Chapter 2

The Krull-Schmidt-Remak-
Azumaya Theorem

2.1 The exchange property

In the first two sections of this chapter we shall consider modules with the
exchange property. Making use of the exchange property we shall study refine-
ments of direct sum decompositions (Sections 2.3 and 2.10), prove the Krull-
Schmidt-Remak-Azumaya Theorem (Section 2.4) and prove that every finitely
presented module over a serial ring is serial (Section 3.5). If A, B, C are sub-
modules of a module M and C < A, then AN(B+C) = (AN B)+ C. This
is called the modular identity. We begin with an immediate consequence of the
modular identity that will be used repeatedly in the sequel.

Lemma 2.1 I[f A C B C A®C are modules, then B = A® D, where D = BNC.

Proof. Application of the modular identity to the modules A C B and C yields
BN(C+A)=(BnC)+ A, that is, B= A+ D. This sum is direct because
ANDCANC=0. O

Given a cardinal X, an R-module M is said to have the RX-exchange property
if for any R-module G and any two direct sum decompositions

G=M &N = ®cA;,

where M’ 2 M and |I| < X, there are R-submodules B; of A4;, ¢ € I, such that
G =M & (Sic1Bi).
In this notation an application of Lemma 2.1 to the modules

B; CA; CB; @& (M & (®;£Bj))
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yields A; = B; @ D;, where D; = A; N (M’ & (;x,B;)). Hence the submod-
ules B; of A; in the definition of module with the N-exchange property are
necessarily direct summands of A;.

A module M has the exchange property if it has the R-exchange property
for every cardinal . A module M has the finite exchange property if it has the
N-exchange property for every finite cardinal N.

A finitely generated module has the exchange property if and only if it
has the finite exchange property.

Lemma 2.2 If G, M', N, P, A; (i € I), B; (i € I) are modules, B; C A; for
every i € 1,
G=M ®N®P=(®ictA;) ®P (2.1)

and
G/P = ((M'+ P)/P)® (®ie1((B: + P)/P)), (2:2)

then
G=M & (®ic1B;) ® P.

Proof. From (2.2) it follows immediately that G = M’ 4+ (3>,.; Bi) + P. In
order to show that this sum is direct, suppose m’ + (Zie] bi) +p = 0 for
some m' € M’ b; € B; almost all zero, and p € P. From (2.2) we have that
(m' + P)+ (X,c;(bi + P)) =0 in G/P, so that m’ € P and b; € P for every
i € I. Then by (2.1) weget m’ e MNP =0and b; € B,NPC A,NP=0.
Therefore p = 0. 0

The proof of the next corollary follows immediately from the definitions
and Lemma 2.2.
Corollary 2.3 If G, M', N, P, A; (i € I) are modules, |I| <N,
G=M ®&N®P=(®ictA;) ®P

and M’ has the R-exchange property, then for every i € I there exists a direct
summand B; of A; such that

G=M & (®;e1B;) ® P. O

The rest of this section is devoted to proving the first properties of modules
with the exchange property. The following result shows that the class of modules
with the R-exchange property is closed under direct summands and finite direct
sums.

Lemma 2.4 Suppose N is a cardinal and M = My & Ms. The module M has
the R-exchange property if and only if both My and My have the N-exchange
property.
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Proof. Suppose M = My & M, has the R-exchange property,
G =M ®N = dicrA,,

M{ ~ M; and ‘Il <N.Then G' =My ®G =M &N = My @ (@iEIAi)7
where M’ = M{ & My =2 M. Fix an element k € I, and set I’ = I\ {k}.
Then G' = M' @ N = (Ma @ Ay) @ (Dicrr A;). Hence there exist submodules
B C My ® Ay and B; C A; for every i € I’ such that

Gl == M/ EB B @ (@iEI'Bi) . (23)
Since My C My & B C My & Ay, it follows from Lemma 2.1 that
My @ B = My @ By,

where By, = (M ® B)N Ay,. Thus M’ & B = (M @ M2) ® B = M| & My & By,.
Substituting this into (2.3) we obtain

G =M, & My & (®,e1B;) . (2.4)

Application of the modular identity to the modules M{ & (®;crB;) € G and
Ms yields G N (Mg + (M{ D (@26131))) = (G n Mg) + (M{ D (®iEIBi))7 that
is, G = M| @® (®ierB;). Thus M; has the R-exchange property.

Conversely, suppose M7 and M, have the R-exchange property and

G=M & M;&N=dcrAi,

where M| = My, M5 = M and |I| < X. Since M; has the R-exchange property,
there are submodules A} C A; such that G = M{ & M}, & N = M| & (Bic14}).
Since M5 also has the N-exchange property, from Corollary 2.3 it follows that
for every i € I there exists a submodule B; C A} such that

G =My ® (DierB;) ® Mj.

Thus M = M; ® Ms has the N-exchange property. O

Clearly, every module has the 1-exchange property. Modules the with 2-
exchange property have the finite exchange property, as the next lemma shows.

Lemma 2.5 If a module M has the 2-exchange property, then M has the finite
exchange property.

Proof. 1t is sufficient to show, for an arbitrary integer n > 2, that if M has the
n-exchange property, then M has the (n 4 1)-exchange property. Let M be a
module with the n-exchange property (n > 2) and suppose

G=Mo&N=A0A® - ®Ay,
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where M/ 2 M. Set P=A1®As®--- DAy, s0that G =M ON =PDApi1.
Since M has the 2-exchange property, there exist submodules P’ C P and
B,11 € Ayqq such that G = M’ @ P’ ® By,41. An application of Lemma 2.1 to
the modules P’ - P - Pl@(M/@Bn_;,_l) and Bn+1 - An—i—l - Bn—i—l@(M/@P/)
yields P = P' @ P" and A, 11 = Bny1 © Aj,, where P = PN (M' @ By41)
and A}, | = App1 N (M @ P’). From the decompositions

G=M &P &Byy1=(P" @A) ® (P @ Bpt)

we infer that P is isomorphic to a direct summand of M’. Therefore P has
the n-exchange property by Lemma 2.4. Since

P=PoP' =404 &,
there exist submodules B; C A; (i =1,2,...,n) such that
P=P' ¢&B ®By® - - P B,.
Application of Lemma 2.1 to the modules
P'CM ®B,y1 CG=P' & (P ¢ Ans1)

yields M’ @ B,41 = P” @& P"”, where P = (M’ & Bp11) N (P’ & Apiq).
Therefore

G:M/@PI@BTL+1:P/@P//@PH/:P@PIN
:Bl@"'@Bn@Pﬂ@Pﬂl:Bl@"'@Bn@Bn-i-l@M/v

that is, M has the (n + 1)-exchange property. O

2.2 Indecomposable modules with the
exchange property

The aim of this section is to show that the indecomposable modules with the
(finite) exchange property are exactly those with a local endomorphism ring.
First we prove two elementary lemmas that will be used often in the sequel.

Lemma 2.6 Let A be a module and let My, Mo, M’ be submodules of A. Suppose
A= M & M. Let mo: A = My & My — My denote the canonical projection.
Then A = My @& M’ if and only if wo|pr: M' — My is an isomorphism. If these
equivalent conditions hold, then the canonical projection wyp: A — M’ with
respect to the decomposition A = My & M’ is (7r2|M/)71 o Ty.

Proof. The mapping ma|as is injective if and only if M’ N M; = 0, and is
surjective if and only if for every zo € My there exists '’ € M’ such that
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2’ = x1 +x9 for some x1 € My, that is, if and only if My C M’ + My, i.e., if and
only if My + My = M’ + M;. This proves the first part of the statement. For
the second part suppose that the equivalent conditions hold. Given an arbitrary
element a € A, one has a = x1 + mp (a) for a suitable element 1 € M;. Hence

ma(a) = ma(xz1) + 72| (marr (@), from which (7r2|Mf)_1 ma(a) = 7 (a). O

Lemma 2.7 Let M, N, Py,..., P, be modules with M @ N = P, ®---® P,. If
M is an indecomposable module with the finite exchange property, then there
is an index j = 1,2,...,n and a direct sum decomposition P; = B @ C of P;
such that M & N = M ® B ® (©ixjPi), M = C and N = B @® (®ix; F;).

Proof. Since M has the finite exchange property, for every i = 1,2, ..., n there
exists a decomposition P; = B; @& C; of P; such that

Me&B & ®&@B,=P1®- &Py

If we factorize modulo B1 & ---® B,, we find that M = C{ & ---&C,,. But M is
indecomposable. Hence there exists an index j such that M = C; and C; =0
for every i # j. Then B; = P; for i # j, hence

M&N=M&B & - ®B,=M&B; ® (&%, F).

In particular, N = B; & ($,2;F;). Thus B = B; and C' = C; have the required
properties. O
Theorem 2.8 The following conditions are equivalent for an indecomposable
module Mg.

(a) The endomorphism ring of Mg is local.

(b) Mg has the finite exchange property.

(¢) Mpg has the exchange property.

Proof. (a) = (b). Let Mg be a module with local endomorphism ring End(MEg).
By Lemma 2.5 in order to prove that the finite exchange property holds it suf-
fices to show that M has the 2-exchange property. Let G, N, A1, As be modules
such that G = M &N = A1 & As. Let epr,€4,,4,, T, TA,, TA, be the embed-
dings of M, A1, A5 into G and the canonical projections of G onto M, Ay, A
with respect to these two decompositions. We must show that there are sub-
modules By C A; and By C Ag such that G = M @ B; @ By. Now

Iy =7mem =T (EA, TA;, + EATAL)EM = TMEA, TALEM + TMEA,TALEM -

Since End(M) is local, one of these two summands, say mase4, 74, €rr, must be
an automorphism of M. Let H be the image of the monomorphism

5A17TA15M1M — G,
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so that e4,m4,ep induces an isomorphism M — H and mwp|g: H — M is an
isomorphism. From Lemma 2.6 we have that G = N @& H and the projection
G — H with respect to this decomposition is (mas|z) " mas. Since

H=¢epmaem(M)C A1 CNOH,

it follows from Lemma 2.1 that A, = H & By, where By = AN N, and the pro-
jection A; — H with respect to this decomposition is (7as|rr) 7|4, There-
fore G = A1 ® A = HP (B @ Az). With respect to this last decomposition of G
the projection G — H is (mar|m) " mar|a,ma, = (marle) " maea, ma,, and this
mapping restricted to M is (mar|g) 'marea, ma,ear. This is an isomorphism.
Again by Lemma 2.6 we get that G = M ® B; @ As.

(b) = (c). Let Mg be an indecomposable module with the finite exchange
property and suppose G = M @ N = @;c1A;. Fix a non-zero element x € M.
There is a finite subset F' of I such that x € @;crA;. Set A" = §iep\ pAi, s0
that G = M & N = (®erA;) @ A’. By Lemma 2.7 either there is an index
j € F and a direct sum decomposition A; = B @® C of A; such that

G =M & B & (®ier, i#jAi) DA,
or there is a direct sum decomposition A’ = B’ ® C’ of A’ such that
G =M B @& (®icrd;).

The second possibility cannot occur because M N (P;crA;) # 0. Hence there
is an index j € F' and a submodule B of A; such that

G=M®B® (Dier, i#jdi) DA =M O B O (Dier, izjAi) -

(¢) = (a). Let M be an indecomposable module and suppose that End(M)
is not a local ring. Then there exist two elements ¢, € End(M) which are not
automorphisms of M, such that ¢ —1 = 1,. Let A = My @ M, be the external
direct sum of two modules M7, My both equal to M, and let m;: A — M;,
1 = 1,2 be the canonical projections. The composite of the mappings

<i>:M—>M1@M2 and (1y —1p): My My — M

is the identity mapping of M, so that if M’ denotes the image of ( z ) and K

denotes the kernel of (15, — 1a7), then A = M’ @ K. If the exchange property
were to hold for M, there would be direct summands B; of M; and By of M
such that A = M'® K = M' ® By ® Bs. Since M; and M, are indecomposable,
we would have either A = M’ ® M; or A= M'® Ms. If A = M’ & M, then
ma|am: M — My is an isomorphism (Lemma 2.6). Then the composite mapping

Ty 0 ( v ) : M — Mj is an isomorphism. But m3 o ( ? ) =4, contradiction.

