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TECHNOLOGY

A working group report

1. INTRODUCTION

The technology working group focused on the various ways in which
technology can impact upon the teaching and learning of mathematics. As was
already underlined in the Discussion Document for this ICMI Study, “Worldwide,
increasing use is being made of computers and calculators in mathematics
instruction. Much mathematical software and many teaching packages are available
for a range of curriculum topics. This, of course, raises such issues as what such
software and packages offer to the teaching and learning of the subject, and what
potential problems for understanding and reasoning they might generate.” The
Discussion Document proposed to identify and analyze innovative projects and
research that are particularly fruitful for advancing our thinking in this domain.

Reflecting on the impact of information technologies on the teaching of
mathematics is not new for an ICMI Study — ICMI had already launched a study in
1985 entitled “The influence of Computers and Informatics on Mathematics and its
Teaching”. That ICMI Study touched all levels of instruction and underlined
primarily the impact of computers on several areas, including:

e on mathematics itself; computers have prompted the revisiting of familiar
notions such as number and elementary functions, the revitalizing of old
problems, and the emergence of new domains. They have extended the range of
applications of mathematics, and have blurred the boundaries between pure and
applied mathematics;

on the notion of proof in view of computer-assisted proofs;

e on the practice of mathematicians; computers have led to an increase in
experimentation and the use of simulations. They afford new means of
communication and accessing information that affect the way mathematicians
carry on their professional lives.

This previous ICMI Study also recognized that despite an abundance of
interesting experiences, the impact of technology on teaching was still globally
weak, and that the introduction of computers in the classroom had not necessarily
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led to any discernible improvements. The working group discussion focused on the
present-day role of technology in teaching at the post-secondary level, on the
perspectives envisaged for the future and on broader research questions that are
affected by the use of technology. It centred mostly on the use of technological tools
for supporting students’ learning, particularly via visualization; computation, and
programming. But, it also recognized the role of such tools for: demonstration by the
teacher; presentation of lessons via distance learning; student assessment; and
student drill.

2. TECHNOLOGY AS A MEANS FOR SUPPORTING STUDENTS’
LEARNING

At the university level in general, and at the collegial level in particular, the
introduction of technologies was seen as a means to renew pedagogical practices and
to circumvent a style of teaching that was too formal or too algorithmic. It was
intended to create better coherence between teaching practice and the constructivist
approach to learning. Celia Hoyles, in her description of the potential contribution to
post-secondary education of researches carried in the secondary level, has
emphasized that:

“There is considerable evidence of the computer’s potential to:

o foster more active learning using experimental approaches along with the
possibility of helping students to forge connections between different
forms of expression, e.g. visual, symbolic ;

e provoke constructionist approaches to learning mathematics where students
learn by building, debugging and reflection, with the result that the
structure of mathematics and the ways the pieces fit together are open to
inspection ;

e motivate explanations in the face of “surprising” feedback : that is, start a
process of argumentation which can (with due attention) be connected to
formal proof ;

o foster cooperative work, encouraging discussion of different solutions and
strategies ; computer work is more visible and more easily “conveyed”
between lecturer and students ;

e open a window on to student thought processes : students hold different
conceptions of mathematical ideas which are hard to access, even in the
case of articulate adults. How students interact with the computer and
respond to feedback can give insight into their conceptions and their
beliefs about mathematics and the role of computers.”

Hoyles hastened to add that a successful integration of computers necessitates
the rethinking of “the content and sequence of the mathematics courses given that
students and mathematics have (or should have) changed in the light of the new
technology [...] teaching approaches to take into account the broad range of
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response inevitable in interacting with computers [...} and the relationship of
‘computer maths’ to paper and pencil maths” (Hoyles, 1999).

The question of what constitutes ‘successful integration’ of technology to the
teaching and learning process was central to the working group discussion. Several
presentations by participants on the way in which they have used technology to
teach mathematics at the undergraduate level, helped to focus the discussion. These
included presentations by: Karen King, on teaching differential equations; Ed
Dubinsky, on programming using ISETL; Joel Hillel, on using Maple in teaching
linear algebra; and, Rosalind Phang, on using statistical software.

2.1 Changes in the Nature of the Mathematics Taught

King’s example illustrated the nature of the changes in teaching differential
equations made possible by using a technology that graphs slope fields and direction
fields. These enable students to engage in qualitative analyses of previously
inaccessible differential equations rather than use traditional analytic techniques.
Thus, the focus of a differential equations’ course could shift from just finding the
solution functions, to graphically organizing the space of solution functions using
slope fields and bifurcation diagrams, and to examining the nature of the solution
functions (see Rasmussen, 1999).

