\
é 194¢06.fm Page 193 Monday, July 10, 2000 8:26 AM

¢

CHAPTER 6

The ADO Event Model
and Asynchronous
Processing

Connection Events
Recordset Events
Strategies for Using Events
Asynchronous Processing

Summary

ADO 2.0 INTRODUCED a comprehensive set of events on the Connection
and Recordset objects. One of the most common questions developers ask
when learning about ADO events is—interesting, but why would I use them?

Every VB programmer is familiar with events because the process of
creating user interfaces in VB involves placing controls, which define their
own set of events, on a form and writing code in event procedures. The VB
code window lists each control in the Objects dropdown list and the devel-
oper can select an event in the Procedures dropdown list. Code can then
be written that will execute when these events fire.

VBS5 introduced the ability to receive events from standard COM
classes, as well as controls. When an object variable is declared using the
WithEvents keyword, the object variable name is treated like a control
name. The variable name appears in the Objects dropdown list, and its
events are listed in the Procedures dropdown list. They can be coded just
like a control’s events.

A control fires events to allow its client to respond to something that
has happened. The client can then tailor its behavior (and therefore the
application or its user interface) appropriately. If controls did not raise
events they would be far less useful. Imagine writing VB programs using
a CommandButton that did not raise a Click event!

193

4 48

%6%

%@

é 194¢06.fm Page 194 Monday, July 10, 2000 8:26 AM

Chapter 6

194

You should think about the events raised by the ADO Connection and
Recordset objects in the same way as you think about the events raised by a
control and exploit them for the same reasons.

Many of ADO’s events come in pairs. For example, one of the most
important things a Connection object does is to connect to a data source.
ADO provides two events associated with this operation. The cn_WillConnect
event fires before a Connection object starts the process of connecting to a
data source, and the cn_ConnectComplete event fires once the connection
process is completed. Event pairs give you a substantial degree of control
over key ADO tasks.

ADO allows certain processes to be started asynchronously, which means
a client program can continue working even while the process of connecting
or fetching data is taking place. Events allow code to receive notifications
when a task is complete, and it’s reasonably easy to see how they can be
useful in asynchronous tasks. However, it would be unfortunate to equate
event processing to asynchronous operations. If you did, you would miss out
on the very high level of control they give you over any ADO program, asyn-
chronous or not. My aim in this chapter is to set out some broader scenery in
which the role of events can be evaluated and understood. For sure, we’ll
look at asynchronous processing, but only after considering the full picture.

Connection Events

To demonstrate what can be achieved by using events, let’s look at how to
add an ADO Connection as an event monitor to an ADO application. The
monitor can be used to diagnose ADO errors in a compiled application, or
even to change the connection string so that the monitored application
connects to a test database. The monitor itself will be written as a DLL that
exploits ADO Connection events. The beauty of this technique is that

1. To use the monitor requires adding only six lines of code to the
application being monitored.

2. When the monitor isn’t being used, there is no performance over-
head in the application, and no special coding is required (apart
from the six lines of code).

3. You can add and remove monitors to a compiled program without
making any coding changes. You can switch between multiple
monitors, and the monitor doesn’t even need to have been written
when the “client” application is compiled and distributed.

%

ﬁ%

%@

é 194¢06.fm Page 195 Monday, July 10, 2000 8:26 AM

The ADO Event Model and Asynchronous Processing

4. The monitor will work with any ADO application that uses explicit
Connection objects and includes the six lines of code or their
equivalent.

I promise not to let the details of this sample program get in the way
of finding out about events. It so happens that it’s an easy way of creating
a dramatic example of what they can be used for. First, however, let’s take a
look at how a Connection object’s events are organized.

Table 6-1. Connection Events

PAIRED EVENTS

Before Operation After Operation
WillConnect ConnectComplete
WillExecute ExecuteComplete

UNPAIRED EVENTS
BeginTransComplete
CommitTransComplete
RollbackTransComplete
Disconnect

InfoMessage

I'won't be describing each event formally. Instead, code samples and associ-
ated narrative will contain all the details required.

