
Chapter 1

Introduction

In this book we shall introduce four of the main approaches to program
analysis: Data Flow Analysis, Constraint Based Analysis, Abstract Interpre-
tation, and Type and Effect Systems. Each of Chapters 2 to 5 deals with one
of these approaches at some length and generally treats the more advanced
material in later sections. Throughout the book we aim at stressing the many
similarities between what may at a first glance appear to be very unrelated
approaches. To help to get this idea across, and to serve as a gentle intro-
duction, this chapter treats all of the approaches at the level of examples.
The technical details are worked out but it may be difficult to apply the
techniques to related examples until some of the material of later chapters
has been studied.

1.1 The Nature of Program Analysis

Program analysis offers static compile-time techniques for predicting safe
and computable approximations to the set of values or behaviours arising
dynamically at run-time when executing a program on a computer. A main
application is to allow compilers to generate code avoiding redundant com-
putations, e.g. by reusing available results or by moving loop invariant com-
putations out of loops, or avoiding superfluous computations, e.g. of results
known to be not needed or of results known already at compile-time. Among
the more recent applications is the validation of software (possibly purchased
from sub-contractors) to reduce the likelihood of malicious or unintended be-
haviour. Common for these applications is the need to combine information
from different parts of the program.

A main aim of this book is to give an overview of a number of approaches to
program analysis, all of which have a quite extensive literature, and to show



2 1 Introduction

{d1, · · · , dn}︷ ︸︸ ︷ {dn+1, · · · , dN}︷ ︸︸ ︷
true answer

{d1, · · · , dn, · · · , dn+m}
︸ ︷︷ ︸

safe answer

Figure 1.1: The nature of approximation: erring on the safe side.

that there is a large amount of commonality among the approaches. This
should help in cultivating the ability to choose the right approach for the
right task and in exploiting insights developed in one approach to enhance
the power of other approaches.

One common theme behind all approaches to program analysis is that in
order to remain computable one can only provide approximate answers. As
an example consider a simple language of statements and the program

read(x); (if x>0 then y:=1 else (y:=2;S)); z:=y

where S is some statement that does not contain an assignment to y. Intu-
itively, the values of y that can reach z:=y will be 1 or 2.

Now suppose an analysis claims that the only value for y that can reach z:=y
is in fact 1. While this seems intuitively wrong, it is in fact correct in the
case where S is known never to terminate for x ≤ 0 and y = 2. But since
it is undecidable whether or not S terminates, we normally do not expect
our analysis to attempt to detect this situation. So in general, we expect the
program analysis to produce a possibly larger set of possibilities than what
will ever happen during execution of the program. This means that we shall
also accept a program analysis claiming that the values of y reaching z:=y
are among 1, 2 or 27, although we will clearly prefer the analysis that gives
the more precise answer that the values are among 1 or 2. This notion of
safe approximation is illustrated in Figure 1.1. Clearly the challenge is not to



1.2 Setting the Scene 3

produce the safe “{d1, · · · , dN}” too often as the analysis will then be utterly
useless. Note, that although the analysis does not give precise information it
may still give useful information: knowing that the value of y is one of 1, 2
and 27 just before the assignment z:=y still tells us that z will be positive,
and that z will fit within 1 byte of storage etc. To avoid confusion it may
help to be precise in the use of terminology: it is better to say “the values
of y possible at z:=y are among 1 and 2” than the slightly shorter and more
frequently used “the values of y possible at z:=y are 1 and 2”.

Another common theme, to be stressed throughout this book, is that all
program analyses should be semantics based: this means that the information
obtained from the analysis can be proved to be safe (or correct) with respect
to a semantics of the programming language. It is a sad fact that new program
analyses often contain subtle bugs, and a formal justification of the program
analysis will help finding these bugs sooner rather than later. However, we
should stress that we do not suggest that program analyses be semantics
directed: this would mean that the structure of the program analysis should
reflect the structure of the semantics and this will be the case only for a few
approaches which are not covered in this book.

1.2 Setting the Scene

Syntax of the While language. We shall consider a simple im-
perative language called While. A program in While is just a statement
which may be, and normally will be, a sequence of statements. In the interest
of simplicity, we will associate data flow information with single assignment
statements, the tests that appear in conditionals and loops, and skip state-
ments. We will require a method to identify these. The most convenient
way of doing this is to work with a labelled program – as indicated in the
syntax below. We will often refer to the labelled items (assignments, tests
and skip statements) as elementary blocks. In this chapter we will assume
that distinct elementary blocks are initially assigned distinct labels; we could
drop this requirement, in which case some of the examples would need to be
slightly reformulated and the resultant analyses would be less accurate.

We use the following syntactic categories:

a ∈ AExp arithmetic expressions
b ∈ BExp boolean expressions
S ∈ Stmt statements

We assume some countable set of variables is given; numerals and labels will
not be further defined and neither will the operators:

x, y ∈ Var variables
n ∈ Num numerals
� ∈ Lab labels



4 1 Introduction

� RDentry(�) RDexit (�)
1 (x, ?), (y, ?), (z, ?) (x, ?), (y, 1), (z, ?)
2 (x, ?), (y, 1), (z, ?) (x, ?), (y, 1), (z, 2)
3 (x, ?), (y, 1), (y, 5), (z, 2), (z, 4) (x, ?), (y, 1), (y, 5), (z, 2), (z, 4)
4 (x, ?), (y, 1), (y, 5), (z, 2), (z, 4) (x, ?), (y, 1), (y, 5), (z, 4)
5 (x, ?), (y, 1), (y, 5), (z, 4) (x, ?), (y, 5), (z, 4)
6 (x, ?), (y, 1), (y, 5), (z, 2), (z, 4) (x, ?), (y, 6), (z, 2), (z, 4)

Table 1.1: Reaching Definitions information for the factorial program.

opa ∈ Opa arithmetic operators
opb ∈ Opb boolean operators
opr ∈ Opr relational operators

The syntax of the language is given by the following abstract syntax:

a ::= x | n | a1 opa a2

b ::= true | false | not b | b1 opb b2 | a1 opr a2

S ::= [x := a]� | [skip]� | S1;S2 |
if [b]� then S1 else S2 | while [b]� do S

One way to think of the abstract syntax is as specifying the parse trees of
the language; it will then be the purpose of the concrete syntax to provide
sufficient information to enable unique parse trees to be constructed. In this
book we shall not be concerned with concrete syntax: whenever we talk about
some syntactic entity we will always be talking about the abstract syntax so
there will be no ambiguity with respect to the form of the entity. We shall
use a textual representation of the abstract syntax and to disambiguate it
we shall use parentheses. For statements one often writes begin · · · end or
{· · ·} for this but we shall feel free to use (· · ·). Similarly, we use brackets
(· · ·) to resolve ambiguities in other syntactic categories. To cut down on the
number of brackets needed we shall use the familiar relative precedences of
arithmetic, boolean and relational operators.

Example 1.1 An example of a program written in this language is the
following which computes the factorial of the number stored in x and leaves
the result in z:

[y:=x]1; [z:=1]2; while [y>1]3 do ([z:=z*y]4; [y:=y-1]5); [y:=0]6

Reaching Definitions Analysis. The use of distinct labels allows
us to identify the primitive constructs of a program without explicitly con-
structing a flow graph (or flow chart). It also allows us to introduce a program
analysis to be used throughout the chapter: Reaching Definitions Analysis,
or as it should be called more properly, reaching assignments analysis:



1.3 Data Flow Analysis 5

An assignment (called a definition in the classical literature) of
the form [x := a]� may reach a certain program point (typically
the entry or exit of an elementary block) if there is an execution
of the program where x was last assigned a value at � when the
program point is reached.

Consider the factorial program of Example 1.1. Here [y:=x]1 reaches the
entry to [z:=1]2; to allow a more succinct presentation we shall say that
(y,1) reaches the entry to 2. Also we shall say that (x,?) reaches the entry to
2; here “?” is a special label not appearing in the program and it is used to
record the possibility of an uninitialised variable reaching a certain program
point.

