
Chapter

5
Approximation through
Randomization

R
ANDOMIZATION IS one of the most interesting and useful tools in de-
signing efficient algorithms. Randomized algorithms, indeed, have

been proposed for many problems arising in different areas: taking into
account the scope of this book, however, we will limit ourselves to con-
sidering randomized approximation algorithms for NP-hard optimization
problems.

As it can be observed also in the case of the example given in Sect. 2.6,
where a randomized algorithm for MAXIMUM SATISFIABILITY was given
and analyzed, a remarkable property of randomized algorithms is their
structural simplicity. For some problems, in fact, it happens that the only
known efficient deterministic algorithms are quite involved, while it is pos-
sible to introduce a randomized efficient algorithm which is much easier
to code. This happens also in the case of approximation algorithms, where
we are interested in achieving good approximate solutions in polynomial
time. For example, in this chapter we will describe a simple randomized
approximation algorithm for the weighted version of MINIMUM VERTEX

COVER, which achieves an expected performance ratio comparable to that
of the best deterministic algorithms based on linear programming tech-
niques.

Randomized algorithms can sometimes be even more efficient than de-
terministic ones in terms of the quality of the returned solution. This will
be shown in the case of the weighted versions of MAXIMUM SATISFIA-
BILITY and MAXIMUM CUT: indeed, we will present a randomized 4/3-
approximation algorithm for the former problem and a randomized 1.139-

Chapter 5

APPROXIMATION

THROUGH

RANDOMIZATION

approximation algorithm for the latter one.
On the other hand, the main drawback of the randomized approach is

that we may only derive statistical properties of the solution returned (in
particular, with respect to its expected value): this means that, even if we
prove that an algorithm returns solutions of expected good quality, we may,
nevertheless, get poor approximate solutions in some cases. However, it
is sometimes possible to overcome this drawback byderandomizingthe
algorithm, that is, by transforming the given randomized algorithm into
a deterministic one, which always returns in polynomial time a solution
whose performance ratio is no more than the expected performance ratio
of the solution computed by the randomized algorithm. As we will see at
the end of this chapter, this can be done by applying a general technique,
called the method of conditional probabilities.

5.1 Randomized algorithms for weighted vertex cover

In this section we present a randomized approximation algorithm for the
weighted version of MINIMUM VERTEX COVER. This algorithm achieves
an approximate solution whose expected measure is at most twice the op-
timum measure. Deterministic algorithms for this problem that find ap-
proximate solutions whose performance ratio is at most 2 (or even slightly
better, i.e., at most 2� log logn

2logn) are known (see, for example, Sect. 2.4). In
spite of this fact, even though the randomized algorithm does not improve
the quality of approximation, it presents a remarkable simplicity, when
compared with its deterministic counterparts.

The randomized algorithm (see Program 5.1) exploits the following idea:
while there are edges which are not covered, randomly choose a vertex
which is an endpoint of an uncovered edge and add this vertex to the vertex
cover. The selection of vertices is done by flipping a biased coin that favors
the choice of vertices with small weight. Note that, while the choice of an
edge is assumed to be done deterministically and how it is performed will
not be significant in order to analyze the algorithm behavior, the selection
of an endpoint is assumed to be done randomly under a given probability
distribution. Note also that if the graph is unweighted (that is, each vertex
has weight 1), then an endpoint is chosen with probability 1/2.

Clearly, Program 5.1 runs in polynomial time. To analyze the perfor-
mance ratio of the solution obtained, letmRWVC(x) be the random variable
denoting the value of the solution found by the algorithm on instancex.

Given an instance x of the weighted version ofMINIMUM VERTEXTheorem 5.1 I

COVER, the expected measure of the solution returned by Program 5.1

154

Section 5.1

RANDOMIZED

ALGORITHMS FOR

WEIGHTED VERTEX

COVER

Program 5.1: Random Weighted Vertex Cover

input GraphG= (V;E), weight functionw : V ! IN;
output Vertex coverU ;
begin

U := /0;
while E 6= /0 do
begin

Select an edgee= (v; t) 2 E;

Randomly choosex from fv; tg with Prfx= vg= w(t)
w(v)+w(t) ;

U :=U [fxg;
E := E�fej x is an endpoint ofeg

end;
return U

end.

satisfies the following inequality:

E[mRWVC(x)]� 2m�(x):

Let U be the vertex cover found by the algorithm with input the instancePROOF
x formed by the graphG = (V;E) and the weight functionw, and letU�

be an optimum vertex cover for the same instance. Given anyv2V, we
define a random variableXv as follows:

Xv =

�
w(v) if v2U ,
0 otherwise.

Since
E[mRWVC(x)] = E[∑

v2V

Xv] = ∑
v2V

E[Xv]

and

∑
v2U�

E[Xv] = E[∑
v2U�

Xv]� E[∑
v2U�

w(v)] = m�(x);

in order to prove the theorem, it suffices to show that

∑
v2V

E[Xv]� 2 ∑
v2U�

E[Xv]: (5.1)

Given an edge(v; t) selected by the algorithm at the first step of the loop,
we say that(v; t) picksvertexv if v is randomly chosen at the next step. We
also denote asN(v) the set of vertices adjacent tov, i.e., N(v) = fu j u 2
V ^ (v;u) 2 Eg.

155

Chapter 5

APPROXIMATION

THROUGH

RANDOMIZATION

Let us now define the random variableX(v;t);v as

X(v;t);v =

�
w(v) if (v; t) is chosen and picksv,
0 otherwise.