(G Y
Similarly if A = M’ & M. This shows that M does not have the exchange

property. 0
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2.3 Isomorphic refinements of finite direct
sum decompositions

Let M be a module over a ring R. Suppose that { M; |t € I} and { N, | j € J }
are two families of submodules of M such that M = ®;c;M; = ®jcsN;. Then
these two decompositions are said to be isomorphic if there exists a one-to-one
correspondence ¢: I — J such that M; = N, for every i € I, and the second
decomposition is a refinement of the first if there is a surjective map ¢: J — I
such that N C M, ;) for every j € J (equivalently, if there is a surjective map
@:J — I such that @ c,-1(;N; = M; for every i € I). The first theorem of this
section gives a criterion that assures the existence of isomorphic refinements of
two direct sum decompositions.

Theorem 2.9 Let R be a cardinal, let M be a module with the N-exchange prop-
erty, and let M = @;e1M; = ®jesN; be two direct sum decompositions of M
with I finite and |J| < X. Then these two direct sum decompositions of M have
isomorphic refinements.

Proof. We may assume I = {0,1,2,...,n}. We shall construct a chain N; D

No;j 2Ni; 22N, ;2 N, for every j € J such that

M = (®F_oM;) ® (Djes Ny ;)

for every k = 0,1,2,...,n. The construction of the N,’w- is by induction on k.
For k = 0 the module Mj has the R-exchange property (Lemma 2.4). Hence
there are submodules Ny ; of N; such that M = M, @ (ije,]Né’j). Suppose
1<k < nand that the modules Nf_, ; with M = (&40 M) & (,esN,_, )
have been constructed. Apply Corollary 2.3 to the decompositions

M = My @ (®]_j 1 M) & (8129 M) = (®jesNi_1 ;) & (D529 M)

(note that Mj has the N-exchange property by Lemma 2.4). Then there exist
submodules Ny . of Ny _, ; such that M = M, & (@jGJNI::’j) @ (@f;olMi),
which is what we had to prove.

For k = n we have that M = (&]_,M;) & (©jesN), ;), so that N}, . =0
for every j € J. Since the Ny ; are direct summands of M contained in Ny_, ;,
there is a direct sum decomposition Ny, ; = Ni ;& Ny, ; for every k and j
(Lemma 21) Slmllarly, Nj = N(/)A,j@NO,j' Hence Nj = NO,j@Nl,jGB' . '@Nn,j fOI‘
every j € J, so that M = ®jey @y N ; is a refinement of the decomposition
M - @jeJNj.

As M = (@) Mi) © (95esN]y,) = (@hoMi) @ (jesNE;) for
k = 1,2,...,n, factorizing modulo (@f;olMi) &) (@je]Nli,,j) we obtain that
@jesNi; = My for k=1,2,...,n. Similarly ®;c;No,; = My. Hence for every
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i=0,1,2,...,n thereis a decomposition M; = @, N;’; of M; with N;; = N; ;
for every 1 and j. Thus @}y Bjes Nz” ; is a refinement of the decomposition
M = ®}_,M; isomorphic to the decomposition M = @jc; By N 5. O

A second case in which it is possible to find isomorphic refinements is that
of direct sum decompositions into countably many direct summands with the
Np-exchange property. This is proved in the next theorem.

Theorem 2.10 Let M be a module with two direct sum decompositions
M=By®B1®B,® ... (2.5)

M=ChdCidCy®... (2.6)

with countably many direct summands, where all the summands B; and C;
have the Rg-exchange property. Then the two direct sum decompositions (2.5)
and (2.6) have isomorphic refinements.

Proof. Set Bj _; = B; and C] _; = C; for every i = 0,1,2,.... By induction
on j=0,1,2,... we shall construct direct summands B; ;, B j of B; for every
i=4+1,7 +2 j+3,... and direct summands C; ;,C! 4. ofC for every 1=
Jyd+1,542,...such that the following properties hold for every j = 0,1

(a) Bi ;. =
(b C” 1—0]@0 for every i = j,5 + 1,5 +2,.
M = (By_1®Cpp)( 1’0@0171)@"'@(B;'J—l@cjl}j)@(@Zozjﬂczlw);

)
)
d) M= (B(I),—l EBC(/),O) D (Bi,o @Ci 1) DD (B;‘,jq @C;‘,j) D (@I?;jJrlB;c,j);
)
)

B”@B forevery i=j5+1,7+2,57+3,.

e) Cjj®Cjy1,; ®Cjya; & - = Bj; y;

f) Bjt1,; ® Bjy2; © Bjys; @ = = (]

J:J°

Case j = 0. Since By has the Wy-exchange property, there exists a de-
composition C; = C; o ® C}  of C; for every i = 0,1,2,... such that

M=By®Cpo®Ci®C,D.... (2.7)
From (2.6) and (2.7) it follows that
By =2Coo®Cio@Coo®...,

that is, (e) holds.

The direct summand Cj o of Cp has the Ng-exchange property by Lemma
2.4. Applying Corollary 2.3 to (2.5) and (2.7) we obtain direct sum decompo-
sitions B; = B; o ® B of B; for every i = 1,2,3,... such that

M=By®Coo®B|®Byg®B3n®.... (2.8)
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From (2.5) and (2.8) we get that Cp g = Bio © B2o © B3 @ ..., that is,
(f) holds. This concludes the construction of the submodules C; o, C; , of C; for
every : =0,1,2,... and the submodules B; g, Bz’-70 of B; foreveryi=1,2,3,....
Now properties (a) and (b) hold because B; _; = B; and C} _; = C; for every
i = 0,1,2,.... Property (c) is given by equation (2.7), and (d) is given by
equation (2.8). This concludes the first inductive step j = 0.

Now fix an integer ¢ > 0 and suppose we have already constructed the
direct summands Cj ;, Cl(’ ; of C; with the required properties for j < £and ¢ > j
and the direct summands B; j, B] ; of B; for j < { and i > j. In particular we
suppose that (d) holds for j = ¢ — 1, that is, we suppose that

M =By, @ (@i?;éHBI/C,ZA) @ ((36,71 ® Ch )
® (Bl y®Cl1)® - ®(Byr_102® C2—1,5—1)) ) (2.9)
and we suppose that (c) holds for j = ¢ — 1, that is,
M = (B7ZChe-1) ® ((Bo,—1 @ Coyp)
® Bl o@Cl1)® - ®(Byr142® Céfuq)) . (2.10)

Since By ,_; is a direct summand of By, it has the Ro-exchange property by
Lemma 2.4. Hence we can apply Corollary 2.3 to the two decompositions (2.9)
and (2.10), and obtain that there exist direct sum decompositions

Cru1=Cre®Cy,
of Cp, ,_, for every k= £, +1,£+2,... such that
M = Bj, 1 & (S32eCh,e) & ((Bo,—1 ® Cp0)
@ (Blo@CL) @ & (Bpo1,i-0 ®Cpi ) - (2.11)
This is property (c) for the integer £. Now equality (2.10) can be rewritten as
M = (972, (Cre © Ch ) © ((Bj, 1 @ Co0)
S(B1o@C1) @@ (Bi_ypo® Cé—l,é—l)) .

This and (2.11) yield
By o1 = OFZ Oty

that is, property (e) holds.
Now Cé,e is a direct summand of Cy. Hence it has the Rgp-exchange prop-
erty. Equality (2.11) can be rewritten as

M =Cpy @ (872031Ch) ® ((Bo,—1 ® Cop)
DB @®CL) D D(Bp_1p2DCp_141)® Bé,e—1) (2.12)
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and (2.9) can be rewritten as

M= (@iO:zHBl/c,e—ﬂ D ((Bé,—1 ® Cho)
B(B1o@C11) @@ (Bioyp2®Cpq1p1) O 32,5—1) - (2.13)

Applying Corollary 2.3 to (2.12) and (2.13) we find that there exists a direct
sum decomposition By , ; = By ¢ ® By, , for every k = {+1,£+2,... such that

M =Cy, @ (872011 Br,0) © ((By,—1 @ Cgp)
OB o®C1 )@ DBy 2®Ci1,1)® 32,571) . (214)

This proves property (d) for the integer £. From (2.13) and (2.14) it follows
that C , = ©72 ., B¢ Hence (f) holds, and this concludes the construction
by induction.

From (e) we infer that there exist modules B; ; for ¢ < j such that B; ; =
Cj’i and

Bj,,] @ Bj,]+1 @ B]7]+2 @ e = B;7j71 (2.15)
for every j > 0. From (a) we have that
Bi =B _,=DBio®B,=DBio®Bi1 ®Bj,
= =Bio®Bi1® - ®Bii19B],; 4,
so that
B; = & ,B; (2.16)
by (2.15).

Similarly, from (f) we get that there exist modules C; ; for ¢ < j such that
Ci’j = Bj’i and
Cijr1 ®Cijr2®Cjjp3® ... =Cj; (2.17)
for every j > 0. From (b) it follows that C;j = Cj 0 ©Cj1 @& Cj; ©C 4, s0
that
C; =0320Cjk (2.18)

by (2.17).
Since B;; = Cj,; for every i,j = 0,1,2,..., (2.16) and (2.18) yield the
required isomorphic refinements of the decompositions (2.5) and (2.6). O
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2.4 The Krull-Schmidt-Remak-Azumaya Theorem

The Krull-Schmidt-Remak-Azumaya Theorem is one of the main topics of this
volume. We shall obtain a proof of it using the exchange property. We begin
with a lemma that is of independent interest.

Lemma 2.11 If a module M is a direct sum of modules with local endomorphism
rings, then every indecomposable direct summand of M has local endomorphism
ring.

Proof. Suppose M = A® B = @;c;M;, where A is indecomposable and
all the modules M; have local endomorphism ring. Let F' be a finite subset
of I with AN @;epM; # 0, and set C = @;cpM;. The module C has the
exchange property (Lemma 2.4 and Theorem 2.8). Hence there exist direct
sum decompositions A = A’ ® A” of A and B = B’ ® B” of B such that
M =Ca A'® B’. Note that A’ is a proper submodule of A, because ANC # 0
and A’ N C = 0. Since A is indecomposable, it follows that A’ = 0. Thus
M =Co®B'.From M = C®»B' = A B’ ®B" it follows that C =2 A® B”. Thus
A is isomorphic to a direct summand of C. Hence A has the exchange property
by Lemma 2.4. Therefore A has local endomorphism ring by Theorem 2.8. [

We are ready for the proof of the Krull-Schmidt-Remak-Azumaya The-
orem.

Theorem 2.12 (Krull-Schmidt-Remak-Azumaya Theorem) Let M be a module
that is a direct sum of modules with local endomorphism rings. Then any two
direct sum decompositions of M into indecomposable direct summands are iso-
morphic.

Proof. Suppose that M = ®;erM; = ®jesN;, where all the M; and N;
are indecomposable. By Lemma 2.11 all the modules M; and N; have local
endomorphism rings. For I’ C I and J' C J let

M(II) = @ierM; and N(J/) = ®jes Nj.

By Lemma 2.4 and Theorem 2.8 the modules M (I') and N(J') have the ex-
change property whenever I’ and J’ are finite. Since the summands N; are inde-
composable, for every finite subset I’ C I there exists a subset J’' C J such that
M= MI"eN((J\J). From M = M(I")&N(J\J') = N(J )N (J\J'), we get
that M(I') = N(J'). By Theorem 2.9 applied to the decompositions M (I") &
N(J"), the two decompositions M (I') = G;errM; and N(J') = Pje N, have
isomorphic refinements. From the indecomposability of the M; and NN, it fol-
lows that there is a one-to-one correspondence ¢: I’ — J’ such that M; = N ;)
for every i € I'. For every R-module A set

In={icl|M;=A} and Ja={jeJ|N,=A}.