Full information about reaching definitions for the factorial program is then
given by the pair RD = (RDentry ,RDexit) of functions in Table 1.1. Careful
inspection of this table reveals that the entry and exit information agree for
elementary blocks of the form [b]� whereas for elementary blocks of the form
[x := a]� they may differ on pairs (x, �′). We shall come back to this when
formulating the analysis in subsequent sections.

Returning to the discussion of safe approximation note that if we modify
Table 1.1 to include the pair (z,2) in RDentry(5) and RDexit (5) we still have
safe information about reaching definitions but the information is more ap-
proximate. However, if we remove (z,2) from RDentry(6) and RDexit (6) then
the information will no longer be safe – there exists a run of the factorial pro-
gram where the set {(x,?),(y,6),(z,4)} does not correctly describe the reaching
definitions at the exit of label 6.

1.3 Data Flow Analysis

In Data Flow Analysis it is customary to think of a program as a graph: the
nodes are the elementary blocks and the edges describe how control might
pass from one elementary block to another. Figure 1.2 shows the flow graph
for the factorial program of Example 1.1. We shall first illustrate the more
common equational approach to Data Flow Analysis and then a constraint
based approach that will serve as a stepping stone to Section 1.4.

1.3.1 The Equational Approach

The equation system. An analysis like Reaching Definitions can be
specified by extracting a number of equations from a program. There are two
classes of equations. One class of equations relate exit information of a node
to entry information for the same node. For the factorial program

[y:=x]1; [z:=1]2; while [y>1]3 do ([z:=z*y]4; [y:=y-1]5); [y:=0]6



6 1 Introduction

[y:=0]6

[y:=y-1]5

[z:=z*y]4

[y>1]3

[z:=1]2

[y:=x]1
�

�

�

�

�

�

�

�
yes

no

Figure 1.2: Flow graph for the factorial program.

we obtain the following six equations:

RDexit (1) = (RDentry(1)\{(y, �) | � ∈ Lab}) ∪ {(y, 1)}
RDexit (2) = (RDentry(2)\{(z, �) | � ∈ Lab}) ∪ {(z, 2)}
RDexit (3) = RDentry(3)
RDexit (4) = (RDentry(4)\{(z, �) | � ∈ Lab}) ∪ {(z, 4)}
RDexit (5) = (RDentry(5)\{(y, �) | � ∈ Lab}) ∪ {(y, 5)}
RDexit (6) = (RDentry(6)\{(y, �) | � ∈ Lab}) ∪ {(y, 6)}

These are instances of the following schema: for an assignment [x := a]�
′

we exclude all pairs (x, �) from RDentry(�′) and add (x, �′) in order to obtain
RDexit(�′) – this reflects that x is redefined at �. For all other elementary
blocks [· · ·]�′ we let RDexit(�′) equal RDentry(�′) – reflecting that no variables
are changed.

The other class of equations relate entry information of a node to exit in-
formation of nodes from which there is an edge to the node of interest; that
is, entry information is obtained from all the exit information where control
could have come from. For the example program we obtain the following
equations:

RDentry(2) = RDexit (1)



1.3 Data Flow Analysis 7

RDentry(3) = RDexit (2) ∪ RDexit (5)
RDentry(4) = RDexit (3)
RDentry(5) = RDexit (4)
RDentry(6) = RDexit (3)

In general, we write RDentry(�) = RDexit (�1) ∪ · · · ∪ RDexit(�n) if �1, · · · , �n
are all the labels from which control might pass to �. We shall consider more
precise ways of explaining this in Chapter 2. Finally, let us consider the
equation

RDentry(1) = {(x, ?) | x is a variable in the program}

that makes it clear that the label “?” is to be used for uninitialised variables;
so in our case

RDentry(1) = {(x, ?), (y, ?), (z, ?)}

The least solution. The above system of equations defines the twelve
sets

RDentry(1), · · · ,RDexit(6)

in terms of each other. Writing −→RD for this twelve-tuple of sets we can regard
the equation system as defining a function F and demanding that:

−→
RD = F (−→RD)

To be more specific we can write

F (−→RD) = (Fentry (1)(−→RD), Fexit (1)(−→RD), · · · , Fentry (6)(−→RD), Fexit (6)(−→RD))

where e.g.:

Fentry (3)(· · · ,RDexit(2), · · · ,RDexit(5), · · ·) = RDexit (2) ∪ RDexit(5)

It should be clear that F operates over twelve-tuples of sets of pairs of vari-
ables and labels; this can be written as

F : (P(Var� × Lab�))12 → (P(Var� × Lab�))12

where it might be natural to take Var� = Var and Lab� = Lab. However,
it will simplify the presentation in this chapter to let Var� be a finite subset
of Var that contains the variables occurring in the program S� of interest
and similarly for Lab�. So for the example program we might have Var� =
{x, y, z} and Lab� = {1, · · · , 6, ?}.
It is immediate that (P(Var�×Lab�))12 can be partially ordered by setting

−→
RD � −→

RD
′

iff ∀i : RDi ⊆ RD′
i



8 1 Introduction

where −→RD = (RD1, · · · ,RD12) and similarly −→
RD

′
= (RD′

1, · · · ,RD′
12). This

turns (P(Var� × Lab�))12 into a complete lattice (see Appendix A) with
least element

�∅ = (∅, · · · , ∅)
and binary least upper bounds given by:

−→
RD � −→RD

′
= (RD1 ∪ RD′

1, · · · ,RD12 ∪ RD′
12)

It is easy to show that F is in fact a monotone function (see Appendix A)
meaning that: −→

RD � −→
RD

′
implies F (−→RD) � F (−→RD

′
)

This involves calculations like

RDexit(2) ⊆ RD′
exit (2) and RDexit(5) ⊆ RD′

exit (5)
imply

RDexit(2) ∪ RDexit(5) ⊆ RD′
exit(2) ∪ RD′

exit(5)

and the details are left to the reader.

Consider the sequence (Fn(�∅))n and note that �∅ � F (�∅). Since F is mono-
tone, a straightforward mathematical induction (see Appendix B) gives that
Fn(�∅) � Fn+1(�∅) for all n. All the elements of the sequence will be in
(P(Var� × Lab�))12 and since this is a finite set it cannot be the case that
all elements of the sequence are distinct so there must be some n such that:

Fn+1(�∅) = Fn(�∅)

But since Fn+1(�∅) = F (Fn(�∅)) this just says that Fn(�∅) is a fixed point of F
and hence that Fn(�∅) is a solution to the above equation system.

In fact we have obtained the least solution to the equation system. To see
this suppose that −→RD is some other solution, i.e. −→RD = F (−→RD). Then a
straightforward mathematical induction shows that Fn(�∅) � −→

RD. Hence
the solution Fn(�∅) contains the fewest pairs of reaching definitions that is
consistent with the program, and intuitively, this is also the solution we want:
while we can add additional pairs of reaching definitions without making
the analysis semantically unsound, this will make the analysis less usable as
discussed in Section 1.1. In Exercise 1.7 we shall see that the least solution
is in fact the one displayed in Table 1.1.

1.3.2 The Constraint Based Approach

The constraint system. An alternative to the equational approach
above is to use a constraint based approach. The idea is here to extract a
number of inclusions (or inequations or constraints) out of a program. We



1.3 Data Flow Analysis 9

shall present the constraint system for Reaching Definitions in such a way
that the relationship to the equational approach becomes apparent; however,
it is not a general phenomenon that the constraints are naturally divided into
two classes as was the case for the equations.

For the factorial program

[y:=x]1; [z:=1]2; while [y>1]3 do ([z:=z*y]4; [y:=y-1]5); [y:=0]6

we obtain the following constraints for expressing the effect of elementary
blocks:

RDexit(1) ⊇ RDentry(1)\{(y, �) | � ∈ Lab}
RDexit(1) ⊇ {(y, 1)}
RDexit(2) ⊇ RDentry(2)\{(z, �) | � ∈ Lab}
RDexit(2) ⊇ {(z, 2)}
RDexit(3) ⊇ RDentry(3)
RDexit(4) ⊇ RDentry(4)\{(z, �) | � ∈ Lab}
RDexit(4) ⊇ {(z, 4)}
RDexit(5) ⊇ RDentry(5)\{(y, �) | � ∈ Lab}
RDexit(5) ⊇ {(y, 5)}
RDexit(6) ⊇ RDentry(6)\{(y, �) | � ∈ Lab}
RDexit(6) ⊇ {(y, 6)}

By considering this system a certain methodology emerges: for an assignment
[x := a]�

′
we have one constraint that excludes all pairs (x, �) from RDentry(�′)

in reaching RDexit(�′) and we have one constraint for incorporating (x, �′);
for all other elementary blocks [· · ·]�′ we just have one constraint that allows
everything in RDentry(�′) to reach RDexit (�′).

