
Foreword

Coordinating production across a supply chain, designing a new VLSI chip,
allocating classrooms or scheduling maintenance crews at an airport are just
a few examples of complex (combinatorial) problems that can be modeled as
a set of decision variables whose values are subject to a set of constraints.
The decision variables may be the time when production of a particular lot
will start or the plane that a maintenance crew will be working on at a
given time. Constraints may range from the number of students you can fit
in a given classroom to the time it takes to transfer a lot from one plant to
another. Despite advances in computing power, many forms of these and other
combinatorial problems have continued to defy conventional programming
approaches.

Constraint Logic Programming (CLP) first emerged in the mid-eighties
as a programming technique with the potential of significantly reducing the
time it takes to develop practical solutions to many of these problems, by
combining the expressiveness of languages such as Prolog with the computa-
tional power of constrained search. While the roots of CLP can be traced to
Monash University in Australia, it is without any doubt in Europe that this
new software technology has gained the most prominence, benefiting, among
other things, from sustained funding from both industry and public R&D
programs over the past dozen years. These investments have already paid off,
resulting in a number of popular commercial solutions as well as the creation
of several successful European startups.

This book is about DiSCiPl, a two-and-a-half-year European project ai-
med at paving the way to broader adoption of CLP. DiSCiPl stems from
the observation that, while CLP can significantly reduce the time it takes
to develop practical solutions to complex combinatorial problems, doing so
often involves a lot of tinkering and deep insight into the innerworkings of the
language and its underlying search mechanisms. The objective of the project,
which was launched in late 1996 in the context of the European Research Pro-
gram in Information Technology (ESPRIT), was to research and validate new
concepts and tools aimed at significantly facilitating the development and re-
finement of CLP programs, with a special focus on “Constraint Debugging”.
“Debugging” here is to be interpreted in the broad sense and includes both



VI Foreword

“correctness debugging”, namely ensuring that a CLP program properly cap-
tures all aspects of a given problem, and “performance debugging”, which has
to do with analysing and fine-tuning performance of CLP programs.

DiSCiPl brought together some of the best brains in the field in Europe,
combining participation of four leading research organisations (INRIA in as-
sociation with ERCIM, UPM, the University of Linköping and the University
of Bristol), two CLP vendors (Cosytec and PrologIA) and two solution pro-
viders (ICON and OM Partners). The results, which are presented in this
book, include a novel methodology for CLP debugging together with a rich
collection of new debugging techniques. At the time of writing, some of these
techniques have already found their way into a number of popular CLP packa-
ges, making their benefits available to a sizable user population. A nice feature
of the book is its discussion of user cases, detailing these benefits. Beyond its
more immediate impact, the DiSCiPl project has also produced significant
theoretical results that open the door to new and exciting avenues for future
research.

It has been a privilege and a pleasure to work with such an enthusiastic
group of people from the very inception of their project and to see many of
their results so quickly made available to the user community. I hope that
you will enjoy reading this book as much as I have.

January 2000 Norman M. Sadeh
European Commission



Preface

This book is the first one entirely dedicated to the problem of Constraint
Debugging. It presents new approaches to debugging for the computational
paradigm of Constraint Programming (CP).

Conventional programming techniques are not well suited for solving com-
binatorial problems in industrial applications like scheduling, decision ma-
king, resource allocation, or planning. Constraint Programming offers an ori-
ginal approach allowing for efficient and flexible solving of complex problems,
through combined implementation of various constraint solvers, expert heu-
ristics, and programmed search. As an emerging software technology, Con-
straint Programming is relatively young compared to other languages, tech-
nologies, and paradigms. However, it has already produced convincing results
and its applications are increasingly fielded in various industries.

