\\
é 100.book Page 1 Sunday, June 18,2000 6:49 AM

¢

CHAPTER 1

The Architecture
of Threads

PROGRAMMING JAVA THREADS is not nearly as easy (or platform independent) as most
books would have you believe, and all Java programs that display a graphical user
interface must be multithreaded. This chapter shows you why these statements are
true by discussing the architectures of various threading systems and by discussing
how those architectures influence how you program threads in Java. Along the way,
I'll introduce several key terms and concepts that are not described very well in
most intro-to-Java books. Understanding these concepts is essential if you expect
to understand the code in the remainder of the book.

The Problems with Threads

Burying your head in the sand and pretending that you don't have to worry about
threading issues is a tempting strategy when writing a Java program, but you can’t
usually get away with it in real production code. Unfortunately, virtually none of
the books on Java address threading issues in sufficient depth. If anything, the books
go to the opposite extreme, presenting examples that are guaranteed to cause
problems in a multithreaded environment as if the code is flawless.

In fact, multithreading is a problem that infuses all your Java code, because
you have no way of predicting in exactly what context a particular object or method
will be used. Going back after the fact and trying to make non-thread-safe code
work in a multithreaded environment is an immensely difficult task. It’s best to
start out thinking “threads,” even if you don't plan to use the code you're writing in
a multithreaded way in the future. Unfortunately, there is often a performance
penalty to be paid for thread safety, so I can't recommend that all code should be
thread safe, because paying the penalty can just be too high in some situations.
Nonetheless, you should always consider the threading issues when designing the
code, even if you end up consciously rejecting thread safety in the implementation.

.

¢

¢

é 100.book Page 2 Sunday, June 18,2000 6:49 AM

Chapter 1

All Nontrivial Java Programs Are Multithreaded

All Java programs other than simple console-based applications are multithreaded,
whether you like it or not. The problem is in Java’s Abstract Windowing Toolkit
(AWT). (Throughout this book, I'll use “AWT” to mean both the 1.1 AWT library and
and the Swing extensions to AWT as well.) AWT processes operating-system events
on a special thread, created by AWT when a program “realizes” (makes visible) its first
window. As a consequence, most programs have at least two threads running:

the “main” thread, on which main() executes, and the AWT thread, which processes
events that come in from the operating system and calls any registered listeners
in response to those events. It's important to note that all your listener methods
run on the AWT thread, not on the main thread (where the listener object is typi-
cally created).

There are two main difficulties to this architecture. First, although the listeners
run on the AWT thread, they are typically inner-class objects that access an outer-
class object that was, in turn, created by (and is accessed by) the main thread. Put
another way, listener methods running on AWT thread often access an object that
is also manipulated from the main thread—the outer-class object. This is a worst-
case synchronization problem, when two threads compete for access to the same
object. Proper use of synchronized is essential to force the two threads to take turns
accessing the object, rather than trying to access it simultaneously.

To make matters worse, the AWT thread that handles the listeners also handles
events coming in from the operating system. This means that if your listener
methods spend a long time doing whatever they do, OS-level events (such as
mouse clicks and key presses) will not be serviced by your program. These events
are queued up waiting for service, but they are effectively ignored until the listener
method returns. The result is an unresponsive user interface: one that appears to
hang. It's immensely frustrating to a user when a program ignores clicks on a Cancel
button because the AWT thread has called a listener method that takes forever to
execute. (The mouse clicks are ignored until the listener method finishes executing.)
Listing 1.1 demonstrates the unresponsive-UI problem. This program creates a
frame that holds two buttons labeled “Sleep” and “Hello.” The handler for the
Sleep button puts the current thread (which will be the Swing event-handler thread)
to sleep for five seconds. The Hello button just prints “Hello world” on the console.
During the five seconds that elapse after you press the Sleep button, pressing the
Hello button has no effect. If you click the Hello button five times, “Hello world” is
printed five times as soon as the sleep finishes. The button-press events are
queued up while the Swing thread is sleeping, and they are serviced when the
Swing thread wakes up.

ﬁ%

\
N

.

\\
% é 100.book Page 3 Sunday, June 18,2000 6:49 AM é

The Architecture of Threads

Listing 1.1: /text/books/threads/ch1/Hang. java

01: import javax.swing.*;

02: import java.awt.*;

03: import java.awt.event.*;

04:

05: class Hang extends JFrame

06: {

07: public Hang()

08: { JButton b1 = new JButton("Sleep");

09: JButton b2 = new JButton("Hello");

10:

11: b1.addActionListener

12: (' new ActionListener()

13: { public void actionPerformed(ActionEvent event)
14: { try

15: { Thread.currentThread().sleep(5000);
16: }

17: catch(Exception e){}

18: }

19: }

20:);

21:

22: b2.addActionListener

23: (' new ActionListener()

24: { public void actionPerformed(ActionEvent event)
25: { System.out.println("Hello world");
26: }

27: }

28:);

29:

30: getContentPane().setLayout(new FlowLayout());
31: getContentPane().add(b1);

32: getContentPane().add(b2);

3: pack();

34: show();

35: }

36:

37: public static void main(String[] args)

38: { new Hang();

39: }

40: }

¢

é 100.book Page 4 Sunday, June 18,2000 6:49 AM

Chapter 1

Many books that discuss java GUI building gloss over both the synchronization
and the unresponsive-UI problems. They can get away with ignoring synchroniza-
tion issues because the trivial examples in those books are often single threaded. That
is, 100% of the code in the program is defined inside one or more listeners, all of which
are executed serially on the single (AWT) thread. Moreover, the listeners perform triv-
ial tasks that complete so quickly that you don't notice that the Ul isn't responding.