Next consider the constraints for more directly expressing how control may
flow through the program. For the example program we obtain the con-
straints:

RDentry(2) ⊇ RDexit(1)
RDentry(3) ⊇ RDexit(2)
RDentry(3) ⊇ RDexit(5)
RDentry(5) ⊇ RDexit(4)
RDentry(6) ⊇ RDexit(3)

In general, we have a constraint RDentry(�) ⊇ RDexit(�′) if it is possible for
control to pass from �′ to �. Finally, the constraint

RDentry(1) ⊇ {(x, ?), (y, ?), (z, ?)}
records that we cannot be sure about the definition point of uninitialised
variables.



10 1 Introduction

The least solution revisited. It is not hard to see that a solution
to the equation system presented previously will also be a solution to the
above constraint system. To make this connection more transparent we can
rearrange the constraints by collecting all constraints with the same left hand
side. This means that for example

RDexit(1) ⊇ RDentry(1)\{(y, �) | � ∈ Lab}
RDexit(1) ⊇ {(y, 1)}

will be replaced by

RDexit (1) ⊇ (RDentry(1)\{(y, �) | � ∈ Lab}) ∪ {(y, 1)}

and clearly this has no consequence for whether or not −→RD is a solution. In
other words we obtain a version of the previous equation system except that
all equalities have been replaced by inclusions. Formally, whereas the equa-
tional approach demands that −→RD = F (−→RD), the constraint based approach
demands that −→RD � F (−→RD) for the same function F . It is therefore immedi-
ate that a solution to the equation system is also a solution to the constraint
system whereas the converse is not necessarily the case.

Luckily we can show that both the equation system and the constraint system
have the same least solution. Recall that the least solution to −→RD = F (−→RD)
is constructed as Fn(�∅) for a value of n such that Fn(�∅) = Fn+1(�∅). If −→RD

is a solution to the constraint system, that is −→RD � F (−→RD), then �∅ � −→
RD is

immediate and the monotonicity of F and mathematical induction then gives
Fn(�∅) � −→

RD. Since Fn(�∅) is a solution to the constraint system this shows
that it is also the least solution to the constraint system.

In summary, we have thus seen a very strong connection between the equa-
tional approach and the constraint based approach. This connection is not
always as apparent as it is here: one of the characteristics of the constraint
based approach is that often constraints with the same left hand side are gen-
erated at many different places in the program and therefore it may require
serious work to collect them.

1.4 Constraint Based Analysis

The purpose of Control Flow Analysis is to determine information about
what “elementary blocks” may lead to what other “elementary blocks”. This
information is immediately available for the While language unlike what is
the case for more advanced imperative, functional and object-oriented lan-
guages. Often Control Flow Analysis is expressed as a Constraint Based
Analysis as will be illustrated in this section.

Consider the following functional program:



1.4 Constraint Based Analysis 11

let f = fn x => x 1;
g = fn y => y+2;
h = fn z => z+3

in (f g) + (f h)

It defines a higher-order function f with formal parameter x and body x 1;
then it defines two functions g and h that are given as actual parameters to
f in the body of the let-construct. Semantically, x will be bound to each
of these two functions in turn so both g and h will be applied to 1 and the
result of the computation will be the value 7.

An application of f will transfer control to the body of f, i.e. to x 1, and
this application of x will transfer control to the body of x. The problem is
that we cannot immediately point to the body of x: we need to know what
parameters f will be called with. This is exactly the information that the
Control Flow Analysis gives us:

For each function application, which functions may be applied.

As is typical of functional languages, the labelling scheme used would seem
to have a very different character than the one employed for imperative lan-
guages because the “elementary blocks” may be nested. We shall therefore
label all subexpressions as in the following simple program that will be used
to illustrate the analysis.

Example 1.2 Consider the program:

[[fn x => [x]1]2 [fn y => [y]3]4]5

It calls the identity function fn x => x on the argument fn y => y and
clearly evaluates to fn y => y itself (omitting all [· · ·]�).

We shall now be interested in associating information with the labels them-
selves, rather than with the entries and exits of the labels – thereby we exploit
the fact that there are no side-effects in our simple functional language. The
Control Flow Analysis will be specified by a pair (Ĉ, ρ̂) of functions where
Ĉ(�) is supposed to contain the values that the subexpression (or “elemen-
tary block”) labelled � may evaluate to and ρ̂(x) contain the values that the
variable x can be bound to.

The constraint system. One way to specify the Control Flow Anal-
ysis then is by means of a collection of constraints and we shall illustrate this
for the program of Example 1.2. There are three classes of constraints. One
class of constraints relate the values of function abstractions to their labels:

{fn x => [x]1} ⊆ Ĉ(2)

{fn y => [y]3} ⊆ Ĉ(4)



12 1 Introduction

These constraints state that a function abstraction evaluates to a closure
containing the abstraction itself. So the general pattern is that an occurrence
of [fn x => e]� in the program gives rise to a constraint {fn x => e} ⊆ Ĉ(�).

The second class of constraints relate the values of variables to their labels:

ρ̂(x) ⊆ Ĉ(1)

ρ̂(y) ⊆ Ĉ(3)

The constraints state that a variable always evaluates to its value. So for
each occurrence of [x]� in the program we will have a constraint ρ̂(x) ⊆ Ĉ(�).

The third class of constraints concerns function application: for each applica-
tion point [e1 e2]�, and for each possible function [fn x => e]�

′
that could be

called at this point, we will have: (i) a constraint expressing that the formal
parameter of the function is bound to the actual parameter at the application
point, and (ii) a constraint expressing that the result obtained by evaluating
the body of the function is a possible result of the application.

Our example program has just one application [[· · ·]2 [· · ·]4]5, but there are
two candidates for the function, i.e. Ĉ(2) is a subset of the set {fn x => [x]1,
fn y => [y]3}. If the function fn x => [x]1 is applied then the two con-
straints are Ĉ(4) ⊆ ρ̂(x) and Ĉ(1) ⊆ Ĉ(5). We express this as conditional
constraints:

{fn x => [x]1} ⊆ Ĉ(2) ⇒ Ĉ(4) ⊆ ρ̂(x)

{fn x => [x]1} ⊆ Ĉ(2) ⇒ Ĉ(1) ⊆ Ĉ(5)

Alternatively, the function being applied could be fn y => [y]3 and the cor-
responding conditional constraints are:

{fn y => [y]3} ⊆ Ĉ(2) ⇒ Ĉ(4) ⊆ ρ̂(y)

{fn y => [y]3} ⊆ Ĉ(2) ⇒ Ĉ(3) ⊆ Ĉ(5)

The least solution. As in Section 1.3 we shall be interested in the
least solution to this set of constraints: the smaller the sets of values given
by Ĉ and ρ̂, the more precise the analysis is in predicting which functions are
applied. In Exercise 1.2 we show that the following choice of Ĉ and ρ̂ gives a
solution to the above constraints:

Ĉ(1) = {fn y => [y]3}
Ĉ(2) = {fn x => [x]1}
Ĉ(3) = ∅
Ĉ(4) = {fn y => [y]3}
Ĉ(5) = {fn y => [y]3}
ρ̂(x) = {fn y => [y]3}
ρ̂(y) = ∅



1.5 Abstract Interpretation 13

Among other things this tells us that the function abstraction fn y => y is
never applied (since ρ̂(y) = ∅) and that the program may only evaluate to
the function abstraction fn y => y (since Ĉ(5) = {fn y => [y]3}).
Note the similarities between the constraint based approaches to Data Flow
Analysis and Constraint Based Analysis: in both cases the syntactic structure
of the program gives rise to a set of constraints whose least solution is desired.
The main difference is that the constraints for the Constraint Based Analysis
have a more complex structure than those for the Data Flow Analysis.

