MICHELE ARTIGUE

WHAT CAN WE LEARN FROM EDUCATIONAL
RESEARCH AT THE UNIVERSITY LEVEL?

1. INTRODUCTION

For more than 20 years, educational research has dealt with mathematics
learning and teaching processes at the university level. It has tried to improve our
understanding of the difficulties encountered by students and the dysfunction of the
educational system; it has also tried to find ways to overcome these problems. What
can such research offer to an international study? This is the issue I will address in
this article, but first I would like to stress that it is not an easy question to answer,
for several reasons including at least the following:

1. Educational research is far from being a unified field. This characteristic
was clearly shown in the recent ICMI study entitled “What is research in
mathematics education and what are its results?” (See Sierpinska and
Kilpatrick, 1996.) The diversity of existing paradigms certainly
contributes to the richness of the field but, at the same time, it makes the
use and synthesis of research findings more difficult.

2. Learning and teaching processes depend partly on the cultural and social
environments in which they develop. Up to a certain point, results
obtained are thus time- and space- dependent, their field of validity is
necessarily limited. However, these limits are not generally easy to
identify.

3. Finally, research-based knowledge is not easily transformed into
effective educational policies.

I will come back to this last point later on. Nevertheless, I am convinced that
existing research can greatly help us today, if we make its results accessible to a
large audience and make the necessary efforts to better link research and practice. 1
hope that this article will contribute to making this conviction not just a personal
one. Before continuing, I would like to point out that the diversity mentioned above
does not mean that general tendencies cannot be observed. At the theoretical level,
these are indicated, for instance, by the dominating influence of constructivist
approaches inspired by Piaget’s genetic epistemology, or by the recent move

' A shorter version of this paper, Artigue (1999), was published in the Notices of the American
Mathematical Society.
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attempt to take more account of the social and cultural dimensions of learning and
teaching processes (see Sierpinska and Lerman, 1996). But within these general
perspectives, researchers have developed a multiplicity of local theoretical frames
and methodologies, which differently shape the way research questions are selected
and expressed, and the ways they are worked on — thus affecting the kind of results
which can be obtained, and the ways they are described. At the cultural level, such
general tendencies are also observed. Strong regularities in students’ behaviour and
difficulties as well as in the teaching problems met by educational institutions, have
been observed. These, up to a point, apparently transcend the diversity of cultural
environments.

In the following, after characterizing the beginnings of the research enterprise, 1
will try to overcome some of the above-mentioned difficulties presenting research
findings along two main dimensions of learning processes: qualitative changes,
reconstructions and breaches on the one hand, cognitive flexibility on the other
hand. These dimensions can to some degree, be considered ‘transversal’ with respect
to theoretical and cultural diversities as well as to mathematical domains. No doubt
this is a personal choice, induced by my own experience as a university teacher, as a
mathematician, and as a education researcher; it shapes the vision I give of research
findings, a vision which does not pretend to be objective or exhaustive.

2. FIRST RESEARCH RESULTS: SOME NEGATIVE REPORTS

The first research results obtained at university level can be considered negative
ones. Research began by investigating students’ knowledge in specific mathematical
areas, with particular emphasis on elementary analysis (or calculus in the Anglo-
Saxon culture), an area perceived as the main source of failure at the undergraduate
level. The results obtained gave statistical evidence of the limitations both of
traditional teaching practices and of teaching practices which, reflecting the
Bourbaki style, favoured formal and theoretical approaches. The structure and
content of the book, Advanced Mathematical Thinking (Tall, 1991), gives clear
evidence of these facts, noting that:

e by the early eighties, Orton (1980), in his doctoral thesis, showed the
reasonable mastery English students had of what can be labelled as
‘mere algebraic calculus’: calculation of derivatives and primitives
(anti-derivatives), but the significant difficulty they had in
conceptualizing the limit processes underlying the notions of
derivative and integral;

e at about the same time, Tall and Vinner (1981), highlighted the
discrepancy between the formal definitions students were able to
quote and the criteria they used in order to check properties such as
functionality, continuity, derivability. This discrepancy led to the
introduction of the notions of concept definition and concept image
in order to analyze students’ conceptions;
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e very early, different authors documented students’ difficulties with
logical reasoning and proofs, with graphical representations, and
especially with connecting analytic and graphical work in flexible
ways.

Schoenfeld (1985), also documented the fact that, faced with non-routine tasks,
students — even apparently bright students — were unable to efficiently use their
mathematical resources.

Research also showed, quite early, that the spontaneous reactions of educational
systems to the above-mentioned difficulties were likely to induce vicious circles
such as the following. In order to guarantee an acceptable rate of success, an
increasingly important issue for political reasons, teachers tended to increase the gap
between what was taught and what was assessed. As the content of assessments is
considered by students to be what should be learnt, this situation had dramatic
effects on their beliefs about mathematics and mathematical activity. This, in turn,
did not help them to cope with the complexity of advanced mathematical thinking.

Fortunately, research results are far from being limited to such negative reports.
Thanks to an increasing use of qualitative methodologies allowing better
explorations of students’ thinking and the functioning of didactic institutions
(Schoenfeld, 1994), research developed and tested global and local cognitive
models. It also organized in coherent structures the many difficulties students
encounter with specific mathematical areas, or in the secondary/tertiary transition. It
led to research-based teaching designs (or engineering products) which,
implemented in experimental environments and progressively refined, were proved
to be effective. Without pretending to be exhaustive, let us give some examples,
classified according to the two main dimensions given above. (For more details, the
reader can refer to the different syntheses in Artigue, 1996, Dorier, 2000,
Schoenfeld, 1994, Tall, 1991 and 1996; to the special issues dedicated to advanced
mathematical thinking by the journal Educational Studies in Mathematics in 1995
edited by Dreyfus; by the journal Recherches en Didactique des Mathématiques in
1998 edited by Rogalski; to some of the diverse monographs published by the
Mathematical Association of America about calculus reform, innovative teaching
practices; and to research about specific undergraduate topics to be found in the
MAA Notes on Collegiate Mathematics Education.)