In any event, in the real world, this single-threaded approach (doing every-
thing on the AWT thread) just doesn’t work. All successful Uls have a few behaviors
in common:

» The UI must give you some feedback as an operation progresses. Simply
throwing up a box that says “doing such-and-such” is not sufficient. You
need to tell the user that progress is being made (a “percent complete”
progress bar is an example of this sort of behavior).

* It must be possible to update a window without redrawing the whole thing
when the state of the underlying system changes.

* You must provide a way to cancel an in-progress operation.

* It must be possible to switch windows and otherwise manipulate the user
interface when a long operation is in progress.

These three rules can be summed up with one rule: It’s not okay to have an
unresponsive UL It’s not okay to ignore mouse clicks, key presses, and so forth
when the program is executing a listener method, and it’s not okay to do lots of
time-consuming work in listeners. The only way to get the reasonable behavior
Ijust described is to use threads. Time-consuming operations must be performed
on background threads, for example. Real programs will have many more than two
threads running at any given moment.

Java’s Thread Support Is Not Platform Independent

Unfortunately, though it’s essential to design with threading issues in mind, threads
are one of the main places where Java’s promise of platform independence falls flat
on its face. This fact complicates the implementation of platform-independent
multithreaded systems considerably. You have to know something about the possi-
ble run-time environments to make the program work correctly in all of them. It is
possible to write a platform-independent multithreaded Java program, but you
have to do it with your eyes open. This lamentable situation is not really Java’s fault;
it's almost impossible to write a truly platform-independent threading system.
(Doug Schmidt’s “Ace” Framework is a good, though complex, attempt. You can get

%

ﬁ%

\
N

%6%

¢

é 100.book Page 5 Sunday, June 18,2000 6:49 AM

—

The Architecture of Threads

more information at http://www. cs.wustl.edu/~schmidt/ACE.html.) So, before I can

talk about hardcore Java programming issues in subsequent chapters, I have to dis-
cuss the difficulties introduced by the platforms on which the Java virtual machine
(JVM) might run.

Threads and Processes

The first OS-level concept that’s important is that of the thread itself (as compared
to a process). What exactly is a thread (or process), really? It’s a data structure deep
in the bowels of the operating system, and knowing what's in that data structure
can help us answer the earlier question.

The process data structure keeps track of all things memory-related: the glo-
bal address space, the file-handle table, and so forth. When you swap a process to
disk in order to allow another process to execute, all the things in that data struc-
ture might have to be staged to disk, including (perhaps) large chunks of the
system’s core memory. When you think “process,” think “memory.” Swapping a
process is expensive because a lot of memory typically has to be moved around.
You measure the context-swap time in seconds. In Java, the process and the virtual
machine are rough analogs. All heap data (stuff that comes from new) is part of the
process, not the thread.

Think of a thread as a thread of execution—a sequence of byte-code instruc-
tions executed by the JVM. There’s no notion of objects, or even of methods, here.
Sequences of instructions can overlap, and they can execute simultaneously. It’s
commonplace for the same code to be executing simultaneously on multiple
threads, for example. I'll discuss all this in more detail later, but think “sequence,”
not “method.”

The thread data structure, in contrast to the process, contains the things that it
needs to keep track of this sequence. It stores the current machine context: the
contents of the registers, the position of the execution engine in the instruction
stream, the run-time stack used by methods for local variables and arguments.
The OS typically swaps threads simply by pushing the register set on the thread’s
local stack (inside the thread data structure), putting the thread data structure into
some list somewhere, pulling a different thread’s data structure off the list, and
popping that thread’s local stack into the register set. Swapping a thread is rela-
tively efficient, with time measured in milliseconds. In Java, the thread is really a
virtual-machine state.

The run-time stack (on which local variables and arguments are stored) is part
of the thread data structure. Because multiple threads each have their own run-
time stack, the local variables and arguments of a given method are always thread
safe. There’s simply no way that code running on one thread can access the fields
of another thread’s OS-level data structure. A method that doesn’t access any heap
data (any fields in any objects—including static ones) can execute simultaneously
on multiple threads without any need for explicit synchronization.

%

ﬁ%

*

\
N

%6%

\\
é 100.book Page 6 Sunday, June 18,2000 6:49 AM

¢

.

Chapter 1

Thread Safety and Synchronization

The phrase thread safe is used to describe a method that can run safely in a multi-
threaded environment, accessing process-level data (shared by other threads) in
asafe and efficient way. The self-contained method described in the previous para-
graph is certainly thread safe, but it is really a degenerate case. Thread safety is
usually a difficult goal to achieve.

At the center of the thread-safety issue is the notion of synchronization—
any mechanism that assures that multiple threads:

* start execution at the same time and run concurrently, or

* do not run simultaneously when accessing the same object, or

* do not run simultaneously when accessing the same code.

