
Preface

Aims of the book. Our motivation for writing this book is twofold.
One is that for quite some time we have lacked a textbook for our own courses
on program analysis; instead we have been forced to base the courses on
conference papers supplemented with the occasional journal paper or chapter
from a text book out of print. The other is the growing feeling that the
various subcommunities in the field often study similar problems without
being sufficiently aware of insights or developments generally known in other
subcommunities. The idea then emerged that perhaps a text book could be
written that both would be useful for advanced courses on program analysis
and that would help increase the awareness in the field about the many
similarities between the various approaches.

There is an important analogy to complexity theory here. Consider re-
searchers or students looking through the literature for a clever algorithm
or heuristics to solve a problem on graphs. They might come across papers
on clever algorithms or heuristics for solving problems on boolean formulae
and might dismiss them on the grounds that graphs and boolean formulae
surely are quite different things. Yet complexity theory tells us that this is
quite a mistaken point of view. The notions of log-space reduction between
problems and of NP-complete problems lead to realising that problems may
appear unrelated at first sight and nonetheless be so closely related that a
good algorithm or heuristics for one will give rise to a good algorithm or
heuristics for the other. We believe it to be a sad fact that students of
programming languages in general, and program analysis in particular, are
much too often allowed to get away with making similarly naive decisions
and arguments. Program analysis is still far from being able to precisely re-
late ingredients of different approaches to one another but we hope that this
book will help to bring this about. In fact, we hope to shock quite a number
of readers by convincing them that there are important similarities between
the approaches of their own work and other approaches deemed to be of no
relevance.

This book concentrates on what we believe to be the four main approaches to
program analysis: Data Flow Analysis; Constraint Based Analysis; Abstract



VI Preface

Interpretation; and Type and Effect Systems. For each approach we aim
at identifying and describing the important general principles, rather than
presenting a cook-book of techniques and language constructs, with a view
to how the principles scale up for more complex programming languages and
analyses.

As a consequence we have deliberately decided that this book should not
treat a number of interesting approaches, some of which are dear to the
heart of the authors, in order to be able to cover the four main approaches
to some depth; the approaches not covered include denotationally based pro-
gram analysis, projection analysis, and logical formulations based on Stone
dualities. For reasons of space, we have also had to omit material that would
have had a natural place in the book; this includes a deeper treatment of
set constraints, fast techniques for implementing type based analyses, single
static assignment form, a broader treatment of pointer analyses, and the in-
terplay between analysis and transformation and how to efficiently recompute
analysis information invalidated by the transformation.

How to read the book. The book is relatively self-contained although
the reader will benefit from previous exposure to discrete mathematics and
compilers. The main chapters are generally rigorous in the early parts where
the basic techniques are covered, but less so in the later parts where more
advanced techniques are covered.

Chapter 1 is intended to be read quickly. The purpose of the chapter is to
give an overview of the main approaches to program analysis, to stress the
approximate nature of program analysis, and to make it clear that seemingly
different approaches may yet have profound similarities. We recommend
reading through all of Chapter 1 even though the reader might want to spe-
cialise in only parts of the book.

Chapter 2 introduces Data Flow Analysis. Sections 2.1 to 2.4 cover the basic
techniques for intraprocedural analysis, including the Monotone Frameworks
as generalisations of the Bit Vector Frameworks, and a worklist algorithm
for computing the information efficiently. Section 2.2 covers more theoretical
properties (semantic correctness) and can be omitted on a first reading. The
presentation makes use of notions from lattice theory and for this we refer to
Appendix A.1, A.2 and parts of A.3. — Section 2.5 is a more advanced section
that gives an overview of interprocedural analysis including a treatment of call
string based methods and methods based on assumption sets; since Section
2.5 is used as a stepping stone to Chapter 3 we recommend to read at least
up to Subsection 2.5.2. Section 2.6 is an advanced section that illustrates
how the relatively simple techniques introduced so far can be combined to
develop a very complex shape analysis, but the material is not essential for
the remainder of the book.