1.5 Abstract Interpretation

The theory of Abstract Interpretation is a general methodology for calculat-
ing analyses rather than just specifying them and then relying on a posteriori
validation. To some extent the application of Abstract Interpretation is in-
dependent of the specification style used for presenting the program analysis
and so applies not only to the Data Flow Analysis formulation to be used
here.

Collecting semantics. As a preliminary step we shall formulate a so-
called collecting semantics that records the set of traces tr that can reach a
given program point:

tr ∈ Trace = (Var× Lab)∗

Intuitively, a trace will record where the variables have obtained their values
in the course of the computation. So for the factorial program

[y:=x]1; [z:=1]2; while [y>1]3 do ([z:=z*y]4; [y:=y-1]5); [y:=0]6

we will for example have the trace

((x, ?), (y, ?), (z, ?), (y, 1), (z, 2), (z, 4), (y, 5), (z, 4), (y, 5), (y, 6))

corresponding to a run of the program where the body of the while-loop is
executed twice.

The traces contain sufficient information that we can extract a set of seman-
tically reaching definitions:

SRD(tr)(x) = � iff the rightmost pair (x, �′) in tr has � = �′

We shall write DOM(tr) for the set of variables for which SRD(tr) is defined,
i.e. x ∈ DOM(tr) iff some pair (x, �) occurs in tr .

In order for the Reaching Definitions Analysis to be correct (or safe) we shall
require that it captures the semantic reaching definitions, that is, if tr is a



14 1 Introduction

possible trace just before entering the elementary block labelled � then we
shall demand that

∀x ∈ DOM(tr) : (x, SRD(tr)(x)) ∈ RDentry(�)

in order to trust the information in RDentry(�) about the set of definitions
that may reach the entry to �. In later chapters, we will conduct proofs of
results like this.

The collecting semantics will specify a superset of the possible traces at the
various program points. We shall specify the collecting semantics CS in the
style of the Reaching Definitions Analysis in Section 1.3; more precisely, we
shall specify a twelve-tuple of elements from (P(Trace))12 by means of a set
of equations. First we have

CSexit(1) = {tr : (y, 1) | tr ∈ CSentry(1)}
CSexit(2) = {tr : (z, 2) | tr ∈ CSentry(2)}
CSexit(3) = CSentry(3)
CSexit(4) = {tr : (z, 4) | tr ∈ CSentry(4)}
CSexit(5) = {tr : (y, 5) | tr ∈ CSentry(5)}
CSexit(6) = {tr : (y, 6) | tr ∈ CSentry(6)}

showing how the assignment statements give rise to extensions of the traces.
Here we write tr : (x, �) for appending an element (x, �) to a list tr , that
is ((x1, �1), · · · , (xn, �n)) : (x, �) equals ((x1, �1), · · · , (xn, �n), (x, �)). Further-
more, we have

CSentry(2) = CSexit(1)
CSentry(3) = CSexit(2) ∪ CSexit(5)
CSentry(4) = CSexit(3)
CSentry(5) = CSexit(4)
CSentry(6) = CSexit(3)

corresponding to the flow of control in the program; more detailed infor-
mation about the values of the variables would allow us to define the sets
CSentry(4) and CSentry(6) more precisely but the above definitions are suffi-
cient for illustrating the approach. Finally, we take

CSentry(1) = {((x, ?), (y, ?), (z, ?))}
corresponding to the fact that all variables are uninitialised in the beginning.

In the manner of the previous sections we can rewrite the above system of
equations in the form

−→
CS = G(−→CS)



1.5 Abstract Interpretation 15

•
γ(Y )

∪

•
X

•
α(X)

∪

•
Y

�

α

�

γ

Figure 1.3: The adjunction (α, γ).

where −→CS is a twelve-tuple of elements from (P(Trace))12 and where G is a
monotone function of functionality:

G : (P(Trace))12 → (P(Trace))12

As is explained in Appendix A there is a body of general theory that ensures
that the equation system in fact has a least solution; we shall write it as
lfp(G). However, since (P(Trace))12 is not finite we cannot simply use the
methods of the previous sections in order to construct lfp(G).

Galois connections. As we have seen the collecting semantics operates
on sets of traces whereas the Reaching Definitions Analysis operates on sets of
pairs of variables and labels. To relate these “worlds” we define an abstraction
function α and a concretisation function γ as illustrated in:

P(Trace) P(Var× Lab)
γ

α

�
�

The idea is that the abstraction function α extracts the reachability informa-
tion present in a set of traces; it is natural to define

α(X) = {(x, SRD(tr)(x)) | x ∈ DOM(tr) ∧ tr ∈ X}
where we exploit the notion of semantically reaching definitions.

The concretisation function γ then produces all traces tr that are consistent
with the given reachability information:

γ(Y ) = {tr | ∀x ∈ DOM(tr) : (x, SRD(tr)(x)) ∈ Y }

Often it is demanded that α and γ satisfy the condition

α(X) ⊆ Y ⇔ X ⊆ γ(Y )



16 1 Introduction

and we shall say that (α, γ) is an adjunction, or a Galois connection, whenever
this condition is satisfied; this is illustrated in Figure 1.3. We shall leave it
to the reader to verify that (α, γ) as defined above does in fact fulfil this
condition.

Induced analysis. We shall now show how the collecting semantics
can be used to calculate (as opposed to “guess”) an analysis like the one in
Section 1.3; we shall say that the analysis is an induced analysis. For this we
define

�α(X1, · · · , X12) = (α(X1), · · · , α(X12))
�γ(Y1, · · · , Y12) = (γ(Y1), · · · , γ(Y12))

where α and γ are as above and we consider the function �α ◦G ◦ �γ of func-
tionality:

(�α ◦G ◦ �γ) : (P(Var× Lab))12 → (P(Var × Lab))12

This function defines a Reaching Definitions analysis in an indirect way. Since
G is specified by a set of equations (over P(Trace)) we can use �α ◦G ◦ �γ to
calculate a new set of equations (over P(Var × Lab)). We shall illustrate
this for one of the equations:

CSexit(4) = {tr : (z, 4) | tr ∈ CSentry(4)}
The corresponding clause in the definition of G is:

Gexit (4)(· · · ,CSentry(4), · · ·) = {tr : (z, 4) | tr ∈ CSentry(4)}
We can now calculate the corresponding clause in the definition of �α ◦G ◦ �γ:

α(Gexit (4)(�γ(· · · ,RDentry(4), · · ·)))
= α({tr : (z, 4) | tr ∈ γ(RDentry(4))})
= {(x, SRD(tr : (z, 4))(x))

| x ∈ DOM(tr : (z, 4)),
∀y ∈ DOM(tr) : (y, SRD(tr)(y)) ∈ RDentry(4)}

= {(x, SRD(tr : (z, 4))(x))
| x �= z, x ∈ DOM(tr : (z, 4)),

∀y ∈ DOM(tr) : (y, SRD(tr)(y)) ∈ RDentry(4)}
∪{(x, SRD(tr : (z, 4))(x))

| x = z, x ∈ DOM(tr : (z, 4)),
∀y ∈ DOM(tr) : (y, SRD(tr)(y)) ∈ RDentry(4)}

= {(x, SRD(tr)(x))
| x �= z, x ∈ DOM(tr),

∀y ∈ DOM(tr) : (y, SRD(tr)(y)) ∈ RDentry(4)}
∪{(z, 4)

| ∀y ∈ DOM(tr) : (y, SRD(tr)(y)) ∈ RDentry(4)}
= (RDentry(4) \ {(z, �) | � ∈ Lab}) ∪ {(z, 4)}



1.6 Type and Effect Systems 17

The resulting equation

RDexit(4) = (RDentry(4) \ {(z, �) | � ∈ Lab}) ∪ {(z, 4)}

is as in Section 1.3. Similar calculations can be performed for the other
equations.

The least solution. As explained in Appendix A the equation system

−→
RD = (�α ◦G ◦ �γ)(−→RD)

has a least solution; we shall write it as lfp(�α ◦ G ◦ �γ). It is interesting to
note that if one replaces the infinite sets Var and Lab with finite sets Var�
and Lab� as before, then the least fixed point of �α ◦G ◦ �γ can be obtained
as (�α ◦G ◦ �γ)n(�∅) just as was the case for F previously.