I'll discuss ways to do all three of these things in subsequent chapters, but for
now, synchronization is achieved by using various objects known collectively as
semaphores. A semaphore is any object that two threads can use to communicate
with one another in order to synchronize their operation. In English, a semaphore
is a way to send messages using signalling flags:

Some of you may have learned the semaphore alphabet in the Boy Scouts.
Napoleon used the vanes of windmills to send semaphore messages across vast
distances; a Java thread uses a semaphore to communicate with another thread.
It's not an accident that you are said to signal a semaphore (or put it into the signalled
state)—it’s the same metaphor.

Don't be confused by Microsoft documentation that incorrectly applies the
word “semaphore” only to a Dijkstra counting semaphore. A semaphore is any of
what Microsoft calls “synchronization objects.”

ﬁ%

ﬁ%

\
N

.

é 100.book Page 7 Sunday, June 18,2000 6:49 AM é
The Architecture of Threads

Without Java’s synchronized keyword, you couldn’t implement a semaphore in
Java, but the synchronized keyword alone is not enough. That’s not to say that you
should throw platform independence out the window and use JNI to call OS-specific
synchronization objects; rather, you should build these objects in Java, using the
building blocks provided by the language, such as synchronized. I'll do just that in
subsequent chapters.

¢

Synchronization Is Expensive

One of the main problems with synchronization, whether you use a semaphore or
the synchronized keyword directly, is overhead. Consider the code in Listing 1.2,
which is a simple benchmark meant to demonstrate just how expensive synchroni-
zation is. The test(...) method (Listing 1.2, line 13) calls two methods 1,000,000
times. One of the methods is synchronized, the other isn't. Results can vary from run
to run, but here’s a typical output (on a 200MHz P5, NT4/SP3, using JDK ver. 1.2.1
and HotSpot 1.0fcs, build E):

% java -verbose:gc Synch

Pass 0: Time lost: 234 ms. 121.39% increase
Pass 1: Time lost: 139 ms. 149.29% increase
Pass 2: Time lost: 156 ms. 155.52% increase
Pass 3: Time lost: 157 ms. 155.87% increase
Pass 4: Time lost: 157 ms. 155.87% increase
Pass 5: Time lost: 155 ms. 154.96% increase
Pass 6: Time lost: 156 ms. 155.52% increase
Pass 7: Time lost: 3,891 ms. 1,484.7% increase
Pass 8: Time lost: 4,407 ms. 1,668.33% increase

The test() method has to be called several times in order to get the HotSpot
JVM to fully optimize the code. That’s why the “Pass 0” results seem confusing.
This pass takes the most overall time, but the ratio of synchronized to nonsynchro-
nized call time is relatively small because neither method is particularly efficient.
Once things settle down (in pass 6), you see that a synchronized call takes about
half again as much time to execute as the nonsynchronized variant.

This 1.5-times penalty is significant, but is nothing when compared to passes
7 and 8. The difference is that the earlier passes were all running on a single thread.
In the final two passes, two threads are both trying to call the same synchronized
method simultaneously, so there is contention. The numbers here are much more
significant, with the call to the synchronized method on the order of 150 times less
efficient than the nonsynchronized variant. This is a big deal. You don't want to
synchronize unnecessarily.

4 48

¢

é 100.book Page 8 Sunday, June 18,2000 6:49 AM

Chapter 1

A Digression

It's worthwhile explaining what'’s going on here. The Hotspot JVM typically uses
one of two methods for synchronization, depending on whether or not multiple
threads are contending for a lock. When there’s no contention, an assembly-language
atomic-bit-test-and-set instruction is used. This instruction is not interruptible;
it tests a bit, sets various flags to indicate the result of the test, then if the bit was not
set, it sets it. This instruction is a crude sort of semaphore because when two
threads try to set the bit simultaneously, only one will actually do it. Both threads
can then check to see if they were the one that set the bit.

If the bit is set (i.e., there is contention), the JVM has to go out to the operating
system to wait for the bit to clear. Crossing the interprocess boundary into the
operating system is expensive. In NT, it takes on the order of 600 machine cycles
just to enter the OS kernel, and this count doesn’t include the cycles spent doing
whatever you entered the kernel to do. That's why passes 7 and 8 take so much
more time, because the JVM must interact with the operating system. Alexander
Garthwaite from Sun Labs brought up a few other interesting issues in a recent
email to me:

» Synchronized blocks are often different from synchronized methods in that
the generated byte code need not properly nest these. As a result, these are
often slightly more expensive (particularly in lock-release).

» Some locking strategies use caches of monitors. So, the number and order
in which objects are locked can affect performance. More generally, the
locking subsystem may use growable structures for various purposes, and
these will become more cumbersome to manage as the number of locked
objects increases.

» Some locking strategies use a thin-lock/fat-lock strategy. In the thin lock,
only simple synchronization is supported and locking depth is often limited
to a small number (often somewhere between 16 and 64). Lock inflation
occurs when this count is exceeded, when there is contention on the lock,
or when a wait or notify operation is performed. Lock deflation can also add
costs if it is supported at all.

* For space efficiency in object headers, other information is often either
stored in the same word as locking state or it forces lock inflation. A common
example is the object’s hashcode () method. This means that accessing this
information in locked objects is often more expensive, and objects with
hash codes may be more expensive to lock than ones without.