Each event has its own set of arguments, but there is some common
ground that makes understanding events a little easier. Every event has an
argument called adStatus whose value is taken from the EventStatusEnum
enumeration when the event fires. It has these values defined:

adStatusOK
adStatusErrorsOccurred
adStatusCantDeny
adStatusCancel
adStatusUnwantedEvent

195

—

ﬁ%

%@

é 194¢06.fm Page 196 Monday, July 10, 2000 8:26 AM

Chapter 6

cn_WillConnect
cn_Connect-
Complete
cn_Disconnect
cn_InfoMessage

196

adStatusOK means that the operation is moving along fine, while
adStatusErrorsOccurred means the opposite. Nearly every event has a
pError argument, which is set to an ADO Error object when adStatus equals
adStatusErrorsOccurred. You can use this Error object to find out more about
any error that occurs.

In many cases, you can use the event to cancel a pending operation by
setting adStatus to adStatusCancel inside the event procedure of a “Will...”
event. However, if adStatus equals adStatusCantDeny then the operation can't
be cancelled (in a “...Complete” event, adStatusCantDeny means that the
operation has already been cancelled). If you cancel an event in this way, an
error will be raised in the procedure that triggered the event, and therefore,
adequate error handling will be required.

Setting adStatus to adStatusUnwantedEvent allows you to instruct ADO to
stop firing that particular event. There is a cost associated with raising
events,! so blocking unwanted ones has some performance benefit.?

In addition to adStatus and pError arguments, the events provide refer-
ences to Connection, Command, and Recordset objects where appropriate,
as well as some event-specific arguments.

Let’s begin by looking at the WillConnect, ConnectComplete, Discon-
nect, and InfoMessage events. The first three should be self-explanatory.
InfoMessage is raised when an ADO Error object is created, and when the
eITor is not so severe as to cause a run-time error in VB.

In my sample applications, all ADO event monitoring is performed in an
ActiveX DLL called ADOLogger, which contains a Public class called
ADOConnection (and therefore its ProgID is ADOLogger.ADOConnection).

You'll see that the client program’s code uses a standard VB global vari-
able called Command. This is nothing to do with ADO’s Command objects.
The Command variable holds any command-line argument that is provided
when the application is executed. For example, if the client was compiled as
c:\myapp.exe, then runningitas c: \myapp.exe ADOLogger .ADOConnection would
allocate the Logger’s ProgID to the Command variable, which could then be
used in the CreateObject call. During development, you can simulate using a
command-line argument in the VB IDE via the Make tab of the Project Prop-
erties dialog.

1. You are unlikely to notice the cost of Connection object events. However, the cost of
Recordset events becomes significant when iterating through a client-side Recordset.
Setting an event as unwanted can easily reduce this overhead by half.

2. Readers familiar with COM may be aware that events in VB are always handled using
early binding. While this is more efficient than the late binding that results from declaring
avariable “As Object,” it’s far less efficient than the vTable binding that can be used for
methods and properties when variables are defined as a specific class.

%

ﬁ%

%@

é 194¢06.fm Page 197 Monday, July 10, 2000 8:26 AM

The ADO Event Model and Asynchronous Processing

Here's how the client application communicates with the Logger:

the client program
declares a variable to
reference the Logger

Private cn As Connection
Private olog As Object

Private Sub Form Load() %f a command-}lne argument
- is supplied, it’s treated as

Set cn = New Connection a ProgID for a Logger object
C
If Command <> "" Then g g8 J

Set olog = CreateObject(Command)
olLog.Monitor cn
End If ‘

cn.Open "File Name=c:\MuchADO.udl"
End Sub the client passes a reference to its

Connection object to the Logger

A

Private Sub Form Unload(Cancel As Integer)

cn.Close

Set cn = Nothing the client releases the
If Command <> "" Then Set olog = Nothing <— Logger when it releases
End Sub the Connection object, to

ensure that the Connec-
tion object terminates

From this point on, the Logger can monitor all activity on the
cn Connection through its events without any additional Logger-related
code in the client program. The Logger is only used when the built-in VB
global variable Command indicates that a command-line argument was
provided when the application was executed. By using CreateObject, the
client doesn’t have any dependencies on the Logger compiled into it other
than the expectation that the Logger (if used) will support the Monitor
method. This, of course, means that I could write different Loggers for differ-
ent tasks and connect to any such Logger at run time.