3. QUALITATIVE CHANGES, RECONSTRUCTIONS AND BREACHES IN
THE MATHEMATICAL DEVELOPMENT OF KNOWLEDGE AT UNIVERSITY
LEVEL

One general and crosscutting finding in mathematics education research is the
fact that mathematical learning is a cognitive process that necessarily includes
‘discontinuities.” But, depending on the researcher this attention to discontinuities is
expressed in different ways. In order to reflect this diversity and the different
insights it allows, I will describe three different approaches: the first one, in terms of
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process/object duality, the second one in terms of epistemological obstacles, the
third one in terms of reconstructions of relationships to objects of knowledge.

3.1 Qualitative changes in the transition from processes to objects: APOS theory

As mentioned above, research at the university level is the source of theoretical
models. The case of APOS theory, initiated by Dubinsky (see Tall 1991) and
progressively refined (see Dubinsky and McDonald, this volume, pp. 275-282), is
typical. This theory, which is an adaptation of the Piagetian theory of reflective
abstraction, aims at modelling the mental constructions used in advanced
mathematical learning. It considers that “understanding a mathematical concept
begins with manipulating previously constructed mental or physical objects to form
actions; actions are then interiorized to form processes which are then encapsulated
to form objects. Objects can be de-encapsulated back to the processes from which
they were formed. Finally, actions, processes and objects can be organized in
schemas” Asiala et al, 1996. Of course, this does not occur all at once and objects,
once constructed, can be engaged in new processes and so on. Researchers following
this theory use it in order to construct genetic decomposition of concepts taught at
university level (in calculus, abstract algebra, etc.) and design teaching processes
reflecting the genetic structures they have constructed and tested.

As with any model, the APOS model only gives a partial vision of cognitive
development in mathematics, but one cannot deny today that it put to the fore a
crucial qualitative discontinuity in the relationships students develop with respect to
mathematical concepts. This discontinuity is the fransition from a process
conception to an object one, the complexity of its acquisition and the dramatic
effects of its underestimation by standard teaching practices.” Research related to
APOS theory also gives experimental evidence of the positive role which can be
played by programming activities in adequate languages (such as the language
ISETL, cf. Tall, 1991) in order to help students encapsulate processes as objects.

Breaches in the development of mathematical knowledge: Epistemological
obstacles. The theory of epistemological obstacles, firstly introduced by Bachelard
(1938) and imported into educational research by Brousseau (1997), proposes an
approach complementary to cognitive evolution, focussing on its necessary
breaches. The fundamental principle of this theory is that scientific knowledge is not
built in a continuous process but results from the rejection of previous forms of
knowledge: the so-called epistemological obstacles. Researchers following this
theory hypothesize that some learning difficulties, often the more resistant ones,
result from forms of knowledge which are coherent and have been for a time
effective in social and/or educational contexts. They also hypothesize that
epistemological obstacles have some kind of universality and thus can be traced in
the historical development of the corresponding concepts. At the university level,

2 Note that a very similar approach was developed independently by Sfard, with more emphasis on the
dialectic between the operational and structural dimensions of mathematical concepts in mathematical
activity (Sfard, 1991).
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such an approach has been fruitfully used in research concerning the concept of limit
(cf. Artigue 1998 and Tall 1991 for synthetic views). Researchers such as
Sierpinska, (1985), Comu, (1991) and Schneider, (1991) provide us with historical
and experimental evidence of the existence of epistemological obstacles, mainly the
following:

o the everyday meaning of the word ‘limit’, which induces resistant
conceptions of the limit as a barrier or as the last term of a process, or
tends to restrict convergence to monotonic convergence;

o the overgeneralization of properties of finite processes to infinite
processes, following the continuity principle stated by Leibniz;

o the strength of a geometry of forms which prevents students from
clearly identifying the objects involved in the limit process and their
underlying topology. This makes it difficult for students to appreciate
the subtle interaction between the numerical and geometrical settings
in the limit process.

Let us give one example (taken from Artigue, 1998) of this last resistance, which
occurs even in advanced and bright students. In a research project about differential
and integral processes, advanced students were asked the following non-standard
question: “How can you explain the following: using the classical decomposition of
a sphere into small cylinders in order to find its volume and area, one obtains the

4
expected answer for the volume 3 7R ,but #° R for the area instead 47ZR" 7 It was

observed that, faced with this question, the great majority of advanced students
tested got stuck. And, even if they were able to make a correct calculation for the
area (which they were not always able to do) they remained unable to resolve the
conflict.

As the students eventually said, because the pile of cylinders, geometrically,
tends towards the sphere, the magnitudes associated with the cylinders behave in the
same way and thus have as a limit the corresponding magnitude for the sphere. Such
a resistance may look strange but it appears more normal if we consider the effect
produced on mathematicians by the famous Schwarz counterexample showing that,
for a surface as simple as a cylinder, limits of areas of triangulations when the size
of the triangles tends towards 0, can take any value greater than or equal to the area
up to infinity, depending on the choices made in the triangulation process, an effect
nicely described by in Lebesgue, (1956). The historical and universal commitments
of the theory which leads to such results can be discussed and are presently
discussed (see, for instance, Radford, 1997). However, what cannot be negated is the
fact that the above-mentioned forms of knowledge constitute resistant difficulties for
today’s students; moreover, that mathematical learning necessarily implies partial
rejection of previous forms of knowledge, which is not easy for students.
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