory, as we know it
today, come from different parts of human knowledge. This also explains the
wide and diverse applicability of the theory. Let us have a brief look at some
of these origins. The topic is discussed in more detail in the introductory
Chapter 1 of Volume 1.

The main source of the theory of formal languages, most clearly visible
in Volume 1 of this Handbook, is mathematics. Particular areas of mathe-
matics important in this respect are combinatorics and the algebra of semi-
groups and monoids. An outstanding pioneer in this line of research was
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Axel Thue. Already in 1906 he published a paper about avoidable and un-
avoidable patterns in long and infinite words. Thue and Emil Post were
the two originators of the formal notion of a rewriting system or a gram-
mar. That their work remained largely unknown for decades was due to
the difficult accessibility of their writings and, perhaps much more impor-
tantly, to the fact that the time was not yet ripe for mathematical ideas,
where noncommutativity played an essential role in an otherwise very simple
setup.

Mathematical origins of formal language theory come also from mathe-
matical logic and, according to the present terminology, computability theory.
Here the work of Alan Turing in the mid-1930s is of crucial importance. The
general idea is to find models of computing. The power of a specific model
can be described by the complexity of the language it generates or accepts.
Trends and aspects of mathematical language theory are the subject matter
of each chapter in Volume 1 of the Handbook. Such trends and aspects are
present also in many chapters in Volumes 2 and 3.

Returning to the origins of formal language theory, we observe next that
much of formal language theory has originated from linguistics. In particular,
this concerns the study of grammars and the grammatical structure of a
language, initiated by Noam Chomsky in the 1950s. While the basic hierarchy
of grammars is thoroughly covered in Volume 1, many aspects pertinent to
linguistics are discussed later, notably in Volume 2.

The modeling of certain objects or phenomena has initiated large and
significant parts of formal language theory. A model can be expressed by
or identified with a language. Specific tasks of modeling have given rise to
specific kinds of languages. A very typical example of this are the L sys-
tems introduced by Aristid Lindenmayer in the late 1960s, intended as mod-
els in developmental biology. This and other types of modeling situations,
ranging from molecular genetics and semiotics to artificial intelligence and
artificial life, are presented in this Handbook. Words are one-dimensional,
therefore linearity is a feature present in most of formal language theory.
However, sometimes a linear model is not sufficient. This means that the
language used does not consist of words (strings) but rather of trees, graphs,
or some other nonlinear objects. In this way the possibilities for modeling
will be greatly increased. Such extensions of formal language theory are con-
sidered in Volume 3: languages are built from nonlinear objects rather than
strings.

We have now already described the contents of the different volumes of
this Handbook in brief terms. Volume 1 is devoted to the mathematical as-
pects of the theory, whereas applications are more directly present in the
other two volumes, of which Volume 3 also goes into nonlinearity. The di-
vision of topics is also reflected in the titles of the volumes. However, the
borderlines between the volumes are by no means strict. From many points
of view, for instance, the first chapters of Volumes 2 and 3 could have been
included in Volume 1.
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We now come to a very important editorial decision we have made. Each
of the 33 individual chapters constitutes its own entity, where the subject
matter is developed from the beginning. References to other chapters are
only occasional and comparable with references to other existing literature.
This style of writing was suggested to the authors of the individual chapters
by us from the very beginning. Such an editorial policy has both advantages
and disadvantages as regards the final result. A person who reads through the
whole Handbook has to get used to the fact that notation and terminology
are by no means uniform in different chapters; the same term may have dif-
ferent meanings, and several terms may mean the same thing. Moreover, the
prerequisites, especially in regard to mathematical maturity, vary from chap-
ter to chapter. On the positive side, for a person interested in studying only
a specific area, the material is all presented in a compact form in one place.
Moreover, it might be counterproductive to try to change, even for the pur-
poses of a handbook, the terminology and notation already well-established
within the research community of a specific subarea. In this connection we
also want to emphasize the diversity of many of the subareas of the field. An
interested reader will find several chapters in this Handbook having almost
totally disjoint reference lists, although each of them contains more than 100
references.

We noticed that guaranteed timeliness of the production of the Handbook
gave additional impetus and motivation to the authors. As an illustration of
the timeliness, we only mention that detailed accounts about DNA computing
appear here in a handbook form, less than two years after the first ideas about
DNA computing were published.

Having discussed the reasons behind our most important editorial deci-
sion, let us still go back to formal languages in general. Obviously there cannot
be any doubt about the mathematical strength of the theory — many chapters
in Volume 1 alone suffice to show the strength. The theory still abounds with
challenging problems for an interested student or researcher. Mathematical
strength is also a necessary condition for applicability, which in the case of
formal language theory has proved to be both broad and diverse. Some de-
tails of this were already mentioned above. As the whole Handbook abounds
with illustrations of various applications, it would serve no purpose to try to
classify them here according to their importance or frequency. The reader is
invited to study from the Handbook older applications of context-free and
contextual grammars to linguistics, of parsing techniques to compiler con-
struction, of combinatorics of words to information theory, or of morphisms
to developmental biology. Among the newer application areas the reader may
be interested in computer graphics (application of L systems, picture lan-
guages, weighted automata), construction and verification of concurrent and
distributed systems (traces, omega-languages, grammar systems), molecular
biology (splicing systems, theory of deletion), pattern matching, or cryptol-
ogy, just to mention a few of the topics discussed in the Handbook.
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About Volume 1

Some brief guidelines about the contents of the present Volume 1 follow.
Chapter 1 is intended as an introduction, where also historical aspects are
taken into account. Chapters 2, 3, 5, 6, 8, 9 each give a comprehensive survey
of one important subarea of the basic theory of formal languages. The innova-
tive nature of these surveys will become apparent to a knowledgeable reader.
Indeed, at least some of these surveys can be classified as the best or first-
of-its-kind survey of the area. While the three first-mentioned chapters (2, 3,
and 5) are basic for the grammatical or computational aspects of the theory,
the remaining three chapters (6, 8, and 9) are basic for the algebraic aspects.
Grammatical (resp. algebraic) issues are discussed further in Chapters 4 and
12 (resp. 7, 10, and 11).
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Formal Languages:
an Introduction and a Synopsis

Alexandru Mateescu and Arto Salomaa

1. Languages, formal and natural

What is a language? By consulting a dictionary one finds, among others, the
following explanations:

1. The body of words and systems for their use common to people who are
of the same community or nation, the same geographical area, or the same
cultural tradition.

2. Any set or system of signs or symbols used in a more or less uniform fashion
by a number of people who are thus enabled to communicate intelligibly
with one other.

3. Any system of formalized symbols, signs, gestures, or the like, used or
conceived as a means of communicating thought, emotion, etc.

The definitions 1-3 reflect a notion “language” general and neutral enough
for our purposes.

Further explanations are more closely associated with the spoken lan-
guage and auditory aspects or are otherwise too far from the ideas of this
Handbook. When speaking of formal languages, we want to construct formal
grammars for defining languages rather than to consider a language as a body
of words somehow given to us or common to a group of people. Indeed, we
will view a language as a set of finite strings of symbols from a finite alphabet.
Formal grammars will be devices for defining specific languages. Depending
on the context, the finite strings constituting a language can also be referred
to as words, sentences, programs, etc. Such a formal idea of a language is
compatible with the definitions 1-3, although it neglects all semantic issues
and is restricted to written languages.

The idea of a formal language being a set of finite strings of symbols from
a finite alphabet constitutes the core of this Handbook. Certainly all written
languages, be they natural, programming or any other kind, are contained
in this idea. On the other hand, formal languages understood in this general
fashion have very little form, if any. More structure has to be imposed on
them, and at the same time one can go beyond the linear picture of strings.
Both approaches will be tried in the present Handbook.
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How does one specify a formal language? If we are dealing with a finite set
of strings we can, at least in principle, specify the set simply by listing its ele-
ments. With infinite languages we have a different situation: we have to invent
a finitary device to produce infinite languages. Such finitary devices can be
called grammars, rewriting systems, automata, etc. Many stories about them
will be told in this Handbook. In fact, a major part of formal language theory
can be viewed as the study of finitary devices for generating infinite languages.

What is today known as the Theory of Formal Languages has emerged
from various origins. One of the sources is mathematics, in particular, certain
problems in combinatorics and in the algebra of semigroups and monoids. A
pioneer in this line of research was Axel Thue at the beginning of the 20th
century; in [11, 12] he investigated avoidable and unavoidable patterns in
long and infinite words. Together with Emil Post [8], Thue also introduced
the formal notion of a rewriting system or a grammar.

Another shade in the mathematical origins of formal language theory
comes from logic and, according to the current terminology, the theory of
computing. Here the work of Alan Turing [13] is of crucial importance. The
general idea is to find models of computing. The power of a specific model
can be described by the complexity of the languages it generates or accepts.

Trends and aspects of mathematical language theory will be the subject
matter of this Volume I of the Handbook. Same scattered glimpses of it will
be presented already in Section 2 of this chapter.

It is quite obvious and natural that much of formal language theory has
originated from linguistics. Indeed, one can trace this development very far
in the past, as will be pointed out later on in this section. Specifically, the
study of grammars initiated by Noam Chomsky [1] has opened new vistas in
this development.

Many parts of formal language theory have originated from modeling cer-
tain objects or phenomena. A model can be expressed by or identified with a
language. Specific tasks of modeling have given rise to specific types of lan-
guages. Very typical examples are L systems of Aristid Lindenmayer [5] in-
tended as models in developmental biology. This and other types of modeling
situations, dealing for instance with molecular genetics, semiotics, artificial
life and artificial intelligence, will be presented in this Handbook, in particu-
lar in Volume 2. Sometimes a linear model is not sufficient. This means that
the language used does not consist of strings (words) but rather of trees,
graphs or some other many-dimensional objects. Such extensions of formal
language theory will be considered in Volume 3 of this Handbook: languages
are built from many-dimensional objects rather than strings and, thus, the
possibilities for modeling will be greatly increased.

The remainder of this Section 1 is devoted to the study of natural lan-
guages. We give, very briefly, some glimpses of linguistics from three different
points of view: historical studies, genetics and neuroscience. We only hope
to give some idea about what is going on. Each of these three aspects of
linguistics would require a handbook on its own!
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1.1 Historical linguistics

Linguists have tried to investigate, as well as to classify, natural languages
existing in the world today, some 6000 in number. The study is becoming
increasingly important: it is estimated that about half of the now existing
6000 languages will die out during the next century.