Note that ifX(v;t);v = w(v), thenX(v;t 0);v = 0 for eacht 0 2 N(v) with t 0 6= t.
This implies that

Xv = ∑
t2N(v)

X(v;t);v

and, by the linearity of expectation, that

E[Xv] = ∑
t2N(v)

E[X(v;t);v]:

Moreover, E[X(v;t);v] = E[X(v;t);t]: in fact, we have that

E[X(v;t);v] = w(v)Prf(v; t) picksvg

= w(v)Prf(v; t) is choseng w(t)
w(v)+w(t)

= w(t)Prf(v; t) is choseng w(v)
w(v)+w(t)

= w(t)Prf(v; t) pickstg
= E[X(v;t);t]:

Let us now notice that

∑
v2U�

E[Xv] = ∑
v2U�

∑
t2N(v)

E[X(v;t);v] (5.2)

and that

∑
v62U�

E[Xv] = ∑
v62U�

∑
t2N(v)

E[X(v;t);v] = ∑
v62U�

∑
t2N(v)

E[X(v;t);t]: (5.3)

Observe also that, since, for anyv =2U�, each vertext 2 N(v) must be in
U�, then, for each term E[X(v;t);t] in Eq. (5.3), an equal term E[X(v;t);v] must
appear in Eq. (5.2). This implies that

∑
v62U�

E[Xv]� ∑
v2U�

E[Xv]

and, as an immediate consequence, that

∑
v2V

E[Xv] = ∑
v2U�

E[Xv]+ ∑
v62U�

E[Xv]� 2 ∑
v2U�

E[Xv]:

The theorem thus follows.QED

156

Section 5.2

RANDOMIZED

ALGORITHMS FOR

WEIGHTED

SATISFIABILITY

5.2 Randomized algorithms for weighted satis�ability

In Sect. 3.1 we presented Program 3.1, a 2-approximate greedy algorithm
for MAXIMUM SATISFIABILITY . In this section, we will concentrate on
MAXIMUM WEIGHTED SATISFIABILITY , whose input is given by a set of
clausesC and a weight functionw, which associates to each clause a pos-
itive weight, and whose goal is to find a truth assignment that maximizes
the sum of the weights of the satisfied clauses.

It can be easily shown that Program 3.1 can be extended to the weighted
case preserving the performance ratio (see Exercise 3.2). In this section
we present two different randomized algorithms that can be combined in
order to achieve an expected performance ratio equal to 4=3. As we will
see in the last section of this chapter, it is possible to derandomize these
two algorithms and, hence, to obtain a deterministic algorithm with the
same performance ratio for every instance.

The first of the two randomized algorithms is Program 2.10, which can,
clearly, be applied also to the case in which the clauses are weighted. It
is possible to modify the proof of Theorem 2.19 to show that ifk is the
minimum number of literals in a clause, then the expected performance
ratio of the algorithm is at most 2k=(2k�1), which, in particular, is equal
to 2 whenk = 1 and at most 4=3 for k� 2 (see Exercise 5.3).

In the following, we will denote asmRWS(x) the random variable denot-
ing the value of the solution found by Program 2.10 on instancex.

5.2.1 A new randomized approximation algorithm

In Program 2.10 the truth value of every variable is independently and ran-
domly chosen with probability 1=2. Let us now consider a generalization
of that algorithm, which independently assigns the valueTRUE to variable
xi , for i = 1;2; : : : ;n, with probability pi , wherepi is suitably chosen.

Let mGRWS(x) be the random variable denoting the value of the solution
found by this generalization on instancex. It is then easy to see that, for
any instancex, the following equality holds:

E[mGRWS(x)] = ∑
c2C

w(c)(1� ∏
i2V+

c

(1� pi) ∏
i2V�

c

pi)

whereV+
c (respectively,V�

c) denotes the set of indices of the variables
appearing positive (respectively, negative) in clausec.

In the following, we show that it is possible to compute in polyno-
mial time suitable valuespi such that E[mGRWS(x)] is at most 4=3 when
k � 2 and is at moste=(e� 1) for k � 3. In order to reach this aim,

157

Chapter 5

APPROXIMATION

THROUGH

RANDOMIZATION

Program 5.2: General Random Weighted Satis�ability

input Instancex, i.e., setC of clauses on set of variablesV, functionw : C 7! IN;
output Truth assignmentf : V 7! fTRUE;FALSEg;
begin

Find the optimum value(y�;z�) of LP-SAT(x);
for each variablevi do
begin

pi := g(y�i) (for a suitable functiong);
f (vi) := TRUE with probabilitypi

end;
return f

end.

we first represent each instance of MAXIMUM WEIGHTED SATISFIABIL -
ITY as an integer linear program. Namely, given an instancex of MAXI -
MUM WEIGHTED SATISFIABILITY formed by a setC = fc1;c2; : : : ;ctg of
clauses defined over the Boolean variablesv1; : : : ;vn and a weight function
w, we define the following integer liner programIP-SAT(x):

maximize ∑
cj2C

w(cj)zj

subject to ∑
i2V+

cj

yi + ∑
i2V�

cj

(1�yi)� zj 8cj 2C

yi 2 f0;1g 1� i � n
zj 2 f0;1g 1� j � t:

Observe that we may define a one-to-one correspondence between fea-
sible solutions ofx and feasible solutions ofIP-SAT(x) as follows:

� yi = 1 if and only if variablexi is true;

� zj = 1 if and only if clauseCj is satisfied.

Let LP-SAT(x) be the linear program obtained by relaxing the integrality
constraints ofIP-SAT(x) and let(y� = (y�1; : : : ;y

�
n);z

� = (z�1; : : : ;z
�
t)) be an

optimal solution ofLP-SAT(x): clearly,m�
LP�SAT(x)�m�

IP�SAT(x).
Given an instancex of MAXIMUM WEIGHTED SATISFIABILITY , Pro-

gram 5.2 first solvesLP-SAT(x) obtaining an optimal solution(y�;z�).
Then, given a functiong to be specified later, it computes probabilities
pi = g(y�i), for i = 1; : : : ;n and assigns the truth values according to these
probabilities. If the functiong can be computed in polynomial time, then
Program 5.2 clearly runs in polynomial time.