%

ﬁ%

\\
é 100.book Page 9 Sunday, June 18,2000 6:49 AM é

The Architecture of Threads

One other thing that I'll add, if you can reduce the odds of contention, then the
locking process is more efficient. This reasoning implies that you should make
the synchronization blocks as small as possible so that a given lock will be unlocked
most of the time.

Listing 1.2: /text/books/threads/ch1/Synch.java
01: import java.util.*;
02: import java.text.NumberFormat;
03:
Ve
A benchmark to test the overhead of synchronization on a simple
method invocation. Benchmarking java, particularly when Hot-
Spot is in the equation, is tricky. There's a good tech note on this
subject at http://java.sun.com/products/hotspot/Q+A.html.
*/
04: class Synch
05: {
06: private static long[] locking_time = new long[100];
07: private static long[] not_locking_time = new long[100];
08: private static final int ITERATIONS = 1000000,
09:
10: synchronized long locking (long a, long b){return a + b;}
11: long not_locking (long a, long b){return a + b;}
12:
13: private void test(int id)
14: {
15: long start = System.currentTimeMillis();
16:
17: for(long i = ITERATIONS; --i >= 0 ;)
18: { locking(i,i);
19: }
20:
21: locking time[id] = System.currentTimeMillis() - start;
22: start = System.currentTimeMillis();
23:
24: for(long i = ITERATIONS; --i >= 0 ;)
25: { not_locking(i,i);
26: }
27:
28: not locking time[id] = System.currentTimeMillis() - start;

\\
% é 100.book Page 10 Sunday, June 18,2000 6:49 AM

Chapter 1

29: }

30:

31: static void print results(int id)

32: {

33:

34: NumberFormat compositor = NumberFormat.getInstance();

35: compositor.setMaximumFractionDigits(2);

36:

37: double time in synchronization = locking time[id] - not locking time[id];

38:

39: System.out.println("Pass " + id + ": Time lost: "

40: + compositor.format(time in synchronization)

41: + " ms. "

42: + compositor.format(((double)locking time[id]/
not_locking time[id])*100.0)

43: + "% increase"

44:)5

45: }

46:

47: static public void main(String[] args) throws InterruptedException

48: {

49: // First, with no contention:

50:

51: final Synch tester = new Synch();

52: tester.test(0); print results(0);

53: tester.test(1); print results(1);

54: tester.test(2); print results(2);

55: tester.test(3); print_results(3);

56: tester.test(4); print_results(4);

57: tester.test(5); print_results(5);

58: tester.test(6); print results(6);

59:

60: // Now let's do it again with contention. I'm assuming that

61: // hotspot has optimized the test method by now, so am only

62: // calling it once.

63:

64: final Object start gate = new Object();

65:

66: Thread t1 = new Thread()

67: { public void run()

68: { try{ synchronized(start gate) { start gate.wait(); } }

69: catch(InterruptedException e){}

70:

71: tester.test(7);

72: }

73: };

74 Thread t2 = new Thread()

10

\\
é 100.book Page 11 Sunday, June 18,2000 6:49 AM

¢

—

The Architecture of Threads

75: { public void run()

76: { try{ synchronized(start gate) { start gate.wait(); } }
77: catch(InterruptedException e){}

78:

79: tester.test(8);

80: }

81: };

82:

83: Thread. currentThread().setPriority(Thread.MIN PRIORITY);
84:

85: t1.start();

86: t2.start();

87:

88: synchronized(start_gate){ start gate.notifyAll(); }
89:

90: t1.join();

91: t2.j0in();

92:

93: print results(7);

94: print results(8);

95: }

96: }

Avoiding Synchronization

Fortunately, explicit synchronization is often avoidable. Methods that don't use
any of the state information (such as fields) of the class to which they belong don't
need to be synchronized, for example. (That is, they use only local variables and
arguments—no class-level fields—and they don’t modify external objects by means
of references that are passed in as arguments.) There are also various class-based
solutions, which I discuss in subsequent chapters (such as the synchronization
wrappers used by the Java collection classes).

You can sometimes eliminate synchronization simply by using the language
propetly, however. The next few sections show you how.

11

ﬁ%

*

\
N

%@%

¢

é 100.book Page 12 Sunday, June 18,2000 6:49 AM

Chapter 1

Atomic Energy: Do Not Synchronize Atomic Operations

The essential concept vis-a-vis synchronization is atomicity. An “atomic” opera-
tion cannot be interrupted by another thread, and naturally atomic operations do
not need to be synchronized.

Java defines a few atomic operations. In particular, assignment to variables of
any type except long and double is atomic. To understand ramifications of this
statement, consider the following (hideously non-object-oriented) code:

class Unreliable
{ private long x;

public long get x(M return x; }
public void set x(long value){ x = value; }
}
Thread one calls:

obj.set x(0);

A second thread calls:
obj.set_x(0x123456789abcdef);

The problem is the innocuous statement:
X = value;

which is effectively treated by the JVM as two separate 32-bit assignments, not
a single 64-bit assignment:

x.high word = value.high word;
x.low word = value.low word;

Either thread can be interrupted by the other halfway through the assignment
operation—after modifying the high word, but before modifying the low word.
Depending on when the interruption occurs (or if it occurs), the possible values
of x are 0x0123456789abcdef, 0x0123456700000000, 0x0000000089abcdef, or
0x0000000000000000. There’s no telling which one you'll get. The only way to fix
this problem is to redefine both set_x() and get_x() as synchronized or wrap the
assignment in a synchronized block.

