
1. Introduction

In this chapter, we introduce the concept of discrepancy. We formulate a basic
problem concerning discrepancy for rectangles, we show its connections to the
discrepancy of infinite sequences in the unit interval, and we briefly comment
on the historical roots of discrepancy in the theory of uniform distribution
(Section 1.1). In Section 1.2, we introduce discrepancy in a general geometric
setting, as well as some variations of the basic definition. Section 1.3 defines
discrepancy in a seemingly different situation, namely for set systems on finite
sets, and shows a close relationship to the previously discussed “Lebesgue-
measure” discrepancy. Finally, Section 1.4 is a mosaic of notions, results, and
comments illustrating the numerous and diverse connections and applications
of discrepancy theory. Most of the space in that section is devoted to applica-
tions in numerical integration and similar problems, which by now constitute
an extensive branch of applied mathematics, with conventions and methods
quite different from “pure” discrepancy theory.

1.1 Discrepancy for Rectangles and Uniform

Distribution

The word discrepancy means “disagreement” (from Latin discrepare—to
sound discordantly). In our case it is a “disagreement between the ideal sit-
uation and the actual one,” namely a “deviation from a perfectly uniform
distribution.”

We will investigate how uniformly an n-point set can be distributed in
the d-dimensional unit cube [0, 1]d. For d = 1, the set of n equidistant points
as in the following picture

0 1

hardly finds serious competitors as a candidate for the most uniformly dis-
tributed n-point set in the unit interval. But already in dimension 2, one can
come up with several reasonable criteria of uniform distribution, and sets
that are very good for some may be quite bad for others.
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2 1. Introduction

Here is one such criterion: “uniformly” means, for the moment, “uniformly
with respect to axis-parallel rectangles.” Let P be an n-point set in the
unit square [0, 1]2. Let us consider an axis-parallel rectangle1 R = [a1, b1) ×
[a2, b2) ⊆ [0, 1]2:

R
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b1

b2

1

0

For a uniformly distributed set P , we expect that the number of points of P
that fall in the rectangle R is approximately n ·vol(R), where vol(R) denotes
the area of R. (Note that n · vol(R) is the expected number of points hitting
R if we pick n points in the unit square uniformly and independently at
random.) Let us call P justly distributed if the deviation

∣∣n · vol(R) − |P ∩ R|
∣∣

is at most 100 for all axis-parallel rectangles R. Do arbitrarily large justly
distributed set exist? (Or, should the constant 100 be too small, we can ask
if the deviation can be bounded by some other constant, possibly large but
independent of n, P , and R.) This is one of the fundamental questions that
gave birth to discrepancy theory. Since we do not hope to keep the reader in
suspense until the end of the book by postponing the answer, we can just as
well state it right away: no, just distribution is impossible for sufficiently large
sets. Any distribution of n points in the unit square has to display a significant
irregularity for some rectangle R, and the magnitude of the irregularity must
grow to infinity as n → ∞. For this particular two-dimensional problem, it
is even known fairly precisely how large this irregularity must be, and we
will see the corresponding lower and upper bound proofs later in this book.
The proofs may perhaps seem simple, but one should not forget that the
presentation is based on the work of outstanding mathematicians and that
originally the problem looked formidably difficult. To put these results into
a better perspective, we remark that already the obvious generalization of
the problem in dimension 3 has so far defied all attempts at obtaining a
quantitatively precise answer.
1 For technical reasons, we take semi-open rectangles—the left side and the bottom

side are included, the right and top sides are not. For the discrepancy this doesn’t
matter much; we only accept this convention for simplifying some formulas in
the sequel.



1.1 Discrepancy for Rectangles and Uniform Distribution 3

Here is some notation for expressing these questions and answers. First
we introduce the symbol D(P,R) for the deviation of P from uniform distri-
bution on a particular rectangle R, namely

D(P,R) = n · vol(R) − |P ∩ R|.

Let R2 denote the set of all axis-parallel rectangles in the unit square. The
quantity

D(P,R2) = sup
R∈R2

|D(P,R)|

is called the discrepancy of P for axis-parallel rectangles, and the function

D(n,R2) = inf
P⊂[0,1]2

|P |=n

D(P,R2)

quantifies the smallest possible discrepancy of an n-point set. The above
question about a just distribution can thus be re-formulated as follows:

1.1 Problem. Is D(n,R2) bounded above by a constant for all n, or does
lim supn→∞ D(n,R2) = ∞ hold?

In this book, we will judge the uniformity of distribution exclusively in
terms of discrepancy, but we should remark that there are also other sensible
criteria of uniform distribution. For example, one such criterion might be the
minimum distance of two points in the considered set. This concept is also
studied quite extensively (in the theory of ball packings, in coding theory,
and so on), but it is quite distinct from the uniform distribution measured by
discrepancy. For example, the set in the unit square maximizing the minimum
interpoint distance is (essentially) a triangular lattice:

As it turns out, this set is quite bad from the discrepancy point of view: it
has discrepancy about

√
n, while in Chapter 2 we will learn how to produce

sets with only O(log n) discrepancy. On the other hand, a set with a very
good discrepancy may contain two very close points.

Uniform Distribution of Infinite Sequences. The question about the
“most uniform” distribution in the one-dimensional interval [0, 1] is trivial
for an n-point set, but it becomes quite interesting for an infinite sequence
u = (u1, u2, . . .) of points in [0, 1]. Here we want that if the points of u are
added one by one in the natural order, they “sweep out” all subintervals
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of [0, 1] as evenly as possible. This is actually the setting where discrepancy
theory began. So let us outline the definitions concerning uniform distribution
of sequences.

The sequence u = (u1, u2, . . .) is called uniformly distributed in [0, 1] if we
have, for each subinterval [a, b) ⊂ [0, 1],

lim
n→∞

(
1
n

∣∣{u1, . . . , un} ∩ [a, b)
∣∣
)

= b − a. (1.1)

Uniformly distributed sequences have the following seemingly stronger prop-
erty (which is actually not difficult to prove from the just given definition of
uniform distribution). For any Riemann-integrable function f : [0, 1] → R, we
have

lim
n→∞

(
1
n

n∑

i=1

f(ui)
)

=
∫ 1

0

f(x) dx. (1.2)

Note that (1.1) is a particular case of the last equation, with the characteristic
function of the interval [a, b) in the role of f . Thus, in order to test the
validity of (1.2) for all Riemann-integrable functions f , it suffices to consider
all characteristic functions of intervals in the role of f .

Another interesting class of functions which are sufficient for testing (1.1)
are the trigonometric polynomials, i.e. functions of the form

f(x) =
n∑

k=0

(
ak sin(2πkx) + bk cos(2πkx)

)

with real or complex coefficients a0, a1, . . . , an and b0, b1, . . . , bn. More con-
veniently, a trigonometric polynomial can be written using the complex ex-
ponential: f(x) =

∑n
k=−n cke2πikx, with i standing for the imaginary unit.

From a basic approximation theorem involving trigonometric polynomials
(a suitable version of Weierstrass’ approximation theorem), it can be shown
that if (1.2) holds for all trigonometric polynomials f , then the sequence u
is uniformly distributed. Since any trigonometric polynomial is a linear com-
bination of the functions x �→ e2πikx for various integers k, and since for
k = 0, the condition (1.2) with the function f(x) = e2πi0x = 1 is trivially
satisfied by any sequence u, the following criterion is obtained: a sequence
u = (u1, u2, . . .) is uniformly distributed in [0, 1] if and only if we have, for
all integers k �= 0,

lim
n→∞

(
1
n

n∑

j=1

e2πikuj

)
=
∫ 1

0

e2πikx dx = 0.

This result is called Weyl’s criterion. Here is a simple but lovely application:

1.2 Theorem. For each irrational number α, the sequence u = (u1, u2, . . .)
given by un = {αn} is uniformly distributed in [0, 1]. (Here {x} denotes the
fractional part of x.)
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Fig. 1.1. Adding the terms of a sequence one by one; the numbers on the right
are the deviations n(b − a) − |{u1, . . . , un} ∩ [a, b)| for the marked interval [a, b) of
length 1

2
.

Proof. We use Weyl’s criterion. This is particularly advantageous here since
we have e2πikun = e2πikαn, with the unpleasant “fractional part” operation
disappearing. Putting Ak = e2πikα, we calculate

n∑

j=1

e2πikuj =
n∑

j=1

Aj
k =

An+1
k − Ak

Ak − 1
.

We have |Ak| = 1, and since α is irrational, kα is never an integer for a

nonzero k, and so Ak �= 1. Therefore,
∣∣∣
An+1

k
−Ak

Ak−1

∣∣∣ ≤ 2
|Ak−1| is bounded by a

number independent of n, and we have

lim
n→∞

(
1
n

n∑

j=1

e2πikuj

)
= 0

as required. �

Discrepancy of Sequences: a “Dynamic” Setting. We now know that
all the sequences ({nα}) with α irrational are uniformly distributed, but if
one looks into the matter more closely, one finds that some are more uni-
formly distributed than the others. Discrepancy was first introduced as a
quantitative measure of non-uniformity of distribution for infinite sequences.
We define the discrepancy of an infinite sequence u in [0, 1] as the function

Δ(u, n) = sup
0≤a≤b≤1

∣∣∣n(b − a) −
∣∣{u1, . . . , un} ∩ [a, b)

∣∣
∣∣∣

(see Fig. 1.1). The original formulation of Problem 1.1 actually was: does
there exist a sequence u with Δ(u, n) bounded by a constant for all n?

Let us sketch the connection of this formulation concerning infinite se-
quences to the formulation with axis-parallel rectangles. First, suppose that
u is some given sequence in [0, 1]. We claim that for every natural number n,
there exists an n-point set P ⊂ [0, 1]2 with
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D(P,R2) ≤ 2max{Δ(u, k): k = 1, 2, . . . , n} + 2. (1.3)

A suitable set P can be defined as the “graph” of the first n terms of u.
Namely, we put

P =
{
( 1

n , u1), ( 2
n , u2), ( 3

n , u3), . . . , (n
n , un)

}
.