158

Section 5.2

RANDOMIZED

ALGORITHMS FOR

WEIGHTED

SATISFIABILITY

The performance ratio of the returned solution depends on the choice
of the functiong. Let us suppose that there exists a real numberα, with
0< α < 1, such that

(1� ∏
i2V+

cj

(1� pi) ∏
i2V�

cj

pi)� αz�j ;

for each clausecj . Since

t

∑
j=1

w(cj)z
�
j = m�

LP�SAT(x)

and

E[mGRWS(x)] = ∑
cj2C

w(cj)(1� ∏
i2V+

cj

(1� pi) ∏
i2V�

cj

pi);

the solution returned by Program 5.2 has expected performance ratio at
most 1=α.

A first interesting choice of the functiong consists in settingg(yi) = y�i ,
for i = 1;2; : : : ;n: in other words, each variablevi is independently set to
TRUE with probabilityy�i .

Given an instance x ofMAXIMUM WEIGHTED SATISFIABILITY , let J Lemma 5.2

(y�;z�) be an optimal solution ofLP-SAT(x). Then, for any clause cj in x
with k literals, we have

(1� ∏
i2V+

cj

(1�y�i) ∏
i2V�

cj

y�i)� αkz
�
j

where

αk = 1�
�

1� 1
k

�k

:

Without loss of generality, we assume that every variable in clausecj is PROOF

positive (i.e.,cj = vj1 _ : : :_vjk). The lemma is proved by showing that

1�
k

∏
i=1

(1�y�ji)� αkz
�
j :

To this aim, recall that, given a set of nonnegative numbersfa1; : : : ;akg,
we have that

a1+ � � �+ak

k
� k
p

a1 � � �ak:

159

Chapter 5

APPROXIMATION

THROUGH

RANDOMIZATION

By applying the above inequality to the setf1� y�j1; : : : ;1� y�jkg and re-

calling that∑k
i=1y�ji � z�j we obtain

1�
k

∏
i=1

(1�y�ji) � 1�

∑k
i=1(1�y�ji)

k

!k

� 1�

1�
∑k

i=1y�ji
k

!k

� 1�
�

1�
z�j
k

�k

� αkz
�
j ;

where the last inequality is due to the fact that

f (z�j) = 1�
�

1�
z�j
k

�k

is a concave function in the interval of interest, i.e.,[0;1], and f (z�j)�αkz�j
at the extremal points of the interval. The lemma is thus proved.QED

Sinceαk is a decreasing function with respect tok, given an instance
of MAXIMUM WEIGHTED SATISFIABILITY such that each clause has at
mostk literals, the previous lemma implies that choosingg as the identity
function in Program 5.2 yields a randomized algorithm whose expected
performance ratio is at most 1=αk.

In particular, ifk� 2, then the expected performance ratio is bounded
by 4=3, while if k� 3, since limk!∞(1� (1=k))k = 1=e, the expected per-
formance ratio is at moste=(e�1) � 1:582.

5.2.2 A 4/3-approximation randomized algorithm

In this section we show that an appropriate combination of the two ran-
domized approximation algorithm described above allows to obtain a 4=3-
approximation randomized algorithm.

First note that Program 2.10 has expected performance ratio bounded
by 4=3 if we deal with clauses withat least2 literals. On the other hand,
Program 5.2 withg equal to the identity function has the same expected
performance ratio if we deal with clauses withat most2 literals.

We can then derive a new algorithm, which simply chooses the best truth
assignment returned by the previous two algorithms. The expected perfor-
mance ratio of this new algorithm is analyzed in the following lemma.

Given an instance x ofMAXIMUM WEIGHTED SATISFIABILITY , let W1Lemma 5.3 I

be the expected measure of the solution returned by Program 2.10 on input

160

Section 5.2

RANDOMIZED

ALGORITHMS FOR

WEIGHTED

SATISFIABILITY

x and let W2 be the expected measure of the solution returned by Pro-
gram 5.2, with g equal to the identity function, on input x. Then the follow-
ing inequality holds:

max(W1;W2)�
3
4

m�(x):

Since max(W1;W2)� (W1+W2)=2 andm�
LP�SAT(x)�m�(x), it is sufficient PROOF

to show that(W1+W2)=2� 3m�
LP�SAT(x)=4. Let us denote byCk the set of

clauses with exactlyk literals. From the proof of Theorem 2.19 (see also
Exercise 5.3), it follows that each clausecj 2Ck is satisfied by the truth
assignment returned by Program 2.10 with probability 1�1=2k. Hence,

W1 � ∑
k�1

∑
cj2Ck

γkw(cj)� ∑
k�1

∑
cj2Ck

γkw(cj)z
�
j (5.4)

where

γk =

�
1� 1

2k

�

and the last inequality is due to the fact that 0� z�j � 1. Moreover, by
Lemma 5.2, we have that

W2 � ∑
k�1

∑
cj2Ck

αkw(cj)z
�
j (5.5)

where

αk = 1� (1� 1
k
)k:

By summing Eqs. (5.4) and (5.5), we obtain

W1+W2

2
� ∑

k�1
∑

cj2Ck

γk+αk

2
w(cj)z

�
j :

Notice thatγ1+α1 = γ2+α2 = 3=2. Moreover, fork� 3, we have that

γk+αk � 7=8+1� 1
e
� 3=2:

Hence, it follows that

W1+W2

2
� ∑

k�1
∑

cj2Ck

3
4

w(cj)z
�
j =

3
4

m�
LP�SAT(x)

and the lemma is proved. QED

161

Chapter 5

APPROXIMATION

THROUGH

RANDOMIZATION

Note that it is not necessary to separately apply Programs 2.10 and 5.2
and then choose the best between the two returned solutions. Indeed, it
is possible to obtain the same expected performance ratio by randomly
choosing one of the two algorithms with probability 1=2 .