ﬁ%

\
N

.

%@

é 100.book Page 13 Sunday, June 18,2000 6:49 AM

—

The Architecture of Threads

The volatile Keyword

Another keyword of occasional interest is volatile. The issue here is not one of
synchronization, but rather of optimization. If one method sets a flag, and
another tests it, the optimizer might think that the value of the flag never changes
and optimize the test out of existence. Declaring the variable as volatile effec-
tively tells the optimizer not to make any assumptions about the variable’s state.
In general, you'll need to use volatile only when two threads both access a public
flag, something that shouldn’'t happen in well-crafted OO systems. In any event,
for reasons that I don’t want to go into here, volatile can behave in unpredict-
able ways on multiprocessor machines. Until the Java language specification is
fixed, it’s best to use explicit synchronization to avoid these problems.

Fortunately, this problem doesn't arise with 32-bit (or smaller) variables. That
is, if all that a method does is set or return a value, and that value is not a long or
double, then that method doesn't have to be synchronized. Were the earlier x rede-
fined as an int, no synchronization would be required.

Bear in mind that only assignment is guaranteed to be atomic. A statement
like x=++y (or x+=y) is never thread safe, no matter what size x and y are. You could
be preempted after the increment but before the assignment. You must use the
synchronized keyword to get atomicity in this situation.

Race Conditions

Formally, the sort of bug I just described—when two threads simultaneously con-
tend for the same object and, as a consequence, leave the object in an undefined
state—is called a race condition. Race conditions can occur anywhere that any
sequence of operations must be atomic (not preemptable), and you forget to make
them atomic by using the synchronized keyword. That is, think of synchronized as
a way of making complex sequences of operations atomic, in the same way that
assignment to a boolean is atomic. The synchronized operation can’t be preempted
by another thread that’s operating on the same data.

Immutability

An effective language-level means of avoiding synchronization is immutability. An
immutable object is one whose state doesn’t change after it’s created. A Java String
is a good example—there’s no way to modify the String once it’s created. (The
expression stringl += string2 is actually treated like stringl = stringl + string2;
a third string is created by concatenating the two operands, then the target is over-
written to reference this third string. As usual, this operation is not atomic.)

%

13

ﬁ%

¢

é 100.book Page 14 Sunday, June 18,2000 6:49 AM

Chapter 1

Since the value of an immutable object never changes, multiple threads can
safely access the object simultaneously, so no synchronization is required.

Create an immutable object by making all of the fields of a class final. The
fields don't all have to be initialized when they are declared, but if they aren’t they
must be explicitly initialized in every constructor. For example:

class I_am immutable
{ private final int MAX VALUE = 10;
private final int blank final;

public I am immutable(int initial value)
{ blank final = initial value;
}

}

A final field that’s initialized by the constructor in this way is called a blank final.

In general, if you are accessing an object a lot, but not modifying it much,
making it immutable is a good idea since none of the methods of the object’s class
need to be synchronized. If you modify the object a lot, however, the overhead of
copying the object will be much higher than the overhead of synchronization, so
an immutable-object approach doesn’'t make sense. Of course, there is a vast gray
area where neither approach is obviously better.

Synchronization Wrappers

Often it’s the case that you need synchronization sometimes, but not all the time.
A good example is the Java 2 Collection classes. Typically, collections will be accessed
from within synchronized methods, so it would be contraindicated for the methods
of the collection to be synchronized, since you'd be unnecessarily acquiring two
locks (the one on the object that used the collection and the other on the collection
itself). Java’s solution to this problem is generally applicable: use a synchronization
wrapper. The basic notion of the Gang-of-Four Decorator design pattern is that a
Decorator both implements some interface and also contains an object that imple-
ments the same interface. (The “Gang-of-Four” referenced in the previous
sentence are Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, the
authors of the excellent book Design Patterns: Elements of Reusable Object-Oriented
Software [Reading: Addison Wesley, 1995].) The container implements the same
methods as the contained object, but modifies the behavior of the method as it
passed the request through to the contained object. The classes in the java.io pack-
age are all Decorators: A BufferedInputStream both implements InputStream and
contains an instance of some InputStream—you talk to the contained object
through the container, which modifies the behavior of the contained object. (The
read() method buffers characters in the BufferedInputStream decorator and doesn’t

.
4 ¢

\\
é 100.book Page 15 Sunday, June 18,2000 6:49 AM é

The Architecture of Threads

buffer in the contained FileInputStream. The BufferedInputStream container gets its
characters from the contained FileInputStream object.)