How did a specific language become prevalent in the area in which it is
now spoken? It could have been taken to its current territory by farmers,
traders, conquerors etc. Often multidisciplinary methods are used to clarify
the development. The scientific study of language, linguistics, can often pen-
etrate deeper in the past than the oldest written records. Related languages
are compared to construct their immediate progenitors. From progenitors one
goes to their predecessors and, finally, to their ultimate ancestor or protolan-
guage.

We spoke above of “related” languages. What does this mean? Already
for more than 200 years, linguists have recognized that some languages have
similarities in vocabulary, grammar, formation of new constructs or the use
of sounds strong enough to be grouped in the same family, stemming from a
common ancestor. A language family, that is a family of natural languages,
results by such ancestral alliances that can be traced back in history. This
idea is quite different from the notion of a language family in formal language
theory met very frequently in this Handbook.

Linguists are far from unanimous about the existing language families.
The whole trend of trying to find similarities between different languages has
been sometimes condemned as unfruitful. On the contrary, some linguists
tend to emphasize the differences that make languages seem unrelated, as
well as to use only small independent units in the classification. Such linguists
also tend to rule out spurious relationships. The importance of reconstructing
protolanguages has been also questioned.

However, certain specific language families have won wide acceptance.
Among such families are the Indo-FEuropean family, which will be discussed
in more detail below, the Hamito-Semitic (or Afro-Asiatic) family, which con-
sists of the Semitic languages and many languages of North Africa, as well
as the Altaic family whose major representatives are Finnish and Hungar-
ian. We will mention still in Section 1.2 some other language families whose
legitimacy has perhaps not won such a wide acceptance.

What does it mean from a practical point of view that two languages, say
Finnish and Hungarian, belong to the same family and, moreover, that lin-
guists are unanimous about this state of affairs? Does it imply that a native
user of one language is able to use or understand the other language? Cer-
tainly not. Some few basic nouns, such as the words for “fish”, “water” and
“blood”, bear easily observable resemblance in Finnish and Hungarian. There
is even one word, the word “tuli”, having in certain contexts the same mean-
ing in both languages: in “T'ULIpunainen” and “TULIpiros” the prefix means
“flaming”, the whole word meaning “flaming red”. However, this is merely ac-



4 A. Mateescu and A. Salomaa

cidental. In Hungarian “tuli” stems from the Indo-European “tulip”, whereas
in Finnish it is of old Uralic origin. An often quoted example is the sentence
“the train is coming”. It is claimed that the sentence is the same in both lan-
guages but the Finnish word for “the train” means “is coming” in Hungarian,
and vice versa. The claim, however, is quite inaccurate — and so we omit fur-
ther details. In general one can say that the vocabularies of Finnish and
Hungarian lie as far apart as those of English and Persian (which also belong
to the same well-recognized family, Indo-European languages). Among easily
observable similarities between Finnish and Hungarian are certain grammat-
ical features (no distinction between “he” and “she”, no articles for nouns)
and a phenomenon called vowel harmony in speech.

Let us go back to the idea of language families. In linguistics the idea dates
back for more than 200 years. It is customary to date the field of linguistics
to its first significant achievement, the argument propounded in 1786 by Sir
William Jones, a British judge at the High Court in Calcutta, who observed
relationships between Sanskrit, Greek, Latin, Gothic and Persian. (The year
1786 is such a starting point for linguistics as 1906 is for formal language
theory; the first paper of Axel Thue about combinatorics on words appeared
in 1906.) Common vocabulary and structural features suggested to Jones
that the languages had “sprung from some common source”. Nowadays this
source language is known as Indo-European. More explicitly, Jones wrote
about Sanskrit, Greek and Latin that “no philologer could examine them
all three without believing them to have sprung from some common source
which, perhaps, no longer exists”.

The construction of a protolanguage applies various methods, most of
which can be classified as inductive inference. Early linguists in their attempts
to reconstruct the Indo-European protolanguage relied heavily on Grimm’s
law of “sound shift”: sets of consonants displace each other in a predictable
and regular fashion. This law was suggested in 1822 by Jacob Grimm, who
is universally famed for the fairy tales he wrote with his brother Wilhelm.
(For instance, “Snow White” and “Cinderella” are universally known as Walt
Disney movies.) According to the law, softer “voiced” consonants b, d, g yield
to harder “voiceless” consonants p,t, k. A typical development is

dhar draw tragen

(Sanskrit) (English) (German)

Another development, based on different phenomena, can be depicted as
follows, see Figure 1:
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HITTITE watar

PROTOLANGUAGE
GREEK hydor
yotor-
ENGLISH water
GERMANIC
GERMAN Wasser
Fig. 1

Linguists have traced back diverging pathways of linguistic transforma-
tion, as well as human migration. There are many views about the Indo-
European protolanguage and its homeland. Rules such as Grimm’s law were
used to construct an Indo-European vocabulary. On this basis, conclusions
were made about how its speakers lived. The landscape and climate described
by the vocabulary was originally placed in Furope between Alps and the
Baltic and North seas. More recent evidence [2] places the probable origin
of the Indo-European language in western Asia. The language described by
the reconstructed Indo-European protolanguage is mountainous — there are
many words for high mountains lakes and rapid rivers. According to [2], the
vocabulary fits the landscape of eastern Transcaucasia, where the protolan-
guage flourished some 6, 000 years ago. The protolanguage split into dialects
which evolved into distinct languages. The latter split into further dialects,
and so forth. The family tree presented in Figure 2 is based on information
from [2].

The time depth of the Indo-European protolanguage is only about 6, 000
years. Attempts have been made to go deeper into the origins. If the aim
is a single protolanguage, one has to go back probably well beyond 20, 000
years. A rather well-known macrofamily, called Nostratic, comprises the Indo-
European, Hamito-Semitic and Altaic families and is estimated to date back
some 15, 000 years.

The following table, see Figure 3, compares some Indo-European lan-
guages, as well as two languages outside the family.
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Dutch English Bulgarian Polish
Flemish Frisian Slovenian WS Czech
High German Serbo-
Low German Croatian

Danish SS Great and

Swedish White
Sc .
PR F Russian
. WG

Icelandic NG

Norwegian

Latvian Ba Sl

Lithuanian Ukrainian
Old Prussian

PG BS
Armenian
Italian
French |La Balto- O1| Persian
Romanian Slavo- Pashto
Spanish It Germanic Baluchi
Osco- AA Hindi
Umbrian Celto- Proto- Aryano- Marathi
== Italo- Indo- Greco-  [mm— Sal Gujarati
Tocharian European Armenic Panjabi
Breton Br B ali
Cornish engali
Welsh
. Arcadian
Scottish Anatolian Aeolic
Irish Gr Tonic
Doric
Hittite
Palaic Luwian
Lydian Lycian
WS-Western Slavic
Sc-Scandinavian PR-Proto Russian
La-Latin OI-0ld Iranian
Br-Brittanic SS-Southern Slavic II-Indo Iranian
NG-Northern Germanic Sl-Slavic AA-Armeno Aryan
It-Italic WG-Western Germanic Ba-Baltic Sa-Sanskrit
PC-Proto Celtic

PG-Proto Germanic BS-Balto Slavic Gr-Greek

Fig. 2
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English | Old German Latin Romanian
One Ains Unus Unu
Two Twai Duo Doi
Three Thrija Tres Trei
Four Fidwor Quattuor Patru
Five Fimf Quinque Cinci
Six Saihs Sex Sase
Seven Sibum Septem Sapte
Eight Ahtau Octo Opt
Nine Niun Novem Noua
Ten Taihum Decem Zece
English | Greek | Sanskrit | Japanese Finnish
One Heis Ekas Hiitotsu Yksi
Two Duo Dva Futatsu Kaksi
Three Treis Tryas Mittsu Kolme
Four Tettares | Catvaras Yottsu Nelja
Five Pente Panca Itsutsu Viisi
Six Heks Sat Muttsu Kuusi
Seven Hepta Sapta Nanatsu Seitseman
Eight Okto Asta Yattsu Kahdeksan
Nine Ennea Nava Kokonotsu | Yhdeksan
Ten Deka Dasa To Kymmenen
Fig. 3

1.2 Language and evolution

The idea of linking the evolution of languages to biology goes back to Charles
Darwin. He wrote in the Descent of Man (1871), “The formation of different
languages and of distinct species, and the proofs that both have been devel-
oped through a gradual process, are curiously parallel.” In Chapter 14 of On
the Origin of Species he also stated that if the tree of genetic evolution were
known, it would enable scholars to predict that of linguistic evolution.

If one wants to go deeper in the past, as indicated at the end of Section
1.1, one has to combine genetic evidence with archeological and linguistic
evidence. Indeed, molecular genetics can test some elements of proposed the-
ories of the evolution of languages. One compares gene frequencies in various
populations and converts the data into a structure, where genetic distance
can be represented. One is then able to see to what extent genetic relation-
ships confirm predictions arising from supposed evolution of languages and
language families. Genetic and linguistic histories at least roughly correspond
because both diverge when populations split apart. The following chart from
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[9], see Figure 4, is based on work by Luigi Luca Cavalli-Sforza and Mer-
ritt Ruhlen. The genetic closeness of populations is shown by their distance
from a common branching point (left). Their linguistic closeness (in terms of
language families and superfamilies) is depicted similarly on the right.

GENETIC POPULATION LANGUAGE
RELATIONSHIPS ANCGUAG
Africa g )
Africans Nilo-Saharan

Niger-Kordofanian

Europe and

N Afro-Asiatic
Mideast . Indo-European
Caucasians o
Dravidian
North- Altaic — Nostratic
East Asia | Northeast
Asians Uralic
- Eskimo-Aleut
Ar(.:tlc Chukchi- }— Eurasiatic
Arctic Indians Kamchatkan
s Amerind
Amerindians B
North and Na-Dene
South America i i }— Dene-Caucasian
Sino-Tibetan
Asian Mainland| Southeast |Austro-Asiatic
Asians Daic
— Austric
Austronesian
Pacific
Pacific Islanders
Islands
- Papuan
Austra.hans Andamanese }— Indo-Pacific
Australia |New Guineans Australian
New Guinea
Fig. 4

An inevitable conclusion is that the distribution of genes correlates very
well with that of languages. Apparently genes do not control language in
a deterministic way, so the correlation is explained by history: the circum-
stances of birth determine the language to which one is exposed. Human
populations are during the evolution fragmented into parts which settle in
different locations. Then the fragments evolve both linguistic and genetic
patterns ear-marked by the branching points. This explains the correlation.

