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Divisibility

We start with a number of fairly elementary results and techniques, mainly
about greatest common divisors. You have probably met some of this material
already, though it may not have been treated as formally as here. There are
several good reasons for giving very precise definitions and proofs, even when
there is general agreement about the validity of the mathematics involved. The
first is that ‘general agreement’ is not the same as convincing proof: it is not
unknown for majority opinion to be seriously mistaken about some point. A
second reason is that, if we know exactly what assumptions are required in
order to deduce certain conclusions, then we may be able to deduce similar
conclusions in other areas where the same assumptions hold true. For example,
this chapter is entirely devoted to the divisibility properties of integers, but
it turns out that very similar definitions, methods and theorems are valid for
certain other objects which can be added, subtracted and multiplied; some
of these objects, such as polynomials, are very familiar, while others, such as
Gaussian integers and quaternions, will be introduced in later chapters. These
generalisations of the integers are also explored in algebra, under the heading
of ring theory.
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1.1 Divisors

Our starting-point is the division algorithm, which is as follows:

Theorem 1.1

If a and b are integers with b > 0, then there is a unique pair of integers ¢ and
r such that

a=qgb+r and 0<r<hb.

Example 1.1

Ifa=9and b=4then we have 9 =2 x4+ 1 with0 <1 < 4,s0¢=2and
r=1;ifa= -9 and b =4 then ¢ = —3 and r = 3.

In Theorem 1.1, we call ¢ the quotient and 7 the remainder. By dividing by

b, so that

Zoq+
b'—q

we see that ¢ is the integer part [a/b] of a/b, the greatest integer i < a /b. This
makes it easy to calculate ¢, and then to find r = a — gb.

and 0§%<1,

S

Proof

First we prove existence. Let
S={a—nb|ne€Z}={a,atba*2b,...}.

This set of integers contains non-negative elements (take n = —lal), so SN N
is a non-empty subset of N; by the well-ordering principle (see Appendix A),
S NN has a least element, which has the form r = a — gb > 0 for some integer
g. Thus a = gb+r with 7 > 0. If » > b then S contains a non-negative element
a—(g+1)b=r —b < r; this contradicts the minimality of 7, so we must have
r<b.

To prove uniqueness, suppose that a = gb+7 = ¢'b+ r’ with 0 <r < band
0<r <bsor—r =(q¢ —qb If ¢ #qthen|q —q| >1,s0 |r — 7| > |b| = b,
which is impossible since r and 7’ lie between 0 and b—1 inclusive. Hence ¢’ = ¢
and so ' = 7. O

We can now deal with the case b < 0: since —b > 0, Theorem 1.1 implies
that there exist integers ¢* and 7 such that a = ¢*(~=b) +7and 0 < r < —b, so



1. Divisibility 3

putting ¢ = —¢* we again have a = gb + r. Uniqueness is proved as before, so
combining this with Theorem 1.1 we have:

Corollary 1.2

If ¢ and b are integers with b # 0, then there is a unique pair of integers g and
r such that
a=gb+r and O0<r<|b.
(Note that when b < 0 we have

a r r
Z = — > _
b q+b and O_b> 1,

so that in this case g is [a/b], the least integer i > a/b.)

Example 1.2

As an application, we show that if n is a square then n leaves a remainder 0 or
1 when divided by 4. To prove this, let n = a2. Theorem 1.1 (with b = 4) gives
a = 4q +r where r = 0,1,2 or 3, so that

n=(4q+r)2=16q2+8qr+r2.

If » = 0 then n = 4(4¢% + 2¢r) + 0, if » = 1 then n = 4(4¢> +2¢r) + 1, if r =2
then n = 4(4¢% +2qr +1) + 0, and if r = 3 then n = 4(4¢%> +2gqr+2)+ 1. In
each case, the remainder is 0 or 1.

Exercise 1.1

Find a shorter proof for Example 1.2, based on putting b = 2 in Theorem
1.1.

Exercise 1.2

What are the possible remainders when a perfect square is divided by 3,
or by 5, or by 6 ?

Definition

If a and b are any integers, and a = gb for some integer ¢, then we say that b
divides a, or b is a factor of a, or a is a multiple of b. For instance, the factors
of 6 are +1,+2,4+3 and 6. When b divides a we write bja, and we use the
notation bfa when b does not divide a. To avoid common misconceptions, we



4 Elementary Number Theory

note that every integer divides 0 (since 0 = 0.b for all b), 1 divides every integer,
and every integer divides itself. We now record some simple but useful facts
about divisibility, proving two of them, and leaving the rest for the reader.