We leave it as Exercise 1(a) to verify that (1.3) indeed holds for this P .
Conversely, suppose that we have an n-point set P in [0, 1]2. Let us list
the points of P in the order of increasing x-coordinates; that is, write P =
{(x1, y1), (x2, y2), . . . , (xn, yn)}, where x1 ≤ x2 ≤ · · · ≤ xn. Then it is not
difficult to verify that if u is a sequence with y1, y2, . . . , yn as the first n
terms, we have

Δ(u, k) ≤ 2D(P,R2) for all k = 1, 2, . . . , n (1.4)

(Exercise 1(b)). Finally, with a little more work one can show that if we have
D(n,R2) ≤ f(n) for some nondecreasing function f and for all n, then there
exists a sequence u with Δ(u, n) = O(f(n)). Therefore, the question about an
infinite sequence with bounded discrepancy and Problem 1.1 are equivalent
in a strong sense—even the quantitative bounds are the same up to a small
multiplicative constant.

The difference between the discrepancy D(P,R2) of a finite point set
and the discrepancy Δ(u, n) of an infinite sequence is not so much in the
finite/infinite distinction (note that Δ(u, n) is well-defined even for a finite
sequence with at least n terms), but rather, it distinguishes a “static” and a
“dynamic” setting. In the definition of the discrepancy for rectangles, we deal
with the behavior of the whole set P , whereas in the definition of Δ(u, n),
we look at all the initial segments {u1}, {u1, u2},. . . , {u1, u2, . . . , un} simul-
taneously. If we start with the empty interval [0, 1] and add the points of
the sequence one by one in the natural order, the current set should be uni-
formly distributed all the time. Note that the discrepancy of a sequence can
change drastically by rearranging the terms into a different order (while the
discrepancy of a set does not depend on any ordering of the points). As the
above reductions show, the dynamic problem in dimension 1 is more or less
equivalent to the static problem in dimension 2, and similar reductions are
possible between dynamic settings in dimension d and static settings in di-
mension d + 1. In this book, we will mostly treat the static case.

Bibliography and Remarks. Discrepancy theory grew out of the
theory of uniform distribution. A nice and accessible book where this
development can be followed is Hlawka [Hla84]. The fact that the dis-
crepancy for axis-parallel rectangles grows to infinity, in the equivalent
formulation dealing with one-dimensional infinite sequences, was con-
jectured by Van der Corput [Cor35a], [Cor35b] and first proved by Van
Aardenne-Ehrenfest [AE45], [AE49]. Her lower bound for the discrep-
ancy was improved by Roth [Rot54], who invented the two-dimensional
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formulation of Problem 1.1 and used it to establish a much stronger
lower bound for the discrepancy in question2 (see Section 6.1).

A foundational paper in the theory of uniform distribution is due
to Weyl [Wey16]. Earlier, uniform distribution of one-dimensional se-
quences ({nα}) with irrational α was proved by several authors by el-
ementary means, but the criterion involving exponential sums enabled
Weyl to establish a multidimensional analogue—uniform distribution
of Kronecker sequences; see Section 2.5.

Weyl’s criterion uses trigonometric polynomials for testing uni-
form distribution of a sequence. There are also sophisticated results in
this spirit bounding the discrepancy of a sequence in terms of certain
trigonometric sums. The most famous of such theorems is perhaps the
Erdős–Turán inequality: for any sequence u = (u1, u2, . . .) of points in
[0, 1] and any integer H ≥ 1, we have

Δ(u, n) ≤ 10n

H + 1
+

4
π

H∑

h=1

1
h

∣
∣∣∣∣

n∑

k=1

e2πihuk

∣
∣∣∣∣

(Hlawka [Hla84] has a masterly exposition). A multidimensional ver-
sion of this inequality is due to Koksma, and various other estimates
of this type are known (see e.g. [DT97]). Such inequalities are useful
but in general they need not give tight bounds and sometimes the
trigonometric sums may be too difficult to estimate.

There is an extensive literature and many beautiful results con-
cerning the uniform distribution and various kinds of discrepancy of
specific sequences, such as the sequences ({nα}) for irrational α and
their higher-dimensional analogues. A minor sample of theorems will
be mentioned in Section 2.5; much more material and citations can be
found in the books Drmota and Tichy [DT97] or Kuipers and Nieder-
reiter [KN74], or also in the lively surveys Sós [Sós83a] and Beck and
Sós [BS95].

Some of these results are closely connected to ergodic theory and
similar branches of mathematics. Some well-known low-discrepancy
sequences can be obtained from the initial point by iterating a suit-
able ergodic transform, and the ergodicity of the transform is directly
related to the uniform distribution of the sequence. For example, for α
irrational and for any x0 ∈ {0, 1}, the sequence ({nα + x0})∞n=0 is uni-
formly distributed in [0, 1). Consequently we have, for any Riemann-
integrable function f and all x0 ∈ [0, 1),

lim
n→∞

(
1
n

n∑

i=1

f(T ix0)
)

=
∫ 1

0

f(x) dx, (1.5)

2 The significance of this paper of Roth is also documented by the subsequent
popularity of its title in discrepancy theory—look, for instance, at the list of
references in [BC87].
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where T : [0, 1) → [0, 1) is given by Tx = {x + α}. This T is obviously
a measure-preserving transform of [0, 1), and (1.5) is the conclusion
of Birkhoff’s ergodic theorem for this T (more precisely, the ergodic
theorem would only imply (1.5) for almost all x0). And indeed, T
is and important example of an ergodic transform. The connection
of other low-discrepancy sequences to ergodic transforms has been
investigated by Lambert [Lam85]. On the other hand, some results
first discovered for the ({nα}) sequences were later generalized to flows
(see [DT97] or [Sós83a] for some references).

The notion of uniform distribution of a sequence can be gener-
alized considerably, for instance to sequences in a compact topologi-
cal group X, by requiring that limn→∞

(
1
n

∑n
i=1 f(ui)

)
=
∫

X
f(x) dx

for all continuous functions f . Or, instead of a discrete sequence u,
one can look at the uniform distribution of a function u: [0,∞) →
Rd, where uniform distribution can be defined by the condition
limt→∞

(
1
t

∫ t

0
f(u(t)) dt

)
=
∫
Rd f(x) dx, and so on.

Books and Surveys. A basic source on older results in geomet-
ric discrepancy theory, more comprehensive in this respect than the
present text, is a book by Beck and Chen [BC87]. A newer excellent
overview, with many references but only a few proofs, is a handbook
chapter by Beck and Sós [BS95]. Alexander et al. [ABC97] also give
a brief but delightful survey. An extensive recent monograph with an
incredible count of 2000 bibliography references is Drmota and Tichy
[DT97]. It covers results from many directions, but its main focus is
the classical uniform distribution theory (investigation of the discrep-
ancy of particular sequences etc.). The books Spencer [Spe87], Alon
and Spencer [AS00], Montgomery [Mon94], and Pach and Agarwal
[PA95] have nice but more narrowly focused chapters on discrepancy.
Chazelle [Cha00] is a monograph on discrepancy and its relations to
theoretical computer science. Discrepancy theory is now an extensive
subject with many facets, reaching to a number of mathematical dis-
ciplines. The amount of available material and literature makes any
account of the size of a normal book necessarily incomplete. It is no
wonder that more narrowly focused subfields tend to single out and
the communication and flow of results and ideas between these areas
are often nontrivial.

Exercises

1. Let u = (u1, u2, . . .) be an infinite sequence of real numbers in the inter-
val [0, 1].
(a) Verify that if an n-point set P is constructed from u as in the text
above then (1.3) holds. (Consider the rectangles [0, i

n ) × [a, b) first.)
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(b)∗ Show that if P is a given n-point set in [0, 1]2 and u is a sequence
with the first n terms defined as in the text above then (1.4) holds.
(c)∗ Show that if D(n,R2) ≤ f(n) for some nondecreasing function f
and for all n, then there exists a sequence u with Δ(u, n) = O(f(n)),
where the constant of proportionality depends on f .

2. (Three-distance theorem)
(a)∗∗ Let α be a real number, let n be a natural number, and let 0 ≤
z1 ≤ z2 ≤ · · · ≤ zn < 1 be the first n terms of the sequence ({iα})∞i=1

listed in a nondecreasing order. Prove that the differences |zj+1 − zj |,
j = 1, 2, . . . , n−1, attain at most three distinct values. Moreover, if there
are three values δ1 < δ2 < δ3, then δ3 = δ1 + δ2. It may be instructive
to imagine that the real axis with the numbers 0, α, 2α,. . . , nα on it is
wound around a circle of unit length, which produces a picture similar
to the following one (here α = 1/

√
2):

0
10α

3α
6α

9α
2α

5α

8α
α 4α

7α

(b)∗∗ Let α be irrational, and p be the permutation of the set {1, 2, . . . , n}
such that 0 < {p(1)α} < {p(2)α} < · · · < {p(n)α} < 1. Show that the
whole of p can be determined by the knowledge of p(1) and p(n) (without
knowing α). (This illustrates that the sequence ({iα})∞i=1 is highly non-
random in many respects, although it might perhaps look random-like at
first sight.)
These results are due to Sós [Sós58], and we refer to that paper for a
solution of this exercise.

1.2 Geometric Discrepancy in a More General
Setting

Discrepancy is also studied for classes of geometric figures other than the
axis-parallel rectangles, such as the set of all balls, or the set of all boxes,
and so on. For discrepancy, only the part of a set A ∈ A lying in the unit cube
[0, 1]d is important. We are interested in finding an n-point set P ⊂ [0, 1]d

such that the fraction of points of P lying in A is a good approximation of
the volume of A∩ [0, 1]d, and the discrepancy measures the accuracy of such
an approximation. For more convenient notation, let us write vol�(A) for
vol(A ∩ [0, 1]d).
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For an n-point set P ⊂ [0, 1]d and A ∈ A, we put

D(P,A) = n · vol�(A) − |P ∩ A|
D(P,A) = sup

A∈A
|D(P,A)|.

The quantity D(P,A) is called the discrepancy of P for A. Further we define
the discrepancy function of A:

D(n,A) = inf
P⊂[0,1]d

|P |=n

D(P,A).

Hence, in order to show that D(n,A) is small (an upper bound), we must
exhibit one n-point set and verify that it is good for all A ∈ A. To prove that
D(n,A) is large (lower bound), we have to demonstrate that for any n-point
set P , given by the enemy, there exists a bad A ∈ A.