The proof of the following theorem easily follows from the previous
lemma and is, hence, omitted.

There exists a randomized algorithm forMAXIMUM WEIGHTED SATIS-Theorem 5.4 I

FIABILITY whose expected performance ratio is at most4=3.

5.3 Algorithms based on semide�nite programming

In the last section we have seen that it is possible to design good ran-
domized approximation algorithms for MAXIMUM WEIGHTED SATISFI-
ABILITY by first relaxing the integrality constraint of an integer program
and, subsequently, probabilistically rounding the optimal solution of the
linear programming relaxation. This technique can be fruitfully applied to
a limited number of cases. However, the underlying idea of relaxing and
rounding is extremely powerful and it can be applied to other significant
problems if a suitable relaxation can be found.

In this section we present a randomized approximation algorithm for
the weighted version of MAXIMUM CUT, called MAXIMUM WEIGHTED

CUT: given a graphG= (V;E) and a weight functionw : E 7! IN, we want
to find a partition(V1;V2) of V such that the total weight of the correspond-
ing cut, i.e., the set of edges with an endpoint inV1 and the other endpoint
in V2, is maximized. We now present a randomized algorithm based on
a semidefiniterelaxation of an integer quadratic formulation of the prob-
lem, which returns a solution whose expected performance ratio is at most
1:139.

Let us first express an instancex of MAXIMUM WEIGHTED CUT as an
integer quadratic programIQP-CUT(x). To this aim, let us associate to
each pairvi ;vj 2 V a valuewi j defined aswi j = w(vi ;vj) if (vi ;vj) 2 E,
wi j = 0 otherwise. The integer quadratic programIQP-CUT(x) is then
defined as

maximize
1
2

n

∑
j=1

j�1

∑
i=1

wi j (1�yiyj)

subject to yi 2 f�1;1g 1� i � n;

wheren denotes the number of vertices of the graph. Observe that an
assignment of values to variablesyi naturally corresponds to a partition

162

Section 5.3

ALGORITHMS

BASED ON

SEMIDEFINITE

PROGRAMMING

Program 5.3: Random Weighted Cut

input Instancex, i.e., graphG= (V;E) and weight functionw;
output PartitionfV1;V2g of V;
begin

Find an optimal solution(y�1; : : : ;y
�
n) of QP-CUT(x);

Randomly choose a vectorr 2 S2 according to the uniform distribution;
V1 := fvi 2V j y�i � r � 0g;
V2 := V�V1;
return fV1;V2g

end.

(V1;V2) of V with cut weight equal to12 ∑n
j=1∑ j�1

i=1 wi j (1�yiyj). Indeed, let
us consider two adjacent verticesvi andvj : if eithervi ;vj 2V1 or vi ;vj 2V2

(that is,yi = yj), then 1� yiyj = 0; on the other hand, ifvi andvj do not
belong to the same set (that is,yi 6= yj), then1

2(1�yiyj) = 1.
Notice that each variableyi can be considered as a vector of unit norm

in the 1-dimensional space. Let us now relaxIQP-CUT(x) by substituting
eachyi with a 2-dimensional vectoryi of unit norm. The relaxationQP-
CUT(x) is then defined as

maximize
1
2

n

∑
j=1

j�1

∑
i=1

wi j (1�yi �y j)

subject to yi �yi = 1 yi 2 IR2;1� i � n;

whereyi �y j denotes the inner product of vectorsyi andy j (that is,yi �y j =
yi;1yj;1+yi;2yj;2).

QP-CUT(x) is clearly a relaxation ofIQP-CUT(x). Indeed, given a
feasible solutionY = (y1; : : : ;yn) of IQP-CUT(x), we can obtain the fol-
lowing feasible solution ofQP-CUT(x): Y = (y1; : : : ;yn) where for allyi ,
yi = (yi ;0). Clearly, the measures ofY andY coincide.

Let us now consider a randomized approximation algorithm for MAXI -
MUM WEIGHTED CUT, which, given an instancex, behaves as follows (see
Program 5.3): it first finds an optimal solution(y�1; : : : ;y

�
n) of QP-CUT(x),

and then computes an approximate solution of MAXIMUM WEIGHTED

CUT by randomly choosing a 2-dimensional vectorr of unit norm and
putting each vertexvi in V1 or inV2 depending on whether the correspond-
ing vectory�i is above or below the line normal tor. An example of how the
algorithm decides in which set a vertex has to be put is shown in Fig. 5.1:
in this case, we have thatv2;v4;v5, andv7 are included inV1 while v1;v3,
andv6 are included inV2.

163

Chapter 5

APPROXIMATION

THROUGH

RANDOMIZATION

y1
*

y2
*

y5
*

y6
*

y4
*

y3
*

y7
*

r

l

Figure 5.1
Finding a cut by separating

vectors on the unit sphere

Let us now show that the expected weight of the cut returned by the al-
gorithm is at least 0:87856 times the optimal measure, that is, the expected
performance ratio of the algorithm is at most 1:139.

Given an instance x ofMAXIMUM WEIGHTED CUT, let mRWC(x) be theLemma 5.5 I

measure of the solution returned by Program 5.3. Then, the following
equality holds:

E[mRWC(x)] =
1
π

n

∑
j=1

j�1

∑
i=1

wi j arccos(y�i �y�j):

Let us first define the functionsgnasPROOF

sgn(x) =

�
1 if x� 0,
�1 otherwise.