You can put this technique to use to provide synchronization on an as-needed
basis. For example:

interface Some interface
{ Object message();

}
class Not_thread safe implements Some interface
{
public Object message()
{ // ... Implementation goes here
return null;
}
}
class Thread safe wrapper implements Some interface
{
Some_interface not_thread_safe;
public Thread safe wrapper(Some interface not thread safe)
{ this.not _thread safe = not thread safe;
}
public Some interface extract()
{ return not_thread safe;
}
public synchronized Object message()
{ return not_thread safe.message();
}
}

When thread safety isn't an issue, you can just declare and use objects of class
Not_thread_safe without difficulty. When you need a thread-safe version, just wrap it:

Some_interface object = new Not thread safe();
/...

object = new Thread safe wrapper(object); // object is now thread safe
when you don't need thread-safe access any more, unwrap it:

object = ((Thread_safe Wrapper)object).extract();

15

4 ¢

% é 100.book Page 16 Sunday, June 18,2000 6:49 AM
Chapter 1

Concurrency, or How Can You Be Two Places
at Once (When You’re Really Nowhere at All)

The next OS-related issue (and the main problem when it comes to writing plat-
form-independent Java) has to do with the notions of concurrency and parallelism.
Concurrent multithreading systems give the appearance of several tasks executing
at once, but these tasks are actually split up into chunks that share the processor
with chunks from other tasks. Figure 1.1 illustrates the issues. In parallel systems,
two tasks are actually performed simultaneously. Parallelism requires a multiple-
CPU system.
Multiple threads don't necessarily make your program
Concurrency Parallelism faster. Unless you're spending a lot of time blocked, waiting for
I/0 operations to complete, a program that uses multiple con-
current threads will often run slower than an equivalent single-
| Task 1 Task2 | threaded program (although it will often be better organized
| than the equivalent single-thread version). A program that uses
multiple threads running in parallel on multiple processors will
run much faster, of course. If speed is important, a multithreaded
| program should have no more threads running at any given
| moment than there are processors in the system. More threads
R > v can exist in this program, but they should be suspended, wait-
ing for some event to occur.

The main reason that Java’s threading system isn't platform
independent is that parallelism is impossible unless you use the
underlying operating system’s threading model. Java, at least in
theory, permits threading to be simulated entirely by the JVM,
thereby avoiding the time penalty for entering the OS kernel that I discussed ear-
lier. This approach precludes any parallelism in your application, however: If no
operating-system-level threads are used, the OS looks at the JVM instance as a sin-
gle-threaded application, which will be scheduled to a single processor. The net
result would be that no two Java threads running under the same JVM instance
would ever run in parallel, even if you had multiple CPUs and your JVM was the
only process that was active. Two instances of the JVM running separate applica-
tions could run in parallel, of course, but I want to do better than that. To get
parallelism, the JVM must map Java threads through to operating-system threads.
Unfortunately, different operating systems implement threads in different ways;
so, you can't afford to ignore the differences between the various threading models
if platform independence is important.

Time Time

Task 1

g yseL

Figure 1.1. Concurrency
vs. Parallelism

%6%

4 5,8

%@

é 100.book Page 17 Sunday, June 18,2000 6:49 AM

The Architecture of Threads

Get Your Priorities Straight

I'll demonstrate the ways that all the issues I just discussed can impact your pro-
grams by comparing two operating systems: Solaris and Windows NT.

Java, in theory at least, provides ten priority levels for threads. (If two or more
threads are both waiting to run, the one with the highest priority level will execute.)

In Solaris, which supports 23! priority levels, having ten levels is no problem. You
give up a lot of fine control over priority by restricting yourself to one of these ten
levels, but everything will work the way that you expect.

NT, on the other hand, has at most seven priority levels available, which have
to be mapped into Java’s ten. This mapping is undefined, so lots of possibilities
present themselves. (Java priority levels 1 and 2 might both map to NT priority-
level 1, and Java priority levels 8, 9, and 10 might all map to NT level 7, for example.
Other combinations, such as using only five of the available levels and mapping
pairs of Java levels to a single NT level, are also possible). NT’s paucity of priority
levels is a problem if you want to use priority to control scheduling.

Things are made even more complicated by the fact that NT priority levels are
not fixed. NT provides a mechanism called “priority boosting,” which you can turn
off with a C system call, but not from Java. When priority boosting is enabled, NT
boosts a thread’s priority by an indeterminate amount for an indeterminate amount
of time every time it executes certain I/O-related system calls. In practice, this
means that a thread’s priority level could be higher than you think because that
thread happened to perform an I/0O operation at an awkward time. The point of
the priority boosting is to prevent threads that are doing background processing
from impacting the apparent responsiveness of Ul-heavy tasks. Other operating
systems have more-sophisticated algorithms that typically lower the priority of
background processes. The down side of this scheme, particularly when imple-
mented on a per-thread rather than per-process level, is that it’s very difficult to
use priority to determine when a particular thread will run.

It gets worse.

In Solaris—as is the case in all Unix systems and every contemporary operating
system that I know of except the Microsoft operating systems—processes have priority
as well as threads. The threads of high-priority processes can't be interrupted by the
threads of low-priority processes. Moreover, the priority level of a given process can be
limited by a system administrator so that a user process won' interrupt critical OS
processes or services. NT supports none of this. An NT process is just an address
space. It has no priority per se and is not scheduled. The system schedules threads;
then, if that thread is running under a process that is not in memory, the process is
swapped in. NT thread priorities fall into various “priority classes,” that are distributed
across a continuum of actual priorities. The system is shown in Figure 1.2.