A Warning Concerning Notational Conventions. Let us stress that
in this book, the discrepancy is measured in units of points of P . Often it is
more natural to work with the relative error, i.e. with the quantity 1

nD(P,A),
and this is also what one finds in a significant part of the literature. Indeed,
1
nD(P,A) is the relative error made by approximating vol�(A) by the fraction
of points of P falling into A, and in many applications, the relative error is
prescribed and we are looking for the smallest point set providing the desired
accuracy. This interpretation becomes somewhat obscured by the definition
of discrepancy we use, with the unit of one point. Nevertheless, we stick to
the more traditional way, which usually leads to nicer formulas.

Two Basic Types of Behavior of the Discrepancy Function. One
can try to classify the various classes A of geometric shapes according to the
behavior of their discrepancy function. Here is perhaps the most significant
(and a bit vague) division. On the one hand, we have classes consisting of
scaled and translated copies of a fixed polygon or polytope, such as the class
Rd of all axis-parallel boxes (no rotation is allowed). Two such families in
the plane are indicated below:

discrepancy
about log n

For such classes, as a rule, the discrepancy function is bounded from above
and from below by some constant powers of log n. On the other hand, for
rotationally invariant classes, such as halfspaces or rectangular boxes in ar-
bitrarily rotated positions, the discrepancy function behaves like a fractional
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power of n, and in higher dimensions it is quite close to
√

n. Similar behavior
occurs for translated, or translated and scaled, copies of a set with a smooth
curved boundary, such as a disc or an ellipsoid. Three examples are schemat-
ically depicted below:

discrepancy
about n1/4

The middle example, the family of all triangles with two sides parallel to the
axes, is particularly striking when compared with the case of axis-parallel
rectangles. There are point sets giving small discrepancy, of the order log n,
for all axis-parallel rectangles, but if we slice each rectangle by its diagonal,
some of the resulting triangles have much larger discrepancy.

Surprisingly, no natural classes of geometric objects are known with an
intermediate behavior of discrepancy (larger than a power of log n but smaller
than any fixed power of n).

The just indicated basic classification of shapes also strongly influences
the subdivision of this book into chapters and sections: the two cases, classes
with polylogarithmic discrepancy and classes with much larger discrepancy,
usually involve distinct techniques and are mostly treated separately. Another
general wisdom to remember for the study of discrepancy is this: look at
the boundary . The irregularity of distribution always “happens” close to the
boundary of the considered set, and the boundary length and shape influence
the magnitude of the irregularity. The area of the considered sets, for example,
is much less significant. Again, I know of no suitable exact formulation of this
principle, but we will see some examples throughout the book.

More Generalizations and Variations. Clearly, discrepancy can be de-
fined in yet more general situations. One obvious generalization is to replace
the unit cube [0, 1]d by other domains (a frequently investigated case is the
d-dimensional unit sphere Sd), or even by complicated sets like fractals. In
this book, we mostly keep working with the unit cube, since this setting seems
appropriate for the first encounter with most of the ideas, and also most of
the known results are formulated for the unit cube situation.

Later we will meet interesting generalizations of discrepancy in other di-
rections, such as average discrepancy, combinatorial discrepancy, discrepancy
of weighted point sets, discrepancies with respect to classes of functions,
toroidal discrepancy, etc.

Decomposing Geometric Shapes for Bounding Discrepancy. We now
mention a simple observation, which often allows us to simplify the class of
sets for which the discrepancy is studied.
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1.3 Observation. If A,B are disjoint (and measurable) sets, then |D(P,A∪
B)| = |D(P,A) + D(P,B)| ≤ |D(P,A)| + |D(P,B)|, for an arbitrary finite
set P . Similarly for A ⊆ B, we have |D(P,B \A)| ≤ |D(P,A)|+ |D(P,B)|. �

As an example, we express axis-parallel rectangles (and boxes in higher
dimensions) using simpler sets. For a point x = (x1, . . . , xd) ∈ [0, 1]d, we
define the corner3 with vertex at x as the set

Cx = [0, x1) × [0, x2) × · · · × [0, xd).

This corner is also written C(x1,x2,...,xd). Let Cd = {Cx: x ∈ [0, 1]d} be the set
of all d-dimensional corners.

1.4 Observation. For any finite set P ⊆ [0, 1]d we have

D(P, Cd) ≤ D(P,Rd) ≤ 2dD(P, Cd)

(Rd stands for the set of all (semi-open) axis-parallel boxes in dimension d).

Sketch of Proof. The first inequality is obvious (each corner is an axis-
parallel box). To see the second inequality, we express any axis-parallel box
R using 2d corners. For instance, in the plane we have

[a1, b1) × [a2, b2) =
(
C(b1,b2) \ C(a1,b2)

)
\
(
C(b1,a2) \ C(a1,a2)

)
,

pictorially

=

⎛

⎝ \

⎞

⎠ \

⎛

⎝ \

⎞

⎠ .

Finding the expression for a d-dimensional box using 2d corners is left as an
exercise. �

Thus, if we are not interested in the exact constant of proportionality,
we can estimate the discrepancy for corners instead of that for axis-parallel
rectangles.

Let us remark that the discrepancy for corners is frequently treated in the
literature, and it is often denoted by D∗ and called, for historical reasons,
the star-discrepancy.

Average Discrepancy. In our definition above, the discrepancy D(P,A) is
taken as a supremum over all sets A ∈ A, so it is a discrepancy in the worst
case. In order to show a lower bound for discrepancy of some point set, it
suffices to exhibit a single bad set A from the class A of allowed shapes. In
most of the known proofs, one actually shows that a “random” or “average”
3 In the literature, corners are sometimes called anchored boxes.
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set from A must be bad. For this, and also for various applications, we need
to define an average discrepancy. Since the set A is, in general, infinite, in
order to speak of an average over A, we have to fix a measure ν on A. For
convenience we assume that it is a probability measure, i.e. that ν(A) = 1.
For the time being, we give only one example of such a measure ν, namely
a measure on the set Cd of all d-dimensional corners. Since each corner Cx

is determined by its vertex x ∈ [0, 1]d, we can define the measure of a set of
corners K ⊆ Cd as vol({x ∈ [0, 1]d: Cx ∈ K}).

For a given number p, 1 ≤ p < ∞, and for a probability measure ν on A
we define the p-th degree average discrepancy (also called the Lp-discrepancy)
as follows:

Dp,ν(P,A) =
(∫

A
|D(P,A)|pdν(A)

)1/p

Dp,ν(n,A) = inf
P⊂[0,1]d

|P |=n

Dp,ν(P,A).

If the measure ν is clear from the context, we only write Dp instead of Dp,ν .
For example, the concrete formula for the Lp-discrepancy for corners is

Dp(P, Cd) =
(∫

[0,1]d
|D(P,Cx)|p dx

)1/p

.

It is easy to see that for any p and any ν, we have Dp,ν(P,A) ≤ D(P,A)
(the integral over a region of unit measure is upper-bounded by the maximum
of the integrated function). By a well-known inequality for Lp-norms, we also
have Dp,ν(P,A) ≤ Dp′,ν(P,A) whenever p ≤ p′.

Some people may find it convenient to think about the Lp-discrepancy
using a probabilistic interpretation. If the set P is fixed and A ∈ A is chosen at
random according to the probability measure ν, then the discrepancy D(P,A)
is a random variable, and Dp,ν(P,A)p is its pth (absolute) moment. (Note
that the expectation of D(P,A) need not be 0 in general, and so the L2-dis-
crepancy is not the same as the variance.) The L2-discrepancy is the most
important one among the various average discrepancies. It is usually the
easiest to handle analytically, mainly because we need not take any absolute
values in the definition.

In many papers, mainly in more practically oriented ones, the L2-discrep-
ancy for corners is used as the main measure of non-uniformity of distribution
of a point set. (Part of its popularity can be attributed to its efficient com-
putability; see Section 2.4 and, in particular, Exercise 2.4.11.) However, it
can be argued that the L2-discrepancy for corners does not capture the intu-
itive notion of uniform distribution too well, especially in higher dimensions.
Roughly speaking, it exaggerates the importance of points lying close to the
vertex (0, 0, . . . , 0) of the unit cube, and, in high dimension, a “typical” cor-
ner has a very small volume. Moreover, the directions of the coordinate axes
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play a significant role in the definition, and the L2-discrepancy for corners
says very little concerning the uniform distribution with respect to halfplanes,
for instance. Modifications have been proposed that address some of these
shortcomings; more details are given in the remarks below.

Bibliography and Remarks. The question of discrepancy for
classes of shapes other than axis-parallel boxes was first raised by
Erdős [Erd64]. For the special case where the point set is (a part
of) the lattice Z2 or other lattices, discrepancy for right-angled tri-
angles was considered much earlier (Hardy and Littlewood [HL22a],
[HL22b]), and an extensive theory concerning the number of lattice
points in various convex bodies has been developed ([Skr98] provides
a list of references).

The rough classification of shapes according to the behavior of their
discrepancy function emerged from fine works of several researchers,
most notably of Roth, Schmidt, and Beck; references will be given in
the subsequent chapters.

The L2-discrepancy for corners was introduced by Roth [Rot54],
first as a technical device for a lower-bound proof. Since then, it has
been used widely in numerous theoretical and empirical studies. As
was remarked above, it has some disadvantages. If the dimension is
not very small in terms of the number of points, say if n ≤ 2d (which
is often the case in applications), then the L2-discrepancy for corners
gives very little information about uniform distribution, essentially be-
cause the average volume of a corner is very small; see Exercise 2.4.5
or [Mat98c]. A notion of L2-discrepancy favoring larger corners can be
found in Hickernell [Hic98], [Hic96]. We will consider a particular in-
stance of Hickernell’s notion in the discussion of Zaremba’s inequality
(1.8) in Section 1.4 and in Exercise 2.4.6.