Now let’s look at the Logger. Remember that this is written as an ActiveX
DLL, which is compiled separately from the main EXE (although you could
incorporate the Logger code into the main client EXE if you wanted to).
Here’s the code for the ADOLogger.ADOConnection class (the event argu-
ment lists are shown in gray to make it easier to identify the actual code):

cn variable declared
WithEvents

Private WithEvents cn As Connection
Private dOpTime As Double

this is the Monitor
method called by the
client, which assigns
the Connection variable

Public Sub Monitor(cnToMonitor As Connection)
Set cn = cnToMonitor
End Sub

197

%

—

ﬁ%

\
% g@ 194¢06.fm Page 198 Monday, July 10, 2000 8:26 AM

Chapter 6

Private Sub cn_InfoMessage(_
ByVal pError As ADODB.Error,
adStatus As ADODB.EventStatusEnum, _
ByVal pConnection As ADODB.Connection)

MonitorEvent adStatus, "Info Message: " & pError.Description
End Sub

Private Sub cn_WillConnect(_
ConnectionString As String, _
UserID As String,
Password As String,
Options As Long, _
adStatus As ADODB.EventStatusEnum, _
ByVal pConnection As ADODB.Connection)
MonitorEvent adStatus, "Connecting to: " & ConnectionString
dOpTime = Timer
End Sub

Private Sub cn_ConnectComplete(_
ByVal pError As ADODB.Error, _
adStatus As ADODB.EventStatusEnum, _
ByVal pConnection As ADODB.Connection)
dOpTime = Timer - dOpTime
If adStatus = adStatusErrorsOccurred Then
MonitorEvent adStatus, pError.Description
Else
MonitorEvent adStatus, "Connection succeeded in " & _
Format(dOpTime, "0.00") & _

" seconds to " & pConnection.ConnectionString
End If

End Sub

Private Sub cn Disconnect(_
adStatus As ADODB.EventStatusEnum,
ByVal pConnection As ADODB.Connection)
MonitorEvent adStatus, "Disconnected"
End Sub

This code listing doesn’t show the code for the MonitorEvent subroutine,
which simply converts adStatus to a printable form, and prints it to the Debug
window in the VB IDE. When using the compiled version of the Logger,
MonitorEvent writes data to the NT Event Log (or a file on Windows 9.x).

198

4 ¢

\
% g@ 194¢06.fm Page 199 Monday, July 10,2000 8:26 AM

The ADO Event Model and Asynchronous Processing

When the client application is run with no command-line argument,
the Logger is never started, no events get processed, and nothing is printed.
However, if the client application is run with the Logger’s ProgID in the
command line, the following is printed:

OK: Connecting to: File Name=c:\MuchADO.udl

OK: Connection succeeded in 0.16 seconds to
Provider=SQLOLEDB.1;Integrated Security=SSPI;Persist Security
Info=False;Initial Catalog=MuchADO;Data Source=POLECAT;Use Procedure for
Prepare=1;Auto Translate=True;Packet Size=4096;Workstation ID=WEASEL

OK: Disconnected

IfI change the connection string to use an ODBC-based connection, I'll
see an example of the InfoMessage event firing, as in the following printout:

0K: Connecting to: DSN=MuchADO

OK: Connection succeeded in 0.55 seconds to
Provider=MSDASQL.1;Extended Properties="DSN=MuchADO;UID=;APP=Visual
Basic;WSID=WEASEL;DATABASE=MuchADO; Trusted Connection=Yes"

OK: Info Message: [Microsoft][ODBC SQL Server Driver][SQL
Server]Changed database context to 'MuchADO'.
OK: Disconnected