44 2 Krull-Schmidt-Remak-Azumaya Theorem

From what we have just seen it follows that if 14 is finite, then |I4] < |Jal,
and if T4 # 0, then J4 # (0. By symmetry, if J4 is finite, then |J4| < |I4[, and
Ja # 0 implies T4 # (. In order to prove the theorem it is sufficient to show
that |I4| = |Ja| for every R-module A.

Suppose first that I4 is finite. In this case we argue by induction on |I4].
If |I4] = 0, then |Ja| = 0. If |I4] > 1, fix an index 9 € I4. Then there is an
index jo € J such that M = M ({io}) @ N(J\ {Jjo}). If we factorize the module
M({io}) ® N(J\ {jo}) = M(I) modulo M({ip}) we obtain that

N(J\{jo}) = M(I\ {io})-

From the induction hypothesis we get that |14 \ {io}| = |Ja \ {jo}|, so that
a| = [Jal-

By symmetry we can conclude that if J4 is finite, then |I4| = |J4| as well.

Hence we can suppose that both I4 and J4 are infinite sets. By symmetry
it is sufficient to show that |J4| < |I4] for an arbitrary module A.

For each i € Iy set J(i) ={je J| M =M, @ N(J\{j})}. Obviously
J(i) C Ja. If z is a non-zero element of M;, then there is a finite subset J” of
J such that € N(J"). Hence M; N N(K) # 0 for every K C J that contains
J"”. Thus J(i) C J”, so that J(4) is finite.

We claim that (J;c;, /(i) = Ja. In order to prove the claim, fix j € J4.
Then there exists a finite subset I’ of I such that N; N M(I’) # 0. Hence there
exists a finite subset J' C J such that M = M (I')®N(J\J'). Note that j € J'.
Since N(J'\ {j}) has the exchange property, we can apply Corollary 2.3 to the
decompositions M = N(J'\ {j}) ® N; @ N(J\ J') = (Bier M;) ® N(J\ J').
Then for every ¢ € I’ there exists a direct summand M, of M; such that
M=NJ'\{j}) ® (@icrM])® N(J\ J'). Then N; = &;cpr M/, so that there
exists an index k € I’ with M| = M}, and M/ = 0 for every i € I’, i # k. Note
that My = N; = A, so that k € I4. Thus

M =N\ {j}) & My ® N(J\ J') = My, & N(J\ {j}),

that is, j € J(k). Hence j €
It follows that

sc1, J (i), which proves the claim.

|Jal =

U 70)

i€la

S‘IA|~N0:|IA|. O
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2.5 Applications

In this section we apply the Krull-Schmidt-Remak-Azumaya Theorem to some
important classes of modules.

A first immediate application of the Krull-Schmidt-Remak-Azumaya
Theorem 2.12 can be given to the class of semisimple modules.

Lemma 2.13 (Schur) The endomorphism ring End(M) of a simple module M
s a division Ting.

Proof. If M is a simple module and f is a non-zero endomorphism of M, then
ker f and f(M) must be submodules of M. Hence they are either 0 or M. If
ker f = M, then f = 0, contradiction. Therefore ker f = 0 and f is injective. If
f(M) =0, then f = 0, contradiction. Therefore f(M) = M and f is surjective.
Thus f is an automorphism of M, that is, f is invertible in End(M). |

Since division rings are local rings, we get the Krull-Schmidt-Remak-
Azumaya Theorem for semisimple modules:

Theorem 2.14 Any two direct sum decompositions of a semisimple module into
simple direct summands are isomorphic. 0

The next result describes the structure of the submodules and the homo-
morphic images of a semisimple module.

Proposition 2.15 Let M be a semisimple R-module and { M; | i € I} a family
of simple submodules of M such that M = ®;c;M;. Then for every submodule
N of M there is a subset J of I such that N = @;cjM; and M/N = ©;cp s M;.

Proof. By Proposition 1.1 the submodule N of the semisimple module M is a
direct summand of M, so that M = N @ N’ for a submodule N’ = M /N of M.
By Proposition 1.1 again, both N and N’ are semisimple. Hence N = @®xeca Ny
and N’ = @,enr N, for suitable simple submodules Ny, N),. By Theorem 2.14
the two decompositions @;crM; = (PacalNa) & (@NGAIN;IL) of M are iso-
morphic. Therefore there are a subset J of I and one-to-one correspondences
¢:J — Aand : 1\ J — A’ such that M; = Ny for every i € J and
M; =2 N (’/}(i) for every i € I'\ J. The conclusion follows immediately. O

As a second application of Theorem 2.12, we study the uniqueness of
decomposition of some particular artinian or noetherian modules.

Lemma 2.16 Let M be a module and f an endomorphism of M.
(a) If n is a positive integer such that f*(M) = f*+1(M), then

ker(f™)+ f*(M) = M.
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(b) If M is an artinian module, then f is an automorphism if and only if f
18 1njective.

Proof. (a) If n is such that f*(M) = f*TY(M), then ft(M) = fi+1(M) for
every t > n, so that f*(M) = f2"(M). Let us show that

ker(f™) + f™(M) = M.

If 2 € M, then f*(z) € f*(M) = f?"(M), so that f*(x) = f*(y) for some
y € f"(M). Therefore z =z —y € ker(f"), and z = z + y € ker(f™) + f™(M).

(b) If f an injective endomorphism of the artinian module M, the de-
scending chain

SM) 2 fA(M) 2 fA(M) D ...

is stationary, so that ker(f™)+ f™(M) = M for some positive integer n by part
(a). As f™ is injective, ker(f™) = 0, and therefore f™(M) = M. In particular,
f is surjective. a

Similarly it can be proved that

Lemma 2.17 Let M be a module and f an endomorphism of M.
(a) If n is a positive integer such that ker f™ = ker f*"*1, then

ker(f")n f*(M) = 0.

(b) If M is a noetherian module, then f is an automorphism if and only if f
18 surjective. O

A submodule N of a module My is fully invariant if o(N) C N for
every ¢ € End(Mg), that is, if N is a submodule of the left End(Mg)-
module M. A submodule N of Mg is essential in Mgr if NN P # 0 for
every non-zero submodule P of Mpg. The socle of a module Mpg is the sum
of all simple submodules of Mg. It is a semisimple fully invariant submodule
of Mg and it will be denoted soc(Mp). Since every non-zero artinian module
has a simple submodule, the socle is an essential submodule in every artinian
module. If Ng is an artinian module and its socle soc(Ng) is a simple mod-
ule, by Lemma 2.16(b) an endomorphism f € End(Ng) is not an automorph-
ism if and only f(soc(Ng)) = 0. It follows that End(Ng) is a local ring with
Jacobson radical J(End(Ng)) = { f € End(Ng) | f(soc(Ng)) = 0}. Therefore
Theorem 2.12 yields

Theorem 2.18 Let My be an R-module that is a direct sum of artinian mod-
ules with simple socle. Then any two direct sum decompositions of Mg into
indecomposable direct summands are isomorphic. O
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The hypothesis that the artinian modules have simple socle is essential in
Theorem 2.18 as we shall see in Section 8.2.

Recall that a module M is local if it has a greatest proper submodule.
Hence noetherian local modules are the “duals” of artinian modules with a
simple socle. The next result is the dual of Theorem 2.18 and is proved similarly.

Theorem 2.19 Let M be an R-module that is a direct sum of noetherian local
modules. Then any two direct sum decompositions of M into indecomposable
direct summands are isomorphic. 0

Our third application of the Krull-Schmidt-Remak-Azumaya Theorem
will be to the class of modules of finite composition length.

Lemma 2.20 (Fitting’s Lemma) If M is a module of finite length n and f is
an endomorphism of M, then M = ker(f™) @ f™*(M).

Proof. Since M is of finite length n, both the chains
ker f C ker f2 Cker f3 C ...

and
f(M) 2 f2(M) 2 f5(M) 2 ...

are stationary at the n-th step, so that ker(f™) & f™(M) = M by Lemmas
2.16(a) and 2.17(a). O

We shall say that a module My is a Fitting module if for every f €
End(MRg) there is a positive integer n such that M = ker(f™) ® f™(M). Thus
by Lemma 2.20 every module of finite length is a Fitting module. It is easily
seen that direct summands of Fitting modules are Fitting modules.

Lemma 2.21 The endomorphism ring of an indecomposable Fitting module is
a local Ting.

Proof. If M is a Fitting module and f is an endomorphism of M, there exists
a positive integer n such that M = ker(f™) & f*(M). If M is indecomposable,
two cases may occur. In the first case ker(f™) =0 and f*(M) = M. Then f"
is an automorphism of M, so that f is an automorphism of M. In the second
case ker(f™) = M, that is, f is nilpotent. Hence every endomorphism of M is
either invertible or nilpotent.

In order to show that the endomorphism ring End(M) of M is local, we
must show that the sum of two non-invertible endomorphisms is non-invertible.
Suppose that f and g are two non-invertible endomorphisms of M, but f + g is
invertible. If h = (f +¢g)~! is the inverse of f+g, then fh+gh = 1. Since f and
g are not automorphisms, neither fh nor gh are automorphisms. Therefore, as
we have just seen in the previous paragraph, there exists a positive integer n
such that (gh)™ = 0. Since 1 = (1 — gh)(1 + gh + (gh)?> + -+ + (gh)"™ 1), the
endomorphism 1 — gh = fh is invertible. This contradiction proves the lemma.

a
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Theorem 2.12 and Lemma 2.21 yield

Theorem 2.22 Let M be an R-module that is a direct sum of indecomposable
Fitting modules. Then any two direct sum decompositions of M into indecom-
posable direct summands are isomorphic. 0

In particular, from Lemma 2.20 it follows that

Corollary 2.23 (The Krull-Schmidt Theorem) Let M be an R-module of finite
length. Then M is the direct sum of a finite family of indecomposable modules,
and any two direct sum decompositions of M as direct sums of indecomposable
modules are isomorphic. O

A further class of modules to which the Krull-Schmidt-Remak-Azumaya
Theorem can be applied immediately is the class of indecomposable injective
modules. The proof of the following lemma is an easy exercise left to the reader.

Lemma 2.24 Let M # 0 be an R-module. The following conditions are equiva-
lent:

(a) The intersection of any two non-zero submodules of M is non-zero.
(b) The injective envelope of M is indecomposable.
(¢) Every non-zero submodule of M is essential in M.

(d) Every non-zero submodule of M is indecomposable. 0

An R-module M # 0 is said to be uniform if it satisfies the equivalent
conditions of Lemma 2.24. For instance, an artinian module is uniform if and
only if it has a simple socle.

We state the next lemma in the language of Grothendieck categories. The
reader who is not used to this language may think of the case of an indecom-
posable injective R-module.

Lemma 2.25 Let M be an indecomposable injective object of a Grothendieck
category C. Then

(a) An endomorphism of M is an automorphism if and only if it is a mono-
morphism.

(b) The endomorphism ring of M is a local ring.

In particular, the endomorphism ring of every indecomposable injective module
1s a local ring.
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Proof. (a) If f: M — M is a monomorphism, then im(f) is a subobject of
M isomorphic to M. In particular, im(f) is a non-zero direct summand of M.
Since M is indecomposable, im(f) = M and f is an automorphism.

(b) Let End¢ (M) denote the endomorphism ring of M. We must show that
the sum of two non-invertible elements of End¢ (M) is non-invertible. Suppose
that f and g are two non-invertible endomorphisms of M. In (a) we have seen
that f and ¢ are not monomorphisms, that is, ker f # 0 and ker g # 0. Since
M is coirreducible (= uniform), we have ker f Nker g # 0. Now

ker f Nkerg C ker(f + g),

so that ker(f + g) # 0. Therefore f + g is not invertible in End¢(M). O

As an immediate application of Lemma 2.25 to the category C = Mod-R
and the Krull-Schmidt-Remak-Azumaya Theorem we have:

Theorem 2.26 Let M be an R-module that is a direct sum of injective indecom-
posable modules. Then any two direct sum decompositions of M into indecom-
posable direct summands are isomorphic. O

As a second application of Lemma 2.25 to the category C = (grFP, Ab)
we find:

Corollary 2.27 The endomorphism ring of an indecomposable pure-injective
module is a local Ting.