Another counterintuitive feature of the L2-discrepancy for corners
is the lack of translation invariance: D2(P, Cd) may be very different
from D2({P + x} , Cd), where {P + x} arises from P by translation by
the vector x and then reducing all coordinates of each point modulo 1
(Lev [Lev95] makes this observation and notes some other undesirable
properties). In fact, a surprising result of [Lev96] shows that for any
n-point set P ⊂ [0, 1]d, there exists a translation vector x such that

D2({P + x} , Cd) = Ω(D(P, Cd)),

with the constant of proportionality depending on d. That is, for any
point set there is a translated copy whose L2-discrepancy is nearly as
bad as the worst-case discrepancy!

An alternative notion, advocated in [Lev95], is the L2-discrepancy
with respect to the class

R̃d = {{Bx,a} : x, a ∈ [0, 1]d},
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where Bx,a stands for the box [x1, x1 + a1) × [x2, x2 + a2) × · · · ×
[xd, xd + ad) and {Bx,a} is Bx,a reduced modulo 1 in each coordinate:

x

x + a
Bx,a

0

= {Bx,a}

The measure of a set R ⊆ R̃d is the 2d-dimensional Lebesgue measure
of the corresponding set of pairs (x, a) ∈ [0, 1]d × [0, 1]d. The dis-
crepancy D2(P, R̃d) is translation-invariant. Moreover, it always lies
between suitable constant multiples of another discrepancy-like quan-
tity, the diaphony of P (where the constants depend on the dimension;
see Exercise 7.1.6). This rather technical-looking notion, introduced by
Zinterhof [Zin76], is motivated by many proofs where estimates on the
(usual) discrepancy are obtained via Fourier analysis. The diaphony
of P is ( ∑

m∈Zd\{0}

|P̂ (m)|2
∏d

k=1 max(|mk|2, 1)

)1/2

,

where P̂ (m) is the exponential sum
∑

p∈P e−2πi〈m,p〉, with i denoting
the imaginary unit and 〈., .〉 the usual scalar product in Rd. Thus,
the L2-discrepancy D2(P, R̃d) provides a convenient geometric inter-
pretation of diaphony (up to a constant factor, that is). Lev [Lev95]
suggests to call the discrepancy for R̃d the Weyl discrepancy , because
Weyl’s foundational paper [Wey16] also considers the (worst-case) dis-
crepancy for intervals taken modulo 1, i.e. on the unit circle. A formula
for an efficient computation of this kind of discrepancy can be found
in Exercise 7.1.8.

To conclude this discussion of alternatives to the L2-discrepancy
for corners, let us remark that the latter has its advantages too: it
is well-established in the literature, and it is perhaps more intuitive
and sometimes technically simpler than the alternative notions men-
tioned above (Hickernell’s generalized discrepancy or the discrepancy
for R̃d). For most of the questions studied in this book, the differ-
ences between these notions are not very important. In any case, for
measuring the irregularity of distribution, the choice of the “right”
discrepancy should be guided by the particular application, and there
is probably no single optimal definition.

The discrepancy for the class R̃d of boxes reduced modulo 1 is a
special case of the so-called toroidal discrepancy. For an arbitrary class
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A of shapes, we can define the corresponding class Ã = {{A} : A ∈
A}. That is, instead of cutting off the parts of a set A protruding
out from the unit cube, we wrap them around. In other words, the
unit cube is replaced by (or interpreted as) the torus Rd/Zd, which
has some technical advantages for methods involving Fourier analysis.
Toroidal discrepancy has been used for a long time, especially in proofs
of lower bounds (e.g., in Schmidt [Sch69c]). We will return to this in
the remarks to Section 7.1.

The second most important domain in which discrepancy is stud-
ied, besides the unit cube, is probably the unit sphere Sd. Various
notions of discrepancy for this situation, and their applications to nu-
merical integration, are surveyed in Grabner et al. [GKT97]. A very
natural and much investigated notion is the discrepancy for spherical
caps (i.e. intersections of Sd with halfspaces). A little more about this
will be said in the remarks to Section 3.1.

Exercises

1. Prove that any axis-parallel box R = [a1, b1) × . . . × [ad, bd) can be ex-
pressed by 2d corners, using the operations of disjoint union and “encap-
sulated difference” (meaning the difference of two sets A,B with B ⊆ A).

2. Let A be some class of measurable sets in Rd.
(a) Prove that for each n, D(n,A) − 1 ≤ D(n + 1,A) ≤ D(n,A) + 1.
(b) Is the function D(n,A) necessarily nondecreasing in n?

3. Check that Dp(P, R̃2) = Dp({P + x} , R̃d) for any finite P ⊂ [0, 1]d, any
x ∈ Rd, and any p ∈ [1,∞), where R̃d is as in the remarks above.

1.3 Combinatorial Discrepancy

In this section, we start considering a seemingly different problem. Let X be
an n-element set, and let S be a system of subsets4 of X. We want to color
each point of X either red or blue, in such a way that any of the sets of S has
roughly the same number of red points and blue points, as in the following
(schematic and possibly misleading) picture:

4 Sometimes we will write “a set system (X,S),” meaning that X is a set and S
is a system of subsets of X. This notation is analogous to the standard notation
(V, E) for graphs, where V is the vertex set and E is the edge set. In fact, our
notion of “set system” is fully synonymous to the notion of “hypergraph,” and
for hypergraphs, the notation (X,S) is quite standard. On the other hand, when
the underlying set is understood (usually it is the union of all sets in S), we will
say “the set system S” only.
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X

red

blue

Easy considerations reveal that it is not always possible to achieve an exact
splitting of each set. The error for some sets may even be arbitrarily large—in
fact, if we take all subsets of X for S, then there will always be a completely
monochromatic set of size at least n

2 . The maximum deviation from an even
splitting, over all sets of S, is the discrepancy of the set system S. We now
express this formally. A coloring of X is any mapping χ:X → {−1,+1}. The
discrepancy of S, denoted by disc(S), is the minimum, over all colorings χ,
of

disc(χ,S) = max
S∈S

|χ(S)| ,

where we use the shorthand χ(S) for
∑

x∈S χ(x). (If +1’s are red and −1’s
are blue then χ(S) is the number of red points in S minus the number of blue
points in S.)

To distinguish this notion of discrepancy from the one introduced previ-
ously, we sometimes speak of combinatorial discrepancy.5 Our earlier notion
of discrepancy, where we approximate the continuous Lebesgue measure by a
discrete point set, may be referred to as Lebesgue-measure discrepancy (also
“measure-theoretic discrepancy” or “continuous discrepancy” in the litera-
ture). Here we mention just a few facts and definitions concerning combina-
torial discrepancy; Chapter 4 is devoted to a more systematic treatment.

Combinatorial discrepancy can be transferred to a geometric setting as
well. The following is a typical example of a geometrically defined problem in
combinatorial discrepancy: given an n-point set P in the plane, we want to
color each point of P red or blue in such a way that the maximum difference,
over all halfplanes h, in the number of red points and blue points in h is as
small as possible. Such a problem can be re-phrased using the combinatorial
discrepancy of the set system induced by halfplanes.

If (X,A) is a set system, with X possibly infinite, and Y ⊆ X is a set,
we define the set system induced by A on Y as the set system

A|Y = {A ∩ Y : A ∈ A}.

(We remark that A|Y is sometimes called the trace of A on Y .) In a geometric
setting, A is a system of subsets of Rd, such as the system of all halfspaces,
or the system of all balls, and so on, and we will investigate the combinatorial
5 Also the name “red-blue discrepancy” is used in the literature.
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discrepancy of set systems A|P , where P ⊆ Rd is a finite set. For a more
convenient notation, we will also write disc(P,A) for disc(A|P ). Explicitly,
disc(P,A) is the minimum, over all colorings χ:P → {−1, 1}, of

disc(χ, P,A) = max
A∈A

∣∣χ(P ∩ A)
∣∣.

Further we define the discrepancy function of A by

disc(n,A) = max
|P |=n

disc(P,A).

Combinatorial discrepancy in a geometric setting is worth investigating
for its own sake, but moreover, there is a close connection with the Lebesgue-
measure discrepancy. Roughly speaking, upper bounds for the combinatorial
discrepancy for some class A imply upper bounds for the Lebesgue-measure
discrepancy for A. (The reverse direction does not work in general.) This
relation is used in many proofs; currently it appears convenient to prove many
upper bounds in the combinatorial setting, and some lower bounds, even
for combinatorial discrepancy, are proved via the Lebesgue-measure setting.
Before giving a precise formulation of this relationship, we introduce another
useful notion.

A Common Generalization. The ε-approximation, a notion with ori-
gins in probability theory, can be regarded as a generalization of both the
Lebesgue-measure discrepancy and the combinatorial discrepancy. It is de-
fined in the following setting: X is some finite or infinite ground set, μ is a
measure on X with μ(X) < ∞, and S is a system of μ-measurable subsets
of X. Let ε ∈ [0, 1] be a real number. We say that a finite subset Y ⊆ X is
an ε-approximation for the set system (X,S) with respect to the measure μ
if we have, for all S ∈ S,

∣∣
∣∣
|Y ∩ S|
|Y | − μ(S)

μ(X)

∣∣
∣∣ ≤ ε.

This means that the fraction of the points of Y lying in S should approximate
the relative measure of S with accuracy no worse than ε. If the phrase “with
respect to μ” is omitted, we always mean the counting measure on X given
by μ(S) = |S| (we thus also assume that X is a finite set). For example, if X
are the inhabitants of some country, the sets in S are various interest groups,
and Y are the members of the parliament, then Y being a 1

100 -approximation
means that all interest groups are represented proportionally, with deviation
at most 1% of the total population.

The connection to the Lebesgue-measure discrepancy is fairly obvious:

1.5 Observation. If A is a class of Lebesgue-measurable sets in Rd and
P ⊂ [0, 1]d is an n-point set, then D(P,A) ≤ εn if and only if P is an ε-ap-
proximation6 for (Rd,A) with respect to the measure vol�. �

6 If we measured discrepancy as a relative error, rather than in the units of points,
and if the term ε-approximation were not well-established, we could naturally
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The relationship of ε-approximations to combinatorial discrepancy is a
bit more complicated.

1.6 Lemma (Combinatorial discrepancy and ε-approximations). Let
S be a system of subsets of a 2n-point set X.

(i) If Y ⊂ X is an n-point set that is an ε-approximation for (X,S) then
disc(S) ≤ 2εn. (By the above agreement, we mean ε-approximation with
respect to the counting measure on X.)