It is not claimed that evolution transfers simple languages into more com-
plex ones. It is quite widely agreed among linguists that no language, living
or dead, is “better” than any other. Language alters, but it neither improves
nor degenerates. For scientific discussions, Modern English maybe is better
than Old English but the potential resources of both languages are the same.
However, as pointed out by [9], earlier generations of linguists had no such
reservations about ranking languages. August Schleicher in the 19th century
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classified languages according to their structures. In Schleicher’s view, Chi-
nese is an “isolating” language using simple elements and, consequently, is
more “primitive” than Turkish, which builds its words from distinct forms.
He put “inflecting” languages like German higher. Sanskrit was ranked high-
est because its inflections were so elaborate. On these terms, the languages of
many hunter-gatherers are elevated above those of the linguists themselves!

1.3 Language and neural structures

How much preprogramming is there in the brain when a child starts learn-
ing a language? Any child can learn any language without making as many
grammatical and other mistakes as one would expect from a structure with-
out programming, a tabula rasa. It can be claimed that language is as innate
in the infant as flight is in the eaglet. This means that children do not so
much learn language as somehow just develop it in response to a stimulus.

Taking into account the enormous complexity of language phenomena,
many researchers have wondered whether the neural machinery involved will
ever be understood to any reasonable extent. Indeed, the question about the
origin of language in a neuroscientific sense has often been considered hope-
less. Linguistic Society of Paris banned its discussion in 1866 because it had
generated so much mere talk and so little real knowledge, if any. In spite of the
ban, the discussion has continued. Many theories have been presented about
the origin of language, starting from onomatopoetic words such as “cuckoo”,
from emotional interjections, from oral gestures etc. Especially recently the
progress in understanding the brain structures responsible for language has
accelerated significantly. Tools such as magnetic resonance imaging (MRI)
have made it possible to locate brain lesions accurately in patients suffering
from aphasia. In such a way specific language deficits have been correlated
with damage to particular regions of the brain. Positron emission tomography
(PET) makes it possible to study brain activities of healthy persons engaged
in linguistic tasks.

Still all important questions remain to be answered about how the brain
stores and processes language. However, the motivation to clarify at least
some of the issues is great. Language is a superb means of communication,
increasing in importance as the concepts become more abstract. Try to com-
municate without words the background for the events in Eastern Europe in
1989, or the intricacies of Hamlet!

2. Glimpses of mathematical language theory

We now return to the actual topic of our Handbook, the Theory of Formal
Languages. It was already indicated in Section 1 above that certain branches
of mathematics constitute a major source of origin for formal language the-
ory. The term “mathematical language theory” describes mathematical (al-
gebraic) aspects of formal language theory — the main emphasis is on the
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mathematical theory rather than any applications. The purpose of this sec-
tion is to give the reader some scattered glimpses of mathematical language
theory. The idea is not to present any coherent theory but rather to give
some views about the very basics, about words and languages. We want to
give an uninitiated reader some feeling about what is going on. We have
tried to select nontrivial problems whose solutions are presentable without
too much technical apparatus and yet readable without previous knowledge
or consulting other sources. Section 3 will be quite different in nature. It is a
telegraphic review of (at least some) basic concepts and results in formal lan-
guage theory. The purpose has been to collect basic formal language theory
in one place for quick reference. Our original idea was to add another section
describing briefly the contents of the Handbook. However, such a description
already appears in the Prefaces. Due to the marvellous timeliness of the in-
dividual authors, it was not possible to write anything more comprehensive
without endangering the publication schedule.

2.1 Words and languages

An alphabet is a finite nonempty set. The elements of an alphabet 3 are called
letters or symbols. A word or string over an alphabet X' is a finite sequence
consisting of zero or more letters of X', whereby the same letter may occur
several times. The sequence of zero letters is called the empty word, written
A. Thus, A, 0, 1, 110, 00100 are words over the “binary” alphabet X = {0, 1}.
The set of all words (resp. of all nonempty words) over an alphabet X' is
denoted by X* (resp. 7). Observe that X* and X* are always infinite.
If z and y are words over X, then so is their catenation (or concatenation)
xy, obtained by juxtaposition, that is, writing x and y after one another.
Catenation is an associative operation and the empty word A acts as an
identity: wA = Aw = w holds for all words w. Because of the associativity, we
may use the notation w’ in the usual way. By definition, w" = \. In algebraic
terms, X* and XT are the free monoid and semigroup generated by X with
respect to the operation of catenation and with the unit element .

The notions introduced above will be very basic throughout this Hand-
book. The notation may vary, for instance, the empty word is often denoted
by e. We will denote alphabets by X or V, the latter coming from “vo-
cabulary”. The elements are thought as indivisible units; it depends on the
viewpoint whether they are called “letters” or, coming from a vocabulary,
“words”.

We continue with some central terminology concerning words. The length
of a word w, in symbols | w |, is the number of letters in w when each letter
is counted as many times as it occurs. Again by definition, | A |= 0. A word v
is a subword of a word w if there are words u; and ug (possibly empty) such
that w = uyvug. If uy = A (resp. us = A) then v is also called a prefiz of w
(resp. a suffiz of w). Observe that w itself and A\ are subwords, prefixes and
suffixes of w. Other subwords, prefixes and suffixes are called nontrivial.
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Let us write a word w in the form w = wyviusvs...uyv,, for some
integer n and words u;, v;, some of them possible empty. Then the word
v =102 . ..Uy i a scattered subword of w. (The notion will be the same if we
say that the word u = uqus ... u, is a scattered subword of w. This follows
because we may choose some of the u’s and v’s to be empty.) Thus, a scat-
tered subword is not a coherent segment but may consist of parts picked up
from here and there, without changing the order of letters. The French school
emphasizes the coherence by using the term “factor” for our “subwords” and
saving the term “subword” for our scattered subwords. A nonempty word w
is primitive if it is not a proper power, that is, the equation w = u® does
not hold for any word u and integer ¢ > 2. Every word w possesses a unique
primitive root u: u is the shortest word such that w = u?, for some i > 1.
Obviously, a nonempty word is primitive iff its primitive root equals the word
itself.

Words v = xy and w = yx are termed conjugates. Thus, a conjugate of a
word is obtained if a prefix is transferred to become a suffix. The prefix may be
empty; a word is always its own conjugate. Clearly, if v and v are conjugates
of w, then also u and v are conjugates among themselves. (Thus, the relation
is an equivalence.) If w is primitive, so are its conjugates. Conjugates of a
word are often called also circular variants.

Thue’s work [11, 12] at the beginning of this century dealt with avoidable
and unavoidable patterns occurring in long words. Let us consider the pattern
xx = 2. A word w is square-free if it contains no subword zx, where z is
a nonempty word. Thus, a word being square-free means that it avoids the
pattern xxz. Now the size of the alphabet becomes quite significant. Assume
that we are dealing with the binary alphabet {0,1}. Can we construct long
square-free words? No. The pattern xx is unavoidable as soon as the length
of the word is at least 4. The words 010 and 101 of length 3 are indeed
square-free — they are the only square-free words of length 3. But we cannot
continue them with a further letter without losing square-freeness. Take the
word 010. Both continuations 0100 and 0101 contain a square as subword.

Things are different if the alphabet contains at least 3 letters. Thue showed
how to construct in this case infinite square-free sequences of letters. He also
showed how to construct infinite cube-free sequences (that is, avoiding the
pattern zzx = a3 ) over a binary alphabet. The reader is referred to [10] for
compact proofs of these nontrivial results.

We now proceed from words to languages. Subsets, finite or infinite, of
X* are referred to as (formal) languages over Y. Thus,

Ly ={X,0,111,1001} and Ly = {0” | p prime }

are languages over the binary alphabet. A finite language can always, at least
in principle, be defined as L; above: by listing all of its words. Such a proce-
dure is not possible for infinite languages. Some finitary specification other
than simple listing is needed to define an infinite language. Much of formal
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language theory deals with such finitary specifications of infinite languages:
grammars, automata etc.

Having read Section 1 of this chapter, the reader might find our termi-
nology somewhat unusual: a language should consist of sentences rather than
words, as is the case in our terminology. However, this is irrelevant because
we have to choose some terminology. Ours reflects the mathematical origin.
But the basic set, its elements and strings of elements could equally well be
called “vocabulary”, “words” and “sentences”.

Various operations will be defined for languages: how to get new languages
from given ones. Regarding languages as sets, we may immediately define the
Boolean operations of union, intersection and complementation in the usual
fashion. The operation of catenation is extended to concern languages in the
natural way:

L1L2 = {w1w2 | wy € L1 and we € L2}

The notation L? is extended to concern languages, now L° = {\}. The
catenation closure or Kleene star (resp. Kleene plus) of a language L, in
symbols L* (resp. L™) is defined to be the union of all nonnegative powers
of L (resp. of all positive powers of L). Observe that this definition is in
accordance with our earlier notations ¥* and X" if we understand X as the
finite language whose words are the singleton letters.

The operations of union, catenation, and Kleene star are referred as reg-
ular operations. A language L over X is termed regular if L can be obtained
from the “atomic” languages () (the empty language) and {a}, where a is a
letter of X, by applying regular operations finitely many times. By applying
union and catenation, we obviously get all finite languages. The star oper-
ation is needed to produce infinite languages. When we speak of the family
of regular languages, we mean all languages that are regular over some X
that is, the alphabet may vary from language to language. This family is very
central in formal language theory. It corresponds to strictly finite comput-
ing devices, finite automata. Regular languages will be the subject matter of
the next chapter of this Handbook. The family has many desirable formal
properties. It is closed under most of the usual operations for languages, in
particular, under all Boolean operations.

A language L over X' is star-free if L can be obtained from the atomic
languages {a}, where a € X, by applying Boolean operations (complement is
taken with respect to X*) and catenation finitely many times. Since regular
languages are closed under Boolean operations, it follows that every star-free
language is regular. We will return to star-free languages in Section 2.3.