Observe that the expected value E[mRWC(x)] clearly verifies the following
equality:

E[mRWC(x)] =
n

∑
j=1

j�1

∑
i=1

wi j Prfsgn(y�i � r) 6= sgn(y�j � r)g

wherer is a randomly and uniformly chosen vector of unit norm. There-
fore, to prove the lemma it is sufficient to show that

Prfsgn(y�i � r) 6= sgn(y�j � r)g=
arccos(y�i �y�j)

π
: (5.6)

164

Section 5.3

ALGORITHMS

BASED ON

SEMIDEFINITE

PROGRAMMING

Note thatsgn(y�i � r) 6= sgn(y�j � r) if and only if the random linel normal
to r separatesy�i andy�j . The random choice ofr implies thatl has two
opposite intersecting pointss andt with the unit circle that are uniformly
distributed. Moreover,y�i andy�j are separated byl if and only if eithersor
t lies on the shorter arc of the circle betweeny�i andy�j (see Fig. 5.2). The
probability that eithersor t lies on this arc is

arccos(y�i �y�j)
2π

+
arccos(y�i �y�j)

2π
=

arccos(y�i �y�j)
π

:

Hence, Eq. (5.6) follows and the lemma is proved. QED

yi
*

l
s

t

arccos(yi
*yj

*)

yj
*

yi
*

l

s

t

arccos(yi
*yj

*)

yj
*

Figure 5.2
The probability of
separating two vectors

For any instance ofMAXIMUM WEIGHTED CUT, Program 5.3 returnsJ Theorem 5.6

a solution whose expected measure is at least0:8785 times the optimum
measure.

Let us define PROOF

β = min
0<α�π

2α
π(1�cosα)

:

Given an instancex of MAXIMUM WEIGHTED CUT with optimal measure
m�(x), let y�1; : : : ;y

�
n be an optimal solution ofQP-CUT(x) with measure

m�
QP�CUT(x) =

1
2

n

∑
j=1

j�1

∑
i=1

wi j (1�y�i �y�j):

If we consider the change of variablesy�i � y�j = cosαi j , we have, by
definition ofβ,

β� 2αi j

π(1�cosαi j)
=

2
π

arccos(y�i �y�j)
1� (y�i �y�j)

165

Chapter 5

APPROXIMATION

THROUGH

RANDOMIZATION

or, equivalently,

arccos(y�i �y�j)
π

� β
2
(1� (y�i �y�j)):

SinceQP-CUT(x) is a relaxation ofIQP-CUT(x), we have that

E[mRWC(x)] � 1
2

β
n

∑
j=1

j�1

∑
i=1

wi j (1�y�i �y�j)

= βm�
QP�CUT(x) � βm�

IQP�CUT(x) = βm�(x);

wheremRWC(x) is the measure of the solution returned by Program 5.3.
Since it is possible to show thatβ > 0:8785 (see Exercise 5.10), the

Lemma is thus proved.QED

Regarding the time complexity of Program 5.3, it is clear that the al-
gorithm runs in polynomial time if and only if it is possible to solveQP-
CUT(x) in polynomial time. Unfortunately, it is not known whether this is
possible. However, the definition ofQP-CUT(x) can be slightly modified
in order to make it efficiently solvable: the modification simply consists
in considering variablesyi as vectors in then-dimensional space instead
that in the 2-dimensional one. In particular, then-dimensional version of
QP-CUT(x) is defined as

maximize
1
2

n

∑
j=1

j�1

∑
i=1

wi j (1�yi �y j)

subject to yi �yi = 1 yi 2 IRn;1� i � n;

Observe that, clearly, the above analysis of the expected performance ratio
of Program 5.3 can still be carried out if we refer to this new version of
QP-CUT(x).

In order to justify this modification, we need some definitions and results
from linear algebra. First of all, we say that an�n matrix M is positive
semidefiniteif, for every vectorx2 Rn, xTMx� 0. It is known that an�n
symmetric matrixM is positive semidefinite if and only if there exists a
matrix P such thatM = PTP, whereP is anm�n matrix for somem� n.
Moreover, ifM is positive semidefinite, then matrixP can be computed in
polynomial time (see Bibliographical notes).

Observe now that, givenn vectorsy1; : : : ;yn 2 Sn, the matrixM defined
asMi; j = yi �y j is positive semidefinite. On the other hand, from the above
properties of positive semidefinite matrices, it follows that, given an�
n positive semidefinite matrixM such thatMi;i = 1 for i = 1; : : : ;n, it is

166

Section 5.3

ALGORITHMS

BASED ON

SEMIDEFINITE

PROGRAMMING

possible to compute, in polynomial time, a set ofn vectorsy1; : : : ;yn of
uniti norm such thatMi; j = yi �y j .

In other words,QP-CUT(x) is equivalent to the followingsemidefinite
programSD-CUT(x):

maximize
1
2

n

∑
j=1

j�1

∑
i=1

wi j (1�Mi; j)

subject to M is positive semidefinite
Mi;i = 1 1� i � n:

It can be proven that, for any instancex of MAXIMUM WEIGHTED CUT,
if m�

SD�CUT(x) is the optimal value ofSD-CUT(x), then, for anyε > 0, it
is possible to find a solution with measure greater thanm�

SD�CUT(x)� ε in
time polynomial both injxj and in log(1=ε) (see Bibliographical notes). It
is also possible to verify that solvingSD-CUT(x) with ε = 10�5 does not
affect the previously obtained performance ratio of 0:8785. Therefore, the
following theorem holds.