Exercise 1.3

Prove that

(a) if a|b and b|c then alc;

(b) if a|b and c|d then ac|bd;

(c) if m # 0, then a|b if and only if ma|mb;
(d) if dla and a # 0 then |d| < |al.

Theorem 1.3

(a) If ¢ divides a3, ...,ak, then ¢ divides aju; + --- + apuy for all integers
Uly...yUk-

(b) alb and b|a if and only if a = +b.

Proof

(a) If ¢ divides a; then a; = g;c for some integers ¢; (¢ = 1,...,k). Then
aiur + -+ apup = qreuy + -+ greug = (quur + - -+ + gruk)c, and as
q1u1 + - - - + qrug is an integer (since ¢; and u; are) we see that c|(aju1 +
oo+ agug).

(b) If a = +b then b = ga and a = ¢'b where ¢ = ¢’ = %1, so a|b and bla.
Conversely, let alb and bla, so b = ga and a = ¢’b for some integers q and
q'. If b = 0 then the second equation gives a = 0, so a = +b as required.
We can therefore assume that b # 0. Eliminating a from the two equations,
we have b = ¢g¢'b; cancelling b (possible since b # 0) we have g¢’ = 1, so
q,q' = %1 (using Exercise 1.3(d)) and hence a = +b. O

Exercise 1.4
If a divides b, and ¢ divides d, must a + ¢ divide b +d ?

The most useful form of Theorem 1.3(a) is the case k = 2, which we record
in the following slightly simpler notation.
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Corollary 1.4

If ¢ divides a and b, then c divides au + bv for all integers u and v.

Definition

If dja and d|b we say that d is a common divisor (or common factor) of a and
b; for instance, 1 is a common divisor of any pair of integers a and b. If a and b
are not both 0, then Exercise 1.3(d) shows that no common divisor is greater
than max(|al, |b]), so that among all their common divisors there is a greatest
one. This is the greatest common divisor (or highest common factor) of a and
b; it is the unique integer d satisfying

(1) d|a and d|b (so that d is a common divisor),

(2) if ¢|a and c|b then ¢ < d (so that no common divisor exceeds d).

However, the case a = b = 0 has to be excluded: every integer divides 0 and is
therefore a common divisor of a and b, so there is no greatest common divisor
in this case. When it exists, we denote the greatest common divisor of a and b
by ged(a, b), or simply (a,b). This definition extends in the obvious way to the
greatest common divisor of any set of integers (not all 0).

One way of finding the greatest common divisor of a and b is simply to
list all the divisors of a and all the divisors of b, and to choose the largest
integer appearing in both lists. It is clearly sufficient to list positive divisors: if
a = 12 and b = —18, for example, then by writing the positive divisors of 12 as
1,2,3,4,6,12, and those of —18 as 1,2,3,6,9, 18, we immediately see that the
greatest common divisor is 6. This method can be very tedious when a or b are
large, but fortunately there is a more efficient method of calculating greatest
common divisors, namely Euclid’s algorithm (published in Book VII of Euclid’s
Elements around 300 BC). This is based on the following simple observation.

Lemma 1.5

If a = gb + r then ged(a,b) = ged(b, 7).

Proof

By Corollary 1.4, any common divisor of b and r also divides ¢b + r = q;
similarly, since r = a — gb, it follows that any common divisor of a and b also
divides 7. Thus the two pairs a, b and b, have the same common divisors, so
they have the same greatest common divisor. m]
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Euclid’s algorithm uses this repeatedly to simplify the calculation of greatest
common divisors by reducing the size of the given integers without changing
their greatest common divisor. Suppose we are given two integers a and b (not
both 0), and we wish to find d = ged(a,b). If a = 0 then d = |b|, and if b =0
then d = |al, so ignoring these trivial cases we may assume that a and b are
both non-zero. Since

ng(a1 b) = ng(_av b) = ng(av _b) = ng(_av _b) ’

we may assume that a and b are both positive. Since ged(a,b) = ged(b, a) we
may assume that a > b, and by ignoring the trivial case ged(a,a) = a we may
assume that a > b, so

a>b>0.

We now use the division algorithm (Theorem 1.1) to divide b into a, and write
a=qb+r with 0<7ry <b.

If r1 = 0 then b|a, so d = b and we halt. If r; # 0 then we divide r; into b and

write
b=qory + 72 with 0<7ry<mr.