One of the remaining shortcomings of CP technology is that it is still
somewhat difficult to use. This is due to the intrinsic complexity of the pro-
blem areas tackled and to the comparatively sophisticated solutions offered
by this technology. These difficulties can be overcome by a combination of
adequate training and the availability of effective debugging techniques and
environments adapted to the particular characteristics of the paradigm. In
fact, one of the main features of CP is a new approach to software production:
the same program is progressively improved at each step of the development
cycle, from the first prototype until the final product. This makes debugging
one of the cornerstones of CP technology.

Debugging is considered here in a broad sense: it concerns both valida-
tion aspects (to build a correct application) as well as methodological aspects
(to find the best solution to a problem by gaining a better understanding of
constraint solver behavior). To satisfy these objectives, tools must locate and
explain bugs, and graphical tools must help in the process of interpreting
program behaviour and results. The debugging tools of the commercial CP
systems are often ineffective in industrial situations, and the debugging tech-
niques originating from imperative languages are mostly inapplicable to CP.
The main reason is that the huge numbers of variables and constraints make
the computation state difficult to understand, and that the non-deterministic
execution drastically increases the number of computation states which must
be analysed.



VIII Preface

This book contains most of the results of the DiSCiPl project. DiSCiPl
(Debugging Systems for Constraint Programming) is a recently completed
European (IT4) reactive Long Term Research project which had been running
for over two and a half years, from October 1996 to June 1999, with four
academic (INRIA-Rocquencourt, manager, with ERCIM, UPM, University
of Linköping, University of Bristol) and four industrial partners (Cosytec,
PrologIA, ICON, OM Partners). The objectives were to develop the theory
of constraint debugging and to create tools to help the programmer during
all phases of development.

DiSCiPl has produced a good number of results at both the theory and
implementation levels. The new theoretical results in debugging have been
cast into the form of a practical “DiSCiPl debugging methodology”. These
practical developments have produced enhanced versions of industrial and
academic Constraint Logic Programming (CLP) platforms (specifically Pro-
log IV, Chip++5.2.1, GNU-Prolog and Ciao/Prolog) with new, rich debug-
ging capabilities.

This book is a first attempt to give a unified view of “constraint de-
bugging” and it presents the results of the DiSCiPl project in a more com-
prehensive manner. Technical details can be found in various publications
originated from the project or in the public deliverables available at the URL
http://discipl.inria.fr.

The DiSCiPl project allowed making significant progress towards under-
standing the problem of constraint debugging and produced a good number
of results and tools. It however did not close the topic. On the contrary we
believe that it has opened a field, showing that debugging is an essential part
of the process of constraint programming. Only some aspects of debugging
have been explored and only still incomplete tools have been produced in the
limited duration of the project. They are starting points. Specific suggestions
for future work in the area of constraint debugging are presented in different
chapters of this volume.

The book consists of an introduction and three parts, each of them com-
posed of several chapters. Most of the chapters can be read independently.
The introduction (chapter 1) presents the “DiSCiPl debugging methodology”
and explains how all chapters are related.

– Part 1: Correctness Debugging Five chapters presenting techniques and
tools for finding the reasons for incorrect behaviour of a constraint program.
Most of them use assertions and static analysis techniques.

– Part 2: Performance Debugging Seven chapters presenting visualiza-
tion tools which facilitate understanding of the search space and of the
constraint propagation. They facilitate finding the reasons for inefficient
execution (performance debugging) and they may also contribute to cor-
rectness debugging.



Preface IX

– Part 3: User cases One chapter which presents feedback from the use of
some of the debugging tools in an industrial context.

The research presented in this book has been influenced by the feedback
obtained during the project reviews from the the reviewers Dominique Bolig-
nano and Seif Haridi, and the project officer, Norman M. Sadeh. We are very
grateful to all of them. The members of the Advisory Committee followed
the project giving us very useful and sometimes very enthusiastic feedback.

In addition to European ESPRIT LTR project DiSCiPl # 22532 this work
has been partially supported by Spanish CICYT Projects TIC97-1640-CE
and TIC99-1151.

April 2000 P. Deransart
M. Hermenegildo

J. Ma luszyński



http://www.springer.com/978-3-540-41137-6