In Exercise 1.4 we shall show that �α ◦ G ◦ �γ � F and that �α(Gn(�∅)) �
(�α ◦G ◦ �γ)n(�∅) � Fn(�∅) holds for all n. In fact it will be the case that

�α(lfp(G)) � lfp(�α ◦G ◦ �γ) � lfp(F )

and this just says that the least solution to the equation system defined by
�α◦G◦�γ is correct with respect to the collecting semantics, and similarly that
the least solution to the equation system of Section 1.3 is also correct with
respect to the collecting semantics. Thus it follows that we will only need to
show that the collecting semantics is correct – the correctness of the induced
analysis will follow for free.

For some analyses one is able to prove the stronger result �α ◦ G ◦ �γ = F .
Then the analysis is optimal (given the choice of approximate properties it
operates on) and clearly lfp(�α ◦ G ◦ �γ) = lfp(F ). In Exercise 1.4 we shall
study whether or not this is the case here.

1.6 Type and Effect Systems

A simple type system. The ideal setting for explaining Type and
Effect Systems is to consider a typed functional or imperative language.
However, even our simple toy language can be considered to be typed: a
statement S maps a state to a state (in case it terminates) and may therefore
be considered to have type Σ → Σ where Σ denotes the type of states; we
write this as the judgement:

S : Σ → Σ

One way to formalise this is by the following utterly trivial system of axioms
and inference rules:



18 1 Introduction

[x := a]� : Σ → Σ

[skip]� : Σ → Σ

S1 : Σ → Σ S2 : Σ → Σ
S1;S2 : Σ → Σ

S1 : Σ → Σ S2 : Σ → Σ
if [b]� then S1 else S2 : Σ → Σ

S : Σ → Σ
while [b]� do S : Σ → Σ

Often a Type and Effect System can be viewed as the amalgamation of two
ingredients: an Effect System and an Annotated Type System. In an Effect
System we typically have judgements of the form S : Σ ϕ→ Σ where the effect
ϕ tells something about what happens when S is executed: for example this
may be which errors might occur, which exceptions might be raised, or which
files might be modified. In an Annotated Type System we typically have
judgements of the form S : Σ1 → Σ2 where the Σi describe certain properties
of states: for example this may be that a variable is positive or that a certain
invariant is maintained. We shall first illustrate the latter approach for the
While language and then illustrate the Effect Systems using the functional
language.

1.6.1 Annotated Type Systems

Annotated base types. To obtain our first specification of Reaching
Definitions we shall focus on a formulation where the base types are anno-
tated. Here we will have judgements of the form

S : RD1 → RD2

where RD1,RD2 ∈ P(Var × Lab) are sets of reaching definitions. Based
on the trivial axioms and rules displayed above we then obtain the more
interesting ones in Table 1.2.

To explain these rules let us first explain the meaning of S : RD1 → RD2 in
terms of the developments performed in Section 1.3. For this we first observe
that any statement S will have one elementary block at its entry, denoted
init(S), and one or more elementary blocks at its exit, denoted final(S); for a
statement like if [x<y]1 then [x:=y]2 else [y:=x]3 we thus get init(· · ·) = 1
and final(· · ·) = {2, 3}.
Our first (and not quite successful) attempt at explaining the meaning of



1.6 Type and Effect Systems 19

[ass] [x := a]�
′
: RD → ((RD\{(x, �) | � ∈ Lab}) ∪ {(x, �′)})

[skip] [skip]�
′
: RD → RD

[seq]
S1 : RD1 → RD2 S2 : RD2 → RD3

S1;S2 : RD1 → RD3

[if]
S1 : RD1 → RD2 S2 : RD1 → RD2

if [b]� then S1 else S2 : RD1 → RD2

[wh]
S : RD → RD

while [b]� do S : RD → RD

[sub]
S : RD2 → RD3

S : RD1 → RD4
if RD1 ⊆ RD2 and RD3 ⊆ RD4

Table 1.2: Reaching Definitions: annotated base types.

S : RD1 → RD2 then is to say that:

RD1 = RDentry(init(S))⋃{RDexit (�) | � ∈ final(S)} = RD2

This suffices for explaining the axioms for assignment and skip: here the
formulae after the arrows correspond exactly to the similar equations in the
equational formulation of the analysis in Section 1.3. Also the rule for se-
quencing now seems rather natural. However, the rule for conditional is more
dubious: considering the statement if [x<y]1 then [x:=y]2 else [y:=x]3 once
more, it seems impossible to achieve that the then-branch gives rise to the
same set of reaching definitions as the else-branch does.

Our second (and successful) attempt at explaining the intended meaning of
S : RD1 → RD2 then is to say that:

RD1 ⊆ RDentry(init(S))

∀� ∈ final(S) : RDexit (�) ⊆ RD2

This formulation is somewhat closer to the development in the constraint
based formulation of the analysis in Section 1.3 and it explains why the last
rule, called a subsumption rule, is unproblematic. Actually, the subsumption
rule will solve our problem with the conditional because even when the then-
branch gives a different set of reaching definitions than the else-branch we
can enlarge both results to a common set of reaching definitions. Finally,
consider the rule for the iterative construct. Here we simply express that RD
is a consistent guess concerning what may reach the entry and exits of S –
this expresses a fixed point property.



20 1 Introduction

Example 1.3 To analyse the factorial program

[y:=x]1; [z:=1]2; while [y>1]3 do ([z:=z*y]4; [y:=y-1]5); [y:=0]6

of Example 1.1 we will proceed as follows. We shall write RDf for the set
{(x, ?), (y, 1), (y, 5), (z, 2), (z, 4)} and consider the body of the while-loop.
The axiom [ass] gives

[z:=z*y]4: RDf → {(x, ?), (y, 1), (y, 5), (z, 4)}
[y:=y-1]5 : {(x, ?), (y, 1), (y, 5), (z, 4)} → {(x, ?), (y, 5), (z, 4)}

so the rule [seq] gives:

([z:=z*y]4; [y:=y-1]5): RDf → {(x, ?), (y, 5), (z, 4)}

Now {(x, ?), (y, 5), (z, 4)} ⊆ RDf so the subsumption rule gives:

([z:=z*y]4; [y:=y-1]5): RDf → RDf

We can now apply the rule [wh] and get:

while [y>1]3 do ([z:=z*y]4; [y:=y-1]5): RDf → RDf

Using the axiom [ass] we get:

[y:=x]1: {(x, ?), (y, ?), (z, ?)} → {(x, ?), (y, 1), (z, ?)}
[z:=1]2 : {(x, ?), (y, 1), (z, ?)} → {(x, ?), (y, 1), (z, 2)}
[y:=0]6: RDf → {(x, ?), (y, 6), (z, 2), (z, 4)}

Since {(x, ?), (y, 1), (z, 2)} ⊆ RDf we can apply the rules [seq] and [sub] to get

([y:=x]1; [z:=1]2; while [y>1]3 do ([z:=z*y]4; [y:=y-1]5); [y:=0]6):
{(x, ?), (y, ?), (z, ?)} → {(x, ?), (y, 6), (z, 2), (z, 4)}

corresponding to the result in Table 1.1.

The system in Table 1.2 suffices for manually analysing a given program. To
obtain an implementation it will be natural to extract a set of constraints
similar to those considered in Section 1.3, and then solve them in the same
way as before. This will be the idea behind the approach taken in Chapter 5.

Annotated type constructors. Another approach to Reaching Def-
initions has a little bit of the flavour of Effect Systems in that it is the type
constructors (arrow in our case) that are annotated. Here we will have judge-
ments of the form

S : Σ
X

RD
→ Σ



1.6 Type and Effect Systems 21

[ass] [x := a]� : Σ {x}
{(x,�)}→ Σ

[skip] [skip]� : Σ ∅
∅→ Σ

[seq]
S1 : Σ X1

RD1
→ Σ S2 : Σ X2

RD2
→ Σ

S1;S2 : Σ X1∪X2
(RD1\X2)∪RD2

→ Σ

[if]
S1 : Σ X1

RD1
→ Σ S2 : Σ X2

RD2
→ Σ

if [b]� then S1 else S2 : Σ X1∩X2
RD1∪RD2

→ Σ

[wh]
S : Σ X

RD→ Σ

while [b]� do S : Σ ∅
RD→ Σ

[sub]
S : Σ X

RD→ Σ

S : Σ X′
RD′→ Σ

if X ′ ⊆ X and RD ⊆ RD′

Table 1.3: Reaching Definitions: annotated type constructors.

where X denotes the set of variables that definitely will be assigned in S and
RD denotes the set of reaching definitions that S might produce. The axioms
and rules are shown in Table 1.3 and are explained below.