Now Lemma 1.5 gives gcd(a,b) = ged(b,71), so if r2 = 0 then d = r; and we
halt. If 7o # 0 we write

Ty =q3ry + T3 with 0<r3<mrg,

and we continue in this way; since b > r; > ro > ... > 0, we must eventually
get a remainder 7, = 0 (after at most b steps) at which point we stop. The last
two steps will have the form

Th-3 = Qn_1Tn—2 + Th_1 with 0<7p_1<Tp_2,

Th-2 = qnTn-1 + Tn with Tn = 0.

Theorem 1.6

In the above calculation we have d = r,_1 (the last non-zero remainder).

Proof
By applying Lemma 1.5 to the successive equations for a,b,71,...,T,—3 We see
that

d = ged(a, b) = ged(b, 1) = ged(ry,72) = -+ - = ged(Tp—2,Tn—1) -

The last equation 7,2 = ¢,r,—1 shows that r,_;|r,_2, so ged(Th—2,Tn-1) =
Tn—1 and hence d = r,,_1. 0
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Example 1.3
To calculate d = ged(1492,1066) we write
1492 = 1.1066 + 426
1066 = 2.426 + 214
426 = 1.2144 212
214 = 121242
212 = 106.2+40.

The last non-zero remainder is 2, so d = 2.

In many cases, the value of d can be identified before a zero remainder is
reached: since d = ged(a,b) = ged(b,r1) = ged(ry,72) = ..., one can stop as
soon as one recognises the greatest common divisor of a pair of consecutive
terms in the sequence a, b,71,732,. ... In Example 1.3, for instance, the remain-
ders 214 and 212 clearly have greatest common divisor 2, so d = 2.

Exercise 1.5
Calculate gcd(1485,1745).
Supplementary Exercises 1.17-1.24 consider the efficiency of Euclid’s algo-
rithm; see also Knuth (1968) for a detailed analysis. Stein’s (1967) algorithm
is similar, but more suitable for computer implementation: it avoids the time-

consuming operation of division, and by concentrating on powers of 2 it exploits
the binary arithmetic used in computers.

1.2 Bezout’s identity

The following result uses Euclid’s algorithm to give a simple expression for
d = ged(a, b) in terms of a and b:

Theorem 1.7
If @ and b are integers (not both 0), then there exist integers u and v such that
ged(a,b) = au + bv.

(This equation is sometimes knewn as Bezout’s identity. We will see later
that the values of u and v are not uniquely determined by a and b.)
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Proof

We use the equations which arise when we apply Euclid’s algorithm to calculate
d = ged(a, b) as the last non-zero remainder r,_1. The penultimate equation,
in the form

Tm—1=Tn-3 — qn-1Tn-2,
expresses d as a multiple of 7,3 plus a multiple of r,_5. We then use the
previous equation, in the form

Tm—2 = Thn—4 — qn-2Tn-3,

to eliminate r,_ and express d as a multiple of r,,_4 plus a multiple of r,,_3. We
gradually work backwards through the equations in the algorithm, eliminating
Tn—3,Tn—4, ... in succession, until eventually we have expressed d as a multiple
of a plus a multiple of b, that is, d = au + bv for some integers v and v. ]

Example 1.4

In Example 1.3 we used Euclid’s algorithm to calculate d, where a = 1492 and
b = 1066. Using those equations again, we have

d = 2
= 214-1.212
= 214 —1.(426 — 1.214)
= -1.426+2.214
= —1.426 + 2.(1066 — 2.426)
= 2.1066 — 5.426

= 2.1066 — 5(1492 — 1.1066)
= —5.1492 + 7.1066

so we can take u = —5 and v = 7. The next exercise shows that the values we
have found for v and v are not unique. (Later, in Theorem 1.13, we will see
how to determine all possible values for u and v.)

Exercise 1.6

Find a pair of integers u’ # —5 and v’ # 7 such that gcd(1492,1066) =
14924 + 1066v’.

Exercise 1.7

Express gcd(1485,1745) in the form 1485u + 1745v.
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Exercise 1.8

Show that c|a and c|b if and only if c|ged(a, b).

Having seen how to calculate the greatest common divisor of two integers,
it is a straightforward matter to extend this to any finite set of integers (not
all 0). The method, which involves repeated use of Euclid’s algorithm, is based
on the following exercise.

Exercise 1.9

Prove that ged(ay, - - -, ax) = ged(ged(ar, a2),as, .. ., ax).