Proof. Let Mg be an indecomposable pure-injective module, let zkFP be the full
subcategory of R-Mod whose objects are the finitely presented left R-modules,
let Ab be the category of abelian groups, and let C =(gFP, Ab) be the category
of all additive functors from rFP to Ab. Then

M ®gr —: gRFP— Ab

is an indecomposable injective object in the Grothendieck category C (Prop-
osition 1.39). Since Endr(M) = Endc¢(M), the ring Endg(M) is local by
Lemma 2.25(b). O

We conclude this section showing that the Krull-Schmidt Theorem holds
for Y-pure-injective modules. We need a preliminary proposition.

Proposition 2.28 Let R be a ring and let B C C be classes of non-zero right
R-modules. Suppose that every module in C has a direct summand in B and
that for every proper pure submodule P of any module M € C there exists a
submodule D of M such that D € B, PN D =0 and P+ D = P ® D is pure
in M. Then every module M € C is a direct sum of modules belonging to B.
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Proof. Suppose Mg € C. Let T be the set of submodules of M that belong
toBand put S = {I|I CZ, ) yc;N is a pure submodule of M and the
sum ) ;N is direct }. Since every module in C has a direct summand in B,
the set S is non-empty. Partially order & by set inclusion. Then the union of
a chain of elements of S is an element of S by Proposition 1.31(a). By Zorn’s
Lemma S has a maximal element J. Set P =)y ; N = ©yesN, so that P
is a pure submodule of M. If P is a proper submodule of M, then there is a
submodule D of M such that D € B, PN D = 0 and P + D is pure in M.
Thus JU{D} € S, and D ¢ J because PN D = 0 and the module D € B is
non-zero. This contradicts the maximality of J. Hence M = P is a direct sum
of modules belonging to B5. ]

Theorem 2.29 Let My be a X-pure-injective R-module. Then Mg s a direct
sum of modules with local endomorphism ring, so that any two direct sum de-
compositions of Mg as direct sums of indecomposables are isomorphic.

Proof. We shall apply Proposition 2.28 to the class C of ¥-pure-injective non-
zero R-modules and the class B of indecomposable ¥-pure-injective R-modules.
Firstly, we must show that every Y-pure-injective non-zero module Mg has an
indecomposable direct summand N. To see this, let  be a non-zero element
of Mgr. Let P be the set of all pure submodules of Mg that do not contain
z. Then P is non-empty and the union of every chain in P is an element
of P (Proposition 1.31(a)). By Zorn’s Lemma P has a maximal element Q.
By Corollary 1.42 there exists a submodule N of M such that M =Q & N. If
N = N'®&N" with N', N"” # 0, then QN and QB N" are direct summands of
M that do not belong to P. Hence z € (Q®&N')N(Q@N") = Q, a contradiction.
The contradiction proves that N is indecomposable, as we wanted to prove.

Secondly, we must show that for every proper pure submodule P of a
Y-pure injective module Mp there exists an indecomposable Y-pure-injective
submodule D of M such that PN D = 0 with P+ D = P ® D pure in M.
For such a pure submodule P we know that Mr = P @ P’ for a submodule P’
(Corollary 1.42), and by the first part of the proof P’ = D @ P” for suitable
submodules D and P” with D indecomposable. The module D has the required
properties.

Hence by Proposition 2.28 every X-pure-injective module M is a direct
sum of indecomposable modules.

Finally, every indecomposable direct summand of M is pure-injective,
hence every indecomposable direct summand of M has a local endomorphism
ring (Corollary 2.27). O
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2.6 Goldie dimension of a modular lattice

The notion of Goldie dimension of a module concerns the lattice £(M) of all
submodules of M, which is a modular lattice. Modular lattices seem to be the
proper setting for the definition of Goldie dimension. Hence in this section we
shall consider arbitrary modular lattices and their Goldie dimension.

Throughout this section (L, V, A) will denote a modular lattice with 0 and
1, that is, a lattice with a smallest element 0 and a greatest element 1 such
that a A (bV ¢) = (a Ab) V¢ for every a,b,c € L with ¢ < a. If a,b € L and
a<blet[a,b)={xz€L|a<z<b} be the interval between a and b.

A finite subset {a; | i € T} of L\ {0} is said to be join-independent
if a; A (V4 a;) = 0 for every i € I. The empty subset of L\ {0} is join-
independent. An arbitrary subset A of L \ {0} is join-independent if all its
finite subsets are join-independent.

Lemma 2.30 Let A C L\ {0} be a join-independent subset of a modular lattice
L. If B,C are finite subsets of A and BNC =0, then (\/ e b) A (Veeo ) = 0.

Proof. By induction on the cardinality |B| of B. The case |B| = 0 is trivial.
Suppose the lemma holds for subsets of cardinality < |B|. Fix an element

be Bandset B =B\ {b} anda= (\,cpz) A (Vyec y) By the induction
hypothesis

(bVa)/\<\/ x>< \V v /\(\/ x>:0, (2.19)

zeB’ ye{byuC z€B’

and by the definition of join-independent set

<\/ x\/a)/\bﬁ( \/ x)/\sz. (2.20)

zeB’ z€B'UC
Then
a<(bVa)A \/:vEB )
=(bVa)A((Veep )V b) (by the modular identity) (2.21)
=((bVa)A (Vyep ) Vb (by (2.19)) :
=0Vb=b,
and
a< (VeepzVa)A(V,ep2)
= (VaemrVa)AN(bVV cp m) (by the modular identity) (2.22)
= (\/IGB/ zV a’) A b) \4 (\/IGB’ 1') (by (220)) :
SO0V Veep = V,ep o

From (2.21) and (2.22) it follows that a <bA\/ .5 = = 0, as desired. O
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Proposition 2.31 Let A C L\ {0} be a join-independent subset of a modular
lattice L. Let a € L be a non-zero element such that a A (\/,cpb) = 0 for every
finite subset B of A. Then AU {a} is a join-independent subset of L.

Proof. 'We must prove that every finite subset of AU {a} is join-independent.
This is obvious for finite subsets of A. Hence it suffices to show that if B is a
finite subset of A, then BU {a} is join-independent. Since a A (\/,c 5 b) = 0, we
have to prove that b A (a V'V, cp\ ) 2) = 0 for each b € B. Now

(\/yEB y) A (a % (\/xeB\{b} J;)) (by the modular identity)
= <<Vy€B y) A a) Y (\/a:eB\{b} x) (by hypothesis) (2.23)
=0V (szB\{b} f) = Ve (0} &
so that
bA(aVV,ep @) (since b <V, cpv)
=07 (Vyen y) AV Voep @) (by (2.23)) 0
=bA (Vien ) x) =0 (because B is join-independent).

By Zorn’s Lemma every join-independent subset of L \ {0} is contained
in a maximal join-independent subset of L\ {0}.

An element a € L is essential in L if a Az # 0 for every non-zero element
x € L. Thus 0 is essential in L if and only if L = {0}. If a, b are elements of L,
a < b and a is essential in the lattice [0,b], then a is said to be essential in b.
In particular, 0 is essential in b if and only if b = 0.

Lemma 2.32 Let a,b, c be elements of L. If a is essential in b and b is essential
in ¢, then a is essential in c.

Proof. Let x be a non-zero element of [0, ¢]. We must show that a Az # 0. Now
b Az # 0 because b is essential in ¢, hence a A (b A x) # 0 because a is essential
inb. But aA(bAz)=aAu. O

Lemma 2.33 Let a,b,c,d be elements of L such that bAd = 0. If a is essential
i b and c is essential in d, then a V c is essential in bV d.

Proof. If any of the four elements a, b, ¢, d is zero, the statement of the lemma
is trivial. Hence we shall assume that a, b, ¢, d are all non-zero.

We claim that if the hypotheses of the lemma hold for the four elements
a,b,c,d € L'\ {0}, then a V d is essential in bV d. Assume the contrary. Then
there exists a non-zero element x € L such that £ < bV d and

(avd)Az=0.
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Since {a, d} is join-independent, the set {a,d, x} is join-independent by Prop-
osition 2.31. In particular, a A (d V x) = 0, so that a Ab A (dV x) = 0. This
implies that b A (d V ) = 0, because a is essential in b and b A (dV z) < b.
Now {d,z} C {a,d, z} is join-independent, and thus b A (d V ) = 0 forces that
{b,d,x} is join-independent (Proposition 2.31). In particular, x A (b V d) = 0.
But z < bV d, so that x = 0. This contradiction proves the claim.

If we apply the claim to the four elements c, d, a, a, we obtain that ¢V a is
essential in d V a, that is, a V ¢ is essential in a V d. The conclusion now follows
from this, the claim and Lemma 2.32. |

By an easy induction argument we obtain

Corollary 2.34 Let aq, as, ..., a,, by, ba, ..., b, be elements of L such that
{b1,b2, ..., by} is join-independent. If a; is essential in b; for everyi =1,2,...,
n, then a1 Vas V---Va, is essential in by Vby V-V b,. O

A lattice L # {0} is uniform if all its non-zero elements are essential in
L, that is, if z,;y € L and x Ay = 0 imply z = 0 or y = 0 . An element a of a
modular lattice L is uniform if a # 0 and the lattice [0, a] is uniform.

Lemma 2.35 If a modular lattice L does not contain infinite join-independent
subsets, then for every non-zero element a € L there exists a uniform element
b e L such that b < a.

Proof. Let a # 0 be an element of a modular lattice L such that every b < a
is not uniform. We shall define a sequence a1, as, as, ... of non-zero elements of
[0, a] such that for every n > 1 the set {aj1,as,...,a,} is join-independent and
a1 V-V ay is not essential in [0, a]. The construction of the elements a,, is by
induction on n. For n = 1 note that a is not uniform, hence there exist non-zero
elements a1, a] € [0, a] such that a; Aaj = 0, i.e., a; has the required properties.
Suppose a1, ...,a,_1 have been defined. Since a; V -+ -V a,_1 is not essential
in [0, a], there exists a non-zero b € [0, a] such that bA (a1 V-V ap—1) = 0.
The element b is not uniform. Hence there exist a,,a,, € [0,b], where a,,al,
are non-zero, such that a, A a,, = 0. Then a, A (a1 V-V an,—1) = 0, so that
{a1,aq9,...,a,} is join-independent by Proposition 2.31. Moreover

an A(arV---Vay) (since al, < b)
=a, AbA((a1V---Vay_1)Va,)  (bythe modular identity)
=a, N(bA(a1 V- Van_1))Vay)
=a, AN(0Va,)=0.

This completes the construction. Now { a,, | n > 1} is an infinite join-indepen-
dent set. O
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Theorem 2.36 The following conditions are equivalent for a modular lattice L
with 0 and 1.

(a) L does not contain infinite join-independent subsets.

(b) L contains a finite join-independent subset {a1,as,...,an} with a; uni-
form for everyi=1,2,....,n and ay Vas V ---V a, essential in L.

(¢) The cardinality of the join-independent subsets of L is < m for a non-
negative integer m.

(d) If ap < a1 < ag < ... s an ascending chain of elements of L, then there
exists 1 > 0 such that a; is essential in a; for every j > i.

Moreover, if these equivalent conditions hold and {ai,as,...,a,} is a finite
join-independent subset of L with a; uniform for every i = 1,2,...,n and
a1 VagV---Va, essential in L, then any other join-independent subset of L
has cardinality < n.

Proof. (a) = (b). Let F be the family of all join-independent subsets of L
consisting only of uniform elements. The family F is non-empty (Lemma 2.35).
By Zorn’s Lemma F has a maximal element X with respect to inclusion. By
(a) the set X is finite, say X = {a1,a2,...,a,}. The element ay VasV---Vay is
essential in L, otherwise there would exist a non-zero element x € L such that
(a1VasV---Vay)Ax = 0, and by Lemma 2.35 there would be a uniform element
b € L such that b < x. Then {aj,as,...,a,,b} would be join-independent by
Proposition 2.31, a contradiction.