(ii) If S is such that X ∈ S and disc(S) ≤ εn then there exists an n-point
set Y ⊂ X that is an ε-approximation for (X,S).

Proof. In (i), the mapping χ with disc(χ,S) ≤ εn is given by χ(x) = 1 for
x ∈ Y and χ(x) = −1 for x �∈ Y . Indeed, for any S ∈ S we have

χ(S) = |S ∩ Y | − (|S| − |S ∩ Y |) = 2|S ∩ Y | − |S|, (1.6)

and since we assume
∣∣∣∣
|Y ∩ S|
|Y | − |S|

|X|

∣∣∣∣ =
1
2n

∣∣∣2|Y ∩ S| − |S|
∣∣∣ ≤ ε,

the required bound |χ(S)| ≤ 2εn follows.
As for (ii), consider a coloring χ with disc(χ,S) ≤ εn, and let Y0 be

the larger of the two color classes χ−1(1) and χ−1(−1). Since we assume
X ∈ S, we have, using (1.6) with S = X, |χ(X)| =

∣∣2|Y0| − 2n
∣∣ ≤ εn, and

consequently n ≤ |Y0| ≤ n + ε
2n. Let Y be a set of exactly n points arising

from Y0 by removing some arbitrary |Y0| − n ≤ ε
2n points. For S ∈ S, we

calculate

∣∣∣∣
|Y ∩ S|
|Y | − |S|

|X|

∣∣∣∣ =
1
2n

∣∣∣2|Y ∩ S| − |S|
∣∣∣

≤ 1
n

∣∣∣|Y ∩ S| − |Y0 ∩ S|
∣∣∣+

1
2n

∣∣∣2|Y0 ∩ S| − |S|
∣∣∣

≤ ε

2
+

1
2n

|χ(S)| ≤ ε.

�

Somewhat imprecisely, this proof can be summarized by saying “if χ is
a coloring with small discrepancy, then each of the color classes χ−1(1) and
χ−1(−1) makes a good ε-approximation.” But the two color classes of a
coloring need not be exactly of the same size, and this is a technical nuisance
in the proof.

Another fairly trivial but useful observation about ε-approximations is

call an ε-approximation for a set system (X,S) with respect to a measure μ a set
with discrepancy at most ε for (X,S) with respect to μ. This gives a fairly general
definition of discrepancy, although certainly not the most general reasonable
definition.
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1.7 Observation (Iterated approximation). Let Y0 be an ε-approximat-
ion for (X,S) with respect to some measure μ, and let Y1 be a δ-approximat-
ion for the set system (Y0,S|Y0

). Then Y1 is an (ε + δ)-approximation for

(X,S) with respect to μ. �

After this digression concerning ε-approximations, we return to discrep-
ancy.

Upper Bounds for Combinatorial Discrepancy Imply Upper Bounds
for Lebesgue-Measure Discrepancy. Here is one possible precise formu-
lation of the relationship of the combinatorial and Lebesgue-measure discrep-
ancies.

1.8 Proposition (Transference lemma). Let A be a class of Lebesgue-
measurable sets in Rd containing a set A0 with [0, 1]d ⊆ A0. Suppose that
D(n,A) = o(n) as n → ∞, and that disc(n,A) ≤ f(n) for all n, where f(n)
is a function satisfying f(2n) ≤ (2 − δ)f(n) for all n and some fixed δ > 0.
Then we have

D(n,A) = O(f(n)).

On the other hand, if we know that D(n,A) = o(n) and D(n,A) ≥ f(n) for
all n, with a class A and a function f(n) as above, then disc(n,A) ≥ cf(n)
holds for infinitely many n with a suitable constant c = c(δ) > 0.

All sublinear bounds f(n) for discrepancy we are likely to encounter, such
as n1/2, log n, etc., satisfy the condition in the proposition. Also the require-
ment that D(n,A) = o(n) is usually quite weak: it only requires that the
Lebesgue measure on the sets of A can be approximated with an arbitrarily
good relative accuracy by the uniform measure concentrated on a finite point
set, but there is no condition on the size of the finite set. Except for quite
wild sets, a fine enough regular grid of points suffices for such an approx-
imation. So essentially the proposition says that D(n,A) = O(disc(n,A)),
except possibly for some pathological situations.

Proof of Proposition 1.8. Let f(n) be a function as in the proposition
and let n be a given number. We set ε = f(n)

n and we choose a sufficiently
large natural number k so that

D(2kn,A)
2kn

≤ ε.

In other words, there exists a set P0 of 2kn points that is an ε-approximation
for (Rd,A) with respect to the measure vol�. We have thus approximated
the continuous measure vol� by the possibly very large but finite set P0.

Next, we are going to reduce the size of this approximating set to n
by a repeated halving, using Lemma 1.6(ii). Namely, we consider the set
system (P0,A|P0

) and we take a coloring χ0 for it with discrepancy at most
f(|P0|) = f(2kn). By Lemma 1.6(ii), such a coloring yields a subset P1 ⊂
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P0 of 2k−1n points that is an ε0-approximation for (P0,A|P0
), where ε0 =

f(2kn)/2kn. We repeat this step with the set system (P1,A|P1
), obtaining a

set P2 ⊂ P1 of 2k−2n points that is an ε1-approximation for (P1,A|P1
) with

ε1 = f(2k−1n)/2k−1n, and so on. Schematically, this procedure is indicated
in the following picture:

halve color colorhalve halve result

initial set

color

We make k such halving steps. The resulting set Pk has n points, and by
Observation 1.7, it is an η-approximation for the original set system (X,S)
with respect to the measure vol�, where

η = ε +
k−1∑

i=0

εi =
f(n)

n
+

k−1∑

i=0

f(2k−in)
2k−in

≤ f(n)
n

(
1 +

∞∑

j=1

(
2 − δ

2

)j)
= O

(
f(n)

n

)
.

In view of Observation 1.5, this implies the first part of the proposition. The
second part is a contraposition of the first part and we leave it to the reader.

�

Of course, the same proof could be phrased without introducing ε-approx-
imations, but without such a notion, it would become somewhat obscure.

Combinatorial Lp-Discrepancy. This is similar to the Lp-discrepancy in
the Lebesgue-measure setting. For a set system S on a finite set X and a
coloring χ of X, we put

discp(χ,S) =

(
1
|S|
∑

S∈S
|χ(S)|p

)1/p

.

More generally, if A is a family of subsets of a set X, ν is a probability
measure on A, P is a finite subset of X, and χ is a coloring of P , we set

discp,ν(χ, P,A) =
(∫

A
|χ(P ∩ A)|pdν(A)

)1/p

.

Thus, each subset S of P induced by A is counted with weight equal to
ν({A ∈ A: A ∩ P = S}).
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Bibliography and Remarks. A close relation of the combinato-
rial discrepancy to the Lebesgue-measure one has been folklore for
some time; M. Simmonovits (private communication) attributes this
observation to V. T. Sós. A written version of this idea appears in
Beck [Bec81a], where it is used to lower-bound the combinatorial dis-
crepancy for axis-parallel rectangles in the plane (Tusnády’s problem)
using classical lower bounds on the Lebesgue-measure discrepancy.
A quite general version of this “transference principle,” dealing with
classes of convex sets in the plane, was formulated by Lovász et al.
[LSV86] (with the proof phrased slightly differently from our proof of
Proposition 1.8).

The ε-approximations were defined and used by Vapnik and Cher-
vonenkis [VC71] (the name itself was given by Haussler and Welzl
[HW87]). We will hear more about them in Chapter 5.

Exercises

1. Prove the second part of Proposition 1.8 (beginning with “On the other
hand,. . . ”) from the first part.

2. Let K2 denote the collection of all closed convex sets in the plane. Show
that D(n,K2) = o(n) and disc(n,K2) ≥ n

2 .
3. Find a class A of measurable sets in the plane such that D(n,A) = Ω(n).

1.4 On Applications and Connections

Sets with small discrepancy, that is, “very uniformly distributed,” have con-
siderable theoretical and practical significance. Moreover, discrepancy theory
uses various nice and important mathematical ideas and techniques (some
of which we intend to demonstrate in the subsequent chapters), and these
ideas have numerous applications in other branches of mathematics. Also,
in theoretical computer science, discrepancy theory methods became crucial
in many results in recent years. In this section, we mainly discuss relations
of discrepancy to numerical integration and to Ramsey theory. A few more
applications and connections will be addressed in the remarks.

Numerical Integration. One of the most important applications of low-
discrepancy sets is to numerical integration in higher dimensions. In numer-
ical integration, the definite integral of a given function over some region,
such as the unit cube, is approximated by the arithmetic mean of the func-
tion’s values at suitably chosen points. A basic problem is which points are
to be chosen for calculating the function’s values so that the error of the
approximation is as small as possible. The points of a regular grid, or other



1.4 On Applications and Connections 23

straightforward generalizations of classical one-dimensional quadrature rules,
do not work well in higher dimensions. On the other hand, point sets with
small discrepancy are suitable candidates from both theoretical and practical
points of view.

A well-known estimate for the integration error via discrepancy is the
so-called Koksma–Hlawka inequality. Let f : [0, 1]d → R be the integrated
function and let P ⊂ [0, 1]d be an n-point set used for the approximation.
Then the inequality says

∣∣
∣∣

∫

[0,1]d
f(x) dx − 1

n

∑

p∈P

f(p)
∣∣
∣∣ ≤

1
n

D(P, Cd)V (f). (1.7)

On the right-hand side, the first term (the discrepancy for corners) only
depends on P , while the second term V (f) is determined solely by f . For
d = 1, V (f) is the variation of f ; for a continuously differentiable function
f , we have V (f) =

∫ 1

0
|f ′(x)|dx. For higher dimensions, V (f) denotes an

appropriate generalization of variation, the so-called variation in the sense
of Hardy and Krause, which we will not define here. Although the Koksma–
Hlawka inequality is tight in the worst case, it is often very far from being
tight for functions encountered in practice.

By now, there is a large body of theory concerning error estimates in the
Koksma–Hlawka spirit. These inequalities bound the maximum (or average)
integration error for functions from some class in terms of various kinds of
discrepancy of the point set used to approximate the integral. Some of them
even exactly characterize discrepancy as the worst-case integration error, or
the average-case integration error, for very natural classes of functions.