Program 5.3, where the optimal solution ofQP-CUT(x) is obtained by J Theorem 5.7

solving the equivalent programSD-CUT(x), runs in polynomial time.

As a consequence of Theorems 5.6 and 5.7, it thus follows that MAX -
IMUM WEIGHTED CUT admits a polynomial-time randomized algorithm
whose expected performance ratio is at most 1:139.

5.3.1 Improved algorithms for weighted 2-satis�ability

The approach based on semidefinite programming can be applied to other
problems and, in particular, to satisfiability problems. Let us consider,
for example, MAXIMUM WEIGHTED 2-SATISFIABILITY , that is, the
weighted satisfiability problem in which every clause has at most two lit-
erals.

Given an instancex of MAXIMUM WEIGHTED 2-SATISFIABILITY with
n variablesv1; : : : ;vn, let us define the following integer quadratic program
IQP-SAT(x):

maximize
n

∑
j=0

j�1

∑
i=0

[ai j (1�yiyj)+bi j (1+yiyj)]

subject to yi 2 f�1;1g i = 0;1; : : : ;n;

whereai j andbi j are non-negative coefficients that will be specified later,yi

is a variable associated withvi , for i = 1; : : : ;n, andy0 denotes the boolean
valueTRUE, that is,vi is TRUE if and only if yi = y0, for i = 1; : : : ;n.

167

Chapter 5

APPROXIMATION

THROUGH

RANDOMIZATION

In order to define the values of the coefficientsai j andbi j , let us define
the valuet(cj) of a clausecj as follows:

t(cj) =

�
1 if cj is satisfied,
0 if cj is not satisfied.

According to the previous definitions, it results that ifcj is a unit clause,
then

t(cj) =
1+yiy0

2
if cj = vi , and

t(cj) =
1�yiy0

2
otherwise. Ifcj contains two literals, then its value can be inductively
computed: for example, ifcj = vi _vk, then

t(cj) = 1� t(vi ^vk) = 1� t(vi)t(vk) = 1� 1�yiy0

2
1�yky0

2

=
1
4
(3+yiy0+yky0�yiyky

2
0)

=
1
4
[(1+yiy0)+(1+yky0)+(1�yiyk)]

(the cost of the other possible clauses with two literals can be computed in
a similar way).

Hence, it is possible, for any instancex of MAXIMUM WEIGHTED 2-
SATISFIABILITY , to compute suitable values ofai j andbi j such that the
resulting programIQP-SAT(x) is an equivalent formulation of instancex.

Program IQP-SAT(x) can be relaxed using the same approach used
for MAXIMUM WEIGHTED CUT. By introducing unit norm(n+ 1)-
dimensional vectorsyi , for i = 0;1; : : : ;n, we can indeed obtain the
semidefinite relaxation ofIQP-SAT(x) and, then, prove the following result
(see Exercise 5.11).

There exists a randomized polynomial-time algorithm forMAXIMUMTheorem 5.8 I

WEIGHTED 2-SATISFIABILITY whose expected performance ratio is at
most1:139.

5.4 The method of the conditional probabilities

In this section we will see that a randomized approximation algorithmA
can sometimes bederandomized, that is, a deterministic algorithm can be

168

Section 5.4

THE METHOD OF

THE CONDITIONAL

PROBABILITIES

derived whose running time is comparable toA ’s running time and whose
performance ratio is no more than the expected performance ratio ofA .
In particular, we will briefly describe a general technique known as the
method of conditional probabilitiesand we will show how it can be applied
to derandomize Program 2.10, when applied to MAXIMUM WEIGHTED

SATISFIABILITY .
The method of conditional probabilities is based on viewing the behavior

of a randomized approximation algorithm on a given input as a computa-
tion tree. To this aim, we assume, without loss of generality, thatA , on
input x, independently performsr(jxj) random choices each with exactly
two possible outcomes, denoted by 0 and 1. According to this hypothesis,
we can then define, for any inputx, a complete binary tree of heightr(jxj)
in which each node of leveli is associated with thei-th random choice ofA
with input x, for i = 1; : : : ; r(jxj): the left subtree of the node corresponds
to outcome 0, while the right subtree corresponds to outcome 1. In this
way, each path from the root to a leaf of this tree corresponds to a possible
computation ofA with input x.

Notice that, to each nodeu of level i, it is possible to associate a binary
string σ(u) of length i�1 representing the random choices performed so
far. Moreover, we can associate to each leafl a valueml , which is the
measure of the solution returned by the corresponding computation, and to
each inner nodeu the average measure E(u) of the values of all leaves in the
subtree rooted atu. Clearly, E(u) is the expected measure of the solution
returned byA with input x, assumed that the outcomes of the firstjσ(u)j
random choices are consistent withσ(u). It is easy to show that, for any
inner nodeu, if v andw are the two children ofu, then either E(v)� E(u)
or E(w)� E(u).

The derandomization is then based on the following observation: ifr is
the root of the computation tree, then there must exists a path fromr to a
leaf l such thatml � E(r), that is, the measure of the solution returned by
the corresponding computation is at least equal to the expected measure of
the solution returned byA with input x. This path can be deterministically
derived if, in order to choose which of the childrenv andw to proceed from
a nodeu, we are able to efficiently determine which of E(v) and E(w) is
greater.

In the following we will show how this approach can be applied to deran-
domize Program 2.10 in order to obtain a deterministic 2-approximation
algorithm for the weighted version of MAXIMUM SATISFIABILITY .