(b) = (c). Suppose that (b) holds, so that there exists a finite join-
independent subset {a1,as,...,a,} of L with a; uniform for every ¢ and

arV---Vay

essential in L. Assume that there exists a join-independent subset {by,ba,...,by}
of L of cardinality & > n. For every t = 0,1,...,n we shall construct a subset
X; of {a1,as,...,a,} of cardinality ¢t and a subset Y; of {by,bo,...,b;} of
cardinality & — ¢ such that X; NY; = 0 and X; UY, is join-independent. For
t =0set Xg=0and Yy = {b1,b2,...,bx}. Suppose that X; and Y; have been
constructed for some ¢, 0 < t < n. We shall construct X;;; and Y;y;. Since
|Yi|=k—t>n—t>0, there exists j = 1,2,...,k with b; € Y;. Set

=\ w
ye(XeUY)\{bs}

We claim that ¢ A ay = 0 for some ¢ = 1,2,...,n. Otherwise, if c Aa; # 0
for every ¢ = 1,2,...,n, then ¢ A a; is essential in a; because a; is uniform,
so that \/_, ¢ A a; is essential in \/]_, a; by Corollary 2.34. Since \/]_; a; is
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essential in 1, it follows that \/]_, ¢ A a; is essential in 1 (Lemma 2.32). Then
c > \/:-L:1 c A a; is essential in 1, so that ¢ A b; # 0. This contradicts the fact
that X; UY; is join-independent and the contradiction proves the claim. From
Proposition 2.31 and the claim it follows that (X; U {ac}) U (Y2 \ {b;}) is join-
independent, so that Xy11 = X; U {a,} and Y41 =Y, \ {b;} have the required
properties. This completes the construction of the sets X; and Y;.

For ¢ = n we have a non-empty subset Y,, of {b1,bs,...,b;} such that
{a1,a9,...,a,} UY, is a join-independent subset of cardinality k, so that

(arVasV---Va,) Ay=0

for every y € Y,,, and this contradicts the fact that a; Vas V- --Va, is essential
in L. Hence every join-independent subset of L has cardinality < n.

(¢) = (d). If (d) does not hold, there is a chain ag < a1 < as < ... of
elements of L such that for every i > 0 there exists j(i) > i with a; not essential
in a;¢;y. Set jo = 0 and j,41 = j(jn) for every n > 0. Then for every n > 0
there exists a non-zero element b, < aj, ,, such that b, A a;, = 0. The set
{bn | n >0} is join-independent by Proposition 2.31. Thus (c) does not hold.

(d) = (a). If (a) is not satisfied, then L contains a countable infinite join-
independent subset {b; | i > 0}. Set a, = \/[_yb;. Then ag < a1 <ap <...,
and for every n > 0 the element a,, is not essential in a,; because

an N\ bn+1 =0.

Hence (d) is not satisfied.
The last part of the statement has already been seen in the proof

of (b) = (c). O
Thus, for a modular lattice L, either there is a finite join-independent
subset {aj,as,...,a,} with a; uniform for every i = 1,2,...,n and

arVasV---Vay

essential in L, and in this case n is said to be the Goldie dimension dim L of
L, or L contains infinite join-independent subsets, in which case L is said to
have infinite Goldie dimension. The Goldie dimension of a lattice L is zero if
and only if L has exactly one element.

2.7 Goldie dimension of a module

In this section we shall apply the Goldie dimension of modular lattices intro-
duced in the previous section to the lattice £(M) of all submodules of a module
Mp. If the lattice £(M) has finite Goldie dimension n, then n will be said to
be the Goldie dimension dim Mg of the module Mg. Otherwise, if the lattice
L(M) has infinite Goldie dimension, that is, if Mp contains an infinite direct
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sum of non-zero submodules, the module Mg will be said to have infinite Goldie
dimension (dim Mg = 00).
Since a module M is essential in its injective envelope FE (M),

dim(M) = dim(E(M)).

In Section 2.5 we had already defined uniform modules. Obviously, a module
M is uniform if and only if the lattice £(M) is uniform. A module M has finite
Goldie dimension n if and only if it contains an essential submodule that is
the finite direct sum of n uniform submodules Uy, ..., U, (Theorem 2.36(b)).
In this case E(M) = E(Uy) ® E(Us) @ --- & E(U,,) is the finite direct sum of
n indecomposable modules. Note that by Theorem 2.26 we already knew that
if E(M) is a finite direct sum of indecomposable modules, then the number
of direct summands in any indecomposable decomposition of E(M) does not
depend on the decomposition. Hence a module M has finite Goldie dimension n
if and only if its injective envelope E(M) is the direct sum of n indecomposable
modules.

In the next proposition we collect the most important arithmetical proper-
ties of the Goldie dimension of modules. Some of these properties have already
been noticed. Their proof is elementary.

Proposition 2.37 Let M be module.
(a) dim(M) =0 if and only if M = 0.
(b) dim(M) = 1 if and only if M is uniform.

(¢) If N < M and M has finite Goldie dimension, then N has finite Goldie
dimension and dim(N) < dim(M).

(d) If N < M and M has finite Goldie dimension, then dim(N) = dim(M)
if and only if N is essential in M.

(e) If M and M’ are modules of finite Goldie dimension, then M & M’ is a
module of finite Goldie dimension and dim(M @& N) = dim(M)+dim(N).
O

Artinian modules and noetherian modules have finite Goldie dimension.
For an artinian module M, the Goldie dimension of M is equal to the composi-
tion length of its socle soc(M). In particular, an artinian module M has Goldie
dimension 1 if and only if it has a simple socle.

The next proposition contains a first application of the Goldie dimension
of a ring.

Proposition 2.38 Let R be a ring and suppose that Rg has finite Goldie di-
mension. Then every surjective endomorphism of a finitely generated projec-
tive right R-module Pgr is an automorphism. In particular, every right or left
invertible element of R is invertible.
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Proof. If Pg is a finitely generated projective R-module, then Py has finite
Goldie dimension. If ¢ is a surjective endomorphism of Pg, then

Pr @ kerp = Pg,

so that dim(ker ) = 0, that is, ¢ is injective. For the second part of the
statement we must show that if z,y € R and xzy = 1, then yx = 1. Since
xy = 1, left multiplication by x is a surjective endomorphism u, of Rg. From
xy = 1 it follows that yR @ ker(u,) = R. Hence yR = R, i.e., y is also right
invertible. Thus y is invertible and x is its two-sided inverse. O

2.8 Dual Goldie dimension of a module

We shall now apply the results on the Goldie dimension of modular lattices
of Section 2.6 to the dual lattice of the lattice £(M) of all submodules of a
module M. If (L,A,V) is a modular lattice, then its dual lattice (L,V,A) is
also a modular lattice. In particular, the Duality Principle holds for modular
lattices, that is, if a statement ® expressed in terms of A, V, < and > is
true for all modular lattices, then the dual statement of ®, obtained from &
interchanging A with V and < with >, is also true for all modular lattices.

Since the dual of the lattice £(M) of all submodules of a module M
is modular, all the results of Section 2.6 hold for this lattice. We now shall
translate the results of Section 2.6 for the dual of the lattice £(M) to the
language of modules.

Let M be aright R-module. A finite set { N; | ¢ € I } of proper submodules
of M is said to be coindependent if N; + (;,; N;) = M for every i € I,
or, equivalently, if the canonical injective mapping M/ (;c; Ni — @ierM/N;
is bijective. An arbitrary set A of proper submodules of M is coindependent
if its finite subsets are coindependent. If A is a coindependent set of proper
submodules of M and N is a proper submodule of M such that N+(( x5 X) =
M for every finite subset B of A, then AU {N} is a coindependent set of
submodules of M (Proposition 2.31). By Zorn’s Lemma, every coindependent
set of submodules of M is contained in a maximal coindependent set.

The following lemma, which is dual to Lemma 2.24, has an elementary
proof.

Lemma 2.39 Let M # 0 be an R-module. The following conditions are equiva-
lent:

(a) The sum of any two proper submodules of M is a proper submodule of M.
(b) Every proper submodule of M is superfluous in M.

(¢) Every non-zero homomorphic image of M is indecomposable. |
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An R-module M # 0 is said to be couniform, or hollow, if it satisfies
the equivalent conditions of the previous Lemma 2.39. Every local module is
couniform, but not conversely. For instance, the Z-module Z(p>) (the Priifer
group) is couniform and is not local. Every proper submodule of a finitely
generated module M is contained in a maximal submodule of M. Hence if M
is a finitely generated module, M is couniform if and only if M is local. From
Theorem 2.36 we obtain

Theorem 2.40 The following conditions are equivalent for a right module M :
(a) There do not exist infinite coindependent sets of proper submodules of M.

(b) There exists a finite coindependent set {Ny,Na, ..., N,} of proper sub-
modules of M with M/N; couniform for all i and Ny N NaN---N N,
superfluous in M.

(¢) The cardinality of the coindependent sets of proper submodules of M is
< m for a non-negative integer m.

(d) If Ng D Ny 2 Ny D ... is a descending chain of submodules of M, then
there exists i > 0 such that N;/Nj is superfluous in M/N; for every j > i.

Moreover, if these equivalent conditions hold and {N1, Na,...,N,} is a finite
coindependent set of proper submodules of M with M/N; couniform for all i
and N1 N Ny N--- N N, superfluous in M, then every other coindependent set
of proper submodules of M has cardinality < n. |

The dual Goldie dimension codim(M) of a right module M is the Goldie
dimension of the dual lattice of the lattice £(M). Hence a module M has
finite dual Goldie dimension n if and only if there exists a coindependent set
{N1, Na,...,N,} of proper submodules of M with M/N; couniform for all i and
NN NyN---N N, superfluous in M. And a module M has infinite dual Goldie
dimension if there exist infinite coindependent sets of proper submodules of M.
Note that if a module M has finite dual Goldie dimension, then for every proper
submodule N of M there exists a proper submodule P of M containing N with
M/ P couniform (Lemma 2.35).

From Theorem 2.40(d) we obtain

Corollary 2.41 FEvery artinian module has finite dual Goldie dimension. |
The proof of the next result is straightforward.

Proposition 2.42 Let M be module.
(a) codim(M) =0 if and only if M = 0.
(b) codim(M) =1 if and only if M is couniform.
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(¢) If N < M and M has finite dual Goldie dimension, then M/N has finite
dual Goldie dimension and codim(M/N) < codim(M).

(d) If M has finite dual Goldie dimension and N < M, then codim(M/N) =
codim(M) if and only if N is superfluous in M.

(e) If M and M’ are modules of finite dual Goldie dimension, then M & M’
1s a module of finite dual Goldie dimension and

codim(M @& M') = codim(M) + codim(M’). O

If a module M has finite dual Goldie dimension n, then there exists a
set {N1, Nao,..., N,} of submodules of M such that N = Ny NNy N--- NN,
is superfluous in M and M/N = @ M/N; is a direct sum of n couniform
modules. Note that there is no epimorphism of such a module M onto a direct
sum of n 4 1 non-zero modules. In Section 2.7 we saw that if a module M has
the property that there are no monomorphisms from a direct sum of infinitely
many non-zero modules into M, then M has finite Goldie dimension. This result
cannot be dualized, that is, it is not true that if M is a module and there is no
homomorphic image of M that is a direct product of infinitely many non-zero
modules, then M has finite dual Goldie dimension. For instance, consider the Z-
module Z, that is, the abelian group of integers. Then there is no homomorphic
image of Z that is a direct product [, ; G; of infinitely many non-zero abelian
groups G;. But the set of all pZ, p a prime number, is an infinite coindependent
set of proper subgroups of Z, so that codim(Z) = co.

For a semisimple module the dual Goldie dimension coincides with the
composition length of the module. Hence for a semisimple artinian ring R,

dim(Rp) = dim(grR) = codim(Rg) = codim(grR).
We shall denote this finite dimension dim(R).

Proposition 2.43 The following conditions are equivalent for a ring R.
(a) The ring R is semilocal.
(b) The right R-module Rr has finite dual Goldie dimension.
(c) The left R-module rR has finite dual Goldie dimension.
Moreover, if these equivalent conditions hold,
codim(Rpr) = codim(gR) = dim(R/J(R)).