2.2 About commuting

A feature common for all languages, formal or natural, is the noncommu-
tativity of letters and sounds. The English words “no” and “on” are very
different. The monoid X* is noncommutative except when 3 consists of one
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letter a only: the word a’t7 results if we catenate a’ and a7, independently of
which one comes first. Because of the noncommutativity, the mathematical
problems about formal languages are rather tricky, and results from classical
algebra or analysis are seldom applicable.

In this Section 2.2 we will present the basic results about commuting.
What can be said about words satisfying certain specific commutativity con-
ditions? The results belong to combinatorics on words, an area to which a
chapter is devoted in this Handbook. Such results are very useful in situa-
tions, where we meet the same word in different positions and want to make
conclusions about the word.

The first result is very fundamental: what can be said about a word, where
the same word appears both as a prefix and as a suffix?

Theorem 2.1. Assume that xy = yz, for some words x, y, z, where x # A.
Then there are words u, v and a nonnegative integer k such that

z=uv, y = (w)*u = u(vu)*, z = vu.

Proof. Assume first that | 2 |>| y |. Then from the equation xy = yz we see,
by reading prefixes of length | z |, that © = yv, for some word v. (If | = |=| y |
then v = A.) The situation can be depicted as follows:

x | y
y z
v v | y

We may obviously choose k = 0 and v = y. Then z = yv = uv, y = (uv)u
and z = vy = vu.

If | « |<| y |, we use induction on the length of y. The basis is clear. If
| y |= 0, then y = A, and we may choose u = A\, v = z = 2z, k = 0. (Recall
that v = \.)

Suppose, inductively, that the assertion holds for all | y |< n and consider
the case | y |= n + 1. Because | z |<| y |, we obtain y = zw by reading
prefixes of length | y | from the equation zy = yz. By substituting, we
infer that zzw = zwz, hence zw = wz. We may now apply the inductive
hypothesis: because & # X, we have | w |<| y | and, hence, | w |< n. (Observe
that we cannot find u, v as required if x = z = X and y # A. That’s why we
have the assumption z # A in Theorem 2.1.)

Consequently, for some u, v and k,

z=uv, y = (uwv)fu = u(vu)k, 2 = vu.
Because y = zw = uv(uv)*u = (uv)*1u, we have completed the inductive
step. O
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Our next result answers the basic question about commuting: when is it
possible that zy = yx holds between words x and y? The result is that x and
1y must be powers of the same word, so we are essentially back in the case of a
one-letter alphabet. Theorems 2.1 and 2.2 are often referred to as “Lyndon’s
Theorem”, due to [6].

Theorem 2.2. If xzy = yx holds between nonempty words x and y, then
there is a word w and nonnegative integers i, j such that x = w' and y = w’.

Proof. The proof is by induction on the length of xzy. The conclusion is im-
mediate for the case | zy |= 2. Now suppose the Theorem is true for all
xy with | zy |< n. Let | 2y |= n + 1. Then by Theorem 2.1, z = uwv,
y = (uv)*u for some words u, v and nonnegative integer k. Observe that
wv(uv)*u = (uv)*uuv; hence uvu = uuv and wv = vu. Since | wv |< n,
by the induction hypothesis uv and v are powers of a common word w, i.e.,

u = wP and v = w?, for some nonnegative integers p and ¢. It follows that
xr = uv = whte and y = (uw)ku = w*P+D+P Hence, z = w' and y = w?,

where i =p+ ¢ and j = k(p+ q) + p. D

Theorem 2.2 can also be expressed by saying that the equation xy = yx
is periodicity forcing: the equation admits only “periodic” solutions, where
the unknowns are repetitions of the same period. Some other such periodicity
forcing equations are known, for instance,

ryz =y’ i > 2.

The equation can hold between x, y, z only if they are powers of the same
word.

As an application of our commutativity considerations, we present a result
concerning conjugates and primitive words.

Theorem 2.3. A word w has | w | different conjugates iff w is primitive.

Proof. Clearly, w can never have more than | w | conjugates. The “only if”-
part is clear. If w = u?, i > 2, then w equals the conjugate obtained by
transferring one u from the prefix position to the suffix position.

To prove the “if”-part, suppose that w is primitive. Proceed indirectly,
assuming that two of w’s conjugates are equal: w; = wsy. Since also w; is a
conjugate of wy, we obtain

W1 =TY =Yyr =wa, T FE N\, Yy £ A

By Theorem 2.2, x and y are powers of the same word u. Since both z and y
are nonempty, w; = wo = u', i > 2, implying that w; and wy are imprimitive.
As a conjugate of wy, the word w is also not primitive, a contradiction.
Hence, all conjugates of w are different. There are | w | of them, as seen by
transferring the letters of w, one after the other, from the beginning to the
end. O
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2.3 About stars

The operation of Kleene star is a powerful one. It produces infinite languages
from finite ones. Together with the other two regular operations, union and
catenation, it can lead to very complicated compositions. In fact, for any k,
there are regular languages that cannot be represented with fewer than k
nested star operations.

We present in this section two properties of the star operation. The first
one tells us that, as regards languages over one letter, the star of the language
is always very simple, no matter how complicated the original language is.
The basic reason for this simplicity is again commutativity. Because words
over one letter commute, the intricacies of the star language vanish.

Theorem 2.4. For every language L over the alphabet {a}, there is a finite
language Ly C L, such that L* = L%.

Proof. The theorem holds for finite languages L, we just choose Lp = L.
Assume that L is infinite and a? is the shortest nonempty word in L, p > 1.
Clearly, {a?}* C L*. (This follows by the definition of the star operation.
Because a? is in L, all powers of a? are in L*.) If this inclusion is actually
an equality (and it must be so if p = 1), there is nothing more to prove, we
choose Ly = {a”}. Otherwise, let a?* be the shortest word from the difference
L*—{a?}*. (The difference consists of words in L* but not in {a?}*.) It follows
that g1 can be written in the form

g =tip+r,0<r <p, tg > 1.

(We cannot have ¢; divisible by p because all exponents of a divisible by p
are produced by {a”}*.) Again we see that {aP,a? }* C L*. If this is not an
equality, we let a?2 be the shortest word in the difference L* — {a?, a? }*. Tt
follows that g9 is of the form

e =top+12, 0 <1y <p, o F 1Ty, t2 > 1.

(All words leaving the remainder 1 when divided by p are obtained using a?
and a?'.)
The procedure is continued. At the kth step we obtain the word a?, with

G =tkp+ 71K, 0 < 1K <P, TK FT1, T2, oo, TE—1, tk > 1.

Since there are at most p possible remainders r;, including the remainder
0 stemming from p, we actually will have the equality

{aP; a®, ... a%}* = L*, for some s < p. O
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We will now consider languages {w}*. Thus, the language consists of
all powers of w, we write it simply w*. The question is: when is w* star-
free? Of course, the star occurs in the definition of w* but there may be a
way of getting around it. The question is not easy. For instance, considering
languages

(%) (1010)*, (10101)*, (101010)*

one observes, after considerable reflection, that the middle one is star-free,
whereas the others are not. Where does this state of affairs depend on? We
will settle this question completely. First we will prove some auxiliary results.
We assume that w is over the alphabet ) and, moreover, ' is the minimal
alphabet of w: all letters of X' actually occur in w.

Lemma 2.1. The languages 0, {\}, X* and X" are star-free over X.
Proof. The claim follows by the equations
0 = {a} N {a®}, where a € X,
Y=~ ), T = X5* {\} =~ I, O

We say that a language L is noncounting iff there is an integer n such
that, for all words z, ¥, z,

xy"z € L iff zy" 1z e L.
Lemma 2.2. FEvery star-free language is noncounting.

Proof. Let L be a star-free language, L C X*.

The proof is by induction on the structure of L, i.e. by induction on the
number of Boolean operations and catenations used to define L.

IfL=0or L={a},ac X, then L is noncounting for n = 2.

Now, assume that L = L; U Ly and let n; be the constant for which L;
is noncounting, ¢ = 1,2. Define n = max {n;,n2}. Assume that af"v € L.
It follows that af"y € Ly or ™y € Lqo. If aff”y € Ly, then using the
noncounting property (n — ni) times for L;, we obtain that of8™~ € Ly.
Again, using the same property (n — n; + 1) times for L;, we obtain that
a8ty € L;. It follows that a" 1!y € L1 ULy = L. The converse is similar,
i.e., if @™ty € L, we use the same argument to prove that a3"y € L.

If L =~ L; then obviously, L satisfies the noncounting property for
n=mni.

If L = Ly N Lo, then observe that L =~ (~ LiN ~ Lo).

Finally, assume that L = L Lo and define n = ny + no + 1. Assume that
af™y € L = L1Ls. There are u; € L;, i = 1,2, such that a8"y = ujus.
Observe that at least one of the words w;, contains a subword (", with
m > n;, i = 1,2. Without loss of generality, assume that u; = o™’ with
m > ny. Using the noncounting property (m — nq) times for L; we conclude
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that o™ v’ € L. Again, using the same property (m —ny + 1) times for Ly,
we deduce that o™’ € L. Hence, o™ u'uy = a8y € L1L, = L.
The converse is analogous.

Hence, if L is a star-free language, then L is a noncounting language. 0O

The converse of Lemma 2.2 holds in the form: every regular noncounting
language is star-free. We will need Lemma 2.2 only in the form indicated.

We are now in the position to establish the characterization result. The
result also immediately clarifies why only the middle one of the languages (*)
is star-free.

Theorem 2.5. The language w*, w # A, is star-free iff w is primitive.

Proof. Consider first the “only if”-part, supposing that w = u?, i > 2. We
want to show that w* is not star-free. By Lemma 2.2, it suffices to prove that
w* is not noncounting. Assume the contrary, and let n be the corresponding
constant. Choose now, in the definition of “noncounting”, z = w/, y = wu,
z = ), where j is such that j + n is divisible by i. Then zy"z = /" € w*,
whereas zy" 1z = /"1 ¢ w*. Consequently, w* is not noncounting.

For the “if”-part, assume that w is primitive. To prove that w* is star-
free, let us first have a look at what kind of properties are expressible in a
star-free form. The set of all words having the word x as a subword, prefix
or suffix can be expressed in the form

XraXr, X, X,

respectively. By Lemma 2.1, these sets are star-free. Similarly, ~ (X*zX*)
stands for the set of all words not having the word z as a subword.