Such results can be considered as a part of a general theory of optimal nu-
merical integration. Here, roughly speaking, a function f from some suitable
class is given by a black box, which is a hypothetical device computing f(x)
for any given input point x. The basic question is, what is the minimum neces-
sary number of calls to the black box that allows one to calculate the integral
of f with error at most ε. Here one need not restrict oneself to the particular
algorithm approximating the integral of f by the average 1

n

∑
P f(p). It is

allowed to combine the values of f obtained from the black box in any other,
perhaps nonlinear, way. Moreover, the points are input to the black box one
by one, with each point possibly depending on the values of f at the previous
points (an adaptive algorithm). However, it turned out that for “reasonable”
classes7 of functions, neither nonlinearity nor adaptivity helps. However, it
may be truly helpful to combine the computed function’s values with weights
other than 1

n .

Discrepancy of Weighted Point Sets. As the reader may know from nu-
merical analysis, more sophisticated one-dimensional quadrature rules (Simp-
7 Here “reasonable” means closed on convex combinations and on the operation

f �→ −f .
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son’s rule, Gauss quadrature, etc.) use non-uniform weights. They approxi-
mate the integral by ∑

p∈P

w(p)f(p),

where P is a suitable n-point set and w(p) ∈ R are real weights, generally
distinct from 1

n . Such formulas achieve error bounds that are not attainable
with the uniform weights 1

n . Not surprisingly, in the literature related to
numerical integration, discrepancy is often investigated for weighted point
sets. For a point set P with a weight function w:P → R, the quantity |P ∩A|
is replaced by w(P ∩ A) =

∑
p∈P∩A w(p) in the definition of discrepancy in

Section 1.2. Thus, we approximate the continuous measure vol� by a (signed)
measure concentrated on an n-point set. Actually, there are at least four
different notions of discrepancy involving weighted point sets: we may require
the weights to be nonnegative and to sum up to n = |P |, or we may drop
one of these two conditions or both (negative weights are not as absurd as
it might seem, since some of the classical quadrature formulas, such as the
Newton–Cotes rule, involve negative coefficients). For discrepancy theory, the
generalization to weighted point sets is usually not too significant—most of
the lower bounds in this book, say, go through for weighted point sets without
much difficulty.

Discrepancy for Classes of Functions. The discrepancy of a point set,
say the discrepancy for axis-parallel boxes, can obviously be viewed as the
maximum integration error for a class of functions, namely for the class of
characteristic functions of axis-parallel boxes. But in practice, one often in-
tegrates functions with much better smoothness properties, for example con-
tinuous functions, functions with continuous derivatives of rth order, or func-
tions with “nice” Fourier series. In such cases, the integration method should
ideally take some advantage of the nice behavior of the function. Therefore,
it is natural to consider various “smoother analogues” of discrepancy as the
maximum integration error for suitable classes of functions, hopefully resem-
bling the functions we are likely to encounter in applications. Specifically, let
F be a class of real Lebesgue-integrable functions on [0, 1]d. For a function
f ∈ F , we can set

D(P, f) = n

∫

[0,1]d
f(x) dx −

∑

p∈P

f(p),

and proceed to define D(P,F) = supf∈F |D(P, f)| and so on. Note that this
definition includes the discrepancy for a class A of sets as a special case:
use the characteristic functions of the sets in A as F . Interestingly, for some
natural classes F of smooth functions, the standard notion of discrepancy for
axis-parallel boxes is recovered (such an alternative characterization of the
L2-discrepancy for boxes is presented in the remarks below).

Another example of a class F considered in the literature are the charac-
teristic functions of axis-parallel boxes smoothed out by r-fold integration:
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for a parameter r ≥ 0 and for a point y ∈ [0, 1]d, define a function hy by
setting hy(x) =

∏d
k=1 max(0, xk − yk)r, and let F = {hy: y ∈ [0, 1]d}. The

resulting notion of discrepancy is called the r-smooth discrepancy. In general,
the goal is to choose the discrepancy-defining function class small and simple,
so that the corresponding discrepancy notion can be handled reasonably, but
in such a way that it provides strong “Koksma–Hlawka” type inequalities,
i.e. supplies good error bounds for numerical integration of a possibly much
wider class of functions. A modern approach to this issue uses the so-called
reproducing kernels in Hilbert spaces of functions; a little more on this can
be found in the remarks below.

Irregularities of Partitions and Ramsey Theory. The preceding part
of this section discussed things quite close to practical applications. Now,
for a change, let us mention relationship of discrepancy theory to some fast-
growing areas of combinatorics. The fact that some set system (X,S) has
large combinatorial discrepancy can be rephrased as follows: for any color-
ing of X by two colors, there is a set where one color prevails significantly.
This relates the discrepancy problem to the question of 2-colorability of a
set system. Namely, (X,S) is 2-colorable if there is a coloring of X by two
colors with no set of S completely monochromatic. So, in a sense, the lack
of 2-colorability can be regarded as an ultimate case of large discrepancy: for
any coloring by two colors, there is a set with one color prevailing completely.

As an example, let us consider the set X = {1, 2, . . . , n} and the set system
A of all arithmetic progressions on X; that is, of all the sets {a, a + d, a +
2d, . . .}∩X, a, d ∈ N. A theorem of Roth states that the discrepancy of A is
at least of the order n1/4. On the other hand, if Ak denotes the subsystem of
all A ∈ A of size at most k, a famous theorem of Van der Waerden asserts that
for any k, there exists an n = n(k) such that Ak is not 2-colorable. That is,
if a sufficiently large initial segment of the natural numbers is colored by two
colors, then there is always a long monochromatic arithmetic progression. Van
der Waerden’s theorem is one of the significant results in the so-called Ramsey
theory. In a typical Ramsey-theory question, we consider some sufficiently
large combinatorial or algebraic structure X (such as a graph, a finite vector
space, etc.) and we color some small substructures of X by two colors (so we
may color graph edges, lines in a vector space, etc.). We ask if there always
exists a substructure of a given size with all the small substructures having
the same color (so we may look for a large subgraph in the given graph
with all edges monochromatic, or for a k-dimensional vector subspace with
all lines of the same color, and so on). These problems can be formulated as
questions about 2-colorability of certain set systems. (Of course, questions
involving colorings with more than two colors are studied as well.)

Both discrepancy theory and Ramsey theory can thus be regarded as parts
of theory of “irregularities of partition.” For each Ramsey-theory question,
we automatically get a corresponding discrepancy-theoretic question for the
same set system, and vice versa. The case of arithmetic progressions is a
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model example. Clearly, some questions that are interesting for Ramsey the-
ory have a trivial or not so interesting discrepancy theory counterpart, and
similarly for the other way round. Even if both versions are interesting, the
methods of solution maybe vastly different (this is what happens for arith-
metic progressions). Nevertheless, this connection can be inspiring and useful
to keep in mind.

Another area related to combinatorial discrepancy theory but with math-
ematical life of its own is the theory of totally unimodular set systems and
matrices. Here one is interested in set systems whose each subsystem has
discrepancy at most 1. This subject will be briefly touched on in Section 4.4.

More Applications. Without going into details, let us mention that dis-
crepancy theory has also been applied in such diverse areas as computer
graphics, image processing, statistics, complexity of algorithms (in particu-
lar, replacing probabilistic algorithms by deterministic ones), graph theory,
number theory, spectral theory of operators, and Tarski’s problem of “squar-
ing the circle” (partition the circle of area 1 into finitely many parts and move
each part rigidly so that they together fill the unit square without overlap).

Bibliography and Remarks.
Quasi-Monte Carlo. Sets with low discrepancy can be used for nu-
merical integration in higher dimensions, thus competing with (and of-
ten beating) random point sets employed in the popular Monte Carlo
method. The replacement of random point sets by deterministic (or
semi-random) constructions, with a presumably greater “uniformity,”
is usually called quasi-Monte Carlo methods. Such methods are not
limited to integration; they can help in numerical solution to differen-
tial and integral equations, in optimization, and in other problems.

A concise survey of quasi-Monte Carlo methods is Spanier and
Maize [SM94]; newer ones are James et al. [JHK97] and Morokoff and
Caflisch [MC95], both written from a practical (computational physi-
cist’s) point of view. Tezuka [Tez95] has another brief introduction,
also more on the practitioner’s side. A more theoretically oriented and
considerably more comprehensive (and also technically more demand-
ing) is a monograph by Niederreiter [Nie92].

The study of efficient algorithms for approximating the integral of
a function given by a black box is a part of the theory of information-
based complexity . This theory considers the complexity of algorithms
for “continuous” problems, such as computing derivatives, integrals,
evaluating various linear operators on function spaces, etc. Two books
covering this area are Traub et al. [TWW88] and the newer Traub and
Werschulz [TW98].

The area of quasi-Monte Carlo methods is certainly related to dis-
crepancy, but it has somewhat distinct flavor and distinct goals. In
“pure” discrepancy theory, as it has been developing so far, one is
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mainly interested in asymptotic results, such as that for any fixed di-
mension d, one can construct an n-point set in [0, 1]d with discrepancy
O(logd−1 n) for axis-parallel boxes, where the constant of proportion-
ality depends on d. Since a random point set would only give about
O(

√
n) discrepancy, the just mentioned construction is better—period.

But if one wants to use such a construction for numerical integration,
asymptotic results do not suffice. One has to ask—for how large n is
the discrepancy of the constructed set significantly better than the
discrepancy of a random point set? Even for not too large dimen-
sion, such as 10, an astronomically large n may be required to show
the superiority over the random points for some asymptotically good
constructions. Moreover, one cannot simply say “the smaller discrep-
ancy, the better set,” since the Koksma–Hlawka inequality and its
relatives often grossly overestimate the error. Nevertheless, point sets
constructed as examples of low-discrepancy sets for axis-parallel boxes
proved quite successful in many practical applications.