Preface VII

Chapter 3 covers Constraint Based Analysis. The treatment makes a clear
distinction between determining the safety of an analysis result and how to
compute the best safe result; it also stresses the need to analyse open systems.
Sections 3.1, 3.3 and 3.4 cover the basic techniques; these include coinduction
which is likely to be new to most readers and we refer to the treatment in
Appendix B (building upon Tarski’s theorem as covered in Appendix A.4).
Section 3.2 covers more theoretical properties (semantic correctness and the
existence of best solutions) and can be omitted on a first reading. — Sections
3.5 and 3.6 extend the development so as to link up with the treatment
of Data Flow Analysis. Section 3.5 shows how to incorporate Monotone
Frameworks (Section 2.3) and Section 3.6 shows how to add context in the
manner of call strings and assumption sets (Section 2.5).

Chapter 4 covers Abstract Interpretation in a programming language inde-
pendent fashion in order to stress that it can be integrated both with Data
Flow Analysis and Constraint Based Analysis. Section 4.1 introduces some
of the key considerations and is used to motivate some of the technical def-
initions in later sections. Section 4.2 deals with the use of widening and
narrowing for approximating fixed points and Sections 4.3 deals with Galois
connections; this order of presentation has been chosen to stress the funda-
mental nature played by widenings but the sections are largely independent
of one another. — Sections 4.4 and 4.5 study how to build Galois connec-
tions in a systematic manner and how to use them for inducing approximate
analyses; the material is not essential for the remainder of the book.

Chapter 5 covers Type and Effect Systems which is an approach to program
analysis that is often viewed as having a quite different flavour from the ap-
proaches covered so far. Section 5.1 presents the basic approach (by linking
back to the Constraint Based Analyses studied in Chapter 3) and suffices for
getting an impression of the approach. Section 5.2 studies more theoretical
properties (semantic correctness) and Section 5.3 studies algorithmic issues
(soundness and completeness of a variation of algorithm W) and these sec-
tions can be omitted on a first reading. — Sections 5.4 and 5.5 gradually
introduce more and more advanced Type and Effect Systems.

Chapter 6 presents algorithms for Data Flow Analysis and Constraint Based
Analysis. The treatment concentrates on general techniques for solving sys-
tems of inequations. We emphasise the fact that, to a large extent, the same
set of techniques can be used for a number of different approaches to pro-
gram analysis. Section 6.1 presents a general worklist algorithm, where the
operations on the worklist constitute an abstract data type, and its correct-
ness and complexity is established. Section 6.2 organises the worklist so that
iteration takes place in reverse postorder and the Round Robin Algorithm is
obtained as a special case. Section 6.3 then further identifies strong compo-
nents and iterates through each strong component in reverse postorder before
considering the next.



VIII Preface

Appendices A and C review the concepts from partially ordered sets, graphs
and regular expressions that are used throughout the book. Appendix B is
more tutorial in nature since coinduction is likely to be a new concept for
most readers.

To help the reader when navigating through the book we provide a table of
contents, a list of tables, and a list of figures at the front of the book and an
index of the main concepts and an index of notation at the end of the book.
The index of notation is divided into three parts: first the mathematical
symbols (with an indication of where they take their parameters), then the
notation beginning with a greek letter, and finally the notation beginning
with a letter in the latin alphabet (regardless of the font used). The book
concludes with a bibliography.

Our notation is mostly standard and is explained when introduced. However,
it may be helpful to point out that we will be using “iff” as an abbreviation
for “if and only if”, that we will be using · · · [· · · �→ · · ·] to mean both syntactic
substitution as well as update of an environment or store, and that we will
be writing · · · →fin · · · for the set of finitary functions: these are the partial
functions with a finite domain. We also use λ-notation for functions when it
improves the clarity of presentation: λx. · · ·x · · · stands for the unary function
f defined by f(x) = · · ·x · · ·.
Most proofs and some technical lemmas and facts are in small print in order
to aid the reader in navigating through the book.