The columns are actual priority levels, only twenty-two of which must be shared
by all applications. (The others are used by NT itself.) The rows are priority classes.

%

17

4

-t

i

\
N

%6%

% é 100.book Page 18 Sunday, June 18,2000 6:49 AM
Chapter 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 22 23 24 25 26 31
Idle |

| Normal |

|

[]

[] | Normal |
[]

| High

~UHon

NT™ Priority Classes Real-Time | |

Figure 1-2. Windows NT's Priority Achitecture

The threads running in a process pegged at the “Idle” priority class are running at
levels 1-6 and 15, depending on their assigned logical priority level. The threads of
a process pegged as “Normal” priority class will run at levels 1, 6-10, or 15 if the
process doesn’t have the input focus. If it does have the input focus, the threads
run at levels 1, 7-11, or 15. This means that a high-priority thread of an idle-prior-
ity-class process can preempt a low-priority thread of a normal-priority-class
process, but only if that process is running in the background. Notice that a pro-
cess running in the “High” priority class only has six priority levels available to it.
The other classes have seven.

NT provides no way to limit the priority class of a process. Any thread on any
process on the machine can take over control of the box at any time by boosting its
own priority class, and there’s no defense. Solaris, on the other hand, does support
the notion of process priority precisely because you need to prevent screen savers
from interfering with system-critical tasks. A high-priority process simply shouldn’t be
preempted by a low-priority process, particularly in a server. I guess the good people
at Microsoft didn't think that anyone would really be using NT as a server operat-
ing system. Anyway, the technical term I use to describe NT’s priority is “unholy
mess.” In practice, priority is virtually worthless under NT.

So what's a programmer to do? Between NT’s limited number of priority levels
and its uncontrollable priority boosting, there’s no absolutely safe way for a Java
program to use priority levels for scheduling. One workable compromise is to
restrict yourself to Thread.MAX_PRIORITY, Thread.MIN PRIORITY, and
Thread.NORM_PRIORITY when you call setPriority(). This restriction at least avoids
the ten-mapped-to-seven-levels problem. I suppose you could use the os . name
system property to detect NT, and then call a native method to turn off priority
boosting, but that won't work if your app is running under Internet Explorer unless
you also use Sun’s JVM plug-in. (Microsoft’s JVM uses a nonstandard native-method
implementation.) In any event, I hate to use native methods. I usually avoid the
problem as much as possible by putting most threads at NORM_PRIORITY and using
scheduling mechanisms other than priority. (I'll discuss some of these in subse-
quent chapters.)

.
4 ¢

¢

é 100.book Page 19 Sunday, June 18,2000 6:49 AM

—

The Architecture of Threads

Cooperate!

There are typically two threading models supported by operating systems: cooper-
ative and preemptive.

The Cooperative Multithreading Model

In a cooperative system, a thread retains control of its processor until it decides to
give it up (which might be never). The various threads have to cooperate with each
other or all but one of the threads will be starved (never given a chance to run).
Scheduling in most cooperative systems is done strictly by priority level. When the
current thread gives up control, the highest-priority waiting thread gets control.
(An exception to this rule is Windows 3.x, which uses a cooperative model but
doesn’'t have much of a scheduler. The window that has the focus gets control.)

The main advantage of cooperative multithreading is that it’s very fast and has
a very low overhead when compared to preemptive systems. For example, a context
swap—a transfer of control from one thread to another—can be performed entirely
by a user-mode subroutine library without entering the OS kernel (which costs 600
machine cycles in NT). A user-mode context swap in a cooperative system does
little more than a C setjump/longjump call would do. You can have thousands of
cooperative threads in your applications without significantly impacting perfor-
mance. Because you don't lose control involuntarily in cooperative systems, you
don't have to worry about synchronization either. Just don't give up control until
it’s safe to do so. You never have to worry about an atomic operation being inter-
rupted. The two main disadvantages of the cooperative model are:

1. It'svery difficult to program cooperative systems. Lengthy operations
have to be manually divided into smaller chunks, which often must inter-
act in complex ways.

2. The cooperative threads can never run in parallel.

The Preemptive Multithreading Model

The alternative to a cooperative model is a preemptive one, where some sort of
timer is used by the operating system itself to cause a context swap. That is, when
the timer “ticks” the OS can abruptly take control away from the running thread and
give control to another thread. The interval between timer ticks is called a time slice.
Preemptive systems are less efficient than cooperative ones because the thread
management must be done by the operating-system kernel, but they're easier to
program (with the exception of synchronization issues) and tend to be more reliable

%

19

ﬁ%

*

\
N

%6%

\\
é 100.book Page 20 Sunday, June 18,2000 6:49 AM

¢

Chapter 1

because starvation is less of a problem. The most important advantage to preemp-
tive systems is parallelism. Because cooperative threads are scheduled by a user-
level subroutine library, not by the OS, the best you can get with a cooperative
model is concurrency. To get parallelism, the OS must do the scheduling. Four
threads running in parallel on four processors will run more than four times faster
than the same four threads running concurrently (because there is no context-
swap overhead).

Some operating systems, like Windows 3.1, only support cooperative multi-
threading. Others, like NT, support only preemptive threading. (You can simulate
cooperative threading in NT with a user-mode library. NT has such a library called
the “fiber” library, but fibers are buggy, and aren't fully integrated into the operating
system.) Solaris provides the best (or worst) of all worlds by supporting both coop-
erative and preemptive models in the same program. (I'll explain this in a moment.)