Consider a word in w*, say w®. Let us keep most of the word hidden, and
move a scanning window of length | w | across w®:

v | w [ w | w [ w |

%/_/ .
hidden \Mf hidden

What words do we see through the window? At the beginning and at the
end we see w. At all other times, in fact at all times, we see a word in C'(w),
the set of conjugates of w. (Recall that w is its own conjugate.)

Let us now try to express in star-free terms the condition that a word x is
in w*. We assume that x # A\ because we can add {\} as a separate term of
the union. The word x must begin and end correctly, that is, it has to belong
to the intersection

wX* N X% w.
Furthermore, all subwords of x of length | w | must be conjugates of w, that
is, belong to C'(w). We express this by saying that no subwords of length
| w | and outside C'(w) are allowed to appear in x, that is, = belongs to the
intersection (“subwords OK”)
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SUBWOK = N ~ (X y D)
yEC(w),ly|=|w]

(We can compute the number of words y, that is, the number of sets to
be intersected. Assume that X has k letters. Then there are altogether k®!
words of length | w |. By Theorem 2.3, kl*!— | w | are outside C'(w).) We are
now ready to write a star-free expression for w*.

(+%) w* = {A\} U (wX* N X*w N SUBWOK).

By Lemma 2.1, the right side of the equation (xx) is star-free. We still have
to show that our equation is correct.

It is obvious that the left side of the equation is included in the right
side: if a nonempty word is in w*, it begins and ends correctly and has no
incorrect subword and, consequently, belongs to all sets in the intersection.
To prove the reverse inclusion, we assume the contrary. Let = be the shortest
word on the right side of our equation (*x) that is not in w*. Then  # X\ and
we may write z = wzy (because x € wX™). We must have z1 # A because
WA =w € w*.

If x1 has the prefix w, we argue as follows. Since x has w as suffix, so
does x1. The word x; has only correct subwords (no subwords of length
| w | outside C'(w)) because x has only correct subwords. Consequently, z1
belongs to the right side of the equation (x*). This implies that z; € w*
because | x1 |<| | and x was the shortest word belonging to the right side
and not to w*. But now also x = wzr; € w*, a contradiction.

Therefore, w is not a prefix of 2. Assume first that there is an 4 such that
the ith letter a of x; differs from the ith letter b of w - let 7 be the smallest
such index. Thus

z1 =waz, w=wbw", ac X, bc X, a#b,

where the words w’, w”, z may be empty. Consider now the subword w”w’a
of = wxy:

Lo o] wr [ w o] 2 |

window

This subword is of length | w |, so it must belong to C'(w). On the other
hand, we have clearly w”’w'd € C(w). But both words w”w'a and w”w'b
cannot be in C(w) because every letter occurs the same number of times
in each word of C'(w). Thus our assumption has led to a contradiction and,
consequently, no such i exists.

The only remaining possibility is that x; is a proper prefix of w, w = w1,
for some wy # A. Since x belongs to the right side of equation (xx), the word
w is also a suffix of z, leading to the following situation:
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Here w; is the overlapping part of the two w’s. By Theorem 2.3, w is not
primitive, which is a contradiction. (The same conclusion could be reached
by Theorem 2.2 as well.) O

Our proof shows clearly, where and why the primitivity of w is needed.
For instance, if w = u® and z; = u then the word wz; belongs to the right
side of the equation (*x) but not to w*.

2.4 Avoiding scattered subwords

Sometimes you deal with collections of words, none of which is a subword of
any other word in the collection. This happens, for instance, when a subword
fulfils the purpose you have in mind equally well as the whole word. Then,
from whatever language L you originally dealt with, you take only a basis: a
subset K of L such that () no word in K is a subword of another word in K,
and (i) every word in L possesses some word of K as a subword. A desirable
situation would be that a basis is finite. Unfortunately, this does not always
happen. For the language

L= {ba'b|i>1},

the only basis is L itself because none of the words in L is subword of another
word in L.

The situation becomes entirely different if, instead of subwords, scattered
subwords are considered. In this case a rather surprising result can be ob-
tained, a result that certainly is not intuitively obvious: If no word in a lan-
guage K is a scattered subword of another word in K, then K is necessarily
finite.

Let us use in this context the notation v < w to mean that v is a scattered
subword of w. The relation is a partial order. This means that the following
three conditions hold for all words u, v, w.

(i) u<u,
(ii) f u < v and v < u then u = v,
(iii) If u < v and v < w then v < w.

“Partial” means here that v and v can also be incomparable:
neither v < v nor v < w. This is the case, for instance, if u = ab and v = ba.
The notation u £ v means that either u and v are incomparable, or else both
v < u and v # u. Observe that the similarly defined relation in terms of
subwords, rather than scattered subwords, is also a partial order.

We now prove the result already referred to above. The result is due to
[3]. An earlier version, based on algebraic considerations, appeared in [4].
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Theorem 2.6. Assume that a language L contains no two distinct words v
and w such that v < w. Then L is finite.

Proof. We show that a contradiction arises if we assume that there is an
infinite language with no two comparable words. This is shown by induction
on the size of the alphabet. The statement clearly holds for languages over
one-letter alphabet because in this case any two words are comparable. As-
sume inductively that the statement holds for alphabets up to a certain size
but it no longer holds if we add one more letter, to get an alphabet X. Thus,
there are languages over X’ not satisfying Theorem 2.6, whereas Theorem 2.6
holds true for all languages over smaller alphabets.

For each infinite L C X* consisting of pairwise incomparable words, there
is a shortest x;, € X* such that zy, £ y, for all y € L. (The existence of xp,
can be seen as follows. We first take any x € L and a € Y. Then ax £ y,
for all y € L. Otherwise, if there is a word ¢y’ € L with ax < 3/, we infer
z < ax < gy, which is a contradiction. We now find out whether there are
words shorter than ax with the same property concerning < and choose the
shortest among them for x. The word z, is not necessarily unique, only its
length is unique.)

We now fix the language L in such a way that the corresponding word x,
is shortest possible. Thus, there is no infinite language K C X* consisting of
pairwise incomparable words such that xx € X* is a shortest word with the
property zx Ly, for ally € K, and | 2k |<| zf, |.

Clearly, xj, # A because A < y, for all y. We express =, as a catenation
of letters, some of them possibly equal:

T = aias...a, a; € X.

If k =1 and &, = a; then the condition x;, L y, for all y € L, implies that
L is over the alphabet X — {a;}, which contradicts the inductive hypothesis.
Hence, k > 2 and ajas...ax_1 # A

Clearly, | a1az . ..ax—1 |<| zp |.

If a1as ... a1 £ y holds for infinitely many words y € L, the subset of
L consisting of those infinitely many words would contradict our choice of L
and . Thus, by removing a finite subset of L, we get an infinite language
L'={y;|i=1,2,...} C L such that

aiag...ap—1 < Yi, for all Y; € L.

Thus, ajas...a,_1 appears as a scattered subword in every word of L'.
For each y; € L', we now find the occurrence of ajas . ..ag_1 leftmost in the
following sense. First we find the leftmost a; in y;. After this occurrence of
a1, we find the leftmost as. After this occurrence of as, we find the leftmost
as, and so forth. Thus, we write each y; in the form

Yi = 21012902 ... 2, _10k—-1%},
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for unique words 2} € (£ —{a;})*, 1 < j <k —1. An important observation
now is that, for all 7, also z§ € (¥ — {ax})*. This follows because, otherwise,
Tp = ajas...a < y;, a contradiction. Thus, for each fixed j, all the words
z}, i > 1, are over an alphabet smaller than X

We now construct a decreasing sequence

N1 DNy D N3 D ...D Ny

of infinite sets N; of positive integers such that,
(%) whenever m,n € Nj,m <n,1 <j <k, then z]" <z}

The definition of the sets IV; proceeds inductively. For notational conve-
nience, we let Ny = {i | 4 > 1}. Assume that the infinite set N; has already
been defined. Here either j = 0, or else 1 < j < k—1 and (*) is satisfied. We
define the set N, as follows. Consider the set

Zjr1= {2 | i€ N}
If the set Z;4; is finite we consider, for each word w € Z; 1, the set
M(w) ={i|i€ N; and z;-H = w}.

Since, N; is infinite, at least one of the sets M (w) is infinite. We choose N1
to be any such set; then (x) is automatically satisfied.

If Z; 1 is infinite, we may use the inductive hypothesis because Z;;1 C
(X — {aj11})*. Consequently, there are only finitely many pairwise incom-
parable elements in Z;;,. From this fact we may conclude that there is an
infinite chain of elements of Z; satisfying:

n n n
(%) zj}rlgzjj_lgzjj_lS...,wheren1<n2<n3<...
Let us now argue how this conclusion can be made.

If we have an infinite chain of elements of Z; 4

/ m me me
(%) Zit Sz < 0 <
we may obviously conclude the existence of (xx) by defining ny = m; and
Npp1 = main{s | mg > n.}, r > 1.

On the other hand, there must be an infinite chain (xx)’. For if all maximal
chains (that is, chains that cannot be continued further) are finite, then, since
the different greatest elements in the maximal chains are pairwise incompara-

ble, infinitely many distinct chains have the same greatest element, say z715".

This means that infinitely many words w satisfy w < 24", which is clearly

impossible.



22 A. Mateescu and A. Salomaa

We now define the set N;+1 (in the case that Z;44 is infinite) by N;j11 =
{n, | r > 1}. The definition and (**) guarantee that () is satisfied.
Having defined the set Nj, we choose two distinct numbers m,n € N,
m < n. Consequently, m,n € N;, for all j, 1 < j < k. By (%),
2t <z, 1<j <k
We infer further that

Ym = 21°0125'G2 . .. 24 10p—12f < 21012502 ... 25 _10k—12) = Yn-
Thus, ¥, and y, are not after all incomparable, which is a contradiction. O

Two observations should be made regarding the proof given. We did not
only exhibit two comparable words ¥, and y, but rather an infinite chain
of words, each of which is a scattered subword of the next one. Indeed, the
numbers of Ny in increasing order produce such a chain.

The second observation is that the use of Ny, for which (x) is not required,
makes it possible to combine the basis of induction and the inductive step.
It is also instructive to consider the case, where X has only two letters. Then
each of the sets Z;1 is over one letter (not the same one for all j !), and the
ideas of the proof become more straightforward.