The axiom for assignment simply expresses that the variable x definitely will
be assigned and that the reaching definition (x, �) is produced. In the rule
for sequencing the notation RD \ X means {(x, �) ∈ RD | x �∈ X}. The
rule expresses that we take the union of the reaching definitions after having
removed entries from S1 that are definitely redefined in S2. Also we take the
union of the two sets of assigned variables. In the rule for conditional we
take the union of information about reaching definitions whereas we take the
intersection (rather than the union) of the assigned variables because we are
not completely sure what path was taken through the conditional. A similar
comment holds for the rule for the while-loop; here we can think of ∅ as the
intersection between ∅ (when the body is not executed) and X .

We have included a subsumption rule because this is normally the case for
such systems as we shall see in Chapter 5. However, in the system above there
is little need for it, and if one excludes it then implementation becomes very
straightforward: simply perform a syntax directed traversal of the program
where the sets X and RD are computed for each subprogram.

Example 1.4 Let us once again consider the analysis of the factorial pro-
gram

[y:=x]1; [z:=1]2; while [y>1]3 do ([z:=z*y]4; [y:=y-1]5); [y:=0]6



22 1 Introduction

For the body of the while-loop we get

[z:=z*y]4: Σ {z}
{(z,4)}→ Σ

[y:=y-1]5: Σ {y}
{(y,5)}→ Σ

so the rule [seq] gives:

([z:=z*y]4; [y:=y-1]5): Σ {y,z}
{(y,5),(z,4)}→ Σ

We can now apply the rule [wh] and get:

while [y>1]3 do ([z:=z*y]4; [y:=y-1]5): Σ ∅
{(y,5),(z,4)}→ Σ

In a similar way we get

([y:=x]1; [z:=1]2): Σ {y,z}
{(y,1),(z,2)}→ Σ

[y:=0]6: Σ {y}
{(y,6)}→ Σ

so using the rule [seq] we obtain

([y:=x]1; [z:=1]2; while [y>1]3 do ([z:=z*y]4; [y:=y-1]5); [y:=0]6):

Σ {y,z}
{(y,6),(z,2),(z,4)}→ Σ

showing that the program definitely will assign to y and z and that the final
value of y will be assigned at 6 and the final value of z at 2 or 4.

Compared with the previous specifications of Reaching Definitions analy-
sis the flavour of Table 1.3 is rather different: the analysis of a statement
expresses how information present at the entry will be modified by the state-
ment – we may therefore view the specification as a higher-order formulation
of Reaching Definitions analysis.

1.6.2 Effect Systems

A simple type system. To give the flavour of Effect Systems let
us once more turn to the functional language. As above, the idea is to
annotate a traditional type system with analysis information, so let us start
by presenting a simple type system for a language with variables x, function
abstraction fnπ x => e (where π is the name of the abstraction), and function
application e1 e2. The judgements have the form

Γ � e : τ

where Γ is a type environment that gives types to all free variables of e and
τ is the type of e. For simplicity we shall assume that types are either base



1.6 Type and Effect Systems 23

types such as int and bool or they are function types written τ1 → τ2. The
type system is given by the following axioms and rules:

Γ � x : τx if Γ(x) = τx

Γ[x �→ τx] � e : τ
Γ � fnπ x => e : τx → τ

Γ � e1 : τ2 → τ, Γ � e2 : τ2
Γ � e1 e2 : τ

So the axiom for variables just expresses that the type of x is obtained from
the assumptions of the type environment. The rule for function abstrac-
tion requires that we “guess” a type τx for the formal parameter x and we
determine the type of the body of the abstraction under that additional as-
sumption. The rule for function application requires that we determine the
type of the operator as well as the argument and it implicitly expresses that
the operator must have a function type by requiring the type of e1 to have
the form τ2 → τ . Furthermore the two occurrences of τ2 in the rule implicitly
express that the type of the actual parameter must equal the type expected
by the formal parameter of the function.

Example 1.5 Consider the following version of the program of Exam-
ple 1.2

(fnX x => x) (fnY y => y)

where we now have given fn x => x the name X and fn y => y the name
Y. To see that this program has type int → int we first observe that
[y �→ int] � y : int so:

[ ] � fnY y => y : int→ int

Similarly, we have [x �→ int→ int] � x : int→ int so:

[ ] � fnX x => x : (int→ int) → (int→ int)

The rule for application then gives:

[ ] � (fnX x => x) (fnY y => y) : int→ int

Effects. The analysis we shall consider is a Call-Tracking Analysis:

For each subexpression, which function abstractions may be ap-
plied during its evaluation.



24 1 Introduction

[var] Γ̂ � x : τ̂x & ∅ if Γ̂(x) = τ̂x

[fn]
Γ̂[x �→ τ̂x] � e : τ̂ & ϕ

Γ̂ � fnπ x => e : τ̂x
ϕ∪{π}→ τ̂ & ∅

[app]
Γ̂ � e1 : τ̂2 ϕ→ τ̂ & ϕ1 Γ̂ � e2 : τ̂2 & ϕ2

Γ̂ � e1 e2 : τ̂ & ϕ1 ∪ ϕ2 ∪ ϕ

Table 1.4: Call-tracking Analysis: Effect System.

The set of function names constitutes the effect of the subexpression. To
determine this information we shall annotate the function types with their

latent effect so for example we shall write int
{X}−→ int for the type of a

function mapping integers to integers and with effect {X} meaning that when
executing the function it may apply the function named X. More generally,
the annotated types τ̂ will either be base types or they will have the form

τ̂1
ϕ→ τ̂2

where ϕ is the effect, i.e. the names of the function abstractions that we
might apply when applying a function of this type.

We specify the analysis using judgements of the form

Γ̂ � e : τ̂ & ϕ

where Γ̂ is the type environment that now gives the annotated type of all
free variables, τ̂ is the annotated type of e, and ϕ is the effect of evaluating
e. The analysis is specified by the axioms and rules in Table 1.4 which will
be explained below.

In the axiom [var] for variables we produce an empty effect because we assume
that the parameter mechanism is call-by-value and therefore no evaluation
takes place when mentioning a variable. Similarly, in the rule [fn] for function
abstractions we produce an empty effect: no evaluation takes place because
we only construct a closure. The body of the abstraction is analysed in
order to determine its annotated type and effect. This information is needed
to annotate the function arrow: all the names of functions in the effect of
the body and the name of the abstraction itself may be involved when this
particular abstraction is applied.

Next, consider the rule [app] for function application e1 e2. Here we obtain
annotated types and effects from the operator e1 as well as the operand e2.
The effect of the application will contain the effect ϕ1 of the operator (because
we have to evaluate it before the application can take place), the effect ϕ2 of



1.7 Algorithms 25

the operand (because we employ a call-by-value semantics so this expression
has to be evaluated too) and finally we need the effect ϕ of the function being
applied. But this is exactly the information given by the annotation of the
arrow in the type τ̂2

ϕ−→ τ̂ of the operand. Hence we produce the union of
these three sets as the overall effect of the application.

Example 1.6 Returning to the program of Example 1.5 we have:

[ ] � fnY y => y : int
{Y}→ int & ∅

[ ] � fnX x => x : (int
{Y}→ int)

{X}→ (int
{Y}→ int) & ∅

[ ] � (fnX x => x) (fnY y => y) : int
{Y}→ int & {X}

This shows that our example program may (in fact it will) apply the function
fn x => x but that it will not apply the function fn y => y.