If you take a look at some of the arguments to the various events in
the Logger code, you'll get an idea of the flexibility you can achieve when
handling events. For example, let’s assume that the client uses a hard-coded
connection string, but you want to divert the client to a test database during
monitoring.? Inserting the line

ConnectionString = "File Name=c:\MuchAdoJet.udl"

into the WillConnect event will cause the ConnectionString argument to be
changed, and will result in a different data source connection being created:

0K: Connecting to: DSN=MuchADO

OK: Connection succeeded in 0.32 seconds to
Provider=Microsoft.Jet.OLEDB.4.0;User ID=Admin;Data
Source=D:\ADOBook\Data\muchado.mdb; (etc)

OK: Disconnected

3. This example demonstrates the potential security loophole that can result from using
a Logger like this. You'll probably want a real-life Logger to implement appropriate
security measures.

199

%

—

ﬁ

\
% é 194¢06.fm Page 200 Monday, July 10, 2000 8:26 AM

Chapter 6
cn_BeginTrans- The Connection object also supports events for transaction processing
Complete . commands. There are no “Will...” events in this case, just “...Complete” events.
g—rg;f:gn tIrans- Incorrect transaction processing can result in surprising errors, and analyzing
cn_RollbackTrans- what is really going on with transactions can be complex. Long-running trans-
Complete actions can cause serious concurrency problems in multiuser applications. In
such situations, an activity logging mechanism can be invaluable.
Here’s the transaction monitoring code in the Logger:
Private Sub cn BeginTransComplete(
ByVal TransactionlLevel As Long,
ByVal pError As ADODB.Error,
adStatus As ADODB.EventStatusEnum, _
ByVal pConnection As ADODB.Connection)
Dim sTX As String print the time the transaction
started, and the isolation
If adStatus = adStatusOK Then level (available through the
dOpTime = Timer pConnection argument)
sTX = "Beginning TX (Isolation Level " & _ +—
pConnection.IsolationlLevel & ") at " & _
Format(Now, "hh:mm:ss") <«
Else
sTX = "Begin Transaction Error:" & pError.Description
End If
MonitorEvent adStatus, sTX
End Sub
Private Sub cn _CommitTransComplete(
ByVal pError As ADODB.Error,
adStatus As ADODB.EventStatusEnum, _
ByVal pConnection As ADODB.Connection)
Dim sTX As String
If adStatus = adStatusOK Then
dOpTime = Timer - dOpTime
sTX = "Committing TX (" & Format(dOpTime, "0.00") & " seconds)"
Else
sTX = "Commit Transaction Error:" & pError.Description
End If
MonitorEvent adStatus, sTXEnd Sub
Private Sub cn RollbackTransComplete(_
ByVal pError As ADODB.Error, _
adStatus As ADODB.EventStatusEnum, _
ByVal pConnection As ADODB.Connection)
200

- il

\
% é 194¢06.fm Page 201 Monday, July 10, 2000 8:26 AM é

The ADO Event Model and Asynchronous Processing

Dim sTX As String
If adStatus = adStatusOK Then
dOpTime = Timer - dOpTime
sTX = "Rolling back TX (" & Format(dOpTime, "0.00") & " seconds)"

Else
sTX = "Rollback Transaction Error:" & pError.Description
End If
MonitorEvent adStatus, sTX
End Sub

Note that the cn_BeginTransComplete event has an argument called Transaction-
Level. It tells you the nesting level of the new transaction. This is only really
useful when you are using a Provider that supports nested transactions,
such as the Jet Provider.

The following client code

cn.BeginTrans

cn.Execute "update Parts set description = 'bit part' " & _
"where part = 'BOY'"

cn.RollbackTrans

generates
OK: Beginning TX (Isolation Level 4096) at 17:53:40
OK: Rolling back TX (0.04 seconds)

The transaction events fire only when the relevant ADO methods are
explicitly called. This means

» Statements not bracketed by explicit ADO Connection transaction
methods will be updated inside an implicit transaction and no event

traffic will be generated.