Mapping Kernel Threads to User Processes

The final OS issue has to do with the way in which kernel-level threads are mapped
into user-mode processes. NT uses a one-to-one model, illustrated in Figure 1.3.

| PE][PE || PE]
I ||| |

| Shared Memory |

< U &

Thread User
Process

Processor
Figure 1.3. The NT Threading Model

NT user-mode threads effectively are kernel threads. They are mapped by the OS
directly onto a processor and they are always preemptive. All thread manipulation and

synchronization are done via kernel calls (with a 600-machine—cycle overhead for
every call). This is a straightforward model, but is neither flexible nor efficient.

%

-t

\
N

.

%@

.

é 100.book Page 21 Sunday, June 18,2000 6:49 AM

—

The Architecture of Threads

The Solaris model in Figure 1.4 is more interesting. Solaris adds lightweight
process (LWP) to the notion of a thread. The IWP is a schedulable unit on which one or
more threads can run. Parallel processing is done on the LIWP level. Normally, LWPs
reside in a pool, and they are assigned to particular processors as necessary. An
IWP can be bound to a specific processor if it's doing something particularly time crit-
ical, however, thereby preventing other IWPs from using that processor.

Up at the user level, you have a system of cooperative, or green threads. In a
simple situation, a process will have one LZWP shared by all of the green threads.
The threads must yield control to each other voluntarily, but the single LWP that
the threads share can be preempted by an IWP in another process. This way the
processes are preemptive with respect to each other (and can execute in parallel),
but the threads within the process are cooperative (and execute concurrently).

A process is not limited to a single LWP, however. The green threads can share
apool of LWPs in a single process. The green threads can be attached (or bound) to
an IWP in two ways:

1. The programmer explicitly “binds” one or more threads to a specific LWP.
In this case, the threads sharing a IWP must cooperate with each other,
but they can preempt (or be preempted by) threads bound to a different
LWP If every green thread was bound to a single IWB you'd have an NT-
style preemptive system.

2. The threads are bound to green threads by the user-mode scheduler. This
is something of a worst case from a programming point of view because
you can’t assume a cooperative or a preemptive environment. You may
have to yield to other threads if there’s only one IWP in the pool, but you
might also be preempted.

The Solaris threading model gives you an enormous amount of flexibility. You
can choose between an extremely fast (but strictly concurrent) cooperative system,
a slower (but parallel) preemptive system, or any combination of the two. But (and
this is a big “but”) none of this flexibility is available to you, the hapless Java pro-
grammer, because you have no control over the threading model used by the JVM.
For example, early versions of the Solaris JVM were strictly cooperative. Java threads
were all green threads sharing a single LWP. The current version of the Solaris JVM
uses multiple IWPs and no green threads at all.

So why do you care? You care precisely because you have no control—you
have to program as if all the possibilities might be used by the JVM. In order to
write platform-independent code, you must make two seemingly contradictory
assumptions:

1. You can be preempted by another thread at any time. You must use the

synchronized keyword carefully to assure that nonatomic operations
work correctly.

%

21

ﬁ%

*

\
N

%6%

\\
% é 100.book Page 22 Sunday, June 18,2000 6:49 AM
Chapter 1

LWP LWP LWP LwpP LWP

jsuiay | Jesn

| PE || PE || PE |

| Shared Memory

|
>
|PE| |LWP|

User Processing Lightweight
Process Element Process

Thread

Figure 1.4. The Solaris Threading Model

2. Youwill never be preempted unless you give up control. You must occa-
sionally perform some operation that will give control to other threads so
that they can have a chance to run. Use yield() and sleep() in appropriate
places (or make blocking I/0 calls). For example, you might want to con-
sider calling yield() every 100 iterations or so of a longloop, or voluntarily
going to sleep for a few milliseconds every so often to give lower-priority
threads a chance to run. (The yield() method will yield control only to
threads running at your priority level or higher).

Wrapping Up

So those are the main OS-level issues that you have to consider when you're writing
a Java program. Since you can make no assumptions about your operating envi-
ronment, you have to program for the worst case. For example, you have to assume
that you can be preempted at any time, so you must use synchronized appropri-
ately, but you must also assume that you will never be preempted, so you must also

%@%

4 48

\\
é 100.book Page 23 Sunday, June 18,2000 6:49 AM

¢

occasionally use yield(), sleep(), or blocking I/0O calls to permit other threads to
run. Any use of priority is problematic: You can’t assume that two adjacent priority
levels are different. They might not be after NT has mapped Java’s ten levels into its
seven levels. Similarly, you can't assume that a priority-level-two thread will always
be higher priority than one that runs at level 1—it might not be if NT has “boosted”
the priority level of the lower-priority thread.

—

The Architecture of Threads

23

ﬁ%

*

\
N

%6%

\\
100.book Page 24 Sunday, June 18,2000 6:49 AM

&

2 Springer
http://www.springer.com/978-1-893115-10-1

Taming Java Threads

Holub, A

2000, ¥, 300 p. 104 illus., Softcover
ISEM: 978-1-893115-10-1

& product of Apress