If one considers, for example, the differential equation

dy/dt = 0.3y(1-y/8)(y/3-1),
one could attempt to solve this using separation of variables but would not deduce a
closed-form general solution. However, with a slope field as shown in Figure 1
derived from a TI-92 program written by King, a student can examine the types of
solution functions and their general behaviours, given different initial conditions.
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Figure 1 slope field program with slopes and several approximations
dy/dt=0.3y(1-y/8)(y/3-1), y(0)=1, 2, 3,4, 5,6,8 9,11, 12
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This example provides an instance where changes to an entire course can be
made, including the order in which topics are taught and the mathematics with
which the students engage (see Artigue, 1992, and Rasmussen and King, 1999).
Such changes, in turn, lead to other changes in the curriculum. For example, the
study of dynamical systems has been greatly impacted by the availability of
computing technology and has resulted in an early focus on systems of differential
equations in many courses. This is but one example where a particular mathematical
discipline is changed by technology which, in turns, affects changes in the nature of
how it is taught.

2.2 The role of professional tools

Secondary schools tend, by and large, to use software products and calculators
that have been specifically conceived for teaching. In contrast, universities mostly
tend to use professional tools be they general symbolic manipulators (e.g. Maple,
Mathematica, MuPad, Matlab, SciLab) or tools for specific domains such as
Statistics (APSS, SASS), though some specific educational software such as
Geometer’s Sketchpad and Cabri are also relevant for instruction at the tertiary level.
Faculty members are familiar with these professional tools since they use them in
their own mathematical work and, consequently, they tend to be widely available on
campus. There is an ever increasing number of texts that integrate the use of a
software package, for example, “Calculus and Mathematica” (Uhl, 1999) or
“Ordinary Differential Equations using MATLAB” (Polking, 1995). Individual
universities have also written primers that bridge between the particular program or
technology that they use and the mathematics texts in use in the department (see
Colgan, 1999 for a discussion of such a primer from Australia).

Professional software tools are particularly powerful and, at first sight, seem to
take full charge of what traditionally has been the mathematics work expected of
students. They embody a tremendous amount of mathematical knowledge that,
nevertheless, remains invisible and inaccessible to the users. The availability of
these powerful tools raised the inevitable question in the working group regarding
the necessary mathematical knowledge of users if they are to become efficient and in
reasonable control of such tools. These tools also force us to both question and
redefine the content of mathematical training, notably in sectors where mathematics
is a service course. It prompts us to ask under what conditions can they become
means for students to construct mathematical knowledge, over and above their role
as powerful computational tools.

In response to the question regarding the necessary skills/concepts that students
must possess before they can use a powerful CAS tool, Hillel suggested seizing the
‘black box’ feature as a learning opportunity. He presented an example on teaching
the Cayley-Hamilton Theorem in linear algebra, where students are first asked to use
Maple to build inductive evidence for that theorem. By using the software, students
can compute the characteristic polynomial f{(x) of a given matrix A and then compute
SfTA). Among other things, it becomes apparent that the result of the computation is a
square matrix, not a number, to which students must therefore attend and about
which they must be explicit. Students also can explore these computations for
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several matrices, focusing the process of computing fix) rather than on the actual
computations. Such activities can take place prior to introducing the theorem and its
proof in class. This is a pedagogical choice, a kind of ‘didactical inversion’ which is
made within the larger context of the instructor’s course design (see Kent and Noss,
1999, and Noss, 1999).

In a slightly different vein, participants also recognized that there are computer
applications designed for other purposes that could be mathematically exploited
(e.g., Excel). This raised the questions of how one would characterize the difference
(for instructors, for users, and for the types of tasks and interactions) in using
educational mathematical tools, professional mathematical tools, and the
mathematical usage of tools designed for other purposes.

2.3 The role of programming

In the analysis of the potential of computers for mathematics learning,
programming has always played an important role. In the early days of computers
when tools for scientific calculations were very different from those of today,
programming was essential. But even if software packages have evolved,
programming can be seen as a means to change students’ relation to algorithmic
work, so important in mathematics, by putting the accent on the construction of
algorithms rather than on their execution. This shift is seen as a way to give sense to
both the algorithms and to the underlying concepts.

Dubinsky presented to the working group the use of programming in a
function-based program language (ISETL) to facilitate students’ learning about
functions (see Dubinsky, 1999). Instead of having students use conventional
programs, the students write their own. His work illustrates particularly well the
conceptual gains that students make when they have to write mathematical
constructions as programs. His approach is built on a theoretical model that looks at
learning in terms of actions, processes, and objects. ISETL is particularly well
adapted for mathematics, since it favours transforming actions into processes and
encapsulation of processes as mathematical objects (see Dubinsky and MacDonald,
this volume. pp. 275-282).

Programming activities could also be implemented via scripting which is an
automatic execution of an often used sequence of commands. Scripting capabilities
are now built into many applications, such as Excel. Whether one uses a
programming or scripting language, it is important to pay attention to the kinds of
instructional tasks that fit well with the language. Tasks that are appropriate to a
function-based language such as ISETL, would not be so in other languages that do
not operate the same way.

Finally, it was noted that programming can also play a large role in
introducing students to the world of algorithms and the concomitant notions of
complexity, validity, and efficiency.
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