* None of the events will fire when transactions are being managed by

MTS or COM+.4
cn_WillExecute Let’s finish this section by looking at the WillExecute and ExecuteCom-
cn_Execute- plete events. Here’s an example from the Logger DLL:

Complete

4. Although these products have their own event mechanisms for logging transactional
activity.

201

4 ¢

\
% g@ 194¢06.fm Page 202 Monday, July 10, 2000 8:26 AM

Chapter 6

202

Private Sub cn WillExecute(_
Source As String, _
CursorType As ADODB.CursorTypeEnum, _
LockType As ADODB.LockTypeEnum, _
Options As Long, _
adStatus As ADODB.EventStatusEnum,
ByVal pCommand As ADODB.Command,
ByVal pRecordset As ADODB.Recordset, _
ByVal pConnection As ADODB.Connection)
Dim sObjects As String
If pCommand Is Nothing Then sObjects = "No Command Object:"
If pRecordset Is Nothing Then sObjects = _
sObjects & "No Recordset Object:"
MonitorEvent adStatus, sObjects & vbCrLf & vbTab & _
"(" & CursorType & "," & LockType & ") " & Source
End Sub

It’s interesting to note that although this event belongs to a Connection
object, it will fire when rs.Open or cd.Execute is called, if cn is the active
connection. Therefore, the following client code

Dim rs As New Recordset

Dim cd As New Command

cn.Execute "SELECT * FROM Parts"
cd.CommandText = "SELECT * FROM Scenes"
cd.ActiveConnection = cn

cd.Execute

rs.0pen "SELECT * FROM SceneContents", cn

will generate
0K: No Command Object:No Recordset Object:
(-1,-1) SELECT * FROM Parts
0K: No Recordset Object:
(-1,-1) SELECT * FROM Scenes
0K: No Command Object:

(0,-1) SELECT * FROM SceneContents

This sample illustrates a number of points. The pCommand and pRecordset
arguments will only contain objects if you supply them. This is a “Will...”
event, so unless you are calling rs.Open, the Recordset is created during the
Execute operation and isn’t available when the “Will...” event fires. This has
an understandable but unfortunate consequence for the CursorType and

%

ﬁ

\
% é 194¢06.fm Page 203 Monday, July 10, 2000 8:26 AM

The ADO Event Model and Asynchronous Processing

LockType arguments of the WillExecute event. CursorType and LockType are
properties of a Recordset object. If there is no Recordset object, it doesn't
make much sense to set these properties. This sad fact rules out the chance
of exploiting WillExecute to change Recordset properties when cn.Execute
or cd.Execute is used.’

You can however, set the cn.CursorLocation property to force a client-
side (and therefore static) cursor. And of course, there is nothing to stop you
from changing the Source argument if a worthwhile reason comes to mind.

After the execution completes, the cn_ExecuteComplete event fires.
Here’s an example from the Logger:

Private Sub cn ExecuteComplete(_
ByVal RecordsAffected As Long, _
ByVal pError As ADODB.Error, _
adStatus As ADODB.EventStatusEnum, _
ByVal pCommand As ADODB.Command, _
ByVal pRecordset As ADODB.Recordset, _
ByVal pConnection As ADODB.Connection)
Dim sObjects As String

If pCommand Is Nothing Then sObjects = "No Command Object:"
If pRecordset Is Nothing Then _
sObjects = sObjects & "No Recordset Object:"

MonitorEvent adStatus, "(" & RecordsAffected & ")" & sObjects
End Sub

And here’s the printout that results from this event, using our existing
client code, and with all other event logging suppressed:

0K: (-1)
0K: (-1)
OK: (-1)

This is not very exciting. It does show that a Command object and a
Recordset object have been created during each execution process, and it
also shows that RecordsAffected returns —1 for a SELECT statement.

To seek out some more exciting output, I used the following client code
against the Jet Provider:

5. You probably don’t need to know this, but when there is no Recordset object, ADO
passes the same memory address for both the CursorType and LockType arguments, so
setting one automatically sets the other. This is the kind of worthless fact that gets you
noticed at parties.