How to teach from the book. The book contains more material
than can be covered in a one semester course. The pace naturally depends
on the background of the students; we have taught the course at different
paces to students in their fourth year as well as to Ph.D.-students with a
variety of backgrounds. Below we summarise our experiences on how many
lectures are needed for covering the various parts of the book; it supplements
the guide-lines presented above for how to read the book.

Two or three lectures should suffice for covering all of Chapter 1 and possibly
some of the simpler concepts from Appendix A.1 and A.2.

Sections 2.1, 2.3 and 2.4 are likely to be central to any course dealing with
data flow analysis. Three to four lectures should suffice for covering Sections
2.1 to 2.4 but five lectures may be needed if the students lack the necessary
background in operational semantics or lattice theory (Appendix A.1, A.2
and parts of A.3). — Sections 2.5 and 2.6 are more advanced. One or two
lectures suffice for covering Section 2.5 but it is hard to pay justice to Section
2.6 in less than two lectures.

Four or five lectures should suffice for a complete treatment of both Chapter
3 and Appendix B; however, the concept of coinduction takes some time to
get used to and should be explained more than once.



Preface IX

Four or five lectures should suffice for a complete treatment of Chapter 4 as
well as Appendix A.4.

About four lectures should suffice for a complete treatment of Chapter 5.

Two lectures should suffice for Chapter 6 but three lectures may be needed
if large parts of Appendix C need to be reviewed.

We have always covered the appendices as an integrated part of the other
chapters; indeed, some of the foundations for partial orders are introduced
gently in Chapter 1 and most of our students have had some prior exposure
to partial orders, graphs and regular expressions.

The book contains numerous exercises and several mini projects which are
small projects dealing with practical or theoretical aspects of the develop-
ment. Many of the important links and analogies between the various chap-
ters are studied in the exercises and mini projects. Some of the harder exer-
cises are starred.

Acknowledgements. We should like to thank Reinhard Wilhelm for
his long and lasting interest in this project and for his many encouraging and
constructive remarks. We have also profited greatly from discussions with
Alan Mycroft, Mooly Sagiv and Helmut Seidl about their perspective on
selected parts of the manuscript. Many other colleagues have influenced the
writing of the book and we should like to thank them all; in particular Alex
Aiken, Torben Amtoft, Patrick Cousot, Laurie Hendren, Suresh Jagannathan,
Florian Martin, Barbara Ryder, Bernhard Steffen. We are grateful to Schloss
Dagstuhl for having hosted two key meetings: a one-week meeting among the
authors in March of 1997 (during which we discovered the soothing nature
of Vangelis’ 1492 ) and our advanced course in November of 1998. Warm
thanks go to the many students attending the advanced course in Dagstuhl,
and to the many students in Aarhus, London, Saarbrücken and Tel Aviv that
have tested the book as it evolved ever so slowly. Finally, we should like to
thank Alfred Hofmann at Springer for a very satisfactory contract and René
Rydhof Hansen for his help in tuning the LATEX commands.

Aarhus and London Flemming Nielson
August, 1999 Hanne Riis Nielson

Chris Hankin

Preface to the second printing. In this second printing we have
corrected all errors and shortcomings pointed out to us. We should like to
thank Torben Amtoft, John Tang Boyland, Jurriaan Hage and Mirko Luedde
as well as our students for their observations.

Official web page. Further information about the book is available at
the web page http://www.imm.dtu.dk/~riis/PPA/ppa.html. Here we will



X Preface

provide information about availability of the book, a list of misprints (initially
empty), pointers to web based tools that can be used in conjunction with the
book, and transparencies and other supplementary material. Instructors are
encouraged to send us teaching material for inclusion on the web page.

Lyngby and London Flemming Nielson
October, 2004 Hanne Riis Nielson

Chris Hankin



http://www.springer.com/978-3-540-65410-0