This reduces the problem of calculating the greatest common divisor d of
k integers to two smaller problems: we calculate d = ged(ag,az) and then
d = ged(da,as,...,ak), involving two and k — 1 integers respectively. This
second problem can be further reduced by calculating d3 = gcd(d2, a3) and
then d = ged(ds, ag, - . .,ax), involving two and k — 2 integers. Continuing, we
eventually reduce the problem to a sequence of k — 1 calculations involving
pairs of integers, each of which can be performed by Euclid’s algorithm: we
find d; = ged(a1,a2),d; = ged(di—1,a;) for i =3,...,k, and put d = di.-

Example 1.5

To calculate d = ged(36,24,54,27) we find d; = gcd(36,24) = 12, then d3 =
ged(12,54) = 6, and finally d = dg = ged(6,27) = 3.

Exercise 1.10

Calculate gcd(1092,1155,2002) and ged(910, 780, 286, 195).

Exercise 1.11

Show that if aq, ..., ax are non-zero integers, then their greatest common
divisor has the form aju; + - - - + apuy for some integers uy,. .., ux. Find
such an expression where k = 3 and a; = 1092, a2 = 1155, a3 = 2002.

Theorem 1.7 states that ged(a,b) can be written as a multiple of a plus a
multiple of b; using this we shall describe the set of all integers which can be
written in this form.



10 Elementary Number Theory

Theorem 1.8

Let a and b be integers (not both 0) with greatest common divisor d. Then an
integer ¢ has the form ax + by for some z,y € Z if and only if ¢ is a multiple of
d. In particular, d is the least positive integer of the form az + by (z,y € Z).

Proof

If ¢ = ax + by where z,y € Z, then since d divides a and b, Corollary 1.4
implies that d divides c. Conversely, if ¢ = de for some integer e, then by
writing d = au + bv (as in Theorem 1.7) we get ¢ = aue + bve = ax + by,
where £ = ue and y = ve are both integers. Thus the integers of the form
az + by (z,y € Z) are the multiples of d, and the least positive integer of this
form is the least positive multiple of d, namely d itself. O

Example 1.6

We saw in Example 1.3 that if a = 1492 and b = 1066 then d = 2, so the
integers of the form ¢ = 1492z + 1066y are the multiples of 2. Example 1.4 gives
2 = 1492.(-5) + 1066.7, so multiplying through by e we can express any even
integer 2e in the form 1492z + 1066y: for instance, —4 = 1492.10 + 1066.(—14).

Definition

Two integers a and b are coprime (or relatively prime) if ged(a,b) = 1. For
example, 10 and 21 are coprime, but 10 and 12 are not. More generally, a set
ai,as,... of integers are coprime if gcd(ay,as,...) = 1, and they are mutually
coprime if ged(a;,a;) = 1 whenever ¢ # j. If they are mutually coprime then
they are coprime (since ged(aq,az,...)|ged(as,a;)), but the converse is false:
the integers 6,10 and 15 are coprime but are not mutually coprime.

Corollary 1.9

Two integers a and b are coprime if and only if there exist integers x and y
such that

ax+by=1.

Proof

Let ged(a, b) = d. If we put ¢ =1 in Theorem 1.8, we see that az + by = 1 for
some z,y € Z if and only if d|1, that is, d = 1. m]
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For example, 10.(~2) + 21.1 = 1, confirming that 10 and 21 are coprime.

Corollary 1.10
If ged(a, b) = d then
ged(ma, mb) = md

for every integer m > 0, and

(3, 4) =1

Proof

By Theorem 1.8, gcd(ma, mb) is the smallest positive value of maz + mby =
m(az + by), where z,y € Z, while d is the smallest positive value of ax + by,
so ged(ma, mb) = md. Writing d = au + bv and then dividing by d, we have

2 U+ é v=1
utow=1,
so Corollary 1.9 implies that the intergers a/d and b/d are coprime. O

Corollary 1.11

Let a and b be coprime integers.
(a) If a|c and blc then able.

(b) If a|bc then alc.

Proof
(a) We have ax + by = 1, ¢ = ae and ¢ = bf for some integers z,y,e and f.
Then ¢ = caz + cby = (bf)az + (ae)by = ab(fz + ey), so ablc.