In this book, we restrict ourselves to a few occasional remarks con-
cerning relations of discrepancy to quasi-Monte Carlo methods. For
studying the quasi-Monte Carlo papers, a warning concerning differ-
ent conventions might perhaps be helpful. In the discrepancy-theory
literature, one usually looks at the discrepancy of sets (as defined
above), while for quasi-Monte Carlo methods, the authors more often
work with low-discrepancy sequences (where every initial segment is
required to be a low-discrepancy set). There is a simple theoretical re-
lation between these two settings. Essentially, good sets in dimension
d correspond to good sequences in dimension d−1 (see Section 1.1 for
the case d = 2). But from the practical point of view, the sequences
are often preferable.
What Dimension? For various applications in physics, several authors
have argued that the advantage of quasi-Monte Carlo methods over
the Monte Carlo method (random points) becomes negligible from
the practical point of view for dimensions over 20, say (e.g., [JT93]).
Also, Sloan and Woźniakowski [SW97] show that numerical integration
using fewer than 2d sample points in dimension d is hopeless in the
worst case for certain quite nice classes of functions: no algorithm can
do better in the worst case than the trivial algorithm that always
outputs 0 as the answer! The threshold 2d is very sharp, since there
exist algorithms with much smaller error using exactly 2d points.

On the other hand, quasi-Monte Carlo methods have recently been
applied successfully for problems of very high dimensions in financial
computations (where even small errors may cost big money!); see,
for instance, [PT95], [NT96]. A typical dimension appearing in these
applications is 360, which is the number of months in 30 years—
a typical period for which U.S. banks provide loans. These very
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high-dimensional integrals can be seen as approximations to infinite-
dimensional path-integrals (also some path-integrals in physics have
been handled successfully; see [MC95] for references). Here the success
of the quasi-Monte Carlo approach should probably be attributed to
a special low-dimensional structure of the integrated functions. A par-
tial theoretical explanation of this phenomenon was found by Sloan
and Woźniakowski [SW98].
Error of Integration and Discrepancies. The notion of discrepancy
with respect to a given class of functions is very natural in the context
of quasi-Monte Carlo methods. It appears in numerous papers, often
without references to previous literature with similar concepts. The
earliest reference I found is Hlawka [Hla75], who considered the one-
dimensional case with F = {x �→ xk: k = 0, 1, 2, . . .}. This polynomial
discrepancy and its higher-dimensional analogues have been studied
further by Schmidt, Klinger, Tichy, and others; recent results and ref-
erences can be found in [KT97]. The r-smooth discrepancy mentioned
in the text was considered by Paskov [Pas93].

The one-dimensional Koksma–Hlawka inequality is due to Koksma
[Kok43], and the multidimensional version was derived by Hlawka
[Hla61].

We have not defined the variation in the sense of Hardy and
Krause occurring in the Koksma–Hlawka inequality. Now we pick an-
other among the numerous generalizations and modifications of the
Koksma–Hlawka inequality and state it precisely. We begin with some
notation, which will allow us to formulate the results more compactly
and make them look less frightening. Through this and a few subse-
quent paragraphs, f is a real function on [0, 1]d. We recall the notation,
for a finite P ⊂ [0, 1]d, D(P, f) = n

∫
[0,1]d

f(x) dx−
∑

p∈P f(p), which
is n-times the integration error. We let [d] = {1, 2, . . . , d}, and for an
index set I = {i1, i2, . . . , ik} ⊆ [d], we put

∂|I|f(x)
∂xI

=
∂kf(x1, x2, . . . , xd)
∂xi1∂xi2 · · · ∂xik

.

The notation QI stands for the |I|-dimensional cube

QI = {x ∈ [0, 1]d: xi = 1 for all i �∈ I}.
And here is the promised inequality, derived by Zaremba [Zar68], in-
volving the L2-discrepancy for corners:

|D(P, f)| ≤ D2,proj(P )V2(f). (1.8)

The quantity V2(f) only depends on f :

V2(f) =

(
∑

∅�=I⊆[d]

∫

QI

(
∂|I|f(x)

∂xI

)2

dx

)1/2

.
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And D2,proj is a certain L2-discrepancy of P for corners, taking into
account all the coordinate projections of P :

D2,proj(P )2 =
∑

∅�=I⊆[d]

D2(πI(P ), C|I|)2,

with πI denoting the projection on the coordinates (xi: i ∈ I). Some
assumptions on f are needed for Zaremba’s inequality, of course; for
instance, it is enough that the mixed partial derivative ∂d

∂x[d]
exist and

be continuous on [0, 1]d, but this requirement can be further relaxed.
A proof is indicated in Exercise 1.
Reproducing Kernels. Next, we indicate a fairly general approach
to deriving Koksma–Hlawka type inequalities, which subsumes many
earlier results and notions of discrepancy. We essentially follow Hick-
ernell [Hic98] and Sloan and Woźniakowski [SW98] (the exposition in
[SW98] is somewhat simpler). Hoogland and Kleiss [HK96] and James
et al. [JHK97] present interesting and somewhat related ideas (using
generating functions and Feynmann diagrams).

Let (X, 〈., .〉) be a Hilbert space of (some) real-valued functions on
[0, 1]d. A reproducing kernel on X is a bivariate function η:X×X → R
such that the function ηx: y �→ η(y, x) is in X for all x ∈ [0, 1]d,
and the scalar product with ηx represents the evaluation at x: for all
f ∈ X and x ∈ [0, 1]d, we have f(x) = 〈f, ηx〉. (To see what is go-
ing on here, one can work out simple examples in Exercise 2 below,
and, for instance, [Wah90] provides a more comprehensive introduc-
tion to reproducing kernels.) For a reproducing kernel to exist, it is
necessary and sufficient that the evaluation operators Tx: f �→ f(x)
be all bounded (by the Riesz representation theorem). For example,
the perhaps most usual function space L2([0, 1]) with scalar product
〈f, g〉 =

∫ 1

0
f(x)g(x) dx does not have any reproducing kernel (why?).

Spaces with reproducing kernels mostly involve functions with some
smoothness requirements (such as various Sobolev spaces), and the
formulas for the scalar product usually contain derivatives.

For a fixed point set P ⊂ [0, 1]d, the integration error D(P, f) is a
linear functional on X, and it can be represented as D(P, f) = 〈ξP , f〉,
where ξP (x) = D(P, ηx). The Cauchy–Schwarz inequality then gives

|D(P, f)| ≤ ‖ξP ‖X · ‖f‖X .

Here ‖.‖X is the norm derived from the scalar product in X. The quan-
tity ‖f‖X is an abstract version of V (f) from the Koksma–Hlawka in-
equality, and ‖ξP ‖X can be interpreted as a discrepancy of P . More-
over, ξP is a worst-case integrand, where the inequality holds with
equality, and so we get a characterization of the discrepancy as a worst-
case integration error. These ideas mechanize the process of deriving
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Koksma–Hlawka type bounds greatly, but one has to find interesting
spaces and reproducing kernels and calculate concrete formulas.

Using the Cauchy–Schwarz inequality in the above considerations
leads to various notions of L2-discrepancy; to obtain notions of Lp-
discrepancy, one uses Hölder’s inequality (see [Hic98], [SW98]).

Characterizations of discrepancy as an integration error found nice
applications in discrepancy theory. Examples are Frolov [Fro80] and,
in particular, Wasilkowski and Woźniakowski [WW95], [WW97], who
upper-bound the L2-discrepancy for corners using algorithms for ap-
proximate numerical integration.

As an example, we state a characterization of the usual L2-dis-
crepancy for corners as integration error for a natural class of smooth
functions:

D2(P, Cd) = sup
f

|D(P, f)|. (1.9)

The supremum is taken over all functions f such that f(x) = 0 for any
x with at least one component equal to 1, the mixed partial derivative
∂df
∂x[d]

exists and is continuous, and

∫

[0,1]d

(
∂df(x)
∂x[d]

)2

dx ≤ 1.

The scalar product is 〈f, g〉 =
∫
[0,1]d

∂df(x)
∂x[d]

· ∂df(x)
∂x[d]

dx, and the re-

producing kernel is very simple: η(x, y) =
∏d

k=1 min(1 − xk, 1 − yk)
(Exercise 2). Zaremba’s inequality (1.8), for instance, can be obtained
by this approach as well, together with an example showing it to be
tight. The appropriate the scalar product has to consider other mixed
derivatives as well: 〈f, g〉 =

∑
I⊆[d]

∫
QI

∂|I|f(x)
∂xI

· ∂|I|g(x)
∂xI

dx. The repro-

ducing kernel is then
∏d

k=1 min(2 − xk, 2 − yk); see [SW98].
Random Functions and Average-Case Error. There are also charac-
terizations of discrepancy as the expected (average-case) integration
error for a random function. Let us begin with some motivation of
this approach. For the Monte Carlo method of integration, one can
estimate the error (with a reasonable confidence) by choosing several
random sets and comparing the results. This cannot easily be done
for a quasi-Monte Carlo method that produces just one set of a given
size, say. For this reason, error estimates have been theoretically in-
vestigated in another setting, namely when the point set is fixed and
the integrated function is chosen “at random.” Since natural classes of
functions usually form infinite-dimensional spaces with no “canonical”
measure on them, it is not clear what should a random function mean.

Woźniakowski [Woź91] obtained a very nice result for one possible
definition of a “random function,” the so-called Wiener sheet measure
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or multidimensional Brownian motion. Instead of a precise definition
of the appropriate class of functions and of the measure on it, we
present an informal description of a random function from this class.
To approximately plot the graph of a one-dimensional random func-
tion, start at the point (1, 0) and proceed in N steps. In each step,
choose one of the possibilities “up” or “down” at random with equal
probability, and go left by 1

N and either up or down, according to the
random choice, by 1√

N
:

−0.5
0

0.5
1

1
N = 50 N = 2000−1

0 1

For large N , the resulting plot is approximately the graph of a ran-
dom f . (The boundary condition f(1) = 0 is a consequence of the
choice of boxes anchored at 0 in the definition of discrepancy.) For a
2-dimensional random function, subdivide the unit square [0, 1]2 into
an N × N square grid, and for each square s of this grid, indepen-
dently choose a number δs ∈ {− 1

N ,+ 1
N } at random, both possibilities

having probability 1
2 . Now define the values of f at all the vertices of

the little squares: for each grid square, require the condition indicated
in the following picture

a b

cd

s f(a) − f(b) + f(c) − f(d) = δs

and also use the boundary condition f(x, 1) = f(1, y) = 0 for all x, y.
(It is easy to see that given the δs’s, these conditions determine the
values of f at all the vertices uniquely.) A result for N = 80 is shown
below:
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This can be generalized to dimension d in a straightforward manner.
Woźniakowski proved that for any fixed n-point set P ⊂ [0, 1]d and

f random in this sense, the expected integration error satisfies

E [D(P, f)] = D2(P, Cd).