Given an instancex of MAXIMUM WEIGHTED SATISFIABILITY , let
v1; : : : ;vn be the Boolean variables inx, which can be considered asf0,1g-
variables, where the boolean valuesTRUE andFALSE are represented by
1 and 0, respectively. The deterministic algorithm consists ofn iterations

169

Chapter 5

APPROXIMATION

THROUGH

RANDOMIZATION

corresponding to then random choices performed by Program 2.10. At
the i-th iteration, the value of variablevi is determined as follows: let
v1; : : : ;vi�1 be the values of variablesv1; : : : ;vi�1 determined so far, and
let

mRWS(x j v1; : : : ;vi�1)

be the random variable denoting the measure of the solution found by Pro-
gram 2.10 when applied to the instance obtained fromx by assuming that
the value of variablesv1; : : : ;vi�1 is v1; : : : ;vi�1 and applying Program 2.10
to determine the values of variablesvi ; : : : ;vn.

Givenv1; : : : ;vi�1, the value ofvi is determined by computing

E[mRWS(x j v1; : : : ;vi�1;0)]

and
E[mRWS(x j v1; : : : ;vi�1;1)]:

If E[mRWS(x j v1; : : : ;vi�1;0)] � E[mRWS(x j v1; : : : ;vi�1;1)] then the value
of vi is set to 1, otherwise it is set to 0. Aftern iterations, a truth assignment
v1; : : : ;vn has been obtained with value

mA(x) = E[mRWS(x j v1; : : : ;vn)]:

We first show that the computation of E[mRWS(x j v1; : : : ;vi�1;0)] and
E[mRWS(x j v1; : : : ;vi�1;1)] can be performed in deterministic polynomial
time and, then, thatmA(x) is at least one half of the optimal measure.
We will show how to compute E[mRWS(x j v1; : : : ;vi�1;1)] in polynomial
time: the computation of E[mRWS(x j v1; : : : ;vi�1;0)] is analogous and it is
omitted.

Assume thatx containst clausesc1; : : : ;ct . We have

E[mRWS(x j v1; : : : ;vi�1;1)] =
t

∑
j=1

w(cj)Prfcj is satisfiedj v1; : : : ;vi�1;1g

where
Prfcj is satisfiedj v1; : : : ;vi�1;1g

denotes the probability that a random truth assignment of variables
vi+1; : : : ;vn satisfies clausecj given thatv1; : : : ;vi�1;1 are the truth assign-
ments of variablesv1; : : : ;vi�1;vi , respectively.

Let Wi be the sum of the weights of the clauses that are satisfied by val-
uesv1; : : : ;vi�1 of variablesv1; : : : ;vi�1 and letC�(i) be the set of clauses
that are not satisfied byv1; : : : ;vi�1 and could be satisfied by a suitable
assignment of values to variablesvi ; : : : ;vn.

170

Section 5.5

EXERCISES
Let cj be a clause inC�(i). If vi occurs positive incj then

Prfcj is satisfiedj v1; : : : ;vi�1;1g= 1:

If vi occurs negative or does not occur incj , let dj be the number of vari-
ables occurring incj that are different fromv1; : : : ;vi . The probability that
a random assignment of values to variablesvi+1; : : : ;vn satisfies clausecj

is

Prfcj is satisfiedj v1; : : : ;vj�1;1g = 1� 1

2dj
:

Summing over all the clauses we have that

E[mRWS(x j v1; : : : ;vi�1;1)] =Wi + ∑
cj2C�(i) s.t.vi
occurs positive

1+ ∑
cj2C�(i) s.t.vi
occurs negative

(1� 1

2dj
):

It is clear that the above computation can be performed in polynomial time.
In order to analyze the quality of the obtained solution observe that the

chosen valuevi , for i = 1; : : : ;n, satisfies

E[mRWS(x j v1; : : : ;vi)]� E[mRWS(x j v1; : : : ;vi�1)]:

Hence we have

E[mRWS(x)] � E[mRWS(x j v1)]

� E[mRWS(x j v1;v2)]

� : : :

� E[mRWS(x j v1; : : : ;vn)] = mA(x):

Since we have seen in Sect. 5.2 that E[mRWS(x)]�m�(x)=2, it derives that
mA(C) is at least one half of the optimal measure.

The method of conditional probabilities can be successfully applied to
derandomize the 4/3-approximation randomized algorithm for MAXIMUM

WEIGHTED SATISFIABILITY presented in this chapter. It can also be
used to derandomize the semidefinite programming based algorithm for
the weighted version of MAXIMUM CUT, even though this derandomiza-
tion requires a more sophisticated version of the method.

5.5 Exercises

Exercise 5.1 Consider a greedy algorithm for the weighted version of
MINIMUM VERTEX COVER that at each step chooses the vertex with min-
imum weight among vertices that are an endpoint of an uncovered edge.

171

Chapter 5

APPROXIMATION

THROUGH

RANDOMIZATION

Show that the algorithm has an unbounded ratio in the worst case. (Hint:
consider a star graph, i.e., a graph in which there exists a vertexv1 that is
connected to all the othern�1 verticesv2 : : :vn and in which no other edge
exists.)

Exercise 5.2 Consider a greedy algorithm for the weighted version of
MINIMUM VERTEX COVER that at each step chooses the vertex that has
the least ratio weight/degree among vertices that are an endpoint of an un-
covered edge. Show that the algorithm has an unbounded ratio in the worst
case. (Hint: Consider an unweighted bipartite graphG= (V[R;E), where
V hasn vertices andR is divided inton subsetsR1; : : : ;Rn. Every vertex in
Ri is connected toi vertices inV and no two vertices inRi have a common
endpoint inV.)

Exercise 5.3 Modify the proof of Theorem 2.19 to show that ifk is the
minimum number of literals in a clause, then the expected performance
ratio of the algorithm applied to weighted clauses is 2 whenk= 1 and is at
most 4=3 for k� 2.

