
README

MMIX is a computer intended to illustrate machine-level aspects of programming.
In my books The Art of Computer Programming, it replaces MIX, the 1960s-style
machine that formerly played such a role. MMIX's so-called RISC (\Reduced Instruc-
tion Set Computer") architecture is much better able to represent the computers
being built at the turn of the millennium.
I strove to design MMIX so that its machine language would be simple, elegant, and

easy to learn. At the same time I was careful to include all of the complexities needed
to achieve high performance in practice, so that MMIX could in principle be built and
even perhaps be competitive with some of the fastest general-purpose computers in
the marketplace. I hope that MMIX will therefore prove to be a useful vehicle for
people who are studying how to improve compilers and operating systems, and that
other authors will like MMIX well enough to make use of it in their own textbooks.
My goal in this work is to provide a clean, complete, and well-documented \machine-
independent machine" that people all over the world will be able to use as a testbed
for long-term research projects of lasting value, even as real computers continue to
change rapidly.
This book is a collection of programs that make MMIX a virtual reality. One of the

programs is an assembler, MMIXAL, which converts MMIX symbolic �les to MMIX object
�les. There also are two simulators, which execute the programs in given object �les.
The �rst simulator, called MMIX-SIM or simply MMIX, executes a program one in-
struction at a time and allows convenient debugging. The second simulator, MMMIX,
simulates a high-performance pipeline in which many aspects of the computation are
overlapped in time. MMMIX is in fact a highly con�gurable \meta-simulator," capa-
ble of simulating an enormous variety of di�erent kinds of pipelines with any number
of functional units and with many possible strategies for caching, virtual address
translation, branch prediction, super-scalar instruction issue, etc., etc.
The programs in this book are somewhat primitive, because they all are based on

a simple terminal interface: Users type commands and the computer types out a
reply. Still, these programs are adequate to provide a basis for future developments.
I'm hoping that at least one reader of this book will discover how much fun MMIX

programming can be and will be motivated to create a nice graphical interface, so
that other people will more easily be able to join in the fun. I don't have the time or
talent to construct a good GUI myself, but I've tried to write the programs in such a
way that modi�cations and enhancements will be easy to make.
The latest versions of all these programs can be downloaded from MMIX's home page

http://www-cs-faculty.stanford.edu/~knuth/mmix-news.html

in a �le called mmix.tar.gz. The programs are copyrighted, but anyone can use
them without charge. Furthermore I explicitly allow anybody to copy and modify
the programs in any way they like, provided only that the computer �les are given
di�erent names whenever they have been changed. Nobody but me is allowed to
make a correction or addition to the copyrighted �le mmixal.w, for example, unless
the corrected �le is identi�ed by some other name (possibly `turbo-mmixal.w ' or
`mmixal++.w ', etc.).

README vi

The programs are all written in CWEB, a language that combines C with TEX in such
a way that standard preprocessors can easily convert mmixal.w into a compilable �le
mmixal.c or a documentation �le mmixal.tex. CWEB also includes a \change �le"
mechanism by which people can easily customize a master source �le like mmixal.w

without changing the master �le in any way. (See

http://www-cs-faculty.stanford.edu/~knuth/cweb.html

for complete information about CWEB, including installation instructions for the related
software.) Readers of the present book who are unfamiliar with CWEB might want to
refer to the notes on \How to read CWEB programs" that appear on pages 70{73 of my
book The Stanford GraphBase (New York: ACM Press, 1993), but the general ideas
are almost self-explanatory so I decided not to reprint those notes here.
During the next several years, as I write Volume 4 of The Art of Computer Pro-

gramming, I plan to prepare updates to Volumes 1{3 whenever Volume 4 needs to
refer to new material that belongs more properly in earlier volumes. These updates,
called \fascicles," will be available on the Internet via

http://www-cs-faculty.stanford.edu/~knuth/taocp.html

and they will also be published in hardcopy form. The �rst such fascicle is already
�nished and available for downloading; it is a tutorial introduction to MMIX and the
MMIX assembly language. Everybody who is seriously interested in MMIX should read
that First Fascicle, preferably before reading the programs in the present book.

I've tried to make the MMIXware programs interesting to read as well as useful.
Indeed, the MMIX-PIPE program, which is the chief component of the MMMIX meta-
simulator, is one of the most instructive programs I've ever had the pleasure of writing.
But I don't expect a great number of people to study every part of this book closely, or
even to study every part of MMIX-PIPE. The main purpose of this book is to provide
a complete documentation of the MMIX computer and its assembly language. Many
details about MMIX were too \picky" or too system-oriented to be appropriate for the
First Fascicle, but every detail about MMIX can be found in the present book.