Theorem 2.6 has many interesting consequences. By an infinite word or
w-word over an alphabet X we mean an infinite sequence of letters of X.
For instance, an infinite decimal expansion of a real number is an infinite
word over the alphabet {0,1,2,3,4,5,6,7,8,9}. The following result is an
immediate corollary of Theorem 2.6.

Corollary 2.1. No matter how an infinite word is divided into blocks of finite
length, one of the blocks is a scattered subword of another block. ]

Coming back to the discussion at the beginning of the Section 2.4, we say
that a subset Lg of a language L is a basis of L if, for every y € L, there is a
word = € Lg such that x < y, that is, x is a scattered subword of y. Clearly,
the set of minimal elements with respect to the relation < constitutes a basis.
Thus, the following result is immediate.

Corollary 2.2. FEvery language possesses a finite basis. O

Corollary 2.2 is just another formulation of Theorem 2.6. The first docu-
mentation of the result appears in [4] in the following form.

Theorem 2.7. (Higman) If X is any set of words formed from a finite al-
phabet, it is possible to find a finite subset Xo of X such that, given a word
w in X, it is possible to find wgy in Xy such that the letters of wy occur in w
in their right order, though not necessarily consecutively. O



Formal Languages: an Introduction and a Synopsis 23

An important remark is here in order. We have not in our discussions
paid any attention to effectiveness, let alone efficiency. What is for Higman
“possible to find” often leads to noncomputable tasks and undecidable prob-
lems. Decidability and complexity issues will be frequently discussed later on
in this Handbook.

Some further corollaries of Theorem 2.6 could be mentioned. Starting with
an arbitrary language L, we define the following two languages:

SSW(L,<)={z€ X" |y <z for somey € L},
SSW(L,>)={z€ X* |y >z, for some y € L}.

Thus, the latter language consists of all scattered subwords of the words
in L, whereas the former consists of all words “generated” by L in regard
to the relation <: every word in SSW (L, <) contains some word of L as a
scattered subword. The notation SSW comes from “scattered subword”.

Corollary 2.3. For every language L, both of the languages SSW (L, <) and
SSW(L,>) are star-free reqular languages.

Proof. By Corollary 2.2, L possesses a finite basis Lg. For a word w =
aras . ..ag, a; € X, 1 <1 <k, the language

SSW({U}}, S) = Z*alﬂ*ag ... Z’*akZ]*
is star-free (see Lemma 2.1 in Section 2.3). We now claim that

SSW(L,<)= ) SSW({w}, <),

w€Lg

which shows that the left side is star-free. The claim follows because every
word containing some word of L as a scattered subword also contains some
word of Lg as a scattered subword, and the right side of the equation consists
of all words having some word of Lj as a scattered subword.

Denote by K the complement of the language SSW(L,>). It suffices
to prove that K is star-free. By the first part of the proof we know that
SSW(L, <) is star-free. But

K = SSW(K, <).

Indeed, the inclusion of the left side in the right side is obvious. To
prove the reverse inclusion, assume that there is a word x in the difference
SSW (K, <) — K. This means that

z € SSW(K,<)NSSW(L,>).

Thus, y < z, for some y € K. On the other hand, x is a scattered subword
of some word z € L. This implies that also y is a scattered subword of z.
But K consists of words that are not scattered subwords of words in L and,
hence, y € K. This contradiction completes the proof. O
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Corollary 2.3 is quite remarkable. Any language generates (in two different
ways) a structurally very simple language. However, our previous remark
applies also here: in general, we cannot find the languages SSW (L, <) and
SSW (L, >) effectively.

Our final corollary is usually referred to as “Konig’s Lemma”. It deals
with k-dimensional vectors of nonnegative integers, that is, ordered k-tuples
(my, ma, ..., my), where each m; is a nonnegative integer. A partial order
between such vectors is defined by

(my,ma,...,mg) < (n1,ng,...,n,) i m; <ny, forall i, 1 <i <k.
Corollary 2.4. FEwvery set of pairwise incomparable vectors is finite.

Proof. Associate with the vector (mq,ma,...,my) the word
ai"ay® .. .a,"™ over the alphabet {ai,as,...,ax}. Then the relation < holds
between two vectors iff it holds between the associated words, and Corollary

2.4 now immediately follows by Theorem 2.6. ]

2.5 About scattered residuals

Our last illustration requires some maturity in algebra, although no specific
knowledge is needed.

Let A be a set. P(A) denotes the set of all subsets of the set A. If a € X,
then |z|, is the number of occurrences of the letter a in z. If z € X*, then
the commutative closure of x is

com(z) ={w € X*| for all a € X, |w|q = |z|a}-

If L is a language, then the commutative closure of L is

com(L) = U com(x).

A language L is called commutative if and only if L = com(L).
The shuffle operation between words, denoted III, is defined recursively
by
(au I bv) = a(u I bv) U b(au 11 v),
and
(wTI A) = (A w) = {u},

where u,v € X* and a,b € Y.

The shuffle operation is extended in the natural way to languages:
Ly I Ly = Uuemeh (u 111 v).

Let Ly and Ly be languages over Y. The scattered residual of Ly by Lo is
defined as:
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L1 —s L :U U —5 U
1 s 2 uELl,UGLQ( 8 )

where

u—sv= {ujus.. upy1 € X k> 1,u = uiviugvs ... upkUgt+1,
V=009 .. . Uk, U € X1 <i<k+4+1,v € X% 1<i<k}

Thus, the scattered residual u — v indicates the result of deleting v from
u in a scattered way. The following lemma provides an equivalent definition
of the scattered residual. The straightforward proof is omitted.

Lemma 2.3. For any languages Ly and Lo
Ly —s Lo={we X" |Tve Ly, (wllv)N L #0}.
Moreover, for any words u, v € X*,
u—sv={weX |uecwlluv}. 0

A deterministic finite automaton, DFA, is a construct A = (Q, X, 6, qo, F),
where () is a finite set of states, X is an alphabet called the input alphabet,
qo € Q is the initial state, F C @ is the set of final states and

0:QxX—Q

is the transition function. 7
The transition function § is extended to a function 6,

§:Qx X" —Q,

by defining;:

(i) 0(q,\) = ¢, for all g € Q,

(i) d(q,wa) = §(6(q,w),a), for allw € X*, a € X, g € Q.

In the sequel, § will be denoted simply by 4.
The language accepted by the DFA A is

L(A) ={we X" |(q,w) € F}.

Theorem 2.8. Let L be a commutative language. The following conditions
are equivalent:

a)L is accepted by some DFA.
b) L has finitely many scattered residuals.
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Proof. Let L be a commutative language over the alphabet Y. Define the
relation ~; between languages over X as follows:

L1 ~r L2 if and only if L —g L1 =L —s LQ.

It follows immediately that the relation ~j, is an equivalence relation.

Denote by P(X*)/.~., the set of all equivalence classes with respect to the
relation ~p,. The equivalence class of a language K will be denoted by [K].

a) = b). Let A= (Q, X, 9, qo, F) be a finite deterministic automaton
such that L(A) = L. We will assume that all states from @ are accessible,
i.e. for each p € @ there is a word u € X* such that §(gg, u) = p. Moreover,
without loss of generality, we may assume that the automaton .4 satisfies the
following condition of minimality:

(%) if {u € X*|6(p,u) € F} ={v e X*|6(q,v) € F'}, then p=gq.

Let X be the set P(Q) and consider the set of all functions defined on X
and with values in X, denoted XX.
Let ¢ be the function mapping the set P(X*)/~, into the set XX, defined
by
P([KDNY) = o(Y, K).

Claim 1. The function ¢ is well defined.

Assume that K; and Ky are languages over X such that K; ~j Ky. We
prove that in this situation §(Y, K1) = 6(Y, K3) for all Y C Q. Let p be a
state in 6(g, K1) for some ¢ € Y. It follows that there is a word u; € K7, such
that d(q,u1) = p. Let a, 8 be words such that 6(qp, ) = ¢ and é(p,5) € F.
Therefore, aui 8 € L and consequently, a8 € L —; K;. But, K1 ~; Ko and
hence, aff € L —; K. Therefore, there exists us € Ky such that (af8 1
uz) N L # (. Tt follows that ausf € com(L) = L. Moreover, note that for all
a, e X",
au1 B € L if and only if aus3 € L.

Thus, from condition (x), it follows that §(g,u2) = p € §(Y, K2). The converse
inclusion is established analogously. Therefore Claim 1 is true.

Claim 2. ¢ is an injective function.

We will prove that if for all Y C @, 6(Y, K1) = §(Y, K3), then K; ~j, Ko.

Let w be in L —¢ K;. There exists v; € K such that (v II v1) N L #
(. Hence, uv; € com(L) = L. Assume that §(go,u) = p and observe that
d(p,v1) € F and v; € K;. From the equality §(Y, K1) = (Y, K3), for all
Y C @Q, it follows that there exists vo € Ky such that §(p,v2) € F. Hence,
uvy € L and thus w is in L —, K. Therefore, L —, K1 C L —4 K5 and note
that the converse inclusion is analogous. Therefore ¢ is an injective function.

Now, observe that the set X is a finite set and hence the set P(X*)/.,
is finite, too.
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b) = a). Define the finite deterministic automaton A= (Q, X, d, qo, F),
where
Q =P(X*)/~,. Note that Q is a finite set. Define ¢ = [{A}] and F =
{[K]|K N L # (}. Observe that from [K] = [K'] and K N L # § it follows
that K’ N L # (. The transition function, ¢ : Q x X — Q is defined by

§([B],o) = [B 1 .

Observe that ¢ is well defined, i.e. if B ~, B’, then B Il o ~;, B’ 11l 0.
In order to prove that L(A) = L assume first that w € L(A). Therefore,
0([A],w) € F. If w = wywy ... w,, where w; € X, i =1,...,n, then it is easy
to see that d([\],w) = [wy II we OI ... UI w,]. Hence, there is a language
K, such that KN L # § and K ~p (w; OI ... OI w,). Consequently,
(wy T wg T ... T wy,) N L # Q. Therefore, w = wiws ... w, € com(L) = L.
Thus w € L. Conversely, assume that w € L. Now, if w = wjws ... wy,, w; €
XY.i=1,...,n, then 6([A\],w) = [w; I we OI ... I w,] and thus (w; I
wg UI ... 1T wy,) N L # 0. Hence, [wy 1T we I ... III w,] € F and therefore
w € L(A). Consequently, L = L(A). O

It will be seen in many connections in this Handbook that L is regular iff
L is acceptable by a DF A. Thus, Theorem 2.7 yields,

Theorem 2.9. Let L be a commutative language. The following conditions
are equivalent:

a) L is a regular language.
b) L has finitely many scattered residuals. ]

3. Formal languages: a telegraphic survey

This section will be very different from the preceding ones. Following [7], we
will present a “telegraphic survey” of some of the basics of formal language
theory. This means that we just quickly run through very many concepts and
results, without going into any details. It is recommended that the survey is
consulted only when need arises.