Proof. (a) = (b). Suppose Rp has infinite dual Goldie dimension, and let
{I, | n > 1} be an infinite coindependent set of proper right ideals of R.
Then R/ ﬂi:1 I,, is a direct sum of k non-zero cyclic modules for every k£ > 1.
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If C is a non-zero cyclic module, C/CJ(R) is a non-zero module. Therefore
R/(J(R) + ﬂ::1 I,,) is a direct sum of at least k non-zero modules for every
k > 1. In particular R/J(R) cannot have finite length, so that R cannot be
semilocal.

(b) = (a). Suppose that Rp has finite dual Goldie dimension. Let Z be
the set of all right ideals of R that are finite intersections of maximal right
ideals. Note that if I,J € Z and I C J, then R/I and R/J are semisimple
modules of finite length and

codim(R/J) = length(R/J) < length(R/I) = codim(R/I).

Since codim(R/I) < codim(Rg) for every I, it follows that every descending
chain in 7 is finite, i.e., the partially ordered set Z is artinian. In particular 7
has a minimal element. Since any intersection of two elements of Z belongs to
Z, the set Z has a least element, which is the Jacobson radical J(R). Hence
J(R) € 7 is a finite intersection of maximal right ideals. Therefore R/J(R) is
a semisimple artinian right R-module, and R is semilocal.

Since (a) is right-left symmetric, (a), (b) and (c) are equivalent. Finally,
J(R) is a superfluous submodule of Rr (Nakayama’s Lemma 1.4), so that if
(b) holds, then codim(Rpg) = codim(R/J(R)) by Proposition 2.42(d). O

Corollary 2.44 Let Pr be a finitely generated projective module over a semilocal
ring R. Then every surjective endomorphism of Pr is an automorphism. In
particular, every right or left invertible element of a semilocal Ting is invertible.

Proof. Since R is semilocal, Rr has finite dual Goldie dimension, so that Pg
has finite dual Goldie dimension (Proposition 2.42). If f: P — Pg is sur-
jective, then ker f is a direct summand of Pg, and ker f & Pr = Pg. Thus
codim(ker f) = 0, i.e., ker f = 0. The proof of the second part of the statement
is analogous to the proof of the second part of the statement of Proposition 2.38.

O

We conclude this section with an example. A non-zero uniserial module
is both uniform and couniform. Therefore a serial module has finite Goldie
dimension if and only if it is the direct sum of a finite number of uniserial
modules, if and only if it has finite dual Goldie dimension. More precisely, a
serial module M has finite Goldie dimension 7 if and only if it is the direct
sum of exactly n non-zero uniserial modules (so that the number n of direct
summands of M that appear in any decomposition of M as a direct sum of
non-zero uniserial modules does not depend on the decomposition), if and only
if M has finite dual Goldie dimension n.
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2.9 N-small modules and R-closed classes
Let R be an arbitrary ring. An R-module Ny is small if for every family

of R-modules and any homomorphism ¢: Ng — @,y M;, there is a finite subset
F C I such that mj¢o = 0 for every j € I \ F. Here the m;: @;crM; — M; are
the canonical projections.

For instance, every finitely generated module is small. Another class of
small modules is given by the class of uncountably generated uniserial modules,
as the next proposition shows.

Proposition 2.45 Fvery uniserial module that is not small can be generated by
No elements.

Proof. Let U be a uniserial module that is not small. Then there exist modules
M;, ¢ € I, and a homomorphism ¢: U — @;crM; such that if m;: ;e M; — M;
denotes the canonical projection for every j € I, then mj¢ # 0 for infinitely
many j € I.

For every x € U set supp(z) = {i € I | myp(x) # 0}, so that supp(z) is
a finite subset of I for every x € U. Note that if x,y € U and xR C yR, then
supp(z) C supp(y). Define by induction a sequence of elements x,, € U, n > 0,
such that supp(zo) C supp(x1) C supp(zz) C .... Set g = 0. If ,, € U has
been defined, then supp(z,,) is finite, but ;¢ # 0 for infinitely many j € I.
Hence there exists k € I with k ¢ supp(z,) and 7o # 0 . Let x,41 € U be
an element of U with 7p@(zp41) # 0. Then supp(zp+1) € supp(zy,), so that
Tnt1R € xn R. Hence , R C 41 R, from which supp(z,,) C supp(2,1). This
defines the sequence z,.

If the elements z,, do not generate the module U, then there exists v € U
such that v ¢ x,R for every n > 0. Then vR O z,R for every n, so that
supp(v) 2 supp(z,) for every n. This yields a contradiction, because supp(v)
is finite and J,,~,supp(z,) is infinite. Hence the z, generate U and U is
countably generated. O

Now we shall extend the definition of small module. Let N be a cardinal
number. An R-module Ny is R-small if for every family { M; | i € I} of R-
modules and any homomorphism ¢: Ng — @®;crM;, the set {i € T | mp #0}
has cardinality < N.

For instance, every small module is Ny-small, and every uniserial module
is Np-small. It is easy to see that if N is a finite cardinal number and Ng is
N-small, then Np = 0.

Let R be a ring, G a non-empty class of right R-modules and let X be a
cardinal number. We say that G is N-closed if:
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(a) G is closed under homomorphic images, that is, if Mg, Ng are right R-
modules, f: Mz — Ng is an epimorphism and Mg € G, then Ny € G;

(b) every module in G is R-small;

(¢) G is closed under direct sums of X modules, that is, if M; € G for every
1 € I and |I| <N, then ®;c;M; € G.

Examples 2.46 (1) For an infinite cardinal number X and a ring R, let G be
the class of all N-generated modules, that is, the right R-modules that are
homomorphic images of R®. Then G is an R-closed class.

(2) For a cardinal number X and a ring R, let G be the class of all R-small
right R-modules. Then G is an N-closed class.

(3) Let R be a ring and let X be a finite cardinal number. We have already
remarked that every N-small right R-module is zero. Hence every R-closed class
of right R-modules consists of all zero R-modules.

(4) Let R be a ring and let G be the class of all o-small R-modules, that is,
the right R-modules that are countable ascending unions of small submodules.
Then G is an Ng-closed class. Note that by Proposition 2.45 every uniserial
module is o-small. g

The following theorem is essentially equivalent to an extension due to
C. Walker of a theorem of [Kaplansky 58, Theorem 1]. Kaplansky proved it
in the case in which X = Xy and G is the class of Ng-generated modules, and
Walker extended it to the class of R-generated modules for an arbitrary cardinal
number N. [Warfield 69¢| remarked that the theorem holds for the classes of
N-small modules and o-small modules, and that suitable versions for larger
cardinals were also valid.

Theorem 2.47 Let R be a ring, let X be a cardinal number and G an N-closed
class of right R-modules. If a module My is a direct sum of modules belonging
to G, then every direct summand of Mg is a direct sum of modules belonging

to G.

Proof. Since the case of a finite cardinal number X is trivial (Example 2.46(3)),
we may suppose XN infinite. Let Mrp = ®;c1M;, where M; € G for every i € I,
and assume Mpr = Nr® Pr. Let L(Ng) and L(Pg) be the sets of all submodules
of Nr and Pg, respectively, and let 7 be the set of all triples (J, A, B) such
that

(1) JCI, ACL(Ng)NG, BC L(Pr)NG;

(2) the sum )y, X is direct, that is, )y 4 X = ©xeuX;
(3) the sum )y zY is direct, that is, Yy g Y = yesY;
(4)

4) ®iegM; = (BxeaX) ® (ByesY).
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Note that 7 is non-empty, because ((),0,0) € 7. Define a partial ordering on
T by setting (J, A, B) < (J', A, B’) whenever J C J', AC A, and BC B'. Tt
is easily seen that every chain in 7 has an upper bound in 7, so that by Zorn’s
Lemma 7 has a maximal element (K,C, D). Suppose K C I. Let ¢ € I\ K and
let € be the idempotent endomorphisms of Mp with ker(¢) = Pg that is the
identity on Ng.

Define an ascending chain Iy C I; C I, C ... of subsets of I of cardinality
at most N in the following way. Set Iy = {i}. Suppose I, has been defined. Since
@jer,M; € G, its homomorphic images e(®jer, M;) and (1 — €)(®jer, M;)
belong to G, so that e(Pjer, M;) + (1 — €)(Bjer,, M;) is in G. In particular,
this module is N-small, hence there exists a subset I,,;1 of I of cardinality
at most N such that e(®;er, M;) + (1 —€)(®jer, Mj) C ®jer, ., M;. Note that
@jcr, Mj C e(®jer, Mj)+(1—e)(®jer, M;), so that I, C I,;1. This completes
the construction of the subsets I, by induction.

Let I’ be the union of the countable ascending chain Io C I; C I, C ...,
so that I’ is a subset of I of cardinality at most X. Hence @ e M; € G. Since
i € I', it follows that I’ UK D K. And e(®je1, M;) C ®jer,,, M; for all n
implies that e(®jer M;) C ®jep M;. Similarly, (1 —e)(®jerM;) C Bjer M;.

Now @jexM; = (BxecX) ® (PyepY) because (K,C,D) € T, and

e(@®jerur Mj) = e(@jer Mj + ©jerx M;)
=e(@jer Mj + ®xecX + OyepY) = e(@jer Mj) + DxecX
C BjerM; + @jexMj = Bjerux M.

Hence the idempotent endomorphism ¢ of Mp induces an idempotent endo-
morphism on ®;erurMj;, so that

Djervx My = e(@jerux M;) ® (1 —€)(Bjerux Mj).

The submodule ©xecX is a direct summand of @ ey M; contained in
e(@jeruxM;j). Hence it is a direct summand of e(®,crrurxM;), that is, there
exists a submodule X of Ng such that

e(@jeruxM;) = (BxecX) ® X.
Similarly, ®yepY is a direct summand of @;cuxM; contained in
(1- 6)(@j€I’UKMj)7

so that (1 — ¢)(®jeruxM;) = (ByepY) Y for some submodule Y of Pg.
Therefore ®jcruxM; = (BxecX) B X & (ByepY) @Y. It follows that

X@OY Z®jeruxM;/ Sjex My = SjengM; €G,

so that both X and Y belong to G. This shows that (I' UK,CU{X},DU{Y})
is an element of 7 strictly greater than the maximal element (K,C,D). This
contradiction proves that K = I. Thus Mg = (®xeccX) ® (PyepY). Hence
Ng = ®xecX and Pg = ®yepY. O
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If we apply Theorem 2.47 to the Ny-closed class of all countably generated
(= Np-generated) modules we get a famous result of [Kaplansky 58]:

Corollary 2.48 (Kaplansky) Any projective module is a direct sum of countably
generated modules. a

Corollary 2.49 Let N be a direct summand of a serial module. Then there is a
decomposition N = @;c;N;, where each N; is a direct summand of the direct
sum of a countable family {U; , | n € N} of uniserial modules.

Proof. Let G be the class of all g-small modules. This is an Ny-closed class
that contains all uniserial modules (Example 2.46(4)). Apply Theorem 2.47.
Then N is a direct sum of modules N; belonging to G. Hence it suffices to
prove that a module N; belonging to G that is a direct summand of a serial
module is a direct summand of the direct sum of a countable family of uniserial
modules. If IV; is a direct summand of a serial module @;c;U;, there are two
homomorphisms ¢: N; — @;ecsU; and 9: ®jcsU; — N; such that Y = 1y,. If
N; € G, N; is Rg-small, so that the set C = {j € J | mjp # 0} has cardinality
< Ng. Now it is easily seen that NN, is a direct summand of the direct sum of
the countable family {U; | j € C'}. O

We conclude the section with a proposition due to [Warfield 69¢, Lemma
5], who proved it not only for modules, but for objects of more general abelian
categories. Here we consider the case of modules only.

Proposition 2.50 Let R be a ring, X a cardinal number and G an R-closed class
of right R-modules. If M = ®;c1A; = ®jesBj, where A;, B; are non-zero
modules belonging to G for every i € I and every j € J, then there exists a
partition {Ix | X € A} of I and a partition { Jy | A € A} of J with |I,| <N,
|5 <N and @ier, Ai = @jeg, By for every X € A.