After the MMIXware programs have been installed on a UNIX-like system, they are
typically used as follows. First a user program is written in assembly language and
put into a �le, say foo.mms. (The suÆx .mms stands for \MMIX symbolic.") Then the
command

mmixal foo.mms

will translate it into an object �le, foo.mmo. Alternatively, a command such as

mmixal -l foo.lst foo.mms

could be used; this would produce a listing �le, foo.lst, in addition to foo.mmo.
The listing �le, when printed, would show the contents of foo.mms together with the
assembled machine language instructions.

vii README

Once an object �le like foo.mmo exists, it can be run on the simple simulator by
issuing a command such as

mmix foo

(or mmix foo.mmo). Many options are also possible; for example,

mmix -s foo

will print running time statistics when the program ends;

mmix -P foo

will print a pro�le that shows exactly how often each instruction was executed;

mmix -v foo

will give \verbose" details about everything the simulator did;

mmix -t2 foo

will trace each instruction the �rst two times it is performed; etc. Also

mmix -i foo

will run the simulator in interactive mode, obeying various online commands by which
the user can watch exactly what is happening when key parts of the program are
reached. The command

mmix foo bar

will run the simulator as if MMIX itself were running the command `foo bar' with a
rudimentary operating system; any number of command-line arguments can follow
the name of the program being simulated.
The MMMIX meta-simulator can also be applied to the same program, although a

bit more preparation is necessary. First the command

mmix -Dfoo.mmb foo bar

will dump out a binary �le foo.mmb containing the information needed to load `foo
bar' into MMIX's memory. Then a command like

mmmix plain.mmconfig foo.mmb

will invoke the meta-simulator with a \plain" pipeline con�guration. The meta-
simulator always runs interactively, using the prompt `mmmix>' when it wants in-
structions about what to do next. Users can type `?' in response to this prompt if
they want to be reminded about what the simulator can do. Typical responses are
`vff' (run verbosely); `v0' (run quietly); `p' (show the pipeline); `g255' (show global
register 255); `D' (show the D-cache); `b200' (pause when location #200 is fetched);
`1000' (run 1000 cycles); etc. Some familiarity with MMIX-PIPE is necessary to un-
derstand the meta-simulator's reports of its activity, but users of mmmix are assumed

README viii

to be able to extract high-level information from a mass of low-level details. (This
talent, after all, is the hallmark of a computer scientist.)

The programs in this book appear in alphabetical order:

MMIX explains everything about the MMIX architecture.

MMIX-ARITH contains subroutines for 64-bit �xed and
oating point arithmetic,
using only 32-bit �xed point arithmetic.

MMIX-CONFIG processes con�guration �les for MMMIX.

MMIX-IO contains subroutines for the primitive input/output operations of a rudi-
mentary operating system.

MMIX-MEM handles memory references of MMMIX in special cases associated with
memory-mapped input/output.

MMIX-PIPE does the hard work of pipeline simulation.

MMIX-SIM is the program for the non-pipelined simulator.

MMIXAL is the assembly program.

MMMIX is the driver program for the meta-simulator.

MMOTYPE is a utility program that translates an MMIX object �le into human-
readable form.

The �rst of these, MMIX, is not actually a program, although it has been formatted
as a CWEB document; it is a complete de�nition of MMIX, including the details of
features that are used only by the operating system. It should be read �rst, but the
other programs can be read in any order. (Actually MMIXAL or MMIX-SIM should
probably be read next after MMIX, and MMIX-PIPE last. The program MMIX-SIM is
the line-at-a-time simulator that is known simply as mmix after it has been compiled.)

Mini-indexes have been provided on each right-hand page of this book so that the
programs can be read essentially as hypertext. Every identi�er that is used on a two-
page spread but de�ned on some other page is listed in the mini-index. For example, a
mini-index entry such as `oplus : octa (), MMIX-ARITH x5' means that the identi�er
oplus denotes a function de�ned in section x5 of the MMIX-ARITH module, returning
a value of type octa. A master index to all uses of all identi�ers appears at the end
of this book.

I've tried to make this book error-free, but I must have blundered at least once.
Therefore I shall use part of Internet page

http://www-cs-faculty.stanford.edu/~knuth/mmixware.html

as a bulletin board for posting all errors that are known to me. The �rst person
who �nds a hitherto unreported error will be entitled, as usual, to a reward of $2.56,
gratefully paid.
Happy hacking!

Donald E. Knuth

Cambridge, Massachusetts

17 October 1999

http://www.springer.com/978-3-540-66938-8