For a more general language we will also need to introduce some form of
subsumption rule in the manner of Tables 1.2 and 1.3; there are different
approaches to this and we shall return to this later. Effect Systems are
often implemented as extensions of type inference algorithms and, depending
on the form of the effects, it may be possible to calculate them on the fly;
alternatively, sets of constraints can be generated and solved subsequently.
We refer to Chapter 5 for more details.

1.7 Algorithms

Let us now reconsider the problem of computing the least solution to the
program analysis problems considered in Data Flow Analysis and Constraint
Based Analysis.

Recall from Section 1.3 that we consider twelve-tuples −→RD ∈ (P(Var� ×
Lab�))12 of pairs of variables and labels where each label indicates an ele-
mentary block in which the corresponding variable was last assigned. The
equation or constraint system gives rise to demanding the least solution to an
equation −→RD = F (−→RD) or inclusion −→RD � F (−→RD) where F is a monotone func-
tion over (P(Var� ×Lab�))12. Due to the finiteness of (P(Var� ×Lab�))12

the desired solution is in both cases obtainable as Fn(�∅) for any n such that
Fn+1(�∅) = Fn(�∅) and we know that such an n does in fact exist.

Chaotic Iteration. Naively implementing the above procedure soon
turns out to require an overwhelming amount of work. In later chapters we
shall see much more efficient algorithms and in this section we shall illustrate
the principle of Chaotic Iteration that lies at the heart of many of them. For



26 1 Introduction

INPUT: Example equations for Reaching Definitions

OUTPUT: The least solution: −→RD = (RD1, · · · ,RD12)

METHOD: Step 1: Initialisation
RD1:=∅; · · · ; RD12:=∅

Step 2: Iteration
while RDj �= Fj(RD1, · · · ,RD12) for some j
do RDj :=Fj(RD1, · · · ,RD12)

Table 1.5: Chaotic Iteration for Reaching Definitions.

this let us write

−→
RD = (RD1, · · · ,RD12)

F (−→RD) = (F1(
−→
RD), · · · , F12(

−→
RD))

and consider the non-deterministic algorithm in Table 1.5. It is immediate
that there exists j such that RDj �= Fj(RD1, · · · ,RD12) if and only if −→RD �=
F (−→RD). Hence if the algorithm terminates it will produce a fixed point of F ;
that is, a solution to the desired equations or constraints.

Properties of the algorithm. To further analyse the algorithm we
shall exploit that

�∅ � −→
RD � F (−→RD) � Fn(�∅)

holds at all points in the algorithm (where n is determined by Fn+1(�∅) =
Fn(�∅)): it clearly holds initially and, as will be shown in Exercise 1.6, it is
maintained during iteration. This means that if the algorithm terminates we
will have obtained not only a fixed point of F but in fact the least fixed point
(i.e. Fn(�∅)).
To see that the algorithm terminates note that if j satisfies

RDj �= Fj(RD1, · · · ,RD12)

then in fact RDj ⊂ Fj(RD1, · · · ,RD12) and hence the size of −→RD increases by
at least one as we perform each iteration. This ensures termination since we
assumed that (P(Var� × Lab�))12 is finite.

The above algorithm is suitable for manually solving data flow equations and
constraint systems. To obtain an algorithm that is suitable for implemen-
tation we need to give more details about the choice of j so as to avoid an
extensive search for the value; we shall return to this in Chapters 2 and 6.



1.8 Transformations 27

[ass1] RD � [x := a]� � [x := a[y �→ n]]�

if
{
y ∈ FV(a) ∧ (y, ?) /∈ RDentry(�) ∧
∀(z, �′) ∈ RDentry(�) : (z = y ⇒ [· · ·]�′ is [y := n]�

′
)

[ass2] RD � [x := a]� � [x := n]�

if FV(a) = ∅ ∧ a /∈ Num ∧ a evaluates to n

[seq1]
RD � S1 � S′

1

RD � S1;S2 � S′
1;S2

[seq2]
RD � S2 � S′

2

RD � S1;S2 � S1;S′
2

[if1]
RD � S1 � S′

1

RD � if [b]� then S1 else S2 � if [b]� then S′
1 else S2

[if2]
RD � S2 � S′

2

RD � if [b]� then S1 else S2 � if [b]� then S1 else S′
2

[wh]
RD � S � S′

RD � while [b]� do S � while [b]� do S′

Table 1.6: Constant Folding transformation.

1.8 Transformations

A major application of program analysis is to transform the program (at the
source level or at some intermediate level inside a compiler) so as to obtain
better performance. To illustrate the ideas we shall show how Reaching Defi-
nitions can be used to perform a transformation known as Constant Folding.
There are two ingredients in this. One is to replace the use of a variable in
some expression by a constant if it is known that the value of the variable will
always be that constant. The other is to simplify an expression by partially
evaluating it: subexpressions that contain no variables can be evaluated.

Source to source transformation. Consider a program S� and let
RD be a solution (preferable the least) to the Reaching Definitions Analysis
for S�. For a sub-statement S of S� we shall now describe how to transform
it into a “better” statement S′. We do so by means of judgements of the
form

RD � S � S′



28 1 Introduction

expressing one step of the transformation process. We may define the trans-
formation using the axioms and rules in Table 1.6; they are explained below.

The first axiom [ass1] expresses the first ingredient in Constant Folding as
explained above – the use of a variable can be replaced with a constant if it is
known that the variable always will be that constant; here we write a[y �→ n]
for the expression that is as a except that all occurrences of y have been
replaced by n; also we write FV(a) for the set of variables occurring in a.

The second axiom [ass2] expresses the second ingredient of the transformation
– expressions can be partially evaluated; it uses the fact that if an expression
contains no variables then it will always evaluate to the same value.

The last five rules in Table 1.6 simply say that if we can transform a sub-
statement then we can transform the statement itself. Note that the rules
(e.g. [seq1] and [seq2]) do not prescribe a specific transformation order and
hence many different transformation sequences may exist. Also note that the
relation RD � · � · is neither reflexive nor transitive because there are no
rules that forces it to be so. Hence we shall often want to perform an entire
sequence of transformations.

Example 1.7 To illustrate the use of the transformation consider the pro-
gram:

[x:=10]1; [y:=x+10]2; [z:=y+10]3

The least solution to the Reaching Definitions Analysis for this program is:

RDentry(1) = {(x, ?), (y, ?), (z, ?)}
RDexit(1) = {(x, 1), (y, ?), (z, ?)}

RDentry(2) = {(x, 1), (y, ?), (z, ?)}
RDexit(2) = {(x, 1), (y, 2), (z, ?)}

RDentry(3) = {(x, 1), (y, 2), (z, ?)}
RDexit(3) = {(x, 1), (y, 2), (z, 3)}

Let us now see how to transform the program. From the axiom [ass1] we
have

RD � [y:=x+10]2 � [y:=10+10]2

and therefore the rules for sequencing gives:

RD � [x:=10]1; [y:=x+10]2; [z:=y+10]3 � [x:=10]1; [y:=10+10]2; [z:=y+10]3

We can now continue and obtain the following transformation sequence:

RD � [x:=10]1; [y:=x+10]2; [z:=y+10]3

� [x:=10]1; [y:=10+10]2; [z:=y+10]3

� [x:=10]1; [y:=20]2; [z:=y+10]3

� [x:=10]1; [y:=20]2; [z:=20+10]3

� [x:=10]1; [y:=20]2; [z:=30]3



Concluding Remarks 29

after which no more steps are possible.

Successive transformations. The above example shows that we
shall want to perform many successive transformations:

RD � S1 � S2 � · · ·� Sn+1

This could be costly because once S1 has been transformed into S2 we might
have to recompute Reaching Definitions Analysis for S2 before the trans-
formation can be used to transform it into S3 etc. It turns out that it is
sometimes possible to use the analysis for S1 to obtain a reasonable analysis
for S2 without performing the analysis from scratch. In the case of Reaching
Definitions and Constant Folding this is very easy: if RD is a solution to
Reaching Definitions for Si and RD � Si � Si+1 then RD is also a solution to
Reaching Definitions for Si+1 – intuitively, the reason is that the transforma-
tion only changed things that were not observed by the Reaching Definitions
Analysis.