Proof. The case of a finite cardinal number R is trivial. Hence we may suppose
N infinite. We claim that if ¢q € I, then there exist subsets I’ C I and J' C J
of cardinality < X such that ¢y € I’ and @;ep A; = ®jec v B;. In order to prove
the claim define sets I, and J/ of cardinality < R for every integer n > 0 by
induction as follows. Set I}y = {io} and Jj = 0. Suppose I}, and J}, have been
defined. Then (@1 Ai) +(®jes: Bj) € G, so that there exists a subset J),,; C
J of cardinality at most X such that (©ier Ai)+(Djes, Bj) C $jesr,, Bj- Since
(Dier Ai) + (®j€J:l+1Bj) € G, there exists a subset I, ; C I of cardinality at
most N such that (Dier;, Ai) + (e, Bj) € Bier, Ai. It is now obvious that
I' =U,>0 I, and J" =J,,~( J,, have the property required in the claim.
Define a chain of subsets Ko C K1 C --- C K, C ... of I and a chain
of subsets Lo C Ly C --- C Ly C ... of J for each ordinal A by transfinite
induction in the following way. Set Ky = Ly = (). If X\ is a limit ordinal set
Ky = U, <\ K, and Ly = U, L. For every ordinal x such that K, = I



Direct sums of N-small modules 65

set K, 41 = K, and L,11 = L,. Otherwise, if K, C I, choose an element
ip € I'\ K,. By the claim there exist I’ C I and J’ C J, both of cardinality
< N, such that iy € I’ and @;cp A; = @ ey B;. In this case set K11 = K, Ul
and LH+1 = LH uJ'.

Obviously ®iek, Ai = ®jer, Bj for every A, and there exists an ordinal A
such that K, = I. Then L, = J. Set I\ = Kx;1 \ K) and Jy = Ly;1 \ Ly for
every A < A. Then

@icky 1 Ai = Bjern, Bj and  Diek, Ai = ®jer, B;

imply @ser, Ai = Djer, Bj. O

2.10 Direct sums of N-small modules

In Section 2.3 we saw two cases in which there exist isomorphic refinements of
two direct sum decompositions. The next theorem examines a third case.

Theorem 2.51 Let My be a module that is a direct sum of Rg-small submodules.
Then any two direct sum decompositions of M into summands having the Ng-
exchange property have isomorphic refinements.

Proof. We have already remarked that the class G of all Rg-small R-modules is
Ng-closed (Example 2.46(2)). By Theorem 2.47 any decomposition of Mg, refines
into one in which the summands belong to G. By Lemma 2.4 every refinement
of a decomposition of My into summands with the Ry-exchange property is a
decomposition into summands with the Rp-exchange property. Hence we may
suppose that we have two direct sum decompositions of M into summands
belonging to G and having the Rp-exchange property. By Proposition 2.50 we
may assume that the index sets are countable. In this case the result is given
by Theorem 2.10. O

A fourth case in which isomorphic refinements exist is considered in the
next important result, due to [Crawley and Jénsson, Theorem 7.1], who proved
it for algebraic systems more general than modules. Here we shall present the
proof given by [Warfield 69¢, Theorem 7). Also the proof given by Warfield holds
in a context more general than ours, that is for suitable abelian categories, but
we shall restrict our attention to the case we are interested in, that is, the case
of modules. Recall that a module is o-small if it is a countable ascending union
of small submodules (Example 2.46(4)).

Theorem 2.52 If a module M is a direct sum of o-small modules each of which
has the exchange property, then any two direct sum decompositions of M have
isomorphic refinements.
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Proof. We claim that if A = §72,B; is a direct sum of countably many o-small
modules B; each of which has the exchange property and A = C @& D, then C'
is a direct sum of o-small modules with the exchange property.

In order to prove the claim note that the direct summand C' of A is
o-small, hence there is an ascending chain 0 = Sy C S; C S5 C ... of small
submodules of C whose union is C' itself. We shall construct submodules C}, Py,
of C for each k > 0 with the property that (1) C =Coy®dC1 @ - ® Ci ® Py,
(2) Sy CCo@CL® - C and (3) Ci has the exchange property for every
k > 0.Set Cy =0 and Py = C. Suppose Cy,...,Cx_1, Py, ..., Pr_1 with the
required properties have been constructed. Then Co & C; @ --- ® Ci_1 has
the exchange property. Hence there exist direct summands B of B; such that
A=CodC1 @ @ Cl_1® (®2,B)). Since Sy, is small, there exists a positive
integer n(k) such that Sy C T, (1), where

Ty = Co®C1® -+ & Ch_y @ (@?:(’?Bg) .
The module T;, () has the exchange property, so that from
A=CoD =T,y <@fin(k)+132) )

we have that there exist P, C C and a direct sum decomposition Dy ® D), = D
such that A = T,y ® Py & Dy,. Set C, = CN (T k) & Dy), so that C = C, & P,
by Lemma 2.1 and Sj, C C},.. Set Cj, = C}, N Pr_1. Then

CodC1® - DCL1CCL,CC=Co®C1 D - DCl_1 D Pr_1
forces C;, = Co®C1 & -+ @ C—1 @ Cy, (Lemma 2.1). Hence
C=CdC1®- - ®CL D Py
and Sy CCod Cy @ -+ - @ Cg. Finally,

CodCr1®--dCrdPyoDydD,=CoD=A
=Tty @ @Dy = Co® C1 @+ @ G & (01 B]) © Py 0 Dy

n

implies that Cy & D, = EBiz(]i)Bl’», so that Cj has the exchange property be-
cause it is isomorphic to a direct summand of EB?:(/?BQ. This completes the
construction by induction.

It is now obvious that C' = ®32, Cy. Since B; is o-small, A itself is o-small,
so that each C}, is g-small. This proves the claim.

In order to prove the theorem, suppose
M = @1 B; (2.24)

where, for each ¢ € I, B; is o-small and has the exchange property. Since every
direct summand of B; is o-small and has the exchange property, it is enough
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to show that the decomposition (2.24) and any other decomposition
M = @jesM; (2.25)

have isomorphic refinements. By Theorem 2.47 the decomposition (2.25) has a
refinement

M = ®pexCh (2.26)

in which every C}, is o-small. If we apply Proposition 2.50 to the decompositions
(2.24) and (2.26) we see that we may assume I and K countable. By the
claim the decomposition (2.26) has a refinement that is a direct sum of o-small
modules with the exchange property. Now Theorem 2.51 allows us to conclude.

O

From Theorem 2.52 we immediately obtain the following three corollaries:

Corollary 2.53 If a module M is a direct sum of countably generated modules
M;, i € I, each of which has the exchange property and N is a direct summand
of M, then N = ®;c1N;, where each N; is isomorphic to a direct summand

Corollary 2.54 If a module M is a direct sum of uniserial modules each of which
has a local endomorphism ring, then any two direct sum decompositions of M
have isomorphic refinements. O

Corollary 2.55 If M = ®;c1 M;, where each M; is a countably generated module
with a local endomorphism ring, then any other direct sum decomposition of
M can be refined to a decomposition isomorphic to the decomposition M =
GicrM;. In particular, any direct summand of M is isomorphic to ®;c yM; for
a subset J of I. g

Corollary 2.55 is clearly a strengthened form of the Krull-Schmidt-Remak-
Azumaya Theorem for direct sums of countably generated modules. It is appar-
ently still an open question whether the hypothesis of being countably gener-
ated in Corollary 2.55 can be removed, that is, whether every direct summand
of a direct sum of modules with local endomorphism rings is a direct sum of
modules with local endomorphism rings. See [Elliger].

A ring R is said to be an exchange ring [Warfield 72] if Rr has the ex-
change property. For a ring R the right R-module R has the exchange prop-
erty if and only if the left module g R has the exchange property [Warfield 72,
Corollary 2]. We shall not need this fact, and its proof will be omitted.

Theorem 2.56 If R is an exchange ring, then any projective right R-module is
a direct sum of Tight ideals generated by idempotents.



68 2 Krull-Schmidt-Remak-Azumaya Theorem

Proof. A projective R-module N is isomorphic to a direct summand of a free
module Mg. Now apply Corollary 2.53 to Mg and Ng. 0

Every local ring is an exchange ring by Theorem 2.8. Hence from The-
orem 2.56 we have that

Corollary 2.57 Any projective right module over a local Ting is free. ]

2.11 The Loewy series

In this section, we introduce Loewy modules, which form a class containing all
artinian modules. Let M be a module over an arbitrary ring R. Inductively
define a well-ordered sequence of fully invariant submodules soc, (M) of M as
follows:

soco(M) =0,
$0Cq+1 (M) /soce (M) = soc(M/socy(M)) for every ordinal «,
socg(M) = < p80ca(M) for every limit ordinal §.

The chain
soco(M) C soci (M) Csoce(M) C -+ Csocy (M) C ...

is called the (ascending) Loewy series of M. The module M is a Loewy module
if there is an ordinal « such that M = soc,(M), and in this case the least
ordinal a such that M = soc, (M) is called the Loewy length of M. Note that
the Loewy series is always stationary, that is, for every module M there exists
an ordinal a such that socg(M) = soc, (M) for every 6 > « (for instance, it is
sufficient to take any ordinal o whose cardinality is greater than the cardinality
of M). For such an ordinal «, set §(M) = socy(M). Then 6(M) is the largest
Loewy submodule of M, and M/§(M) has zero socle.

Lemma 2.58 A module M is a Loewy module if and only if every mon-zero
homomorphic image of M has a non-zero socle.

Proof. If M is a Loewy module and N is a proper submodule of M, consider
the set of all the ordinal numbers a such that soc, (M) C N. It is easily seen
that this set has a greatest element 5. Then M/N is a homomorphic image of
M /socg(M), and the image of the socle socgi1(M)/socg(M) of M/socs(M)
in M/N is non-zero. Therefore the socle of M/N is non-zero.

Conversely, if M is not a Loewy module, then M/6(M) is a non-zero
homomorphic image of M with zero socle. |
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In particular, since every non-zero artinian module has a non-zero socle,
every artinian module is Loewy. Every Loewy module is an essential extension
of its socle.

Let 7 be the class of all Loewy right R-modules and let F be the class of
all right R-modules with zero socle. Then (7, F) is a torsion theory, that is,

(a) Hom(T,F)=0foral T €T, F € F.
(b) If M is aright R-module and Hom(M, F) =0 for all F € F, then M € 7.
(c) If M is aright R-module and Hom(7T', M) = 0 for all T € 7, then M € F.

The case of a right noetherian ring R is particularly interesting. If M
is a Loewy right module over a right noetherian ring R and x € M, then
xR is a noetherian Loewy module, so that the ascending chain soc,(xR),
n > 0, must be stationary and 2R = soc,, (xR) for some m. Since the modules
80Cn+1(xR)/soc, (xR) are semisimple noetherian modules, it follows that xR
is an R-module of finite composition length. Therefore:

Proposition 2.59 If M is a Loewy right module over a right noetherian ring,
then M is the sum of its submodules of finite composition length. In particular,
M has Loewy length < w. O

If z is an element in a right module Mg, the annihilator
anng(z) ={a € R|za=0}

of = is always a right ideal of R. In particular, if b € R, its right annihila-
tor r.anng(b) = {a € R | ba = 0} is a right ideal of R. As a corollary of
Proposition 2.59 we obtain

Corollary 2.60 Let R be a right noetherian ring and let G = {1 | I is a right
ideal of R and R/I is a right R-module of finite length}. Then

§(Mg) ={z € M | anng(z) € G}
for every R-module Mpg.

Proof. Let z be an element of M. Then anng(x) € G if and only if xR is a
right R-module of finite length, that is, if and only if « € soc,(Mg) for some
positive integer n, i.e., if and only if = € soc,(Mg) = §(Mg). a

Proposition 2.59 can be adapted to commutative rings, as the next lemma
shows.