203

4 ¢

\
% é 194¢06.fm Page 204 Monday, July 10, 2000 8:26 AM

Chapter 6

204

Dim rs As New Recordset

Dim cd As New Command

cn.Execute "UPDATE Parts SET description = Null " & _
"WHERE part = 'BOY'" , , adExecuteNoRecords

cd.CommandText = "SELECT * FROM Scenes"

cd.ActiveConnection = cn

cd.Execute

1s.0pen "Parts", cn, , , adCmdTableDirect

which resulted in
OK: (1)No Recordset Object:
0K: (0)
Errors Occurred: (0)No Command Object:

Without the adExecuteNoRecords argument, cn. Execute would have gener-
ated a closed Recordset. Using adCmdTableDirect is the only way of not creating a
Command object. It has the interesting effect of reporting an error via adStatus,
even though no Error object is created and the client code proceeds perfectly.

Recordset Events

Recordset objects also have a comprehensive set of events that can be received
by a variable declared using WithEvents, as shown in the following table.

Table 6-2. Recordset Events

PAIRED EVENTS

Before Operation After Operation
WillChangeField FieldChangeComplete
WillChangeRecord RecordChangeComplete
WillChangeRecordset RecordsetChangeComplete
WillMove MoveComplete

UNPAIRED EVENTS
EndOfRecordset
FetchProgress

FetchComplete

6. The ADO Data Control provides a very similar set of events for developers who use it.

%

ﬁ%

\
é 194¢06.fm Page 205 Monday, July 10, 2000 8:26 AM

cn_WillChangeField
cn_FieldChange-
Complete
cn_WillChange-
Record
cn_RecordChange-
Complete
cn_WillChange-
Recordset
cn_Recordset-
ChangeComplete
cn_WillMove
cn_MoveComplete

The ADO Event Model and Asynchronous Processing

The paired events are almost, but not quite, self-explanatory. Fetch-
Progress and FetchComplete are only relevant to asynchronous processing,
and they will be discussed in a later section. EndOfRecordset is an unusual
event—we’ll take a look at it shortly.

First however, let’s look at the paired events. These allow you to respond
to many standard Recordset operations is a very fine-grained way. Apart
from writing logging or monitoring applications, one of the primary reasons
for using these events is to separate navigation and user interaction from the
underlying processing, validation, and business logic associated with a
particular Recordset.”

As an example, consider the following VB Class. It returns a Recordset
based on the Parts table and implements validation code so that only an
administrator can delete records or change the part name, but any user can
change a part description.

VkkkkkRRRRX CODE FOR CLASS PARTS *kkkkkkkkkkkstsrk
Public WithEvents rs As Recordset
Private msUser As String

Public Sub GetData(cn As Connection)

Set rs = New Recordset

rs.Cursorlocation = adUseClient

1s.LockType = adlLockOptimistic

rs.0pen "SELECT * FROM parts", cn

msUser = rs.ActiveConnection.Properties("User ID")
End Sub

Private Sub rs WillChangeField(_
ByVal cFields As Long, _
ByVal Fields As Variant, _
adStatus As ADODB.EventStatusEnum,
ByVal pRecordset As ADODB.Recordset)

On Error GoTo ErrH
Dim vField As Variant <«——— don’t do any checks for

If msUser = "sa" Then Exit Sub the administ%ator; Sh?
For Each vField In Fields can do anything she likes

If vField.Name = "part" Then adStatus = adStatus
Next
ErrH:
End Sub

7. Visual programming approaches (Data Control, Data Environment, Data Repeater,
DHTML) work by taking care of the navigational and user interaction aspects of a Recordset,
leaving you with the event model to control functionality.

205

%

—

ﬁ%

\
% é 194¢06.fm Page 206 Monday, July 10, 2000 8:26 AM

Chapter 6

206

Private Sub rs WillChangeRecord(_
ByVal adReason As ADODB.EventReasonEnum,
ByVal cRecords As Long, _
adStatus As ADODB.EventStatusEnum, _

don't do any checks for
ByVal pRecordset As ADODB.Recordset)

the administrator; she

If msUser = "sa" Then Exit Sub <«——— can do anything she likes
If adReason = adRsnDelete Then adStatus = adStatus
End Sub

In this class, GetData must be called to create a Recordset, which is then
available as a property on the object. By implementing Recordset events, the
class effectively provides a Recordset with extended functionality, custom-
ized to serve the needs of a particular Recordset (in this case, cancelling
certain operations unless the user name is “sa”).