Earlier, similar results for various notions of a random function
in the one-dimensional case were established by Sacks and Ylvisaker
[SY70]. Woźniakowski [Woź91] has the d-dimensional statement and,
moreover, directly relates the L2-discrepancy to the average-case algo-
rithmic complexity of numerical integration. Alternative derivations of
this average-case characterization of discrepancy, as well as some gen-
eralizations, can be found in [MC94] and [JHK97].

Functions occurring in practical problems seldom resemble random
functions in the sense discussed above; for instance, the latter ones
are continuous but typically nowhere differentiable. Paskov [Pas93]
derived an analogue of Woźniakowski’s result for random functions
with a given degree r of smoothness.

A general relation of the worst-case and average-case error esti-
mates is considered in Wahba [Wah90] or in Traub et al. [TWW88].

Ramsey Theory. Nice overviews of Ramsey theory are Graham et al.
[GRS90] or Nešetřil [Neš95]. An inspiring account of the connections of
discrepancy theory to Ramsey theory is Sós [Sós83a] (a shorter version
is in [BS95]). The Ω(n1/4) lower bound for discrepancy of arithmetic
progressions is from Roth [Rot64]. This bound is asymptotically tight;
we will say more about this problem in Sections 4.2, 4.5, and 4.6.
Number Theory. As an example of a result related to number theory,
we can quote Beck’s solution of a problem of Erdős concerning “flat”
polynomials on the unit circle. Using discrepancy theory methods,
Beck [Bec91a] proved that there are constants c, α > 0 such that
whenever ξ1, ξ2, . . . , ξn are complex numbers with |ξi| = 1 for all i
and we define polynomials p1(z), p2(z),. . . , pn(z) by setting pi(z) =∏i

j=1(z − ξj), then

max
1≤i≤n

max
|z|=1

|pi(z)| ≥ cnα.

Geometry. The beautiful “squaring the circle” result mentioned in
the text is due to Laczkovich [Lac90].

Here are two combinatorial geometry problems related to discrep-
ancy. One of them asks for an n-point set on the unit d-dimensional
sphere such that the sum of all the

(
n
2

)
Euclidean distances determined

by these points is maximal. An exact solution appears very difficult in
most cases. Stolarsky [Sto73] discovered a relation of this problem to a
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certain kind of discrepancy, and Beck [Bec84] used results in discrep-
ancy theory to give good asymptotic bounds for the maximum sum of
distances.

Another problem concerns the approximation of the unit ball in
Rd by a zonotope. A zonotope is a special type of a convex polytope
that can be defined as a d-dimensional projection of an n-dimensional
cube, and for the approximation we want to have n as small as pos-
sible. This problem has several equivalent formulations, one of them
being a “tomography” question (Betke and McMullen [BM83]): find
the minimum number n of directions y1, . . . , yn ∈ Sd−1 (where Sd−1

is the unit sphere in Rd), such that the surface area of any convex
body K in Rd can be determined, up to a relative error of ε, by the
knowledge of the volumes of the (d− 1)-dimensional projections of K
on the hyperplanes {x ∈ Rd: 〈yi, x〉 = 0}.8 Using harmonic analysis
techniques similar to those employed for discrepancy lower bounds,
Bourgain et al. [BLM89] established lower bounds for this problem,
and these were shown to be asymptotically tight or almost tight in
a sequence of papers (also applying various discrepancy theory meth-
ods): Bourgain and Lindenstrauss [BL88], Wagner [Wag93], Bourgain
and Lindenstrauss [BL93], and Matoušek [Mat96b].
Graph Theory. Discrepancy of a certain kind also appears in graph
theory. For instance, Chung [Chu97] defines the discrepancy of a graph
G as

max
S⊆V

∣∣e(S, S) − ρ|S|2
∣∣,

where V is the vertex set of G, e(S, S) is the number of ordered pairs
(u, v) ∈ S×S such that {u, v} is an edge of G, and ρ = e(V, V )/|V |2 is
the density of G. Thus, in a graph with small discrepancy, the number
of edges on each subset S is close to the expected number of edges
on a random subset of size |S|. The discrepancy of a graph can be
bounded in terms of the second largest eigenvalue of its adjacency
matrix. For graphs of density about 1

2 , the best possible discrepancy
is of the order n3/2. If a graph is a good expander then it has small
discrepancy. Expanders are a very important type of “random-like”
graphs, with numerous applications (in communication networks, par-
allel computing, sorting networks, pseudorandom generators, error-
correcting codes, and so on), and the reader can learn about them in
[AS00] or in [Chu97], for instance.
Computer Science. As we mentioned at the beginning of this section,
discrepancy theory methods gained in importance in computer sci-

8 To appreciate this formulation, one should know that if we are given the volumes
of all the (d − 1)-dimensional projections of a convex body K then the surface
area is determined exactly by Cauchy’s surface area formula. For instance, in R3,
the surface area equals 4 times the expected area of the projection in a random
direction; see [San76].



34 1. Introduction

ence in recent years, as is successfully illustrated by the book [Cha00].
Whenever a small sample is needed that represents well a large col-
lection of objects, which is a very frequent situation in the search for
efficient algorithms, connections to discrepancy theory may appear,
and they often do.

For instance, geometric discrepancy turned out to be relevant in
several results in computational geometry. This field of computer sci-
ence considers the design of efficient algorithms for computing with
geometric objects in the Euclidean space, usually of a low dimension
(see also the remarks to Section 5.2). Lower bounds for geometric dis-
crepancy have been used by Chazelle [Cha98] to show lower bounds for
the computational complexity of a geometric database problem (the
so-called range searching), and for another version of this problem,
a set with low discrepancy for axis-parallel rectangles has been em-
ployed in a lower-bound proof (see [Cha00]). The ε-approximations in
geometrically defined set systems play a key role in the so-called deran-
domization of computational geometry algorithms; that is, replacing
probabilistic algorithms by deterministic ones. For more information
see the survey [Mat96a] or the book [Cha00].

In another subfield of computer science, derandomizing combina-
torial algorithms, the questions have discrepancy-theory flavor too but
often they concern spaces of very high dimensions. For example, Linial
et al. [LLSZ97] construct n-point subsets of the d-dimensional grid
{1, 2, . . . , q}d uniformly distributed with respect to the combinato-
rial rectangles, where a combinatorial rectangle is a set of the form
S1 × S2 × · · · × Sd, with S1, . . . , Sd ⊆ {1, 2, . . . , q} being arbitrary
subsets. (In out terminology, they construct an ε-approximation for
combinatorial rectangles.) In contrast to the “classical” discrepancy
theory setting, where the dimension is considered fixed, they need to
investigate the situation where d is large (comparable to n and q, say).
The main challenge here is to approach the quality of a random set
by a deterministic construction, while in classical discrepancy, one can
usually beat random sets. Also various constructions of approximately
k-wise independent random variables on small probability spaces can
be viewed as (explicit) constructions of small ε-approximations for
certain set systems. An introduction to k-wise independence in deran-
domization can be found in Alon and Spencer [AS00] or in Motwani
and Raghavan [MR95], and a sample of papers devoted to such con-
structions are [AGHP92], [EGL+92].

Another interesting example of an explicit construction of an ε-
approximation is provided by Razborov et al. [RSW93], who describe
a set A ⊂ {1, 2, . . . , n − 1} of size bounded by a polynomial in log n
and in 1

ε that is an ε-approximation for the system of all arithmetic
progressions (modulo n). Here it is easy to show that a random A will
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work with high probability; the point is to avoid randomness. This
result was applied by Alon and Mansour [AM95] in a fast deterministic
algorithm for interpolating multivariate polynomials.

Exercises

1. (Zaremba’s inequality) Let f : [0, 1]d → R have a continuous mixed partial
derivative ∂df

∂x[d]
(notation as in the remarks above).

(a)∗ Derive the following identity for the integration error, by repeated
integration by parts:

D(P, f) =
∑

∅�=I⊆[d]

(−1)|I|
∫

QI

D(P,Cx) · ∂|I|f(x)
∂xI

dx.

Try to get at least the cases d = 1 (where nothing too interesting hap-
pens) and d = 2.
(b) Using Cauchy–Schwarz, derive Zaremba’s inequality (1.8) from (a).

2. (Reproducing kernels) Consider the Hilbert space X of absolutely con-
tinuous functions f : [0, 1] → R such that f(1) = 0 and f ′ ∈ L2(0, 1)
(i.e.

∫ 1

0
f ′(x)2 dx < ∞). The scalar product is 〈f, g〉 =

∫ 1

0
f ′(x)g′(x) dx.

Recall that an absolutely continuous function f is differentiable almost
everywhere, and we have

∫ b

a
f ′(x) dx = f(b) − f(a). Functions with a

continuous first derivative form a dense subspace in X.
(a) Check that η(x, y) = min(1− x, 1− y) is a reproducing kernel in X.
(b) Calculate ξP , and check that the corresponding discrepancy is just
the L2-discrepancy of P for corners.
(c)∗ Generalize (a) and (b) to an arbitrary dimension d (try at least
d = 2), with the reproducing kernel η(x, y) =

∏d
k=1 min(1 − xk, 1 − yk),

scalar product 〈f, g〉 =
∫
[0,1]d

∂df(x)
∂x[d]

· ∂dg(x)
∂x[d]

dx, and functions f satisfying
f(x) = 0 for all x with at least one component equal to 1. Derive (1.9).

Remark. The functions with ∂df
∂x[d]

continuous form a dense set in the
appropriate Hilbert space in (c). To describe the functions in the resulting
(Sobolev) space, one needs the notion of distributional derivatives, and
the definitions are not entirely simple (see a book dealing with Sobolev
spaces, such as [Ada75], [Wah90]). But for this exercise, such a description
is not really needed, and all the functions actually encountered in the
proof are piecewise polynomial.
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