Lemma 2.61 The Loewy length of an artinian module over a commutative ring
s < w.
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Proof. If soco(M) C soci (M) Csoca(M) C -+ Csoce(M) C ... is the Loewy
series of an artinian module M, then J, .y soc, (M) = M, because if x € M,
then xR is an artinian module. Hence xR is a module of finite composition
length, so that xR C soc, (M) for some n € N. Therefore M = soc,, (M) has
Loewy length < w. g

Uniserial artinian modules of arbitrary Loewy length can be constructed
over suitable non-commutative rings [Fuchs 70b, Facchini 84].

2.12 Artinian right modules over commutative
or right noetherian rings

In this section we prove that the Krull-Schmidt Theorem holds for artinian
right modules over rings which are either right noetherian or commutative. In
Chapter 8 we shall see that it can fail for artinian modules over arbitrary non-
commutative rings. Note that artinian modules are always finite direct sums of
artinian indecomposable modules.

Lemma 2.62 Let Mg be a module over an arbitrary ring R and let
Mo C M; CM; C...

be an ascending chain of fully invariant submodules of Mp. Suppose that each
M; has finite composition length and M = J,~, M;. Then

(a) If f € End(MRg), then M = M’ & M", where M' = J,,5,ker(f") and
M" = U;so (nnzo f”(MZ)) Moreover, f restricts to an automorphism
of M".

(b) If Mg is indecomposable, then End(Mpg) is a local ring.

Proof. (a) For every i > 0 there is a positive integer n; such that for every

(M) = fm(M;) and  ker(f7) N M; = ker(f™) N M;.
By Lemmas 2.16(a) and 2.17(a)
M; = (ker(f7) N M;) @ 7 (M),
so that

M; = | |Jker(f) 00 | & | () (M)

n>0 n>0
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Further, f restricted to
M= (1 (M)

n>0

is a monomorphism, hence an automorphism of M;". Now (a) follows easily.
(b) If Mg is indecomposable, either Mp = M’ or M = M". Hence for
every f € End(Mg), either Mp = J,~, ker(f™) or f is an automorphism. This
shows that if f is a non-invertible element of End(MEg), the restriction of f
to any M; is nilpotent. Now argue as in the second paragraph of the proof of
Lemma 2.21 to show that the sum of two non-invertible elements of End(Mg)
is non-invertible. Thus End(Mpg) is local. O

In the next proposition we prove that if the base ring R is either right
noetherian or commutative, then all direct sum decompositions of a module
that is a direct sum of artinian modules have an isomorphic common refinement.
Hence the Krull-Schmidt Theorem holds for artinian modules over such rings.

Proposition 2.63 Let R be a ring which is either right noetherian or commu-
tative and let M = @;crM; be a right R-module which is the direct sum of
indecomposable artinian modules M;. Then any direct sum decomposition of
M refines into a decomposition isomorphic to the decomposition M = ®;c; M;
and any direct summand N of M is isomorphic to @®;c yM; for a subset J C I.

Proof. Let A be an artinian right module over a ring R that is either right
noetherian or commutative. By Proposition 2.59 and Lemma 2.61 the module A
has Loewy length < w, so that A = soc,(A4) = J,,cn 50¢n(A). Every soc, (A)
is an artinian module of Loewy length < n. Since soc,+1(A)/soc,(A) is a
semisimple artinian module, every soc,(A) is a module of finite composition
length. By Lemma 2.62 every indecomposable artinian module A has a local
endomorphism ring and is countably generated. Now apply Corollary 2.55. [J

2.13 Notes on Chapter 2

The exchange property was introduced by [Crawley and J6nsson]. Actually,
Crawley and Jénsson’s results were proved for a wide class of algebraic struc-
tures, namely for algebras in the sense of Jonsson-Tarski. Injective modules
[Warfield 69¢], quasi-injective modules [Fuchs 69], pure-injective modules [Zim-
mermann-Huisgen and Zimmermann 84], continuous modules (Mohamed and
Miiller, 1989), projective modules over perfect rings (Yamagata, 1974, and
Harada-Ishii, 1975), and projective modules over Von Neumann regular rings
[Stock] have the exchange property. It is not known whether the exchange prop-
erty and the finite exchange property are equivalent for arbitrary modules. By
Theorem 2.8 they are equivalent for indecomposable modules.
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A module M is continuous if the following two conditions hold:
(C1) every submodule of M is essential in a direct summand of M;

(C2) if a submodule N of M is isomorphic to a direct summand of M, then N
is a direct summand of M.

A module M is quasi-continuous if (C1) holds, and moreover

(C3) if Ny and Ny are direct summands of M such that Ny N Ny = 0, then
N1 @ N, is a direct summand of M.

Making use of ideas of [Oshiro and Rizvi], [Mohamed and Miiller] have re-
cently proved that the exchange property and the finite exchange property are
equivalent for quasi-continuous modules. Note that there exist indecomposable
quasi-continuous modules without the finite exchange property, for instance
the abelian group Z.

The proofs of Lemma 2.2, Corollary 2.3, Lemmas 2.4 and 2.5 and The-
orems 2.9 and 2.10 are taken from [Crawley and Jénsson]. In the proof of The-
orem 2.8 the implication (b) = (c) is taken from [Crawley and Jénsson] and
the remaining implications are due to [Warfield 69a, Proposition 1].

The history of the Krull-Schmidt-Remak-Azumaya Theorem begins with
two papers of [Krull 25] and [Schmidt]. The present form of the theorem ap-
peared for the first time in [Azumaya 50]. In that paper Azumaya proved the
uniqueness of decomposition for infinite direct sums of modules with local endo-
morphism rings. In this book, the general result (Theorem 2.12) is referred to as
the “Krull-Schmidt-Remak-Azumaya Theorem”, whereas the “Krull-Schmidt
Theorem” is the “classical” Krull-Schmidt Theorem, that is, the result con-
cerning modules of finite length (Corollary 2.23). Krull himself used to term
“Isomorphiesatz der direkte Zerlegung” (Isomorphism theorem of direct de-
composition) for what we call the Krull-Schmidt Theorem. In [Krull 32] (last
paragraph of the paper), Krull asked whether the “Isomorphiesatz der direkte
Zerlegung” is independent of the descending chain condition, i.e., whether
the Krull-Schmidt Theorem holds for artinian modules (cf. [Levy, p. 660]).
The answer to this question appeared in [Facchini, Herbera, Levy and Vémos]
and is the main topic of Section 8.2. The proofs of Lemma 2.11 and the
Krull-Schmidt-Remak-Azumaya Theorem we have given here are taken from
[Crawley and Jénsson].

Lemmas 2.20 and 2.21 are due to [Fitting, Satz 8], and Corollary 2.27 is
due to [Zimmermann and Zimmermann-Huisgen 78, Theorem 9]. The proof of
Proposition 2.28 is based on an argument of [Eisenbud and Griffith, Proof of
Proposition 1.1].

The Goldie dimension for modules and rings was introduced by [Goldie
60], who called it “dimension”. The Goldie dimension of a module is also called
the uniform dimension, or the uniform rank, or simply the rank of the module.
Concepts such as having finite Goldie dimension or uniform submodules and
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their basic properties go back to [Goldie 58, 60]. Goldie dimension for arbitrary
modular lattices was introduced by [Grzeszczuk and Puczylowski]. For the proof
of Lemma 2.30 and Proposition 2.31 we have followed [N&stasescu and Van
Opystaeyen]. The rest of the material in Section 2.6 is taken from [Grzeszczuk
and Puczylowski.

The notion of dual Goldie dimension is due to [Varadarajan|, who used
the term corank for what we call dual Goldie dimension of a module. There
are a number of different ways that one could attempt to dualize the notion
of Goldie dimension; for instance, [Fleury] considers the spanning dimension of
a module, a possible different dualization of the Goldie dimension. The span-
ning dimension of a module M is defined as the least integer k such that
M is a sum Ny + -+ + N (not necessarily direct) of k couniform submod-
ules N; of M. In our presentation of dual Goldie dimension we have followed
[Grzeszczuk and Puczylowski].

Proposition 2.45 is essentially taken from [Fuchs and Salce, Lemma 24].

Theorem 2.51, Corollary 2.55, the definition of exchange ring and The-
orem 2.56 are due to [Warfield 69c, 69a, 72]. He also proved that a right mod-
ule Mg has the finite exchange property if and only if its endomorphism ring
End(Mg) is an exchange ring [Warfield 72, Theorem 2]. From Lemma 2.4 it fol-
lows immediately that if e is an idempotent in a ring R, then R is an exchange
ring if and only if eRe and (1 —e)R(1 —e) are exchange rings. There are further
characterizations of exchange rings. For instance, [Monk| proved that a ring R
is an exchange ring if and only if for every a € R there exist b, ¢ € R such that
bab = b and ¢(1 — a)(1 — ba) = 1 — ba. Goodear] ([Goodearl and Warfield 76,
p. 167]) and [Nicholson] independently proved that a ring R is an exchange
ring if and only if for every x € R there exists an idempotent e € R such that
e € xR and 1 — e € (1 — z)R. This characterization has allowed the notion of
exchange ring to be extended to rings without unit [Ara 97]. [Nicholson] also
proved that R is an exchange ring if and only if R/J(R) is an exchange ring
and idempotents lift modulo J(R).

Corollary 2.57 is a famous result of [Kaplansky 58, Theorem 2].

Loewy started using Loewy series in 1905 in the study of representations
of matrix groups. Later, in 1926, Krull defined the term “Loewy series” and
in [Krull 28] he observed that transfinite Loewy series could be defined. The
results in Section 2.12 (i.e., that the Krull-Schmidt Theorem holds for artinian
modules over rings which are either right noetherian or commutative) are due
to [Warfield 69a]. The most important case of artinian module over a com-
mutative noetherian ring was discovered by [Matlis]. He proved that if R is a
noetherian commutative ring, S is a simple R-module and E(.S) is the injective
envelope of S, then E(S) is an artinian R-module whose endomorphism ring is
a local noetherian complete commutative ring [Matlis, Theorems 3.7 and 4.2].
Conversely, if Mg is an artinian module with simple socle over a commutative
ring R, then F = End(MEg) is a local noetherian complete commutative ring
and g M is the injective envelope of the unique simple E-module [Facchini 81,
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Theorem 2.8]. The following results hold for Loewy modules over commutative
rings. Let M be a Loewy module over a commutative ring R. For each ordinal
a the a-th Loewy factor of M is the semisimple module socy41(M)/soce (M),
and the composition length of soca.t1(M)/soc, (M) is the a-th Loewy invariant
of M, denoted by d(M). The support of M is the set of all maximal ideals P
of R such that (0 :p; P) # 0. If R is a commutative ring and M is a Loewy
R-module with finite support {Py, Ps,..., P, }, then M = @I | M;, where for
eachi=1,2,...,n, M; is a Loewy module whose Loewy factors are all direct
sums of copies of R/P;. If M is a Loewy module over a commutative ring, «
is an ordinal and r is a positive integer such that both d, (M) and dg+,(M)
are finite, then dg(M) is finite for every § > a + r and M = socqyy,(M)
[Shores, Theorem 4.2]. From this result we again obtain that every artinian
module over a commutative ring has Loewy length < w. A module M over a
commutative ring R is artinian if and only if it is a Loewy module with finite
Loewy invariants [Facchini 81, Theorem 2.7]. Let M be an artinian module
over a commutative ring such that di (M) < n. Then d,.(M) < " +: -1
for every r > 1 ([Shores, Theorem 4.4] and [Facchini 81, Theorem 3.1]). Now
let t be an indeterminate over the ring Z of integers. If M is an artinian mod-
ule over a commutative ring, define P(M,t) = > >°  d,(M)t" € Z[[t]]. Then
P(M,t) is a rational function in ¢ of the form f(¢t)/(1 — t)®, where f(t) € Z][t]
and s = do(M)d;(M). If d is the order of the pole of P(M,t) at t = 1, then,
for all sufficiently large n, d,(M) and the composition length I(soc, (M)) of
soc, (M) are polynomials in n with rational coefficients of degree d — 1 and d
respectively [Facchini 81, Theorem 3.2].

A ring R is right semiartinian if Rr is a Loewy module. If R is right
semiartinian, every right R-module is a Loewy module. Right semiartinian
rings are exchange rings [Baccella].
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