Using this class with the following code works fine:

On Error GoTo ErrH
Dim cn As New Connection
Dim oPart As New Parts
cn.Open "DSN=MuchADO", "user", "user"
With oPart
.GetData cn
.rs.Filter = "part = 'BOY'"
".rslpart = "GIRL" <« this line is commented out

.rs!Description = "a young male"
.rs.Update

End With

Exit Sub

ErrH:

Print Err.Description

However, restoring the line that is commented out results in

Operation was cancelled.

unless the user is changed to “sa”. Similar behavior results if a Delete is
attempted.

Now that you have seen an example of the paired events in operation, let
me add a bit more detail. You may be thinking that record-level events fire for
every Field-level event and record-level event, and that Recordset-level
events fire for just about every operation. This isn't how it works. The Field-
level events fire only when you perform a Field object operation, such as
setting a Value property. The record-level events fire only for those operations

%

ﬁ%

%@

é 194¢06.fm Page 207 Monday, July 10, 2000 8:26 AM

The ADO Event Model and Asynchronous Processing

relevant to a whole record, while Recordset-level events fire only for opera-
tions that affect the entire Recordset. With the exception of the Field-level
events, each paired Recordset-level event carries an adReason argument,
which contains a value from the EventReasonEnum enumeration. This
provides additional information about which operation caused an event to
fire. The following table lists the operations that cause events to fire at a
particular level, and where appropriate, gives the reason code associated
with the operation.

Table 6-3. Events Fired by Different Recordset Operations

ADO OPERATION REASON FIELD-LEVEL RECORD-LEVEL RECORDSET-
EVENTS EVENTS LEVEL EVENTS
fd.value adRsnFirstChange Yes Yes8
rs.Update, adRsnUpdate Yes? Yes10
rs.UpdateBatch
rs.AddNew adRsnAddNew Yes
rs.Delete adRsnDelete Yes
rs.CancelUpdate, adUndoUpdate, Yes
rs.CancelBatch adUndoAddNew,
adUndoDelete
rs.Requery adRsnRequery Yes
rs.Resync adRsnReSynch Yes
1s.Close adRsnClose Yes

The EventReasonEnum also contains values used to indicate the type of
Move operation that triggered a Move event. Any operation that changes the
current cursor position can trigger a Move event, notably including rs.Open
and rs.Filter.

The fact that the first edit operation on the current record raises a record-
level event with adRsnFirstChange as the reason code can be very helpful.
For example, consider the situation when you have a Clone of a Recordset, and
the Clone is pointing at a different record than the original Recordset was
pointing at. When the original Recordset updates a Field, the Field-level

8. The first time a field is updated after a Move operation, the record-level events and the
Field-level events will fire.

9.When Update is called with field name and value arrays, the Field-level events and the
record-level events fire.
10.Update doesn't trigger a record-level event when in batch update mode.

207

%

—

ﬁ%

\
é 194¢06.fm Page 208 Monday, July 10, 2000 8:26 AM

Chapter 6

events will fire on both the original Recordset and the Clone. However, the
Field-level events don't tell you which record has just been updated, only
which Fields are affected. This doesn’t matter for the original Recordset,
because it knows which record it has updated. However, the Clone doesn't
have this knowledge. Fortunately, when the record-level events fire on the
Clone (for the first update only), the pRecordSet argument has a filter applied
that identifies the current record.

The cursors of two Recordset

objects point at different

records in the same Recordset

structure (one is a Clone of

the other).

When rs changes Field values,

events fire on rsClone.

rsClone ———»|

How does rsClone know which

record has been updated?

Figure 6-1. Events can help a Recordset identify which record a Clone has updated.

208

The following code demonstrates this. It assumes that rsClone has been
declared using WithEvents as a module-level variable.