(b) As in (a), ¢ = caz + cby. Since albc and ala, Corollary 1.4 implies that
al(caz + cby) = c. O

Exercise 1.12

Show that both parts of Corollary 1.11 can fail if @ and b are not coprime.
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1.3 Least common multiples

Definition

If a and b are integers, then a common multiple of a and b is an integer c
such that alc and blc. If a and b are both non-zero, then they have positive
common multiples (such as |ab|), so by the well-ordering principle they have
a least common multiple or, more precisely, a least positive common multiple;
this is the unique positive integer [ satisfying

(1) a|l and b|l (so ! is a common multiple), and

(2) if alc and blc, with ¢ > 0, then I < ¢ (so no positive common multiple is
less than 1).

We usually denote ! by lem(a,b), or simply [a,b]. For example lem(15, 10) =
30, since the positive multiples of 15 are 15,30, 45, ... while those of 10 are
10,20, 30, . ... The properties of the least common multiple can be deduced
from those of the greatest common divisor, by means of the following result.

Theorem 1.12
Let a and b be positive integers, with d = ged(a, b) and | = lem(a, b). Then
dl=ab.

(Since ged(a,b) = ged(lal, |b]) and lem(a,b) = lem(|al, |b]), it is no great
restriction to assume a,b > 0.)

Proof
Let e = a/d and f = b/d, and consider
ab de.df
Ti— = d = def .

Clearly this is positive, so we can show that it is equal to ! by showing that it
satisfies conditions (1) and (2) of the definition of lem(a, b). First,

def = (de)f =af and def = (df)e = be;

thus a|def and b|def, so (1) is satisfied. Second, suppose that a|c and b|c, with
¢ > 0; we need to show that def < c. By Theorem 1.7 there exist integers u
and v such that d = au + bv. Now ‘
c cd ed clau+bv) rc c
def _ (de)(df) ab b ()e+ (3)v
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is an integer, since a and b are factors of c¢; thus def|c and hence (by Exercise
1.3(d)) we have def < ¢, as required. m}

Example 1.7
If a = 15 and b = 10, then d = 5 and | = 30; thus dl = 150 = ab, agreeing with
Theorem 1.12.

We can use Theorem 1.12 to find | = lem(a,b) efficiently by first using
Euclid’s algorithm to find d = gcd(a, b), and then calculating | = ab/d.

Example 1.8 ,
Since ged (1492, 1066) = 2 we have lem(1492,1066) = (1492x1066)/2 = 795236.

Exercise 1.13

Calculate lem (1485, 1745).

Exercise 1.14

Show that ¢ is a common multiple of a and b if and only if it is a multiple
of | =lem(a, b).

1.4 Linear Diophantine equations

In this book we will consider a number of Diophantine equations (named after
the 3rd-century mathematician Diophantos of Alexandria): these are equations
in one or more variables, for which we seek integer-valued solutions. One of the
simplest of these is the linear Diophantine equation ax + by = c; we can use
some of the preceding ideas to find all integer solutions z,y of this equation.
The following result was known to the Indian mathematician Brahmagupta,
around AD 628:

Theorem 1.13

Let a,b and c be integers, with a and b not both 0, and let d = gcd(a, b). Then
the equation
ax +by=c
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has an integer solution z,y if and only if ¢ is a multiple of d, in which case
there are infinitely many solutions. These are the pairs

bn an
x=$o+7, Yy=% - (neiz),

where g, Yo is any particular solution.

Proof

The fact that there is a solution if and only if d|c is merely a restatement of
Theorem 1.8. For the second part of the theorem, let zo,yo be a particular
solution, so

axg + byg = c.
If we put
ez +bn _ an
=T a4’ Y=1Yo d

where n is any integer, then
bn an
ax+by=a(xo+7> +b(yo— 7) =axg+byo =c,
so z,y is also a solution. (Note that x and y are integers since d divides b and
a respectively.) This gives us infinitely many solutions, for different integers n.
To show that these are the only solutions, let z,y be any integer solution, so
az + by = c. Since az + by = ¢ = axo + byo we have

a(z — o) + b(y — v0) =0,
so dividing by d we get

%(z—xo) = —g(y—yo)- (1.1)

Now a and b are not both 0, and we can suppose that b # 0 (if not, interchange
the roles of a and b in what follows). Since b/d divides each side of (1.1), and is
coprime to a/d by Corollary 1.10, it divides  — zo by Corollary 1.11(b). Thus
z — xo = bn/d for some integer n, so

T =0+ bn
=0+ — -
Substituting back for £ — zo in (1.1) we get
b a a bn
W —w) ==~ o) = 2.7

so dividing by b/d (which is non-zero) we have

_ an
Y=1Y0 d
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Thus we can find the solutions of any linear Diophantine equation ax +by =
¢ by the following method:

(1) Calculate d = ged(a, b), either directly or by Euclid’s algorithm.