3.1 Language and grammar. Chomsky hierarchy

Basic terminology and notation

Alphabet: a finite nonempty set of abstract symbols or letters.

V*: the free monoid generated by the alphabet V' under the operation of
catenation or concatenation (the catenation of x and y is denoted by zy; the
catenation of n copies of & € V* is also denoted by a™).
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Word/string: an element of V*.

A: the empty string (the identity of the monoid V*; V* — {A} is denoted by
V).

|z|: the length of the string x € V*.

|z]4: the number of occurrences of a € V in z € V*.

Language: a subset of V*.

M-free language: a subset of VT,

Parikh mapping: for V. = {ay,as,...,a;}, the mapping ¥y : V* — NF
defined by @y () = (|Z|ay, [%]ass - - - | %] ay)-

Linear set: a set M C N* such that M = {vg + >_i", viz; | ¥; € N}, for
some vg, V1, ...,V in N¥.

Semilinear set: a finite union of linear sets.

Semilinear language: a language L C V* with semilinear ¥y (L).
Letter-equivalent languages: two languages L1, Ly C V* such that ¥y (L) =
Uy (La).

Length set (of a language L): length(L) = {|z| | x € L}.

Operations with languages

Union, intersection, complement: usual set operations.

Concatenation: L1 Lo = {zy | x € L1,y € La}.

Kleene star (x): L* = U;>oL?, where Lo = {\}, L't = L'L i > 0.

Kleene +: LT = U;>1 L%,

Substitution: a mapping s : V. — 2U7, V,U alphabets, extended to V* by
s(A) ={A}, s(ax) = s(a)s(x), a € V,x € V*. For L CV* (L) = Uzers(x).
Finite substitution: substitution s with s(a) finite for all symbols a.
Morphism: substitution s with s(a) singleton set for all symbols a (usual
monoid morphism).

A-free substitution/morphism: substitution/morphism such that A € s(a) for
no symbol a.

Inverse morphism: a mapping h=' : U* — 2" defined by h='(z) = {y €
V* | h(y) =z}, 2 € U*, for a morphism h : V* — U*.

Shuffle: t My = {x1Y1 .. - TnlYn | T=T1 ... T, Yy = Y1+ Yn, Tiy¥; € V1<
i<n,n>1}. For L1,Ly CV* Ly I Ly = {w € V* | w € z 1l y, for some
x € L,y € La}.

Mirror image: if x = ajas...an,a; € V,1 <i <mn, then mi(z) = a, ...aza;.
For L C V*, mi(L) = {mi(z) | € L}.

Left quotient (of Ly with respect to Lo, L1, Ls C V*): Lo\L; = {w | there is
x € Ly such that zw € L, }.

Left derivative (of L with respect to o, L CV* 2 € V*): 0,(L) = {z}\ L.
Right quotient/derivative: symmetrically.

Given an n-ary operation with languages, «, we say that a family F of
languages is closed under operation « if «a(Lq,...,L,) € F for every
Ly,....L, € F.

A language L C V* is called regular if it can be obtained from elements of V'
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and @ using finitely many times the operations of union, concatenation and
Kleene star.

A family of languages is nontrivial if it contains at least one language differ-
ent from () and {A\}. A nontrivial family of languages is called trio or a cone
if it is closed under A-free morphisms, inverse morphisms, and intersection
with regular languages. A trio closed under union is called semi-AFL (AFL
= abstract family of languages). A semi-AFL closed under concatenation and
Kleene + is called AFL. A trio/semi-AFL/AFL is said to be full if it is closed
under arbitrary morphisms (and Kleene * in the case of AFL’s). A family of
languages closed under none of the six AFL operations is called anti-AFL.

1. The family of regular languages is the smallest full trio.

2. Each (full) semi-AFL closed under Kleene + is a (full) AFL.

3. If Fis a family of \-free languages which is closed under concatenation,
A-free morphisms, and inverse morphisms, then F'is closed under intersection
with regular languages and union, hence F'is a semi-AFL. (If F'is also closed
under Kleene +, then it is an AFL.)

4. If Fis a family of languages closed under intersection with regular lan-
guages, union with regular languages, and substitution with regular lan-
guages, then F'is closed under inverse morphisms.

5. Every semi-AFL is closed under substitution with A-free regular languages.
Every full semi-AFL is closed under substitution with arbitrary regular lan-
guages and under left /right quotient with regular languages.

Chomsky grammars

A phrase-structure grammar is a quadruple G = (N, T, S, P), where N, T are
disjoint alphabets, S € N, and P C VANVS x V&, for Vg = NUT. The
elements of N are called nonterminal symbols, those of T are called terminal
symbols, S is the start symbol or the axiom, and P the set of production rules;
(u,v) € P is written in the form u — v.

For xz,y € V& we write x =g y iff * = 21uxs,y = x1v22, for some 1,22 €
V& and w — v € P. If G is understood, we write © = y. One says that x
directly derives y (with respect to G). The reflexive and transitive closure of
the relation = is denoted by =*. The language generated by G is L(G) =
{reT* | S ="z}

Two grammars G, Go are called equivalent if L(G1) = L(G2).

If in £ = y above we have x; € T™, then the derivation is leftmost and
we write © ==y y. The leftmost language generated by G is denoted by

Lie s (G).
A phrase-structure grammar G = (N, T, S, P) is called:

— monotonous/length-increasing, if for all u — v € P we have |u| < |v|.
— context-sensitive, if each u — v € P has u = uj Aus, v = uixus, for uy, us €
Vé,A e N,z € VC‘;" . (In monotonous and context-sensitive grammars a
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production S — X\ is allowed, providing S does not appear in the right-
hand members of rules in P.)

— context-free, if each production u — v € P has u € N.

— linear, if each rule u — v € P hasu € N and v € T* UT*NT™*.

— right-linear, if each rule w — v € Phasu € N and v € T* UT*N.

— left-linear, if each rule u — v € P hasu € N and v € T* U NT™.

— regular, if each rule w - v € Phasu e N and v € TUTN U {\A}.

The phrase-structure, context-sensitive, context-free, and regular grammars
are also called type 0, type 1, type 2, and type 3 grammars, respectively.

1. The family of languages generated by monotonous grammars is equal with
the family of languages generated by context-sensitive grammars.

2. The family of languages generated by right- or by left-linear grammars are
equal and equal with the family of languages generated by regular grammars,
as defined in Section 3.2.

We denote by RE, CS, CF, LIN, REG the families of languages generated
by arbitrary, context-sensitive, context-free, linear, and regular grammars,
respectively (RE stands for recursively enumerable).

3. (Chomsky hierarchy.) The following strict inclusions hold: REG C LIN C
CF C CS C RE.

4. Lics+(G) € CF for each type-0 grammar G; if G is context-free, then
Licst(G) = L(G).

Closure properties of families in Chomsky hierarchy (Y stands for yes and
N for no).

LIN

=
s3]

G

Union

Intersection

Complement

Concatenation

Kleene x

Intersection with
regular languages

Substitution

A-free substitution
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Left/right derivative
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Mirror image
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Therefore, RE, CF, REG are full AFL’s, CS is an AFL (not full), and
LIN is a full semi-AFL.

Decidability problems

Given a class G of grammars, the following basic questions about arbitrary
elements G1, G2 of G can be formulated:

— equivalence: are G1, G4 equivalent?

— inclusion: is L(G1) included in L(G3)?

— membership: is an arbitrarily given string « an element of L(G1)?
— emptiness: is L(G) empty?

— finiteness: is L(G1) finite?

— regularity: is L(G1) a regular language?

The languages with decidable membership question are called recursive and
their family lies strictly intermediate between CS and RE.

Decidability properties of classes of phrase-structure, context-sensitive,
context-free, linear, and regular grammars (on top of columns we have put
the corresponding families of languages; N stands for non-decidable and D
for decidable.

RE | CS| CF | LIN | REG
Equivalence | N N N N D
Inclusion N N N N D
Membership | N D D D D
Emptiness N N D D D
Finiteness N N D D D
Regularity N N | N N | trivial

Rice theorem: Let P be a nontrivial property of type-0 languages (there are
languages having property P and also languages not having property P).
Then property P is undecidable for type-0 languages.

3.2 Regular and context-free languages

Characterizations of reqular languages

1. For L C V*, we define the equivalence relation ~y over V* by = ~p, y iff
(uzv € L < uyv € L) for all u,v € V*. Then V*/ ~, is called the syntactic
monoid of L.

2. The set rex of reqular expressions (over an alphabet V') is the smallest
set of strings containing () and a, for every a € V, and having the following
property: if e1, es are in rex, then (ejes), (e; Ues) and e} are in rex, too. To a
regular expression e we associate a language L(e) according to the following
rules:
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(i) L(0)=0,L(a) ={a},a eV,
(if) L((ere2)) = L(ex)L(e2), L((e1 U e2)) = L(ex) U Llea), L(e}) =
(Ler))™

The following facts are basic for regular languages.
1. Kleene theorem: A language L is in the family REG iff there is a regular
expression e such that L = L(e) (hence it is regular in the sense of the
definition in the previous section).
2. Myhill-Nerode theorem: A language L C V* is regular iff V*/ ~ is finite.