Exercise 5.4 A function g : [0;1] 7! [0;1] verifies the3/4-propertyif it sat-
isfies the following inequality

1�
l

∏
i=1

(1�g(yi))
k

∏
i=l+1

g(yi)�
3
4

min(1;
l

∑
i=1

yi +
k

∑
i=l+1

(1�yi))

for any pair of integersk and l with k� l , and for anyy1; : : : ;yk 2 [0;1].
Prove that if a functiong with the 3/4-property is used in Program 5.2, then
the expected performance ratio of the algorithm is at most 4/3.

Exercise 5.5 Show that if a functiong : [0;1] 7! [0;1] satisfies the follow-
ing conditions:

1. g(y)� 1�g(1�y);

2. 1�∏k
i=1(1�g(yi))� 3

4 min(1;∑k
i=1yi),

for any integerk, for anyy2 [0;1], and for any tupley1; : : : ;yn 2 [0;1], then
g verifies the 3/4-property.

Exercise 5.6 Show that the following function verifies the 3/4-property:

gα(y) = α+(1�2α)y;

where

2� 3
3
p

4
� α � 1

4
:

172

Section 5.6

BIBLIOGRAPHICAL

NOTES

Problem 5.1: Maximum Subgraph

INSTANCE: Directed graphG= (V;A).

SOLUTION: An acyclic spanning subgraphG0 = (V;A0) of G.

MEASURE: j A0 j.

Exercise 5.7 Show that the following function verifies the 3/4-property:

f (y) =

8>>>><
>>>>:

3
4y+ 1

4 if 0 � y< 1
3,

1
2 if 1

3 � y< 2
3,

3
4y if 2

3 � y� 1.

Exercise 5.8 (*) Apply randomized rounding to MINIMUM SET COVER.
Namely, consider the integer programming relaxationI of MINIMUM SET

COVER and set each variable to be 1 with probability given by the value of
the optimal solution of the linear programming relaxation ofI . Show that
the probability that a setSi is covered is at least 1� (1=e).

Exercise 5.9 Apply the result of Exercise 5.8 to show that there exists a
randomized algorithm that finds anO(logm)-approximate solution with
probability at least 0:5, wherem is the number of sets to be covered.

Exercise 5.10 Show that

min
0<α�π

2α
π(1�cosα)

> 0:87856:

Exercise 5.11 Prove Theorem 5.8.

Exercise 5.12 Consider Problem 5.1 and consider the randomized algo-
rithm that chooses a random ordering of the vertices and picks either the
arcs that go forward or the arcs that go backward. Prove that this algorithm
has expected performance ratio at most 2.

5.6 Bibliographical notes

The first algorithms in which randomization is used explicitly were intro-
duced in the mid-seventies. A classical paper [Rabin, 1976] on primality
test is considered to have started the field of randomized algorithms. In the

173

Chapter 5

APPROXIMATION

THROUGH

RANDOMIZATION

same period, [Solovay and Strassen, 1977] introduced another randomized
algorithm for the same problem. Since then, a lot of problems that arise
in many different areas have been studied from this point of view. Here
we will limit ourselves to considering approximation algorithms for com-
binatorial optimization problems. A wide study of randomized algorithms
and a rich bibliography can be found in [Motwani and Raghavan, 1995]. A
description of the technique of the conditional probabilities can be found
in [Alon and Spencer, 1992].

The randomized approximation algorithm for the weighted version of
MINIMUM VERTEX COVER is presented in [Pitt, 1985].

The randomized 2-approximation algorithm for MAXIMUM WEIGHTED

SATISFIABILITY follows the greedy approach used in [Johnson, 1974a],
while the two 4=3-approximation algorithms were presented in [Goemans
and Williamson, 1994]. Another 4=3-approximation deterministic algo-
rithm for MAXIMUM WEIGHTED SATISFIABILITY was given in [Yan-
nakakis, 1994]. The approach here followed is rather different and exploits
techniques from the theory of maximum flows. Further improvements to
the approximation of MAXIMUM WEIGHTED SATISFIABILITY based on
semidefinite programming achieve a performance ratio of 1:318 [Goemans
and Williamson, 1995b]. In the specific case of MAXIMUM WEIGHTED

2-SATISFIABILITY , [Feige and Goemans, 1995] have achieved a stronger
result obtaining a 1:066 bound. Instead, just considering satisfiable formu-
las, [Karloff and Zwick, 1997] have shown that it is possible to approxi-
mate MAXIMUM WEIGHTED 3-SATISFIABILITY with approximation ra-
tio 8=7. Further improvements are based on combining together almost all
the known techniques used to approximate MAXIMUM WEIGHTED SAT-
ISFIABILITY , obtaining an approximation ratio of 1:29 (see [Ono, Hirata
and Asano, 1996] and [Asano, 1997]).

The technique of randomized rounding was introduced in [Raghavan and
Thompson, 1987] and [Raghavan, 1988] while studying a wire routing
problem. Randomized rounding algorithms that improve the bound given
in Exercise 5.9 for the MINIMUM SET COVER problem have been pro-
posed in [Bertsimas and Vohra, 1994, Srinivasan, 1995, Srinivasan, 1996].
In particular, in [Bertsimas and Vohra, 1994] the technique is applied to a
variety of covering problems.

The randomized approximation algorithm for the MAXIMUM CUT prob-
lem based on semidefinite programming is presented in [Goemans and
Williamson, 1995b] while [Mahajan and Ramesh, 1995] give a derandom-
ized version of the algorithm. A proof that semidefinite programming is
solvable efficiently can be found in [Alizadeh, 1995]. [Karger, Motwani,
and Sudan, 1998] applied semidefinite programming to MINIMUM GRAPH

COLORING.

174

http://www.springer.com/978-3-540-65431-5