(2) Check whether d divides c: if it does not, there are no solutions, so stop
here; if it does, write ¢ = de.

(3) If d|c, use the method of proof of Theorem 1.7 to find integers u and v
such that au + bv = d; then ¢ = ue,yo = ve is a particular solution of
azx + by = c.

(4) Now use Theorem 1.13 to find the general solution z,y of the equation.

Example 1.9
Let the equation be
1492z + 1066y = —4,

so a = 1492, b = 1066 and ¢ = —4. In step (1), we use Example 1.3 to see
that d = 2. In step (2) we check that d divides ¢: in fact, ¢ = —2d, so e = —2.
In step (3) we use Example 1.4 to write d = —5.1492 + 7.1066; thus u = —5
and v = 7, s0 o = (—5).(=2) = 10 and yo = 7.(—2) = —14 give a particular
solution of the equation. By Theorem 1.13, the general solution has the form

1492
1066m _ 101 533n, y= —14_ 14920

=10+ =—-14-T46n (n€Z).

Exercise 1.15

Find the general solution of the Diophantine equation 1485x + 1745y =
15.

It is sometimes useful to interpret the linear Diophantine equation ax +by =
c geometrically. If we allow z and y to take any real values, then the graph of
this equation is a straight line L in the zy-plane. The points (z,y) in the plane
with integer coordinates z and y are the integer lattice-points, the vertices of
a tessellation (tiling) of the plane by unit squares. Pairs of integers x and y
satisfying the equation correspond to integer lattice-points (x,y) on L; thus
Theorem 1.13 asserts that L passes through such a lattice-point if and only
if d|c, in which case it passes through infinitely many of them, with the given
values of x and y.
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Exercise 1.16

If ai,...,ax and c are integers, when does the Diophantine equation
a1z1 + - - - + apTr = c have integer solutions z1,...,Tx ?

1.5 Supplementary exercises

Exercise 1.17

Let us define the height h(a) of an integer a > 2 to be the greatest n
such that Euclid’s algorithm requires n steps to compute gcd(a,b) for
some positive b < a (that is, ged(a,b) = rn—1). Show that h(a) = 1 if
and only if a = 2, and find h(a) for all a < 8.

Exercise 1.18

The Fibonacci numbers fn, =1,1,2,3,5,... are defined by fi = f2 = 1,
and fpy2 = fns1 + fn for all n > 1. Show that 0 < fn < fao1 for
all n > 2. What happens if Euclid’s algorithm is applied when a and b
are a pair of consecutive Fibonacci numbers fr42 and fr+17 Show that

h(fn+2) > n.

Exercise 1.19

Suppose that a > b > 0, that Euclid’s algorithm computes gcd(a,b) in
n steps, and that a is the smallest integer with this property (that is, if
a’ > b > 0and gcd(a’,b’) requires n steps, then a’ > a); show that a and
b are consecutive Fibonacci numbers ¢ = fni2 and b = fr41 (Lamé’s
Theorem, 1845).

Exercise 1.20

Show that h(fn42) = n, and fn42 is the smallest integer of this height.
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Exercise 1.21

Show that f, = (¢" — ¢™)/+/5, where ¢, 1 are the positive and negative
roots of A2 = X + 1. Deduce that f, = {¢"/v/5}, where {z} denotes the
integer closest to . Hence obtain the approximate upper bound

log¢(a\/g) —2 =log,(a) + %log¢(5) — 2~ 4.785log;y(a) — 0.328

for the number of steps required to compute gcd(a, b) by Euclid’s algo-
rithm, where a > b > 0.

Exercise 1.22

Show that if a and b are integers with b # 0, then there is a unique pair
of integers q and r such that a = ¢b+r and —|b|/2 < r < |b]/2. Use
this result instead of Corollary 1.2 to devise an alternative algorithm to
Euclid’s for calculating greatest common divisors (the least remainders
algorithm).

Exercise 1.23

Use the least remainders algorithm to compute gcd(1066,1492) and
ged(1485,1745), and compare the numbers of steps required by this al-
gorithm with those required by Euclid’s.

Exercise 1.24

What happens if the least remainders algorithm is applied to a pair of
consecutive Fibonacci numbers?

Exercise 1.25

Show that if a and b are coprime positive integers, then every integer
¢ > ab has the form azx + by where z and y are non-negative integers.
Show that the integer ab — a — b does not have this form.
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