Dim rs As New Recordset
rs.Cursorlocation = adUseClient
rs.0Open "SELECT * FROM Parts", cn _

, adOpenStatic, adlLockOptimistic
Set rsClone = rs.Clone
rs.Filter = "part = 'BOY'"
rsClone.Movelast
Debug.Print rsClone!part

print the part that
the Clone is currently
pointing to

A

rslpart = "GIRL" update the record
rs!Description = "a young female" 4« identified by the
1s.Update filter

print the part that
Debug.Print rsClone!part «— the Clone is currently

pointing to

ﬁ%

\
% é 194¢06.fm Page 209 Monday, July 10, 2000 8:26 AM

The ADO Event Model and Asynchronous Processing

Private Sub rsClone WillChangeRecord(_
ByVal adReason As ADODB.EventReasonEnum,
ByVal cRecords As Long, _
adStatus As ADODB.EventStatusEnum, _
ByVal pRecordset As ADODB.Recordset)

Debug.Print "EVENT SAYS", pRecordset!part & print the par? thaf ?he
win wyn - event filter identifies
(" & adReason & ")

as the changed record
End Sub

It prints

RHETT BUTLER
EVENT SAYS BOY (11) <«—— 11 = adRsnFirstChange

EVENT SAYS GIRL (3) <«— 3 = adRsnUpdate
RHETT BUTLER

Stepping through this in your mind will identify that rsClone Will-
ChangeRecord is called twice—once when the record is first changed, and
once when the rs.Update takes place. The filter is applied only during the
event procedure, and it allows the Clone to know which record has changed,
even when it's currently pointing at a different record.

cn_EndOfRecordset Let’s close this section by looking at the EndOfRecordset event. This ADO
event allows you to populate a fabricated Recordset incrementally. Assume
that you have a potentially large source of data that you want to present as a
Recordset. A user of your Recordset might only want to use the first few records
or may want to see thousands. It might take you some time to populate
a Recordset with thousands of records. The EndOfRecordset event allows you
to return with just a handful of records initially. When the user attempts to
read past the last record, it allows you to add the next handful into the Record-
set when the EndOfRecordset event fires, potentially ad infinitum.

For example, consider the following Recordset in which each record
contains a random number (assuming rsRandom has been declared using
WithEvents as a module-level variable).

Private Sub Form Load()

Set rsRandom = New Recordset
rsRandom.Fields.Append "Next", adSmallInt
rsRandom.Open

End Sub

209

\
% é 194¢06.fm Page 210 Monday, July 10, 2000 8:26 AM

Chapter 6

210

Private Sub rsRandom EndOfRecordset(_
fMoreData As Boolean,
adStatus As ADODB.EventStatusEnum, _
ByVal pRecordset As ADODB.Recordset)
pRecordset.AddNew "Next", CInt(Rnd * 100)
pRecordset.AddNew "Next", CInt(Rnd * 100)
fMoreData = True < Setting fMoreData to True tells
End Sub ADO that more data can now be
read. Leaving it as False means
that the Recordset has genuinely
Private Sub Command1 Click() reached its end.
Print rsRandom!Next, rsRandom.RecordCount
rsRandom.MoveNext
End Sub

Repeatedly hitting the Command]1 button yields these results:

71 0
53 2
58 4
29 4
30 6
77 6
1 8
76 8
81 10
71 10
5 12

In this case, you don't really know how many records are going to be
required, and you don’t want to create more than necessary. The EndOf-
Recordset event can help you in such situations.

Strategies for Using Events

Unless you are using asynchronous operations (see next section) it's unlikely
that you'll make much use of ADO events in small applications. There is little
need in such applications to take on board the extra discipline required,
because the benefits are not sufficient. You may start to think differently

%

ﬁ%

2 Springer
http://www.springer.com/978-1-893115-19-4

Serious ADO

Universal Data Access with Visual Basic
MacDonald, R.

2000, XV, 611 p. 131 illus. With CD-ROM., Softcover
ISBM: 978-1-893115-159-4

A product of Apress

