Preface to the first edition

Space and time are the two most fundamental concepts in our world
because all else is unimaginable without assuming that space (or time)
exists. It is therefore not surprising that the sophisticated Euclidean
model of space already existed more than 2000 years. For centuries it
was a common belief by scientists and philosophers alike that the Eu-
clidean structure of space was one of the very few eternal truths. It
was only at the beginning of the 20th century that this belief was shat-
tered with the introduction of Albert Einstein’s theories of special and
general relativity. Today, Einstein’s theory of general relativity is com-
pletely established, and there are many textbooks which explain it at
all levels of mathematical sophistication. What is missing, however, is
a modern textbook on general relativity for mathematicians and math-
ematical physicists with emphasis on the physical justification of the
mathematical framework. This book aims to fill this gap.

Knowledge of physics is not assumed. While physical and heuristic
arguments are given, they are not used as substitutes for any proofs. The
book is also suitable as an introduction to pseudo-Riemannian geometry
with emphasis on the intuition for geometrical concepts.

The physical theme of the book

Modern textbooks on general relativity typically start with a more or less
formal introduction to pseudo-Riemannian geometry. In such textbooks
some knowledge of special relativity is usually assumed, and the reader
is expected to accept the geometrical framework presented on trust. This
approach is very economical but obscures the extent to which classical
general relativity succeeds in describing our universe, and also where it
may fail. This is a point that is of particular relevance to those attempt-
ing to quantise gravity. From a physical point of view it is important to
realise which parts of the theory reflect genuine physical insights, and
which are dispensible. One way this can be achieved is through a criti-
cal introduction that stresses foundational matters. There are no modern
textbooks taking this approach, and I hope to fill this gap with my book.
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One of the most exciting aspects of general relativity is the predic-
tion of black holes and the Big Bang. Such predictions gained weight
through the singularity theorems pioneered by Penrose. In various text-
books on general relativity singularity theorems are presented and then
used to argue that black holes exist and that the universe started with
a big bang. To date what has been lacking is a critical analysis of what
these theorems really predict.! We give a proof of a typical singular-
ity theorem and use this theorem to illustrate problems arising through
the possibilities of “causality violations” and very weak “shell crossing
singularities”. These problems add weight to the point of view that the
singularity theorems alone are not sufficient to predict the existence of
physical singularities.

The mathematical theme of the book

In order to gain both a solid understanding of and good intuition for any
mathematical theory, one should try to realise it as a model of a famil-
iar non-mathematical concept. Physical theories have had an especially
important impact on the development of mathematics, and conversely
various modern physical theories require rather sophisticated mathemat-
ics for their formulation. Today, both physics and mathematics are so
complex that it is often very difficult to master the theories in both sub-
Jects. However, in the case of pseudo-Riemannian differential geometry
or general relativity the relationship between physics and mathematics
is especially close, and it is therefore possible to profit from an interdis-
ciplinary approach.

Euclidean geometry had its origins as the description of shapes in
physical space. It is generally considered a mathematical discipline rather
than a physical theory, because it is possible to derive it from a small set
of physical postulates, which can alternatively be viewed as mathematical
azioms. Since the concept of space is basic to our everyday experience,
Euclidean geometry combines mathematical rigor with intuitiveness —
a combination which has proved to be extremely fruitful for both math-
ematics and physics. Riemannian geometry is abstracted from the study
of surfaces in Euclidean space and inherits much of the intuitiveness of
Euclidean geometry. Hence Riemannian geometry is very well developed,
and a growing number of geometers have branched out to Lorentzian or
even pseudo-Riemannian geometry. In my experience, these fields (and

! Since I had written this passage a review article (Senovilla 1998) which
has a very similar theme has been pointed out to me. This article pro-
vides many very illuminating examples of spacetimes as well as discussions
which reinforce our sceptical approach towards the physical interpretation
of singularity theorems.
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even Riemannian geometry) appear quite abstract to the majority of
students. ,

A careful analysis of space, time, and free fall — the most funda-
mental (classical) physical concepts — leads almost automatically to
Lorentzian geometry. With respect to Lorentzian geometry, we are there-
fore in a similar situation as ancient geometers were with respect to
Euclidean geometry. What’s more, virtually no physical background is
required for this approach. Since Riemannian geometry comes to play in
the study of submanifolds representing an instant in time, it is completely
straightforward to extrapolate pseudo-Riemannian geometry from the
special and physically motivated cases of Lorentzian and Riemannian
geometry.

While some modern textbooks present pseudo-Riemannian geometry
(and general relativity) to mathematicians (an example of this is that
by O’Neill (1983)), they have not motivated the geometry from basic
properties of space and time. Instead they have developed it as an ab-
stract mathematical theory. To ensure that the mathematical description
mirrors the physical concepts, all definitions have a justification in this
book. This approach also leads to a careful treatment of the structural
aspects of the mathematics.

How to read this book

This book is not designed so that it is necessary for the reader to start
at page 1 and then to read on until she or he arrives at page 424. People
who take this approach will very likely give up before they reach page
14! The material is ordered in such a way as to allow the text to be
used as a reference source. It is an unfortunate fact that many parts of
the theory that logically belong to the preliminaries are not of imme-
diate interest to a reader who is interested in space and time, and so
the reader is urged to follow the guides in the margins, which provide
a shortcut. As an example, the text in the margin denotes the begin-
ning of a passage belonging to the shortcut: p. 111 | denotes the page
number where the last shortcut passage ended and [| p. 222] the page
number where the present passage will end. Additional explanations in
the footnotes are indicated by —2, where 2 refers to the number of the
corresponding footnote. The end of shortcut passages is marked simi-
larly. Having understood the material leading to Einstein’s equation it
is then not difficult to return to the parts that have been skipped on
an earlier reading. In addition, hints are given at the beginning of most
sections as to what is important and should be read .

2 Explanations referring to the guide in the margin.

p. 111 |

—2

[l p. 222]
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This book, with its 424 pages is meant to cover both general relativity
and pseudo-Riemannian differential geometry. It is therefore clear that
some important topics had to be omitted.

For mathematicians, the most important omissions are certainly some
topics peculiar to Riemannian geometry, such as the Hopf-Rinow the-
orem (O’Neill 1983, Theorem 5.21) and the Myers theorem (O’Neill
1983, Theorem 10.24). Because these results are contrary to intuition
one should obtain for Lorentzian (or general pseudo-Riemannian) geom-
etry and since they are not needed for the description of space and time,
they have been omitted from this book.

Physicists may find that the presentation of this book is only loosely
linked to other physical theories. This loose linkage is possible since the
theory of space and time is fundamental to any other physical theory.
The book is therefore accessible to mathematicians and physicists alike.
Physicists who are interested in applications to astrophysics may wish to
consult the book by Weinberg (1972). Weinberg’s approach is opposite
to the one used in this book, and personally I believe that it should
ideally be read after the reader has a solid knowledge of the conceptional
aspects of relativity as presented in this book. Most other books on
general relativity also present the “Kerr solution”, which is supposed to
model the exterior of a rotating black hole. It has been omitted since
it is not essential to understanding general relativity. Moreover, it is
well described in other books. People interested in this solution should
probably first read Chap. 12 of the book by Wald (1984). The purely
mathematical aspects of this solutions are clearly presented in O’Neill’s
book (1995).
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