Pumping lemmas and other necessary conditions

1. Bar-Hillel (wowzy, pumping) lemma for context-free languages: If L €
CF,L C V*, then there are p,q € N such that every z € L with |z| > p can
be written in the form z = wvway, with u, v, w,z,y € V*, jvwz| < q,vx # A,
and w'wz'y € L for all i > 0.
2. Pumping lemma for linear languages: If L € LIN,L C V*, then there
are p,q € N such that every z € L with |z| > p can be written in the form
z = wowzy, with u,v,w,x,y € V*, luvry| < q,ve # A, and wiwz'y € L for
all « > 0.
3. Pumping lemma for reqular languages: If L € REG,L C V*, then there
are p,q € N such that every z € L with |z| > p can be written in the form
2 = uwvw, with u,v,w € V*, |uv| < g,v # A, and uv'w € L for all i > 0.
4. Ogden pumping lemma (pumping with marked positions): If L € CF,L C
V*, then there is p € N such that for every z € L and for every at least p
marked occurrences of symbols in z, we can write z = uwvwzxy, where

(i) either each of u,v,w or each of w,z,y contains at least a marked

symbol,

(ii) vwa contains at most p marked symbols,

(iii) wvlwa'y € L for all i > 0.
5. Parikh theorem: Every context-free language is semilinear.
6. Every context-free language is letter-equivalent with a regular language.
7. Consequences: (1) Every context-free language over a one-letter alphabet
is regular. (ii) The length set of an infinite context-free language contains an
infinite arithmetical progression.
8. All the previous conditions are only necessary, not also sufficient.

Representation theorems

The language generated by the context-free grammar G = ({S},{a, b,

anybpt, S,{S — 88,8 = AP U{S — a;5b; | 1 < i < n}) is called the
Dyck language (over n pairs of symbols that can be viewed as parentheses)
and it is denoted by D

1. Every regular language L can be written in the form
L = ha(hz" (ha(h7 ' (a*)))),

where hy, hsa, h3, hy are morphisms.
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2. Chomsky-Schiitzenberger theorem: Every context-free language L can be
written in the form L = h(D, N R), where h is a morphism, D,, is a Dyck
language and R is a regular language.

3. Every language L € RE can be written in the form L = h(L; N Ls), as
well as in the form L = L3\ Ly, where h is a morphism and Lj, Lo, L3, L4 are
linear languages.

Normal forms

1. Chomsky normal form: For every context-free grammar G, a grammar
G' = (N,T,S,P) can be effectively constructed, with the rules in P of
the forms A — a and A — BC, for A,B,C € N,a € T, such that
L(G") = L(G) — {)\}.
2. Greibach normal form: For every context-free grammar G, a grammar
G' = (N,T, S, P) can be effectively constructed, with the rules in P of the
form A — aa, for A€ N,a € T,a € (NUT)*, such that L(G') = L(G) — {\}.
3. The super normal form: For every triple (k,l,m) of nonnegative inte-
gers and for every context-free grammar G, an equivalent grammar G’ =
(N,T, S, P) can be effectively constructed containing rules of the following
forms:

(i) A — aByCz, with A,B,C € N,z,y,z € T*, and |z| = k,|y| =
l,|z| = m,

(ii) A — x, with A € N,z € T*, |z| € length(L(QG)).
Variants of Chomsky and Greibach normal forms can be obtained by partic-
ularizing the parameters k, [, m above.

Ambiguity

A context-free grammar G is ambiguous if there is € L(G) having two
different leftmost derivations in G. A context-free language L is inherently
ambiguous if each context-free grammar of L is ambiguous; otherwise, L is
called unambiguous.

1. There are inherently ambiguous linear languages; each regular language
is unambiguous.

2. The ambiguity problem for context-free grammars is undecidable.

3.3 L Systems

1. An interactionless Lindenmayer system (0L system) is a triple G =
(V, P,w) where V is an alphabet, P is a finite set of rules a — u,a € V,u €
V*, such that there is at least one rule for each a € V, and w € V*. For z,y €
V* we write t =¢ y iff t = a1a1...ak, y = vqus...up and a; — u; € P,
1 < i < k (parallel derivation with each letter developing independently of
its neighbours). The generated language is L(G) = {z € V* | w =, z}.
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Examples of 0L systems.

System | Axiom Rules Language
G1 a a— a? {a® |n>0}
Ga a a— a,a— a’ at
Gs a a—bb—ab | {u;|uy=a,u; =buirs = ujlit1}
Gy aba a — aba,b — A {(aba)?" |n >0}
Gs aba | a— a,b— ba®b = L(Gy)

2. IL Systems (“interactions”) are defined similarly except that the rules are
context-dependent: the same letter may be rewritten differently in different
contexts.
3. Most capital letters have a standard meaning in connection with L sys-
tems. Thus, L refers to parallel rewriting. The character O (or 0) means that
information between individual letters (“cells”) is zero-sided. The letter P
(“propagating”) means that A is never on the right side of a rule, and D
(“deterministic”) that, for each configuration (a letter in a context), there is
only one rule. (The systems G1, Gs — G5 are DOL systems and, apart from
G4, also PDOL systems. They are also (degenerate cases of) I L systems. The
systems G4 and G5 are equivalent.) The letter F' (“finite”) attached to the
name of a system means that, instead of a single axiom, there can be finitely
many axioms. The letter T' (“tables”) means that the rules are divided into
subsets. In each derivation step, rules from the same subset have to be used;
D in this context means that each subset is deterministic. Finally, F, H,
C indicate that the language L originally generated is modified in a certain
way. E (“extensions”): L is intersected with Vi, where Vp (“terminals”) is a
subset of the original alphabet V. H (“homomorphism”): a morphic image
of L under a predefined morphism is taken. C' (“coding”): a letter-to-letter
morphic image of L is taken. Thus, we may speak of EDT0L and HPDFOL
systems. The families of languages generated by such systems are denoted
simply by EDTOL and HPDFOL.

Convention: two languages are considered equal if they differ only by the
empty word.
1. FIL = ETIL = RE; CFC EOLC EPIL = EPTIL = CS.
2. EOL=HOL=C0L=FEPOL=HPOL=FFOL=HFOL=CFOL=EPF0OL=
=HPFOL; ETOL=HTOL=CTOL=EPTOL=HPTOL=ETFOL=HTFOL=
CTFOL=EPTFOL=HPTFOL> CPTOL=CPTFOL.
3. HDOL=HPDOL=HDF0L=HPDFOL=CDFOL=CPDFO0L> CDOLD
DEDOLD>DOLDPDOL; EDTOL=HDTOL=CDTOL.
4. Equivalence is undecidable for OL systems but decidable for HDOL systems.
Emptiness and infinity are decidable for ETOL languages.
5. In general, L families have week closure properties, apart from extended
families, notably FOL and ETOL. For instance, DOL and 0L are anti-AFL’s
but EOL is closed under union, catenation, morphisms, intersection with reg-
ular sets, Kleene + (but not under inverse morphisms), whereas ETOL is a
full AFL.
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Sequences

A DOL system generates its language in a sequence, the word lengths in this
sequence constitute a DOL length sequence. The length sequences of G; and
G5 above are the nonnegative powers of 2 and the Fibonacci numbers, re-
spectively. Quite much is known about DOL length sequences, their theory
being related to the theory of finite difference equations with constant co-
efficients. The length of the nth term can be expressed as an exponential
polynomial, a finite sum of terms of the form anB™, where o and (8 are com-
plex numbers. Thus, neither logarithmic nor subexponential (not bounded by
a polynomial) growth is possible. (Both types are possible for DIL systems.)
Decidable characterizations can be given for HDOL length sequences that
are not DOL, and of strictly increasing DOL length sequences that are not
PDOL. It is decidable whether or not two given HDOL systems generate the
same length sequence, the same question being undecidable for DIL systems.

Comment: Parallelism of derivation in L systems reflects the original
motivation: L systems were introduced to model the development of (sim-
ple filamentous) organisms. Although the L systems discussed above are 1-
dimensional (generate only strings), branching structures can be described
using various conventions in computer graphics.

3.4 More powerful grammars and grammar systems

Regulated rewriting

A programmed grammaris a system G = (N, T, S, P), where N, T are disjoint
alphabets, S € N, and P is a finite set of quadruples (b: A — z, E, F'), where
A — z is a context-free rule over NUT), b is a label from a set Lab, and E, F'
are subsets of Lab. For (z,b), (y,V’) in V& x Lab we write (z,b) = (y, V') iff
one of the next two cases holds:

(i) x =x1Axe,y = x1229, for (b: A— 2, E,F)€ Pand ¥/ € E,
(i) |z|]a =0,z =y, and b’ € F.

The language generated by G is defined by L(G) = {w € T* | (S,b) =*
(w, b'), for some b,V € Lab}.

We denote by PR}, the family of languages generated by programmed gram-
mars; the superscript A is removed when one uses only A-free grammars; the
subscript ac is removed when grammars with only empty sets F' in rules
(b: A— z, E,F) are used.

1. CFc PRC PR,.C CS, PRC PR C PR). = RE.

2. ETOL C PRg..

3. PR, is an AFL (not full).

4. The programmed grammars (of various types) are equivalent with other
classes of grammars with regulated rewriting: matrix, controlled, time-vary-
ing, random context, state, etc.
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Grammar systems

A cooperating distributed (CD) grammar system of degree n,n > 1, is an (n+
3)-tuple G = (N, T, S, P1,...,P,), where N, T are disjoint alphabets, S € N,
and Py, ..., P, are finite sets of context-free rules over N UT. The derivation
relation z == p, y is defined in the usual way. Moreover, :>§31_ yiff v =74
y and there is no z € (N UT)* such that y = p, z (maximal derivation).
Then we define Li(G) = {w e T* | S :>§3i1 w1 :>§3i2 = Wy =
w,m>1,1<4; <n,1<j5<m}

We denote by CD,,(t) the family of languages generated (in the t-mode) by
CD grammar systems of degree at most n,n > 1.

CF = CD:(t) = CDy(t) C CD3(t) = CD,(t) = ETOL,n > 3.

Conteztual grammars

An internal contextual grammar with F choice (where F is a given family of
languages) is a system G = (V, B, (D1,C4),...,(D,,Cy)),n > 1, where V is
an alphabet, B is a finite language over V, D, are languages in F, and C}
are finite subsets of V* x V* 1 < i < n. For z,y € V* we write zt = y iff
T = T1x2x3,Y = T1ursvxs for xs € Dy, (u,v) € C;, for some 1 < i < n. Then
the language generated by G is L(G) = {w € V* | 2 =" w for some z € B}.
We denote by IC(F) the family of languages generated by such grammars. We
consider here F' € {FIN, REG}, where FIN is the family of finite languages.

1. REG C IC(FIN) C IC(REG) C CS.

2. IC(FIN) and IC(REG) are both incomparable with LIN and CF.

3. Every L € RE can be written in the form L = R\L', where L' € IC(FIN)
and R is a regular language.
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