Concluding Remarks

In this chapter we have briefly illustrated a few approaches (but by no means
all) to program analysis. Clearly there are many differences between the four
approaches. However, the main aim of the chapter has been to suggest that
there are also more similarities than one would perhaps have expected at
first sight: in particular, the interplay between the use of equations versus
constraints. It is also interesting to note that some of the techniques touched
upon in this chapter have close connections to other approaches to reasoning
about programs; especially, some versions of Annotated Type Systems are
closely related to Hoare’s logic for partial correctness assertions.

As mentioned earlier, the approaches to program analysis covered in this book
are semantics based rather than semantics directed. The semantics directed
approaches include the denotational based approaches [27, 86, 115, 117] and
logic based approaches [19, 20, 81, 82].

Mini Projects

Mini Project 1.1 Correctness of Reaching Definitions

In this mini project we shall increase our faith in the Type and Effect System
of Table 1.3 by proving that it is correct. This requires knowledge of regular
expressions and homomorphisms to the extent covered in Appendix C.



30 1 Introduction

First we shall show how to associate a regular expression with each state-
ment. We define a function S such that S(S) is a regular expression for each
statement S ∈ Stmt. It is defined by structural induction (see Appendix B)
as follows:

S([x:=a]�) = !�x
S([skip]�) = Λ
S(S1;S2) = S(S1) · S(S2)

S(if [b]� then S1 else S2) = S(S1) + S(S2)
S(while b do S) = (S(S))∗

The alphabet is {!�x | x ∈ Var�, � ∈ Lab�} where Var� and Lab� are finite
and non-empty sets that contain all the variables and labels, respectively, of
the statement S� of interest. As an example, for S� being

if [x>0]1 then [x:=x+1]2 else ([x:=x+2]3; [x:=x+3]4)

we have S(S�) =!2x + (!3x · !4x).

Correctness of X. To show the correctness of the X component in
S : Σ X

RD→ Σ we shall for each y ∈ Var� define a homomorphism

hy : {!�x | x ∈ Var�, � ∈ Lab�} → {!}∗

as follows:

hy(!�x) =
{

! if y = x
Λ if y �= x

As an example hx(S(S�)) = !+(! · !) and hy(S(S�)) = Λ using that Λ ·Λ = Λ
and Λ + Λ = Λ. Next we write

hy(S(S)) ⊆ ! · !∗

to mean that the language L[[hy(S(S))]] defined by the regular expression
hy(S(S)) is a subset of the language L[[! · !∗]] defined by ! · !∗; this is equivalent
to

¬∃w ∈ L[[hy(S(S))]] : hy(w) = Λ

and intuitively says that y is always assigned in S. Prove that

if S : Σ X
RD→ Σ and y ∈ X then hy(S(S)) ⊆ ! · !∗

by induction on the shape of the inference tree establishing S : Σ X
RD→ Σ

(see Appendix B for an introduction to the proof principle).



Exercises 31

Correctness of RD. To show the correctness of the RD component
in S : Σ X

RD→ Σ we shall for each y ∈ Var� and �′ ∈ Lab� define a
homomorphism

h�
′
y : {!�x | x ∈ Var�, � ∈ Lab�} → {!, ?}∗

as follows:

h�
′
y (!�x) =

 ! if y = x ∧ � = �′

? if y = x ∧ � �= �′

Λ if y �= x

As an example h2
x(S(S�)) = ! + (? · ?) and h5

y(S(S�)) = Λ. Next

h�
′
y (S(S)) ⊆ ((!+?)∗ · ?) + Λ

is equivalent to
¬∃w ∈ L[[S(S)]] : h�

′
y (w) ends in !

and intuitively means than the last assignment to y could not have been
performed at the statement labelled �′. Prove that

if S : Σ X
RD→ Σ and (y, �′) �∈ RD then h�

′
y (S(S)) ⊆ ((!+?)∗ · ?) + Λ

by induction on the shape of the inference tree establishing S : Σ X
RD→ Σ.

Exercises

Exercise 1.1 A variant of Reaching Definitions replaces RD ∈ P(Var ×
Lab) by RL ∈ P(Lab); the idea is that given the program, a label should
suffice for finding the variables that may be assigned in some elementary
block bearing that label. Use this as the basis for modifying the equation
system given in Section 1.3 for −→RD to an equation system for �RL. (Hint:
It may be appropriate to think of RD = {(x1, ?), · · · , (xn, ?)} as meaning
RD = {(x1, ?x1), · · · , (xn, ?xn)} and then use RL = {?x1 , · · · , ?xn}.)

Exercise 1.2 Show that the solution displayed for the Control Flow Anal-
ysis in Section 1.4 is a solution. Also show that it is in fact the least solution.
(Hint: Consider the demands on Ĉ(2), Ĉ(4), ρ̂(x), Ĉ(1) and Ĉ(5).)

Exercise 1.3 Let (α, γ) be an adjunction, or a Galois connection, as ex-
plained in Section 1.5; this just means that α(X) ⊆ Y ⇔ X ⊆ γ(Y ) holds
for all X and Y . Show that α uniquely determines γ in the sense that γ = γ′

whenever (α, γ′) is an adjunction. Also show that γ uniquely determines α
for (α, γ) being an adjunction.



32 1 Introduction

Exercise 1.4 For F as in Section 1.3 and α, �α, γ, �γ and G as in Section
1.5 show that �α ◦G ◦ �γ � F ; this involves showing that

α(Gj(γ(RD1), · · · , γ(RD12))) ⊆ Fj(RD1, · · · ,RD12)

for all j and (RD1, · · · ,RD12). Determine whether or not F = �α◦G◦�γ. Prove
by numerical induction on n that (�α ◦G ◦ �γ)n(�∅) � Fn(�∅). Also prove that
�α(Gn(�∅)) � (�α ◦G ◦ �γ)n(�∅) using that �α(�∅) = �∅ and G � G ◦ �γ ◦ �α.

Exercise 1.5 Consider the Annotated Type System for Reaching Defini-
tions defined in Table 1.2 in Section 1.6 and suppose that we want to stick
to the first (and unsuccessful) explanation of what S : RD1 → RD2 means in
terms of Data Flow Analysis. Can you change Table 1.2 (by modifying or
removing axioms and rules) such that this becomes possible?

Exercise 1.6 Consider the Chaotic Iteration algorithm of Section 1.7 and
suppose that

�∅ � −→
RD � F (−→RD) � Fn(�∅) = Fn+1(�∅)

holds immediately before the assignment to RDj ; show that is also holds
afterwards. (Hint: Write −→RD

′
for (RD1, · · · , Fj(−→RD), · · · ,RD12) and use the

monotonicity of F and −→RD � F (−→RD) to establish that −→RD � −→
RD

′ � F (−→RD) �
F (−→RD

′
).)

Exercise 1.7 Use the Chaotic Iteration scheme of Section 1.7 to show
that the information displayed in Table 1.1 is in fact the least fixed point of
the function F defined in Section 1.3.

Exercise 1.8 Consider the following program

[z:=1]1; while [x>0]2 do ([z:=z*y]3; [x:=x-1]4)

computing the x-th power of the number stored in y. Formulate a system
of data flow equations in the manner of Section 1.3. Next use the Chaotic
Iteration strategy of Section 1.7 to compute the least solution and present it
in a table (like Table 1.1).

Exercise 1.9 Perform Constant Folding upon the program

[x:=10]1; [y:=x+10]2; [z:=y+x]3

so as to obtain
[x:=10]1; [y:=20]2; [z:=30]3

How many ways of obtaining the result are there?



Exercises 33

Exercise 1.10 The specification of Constant Folding in Section 1.8 only
considers arithmetic expressions. Extend it to deal also with boolean expres-
sions. Consider adding axioms like

RD � ([skip]�;S) � S

RD � (if [true]� then S1 else S2) � S1

and discuss what complications arise.

Exercise 1.11 Consider adding the axiom

RD � [x := a]� � [x := a[y �→ a′]]�

if
{
y ∈ FV(a) ∧ (y, ?) /∈ RDentry(�) ∧
∀(z, �′) ∈ RDentry(�) : (y = z ⇒ [· · ·]�′ is [y := a′]�

′
)

to the specification of Constant Folding given in Section 1.8 and discuss
whether or not this is a good idea.



http://www.springer.com/978-3-540-65410-0




