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Classical Probability Spaces

2.1 Theory and Problems

Here, we consider one of the simplest models of a random experiment with
m possible outcomes. We assume (believe) that these outcomes are equally
likely, so the probability of an event consisting of n outcomes is simply n

m .
In the framework of general probability spaces, this means that we assume
that 
 is a �nite set (with m elements), � = 2
, and P (f!g) = 1

m for each
! 2 
; hence,

P (A) =
#A

#

:

We shall call such probability spaces classical and refer to P as the uniform
probability measure.

It is useful to know some formulas for computing the numbers of elements
of various �nite sets.

2.1 What is the number of subsets of an n-element set?

2.2 In how many ways can you order an n-element set?

2.3 What is the number of all k-element subsets of an n-element set?

2.4 What is the number of all one-to-one mappings from an n-element
set to an m-element set?
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2.5 What is the number of all mappings from an n-element set to an
m-element set?

We introduce some notation:�
n

k

�
=

n!

k!(n� k)!
=
n� (n� 1)� � � � � (n� k + 1)

1� 2� 3� � � � � k
:

This gives, as we can see in Solution 2.3, the number of k-element subsets
of an n-element set and is called the binomial coeÆcient.

2.6 Use the above problems to justify the following particular case of
Newton's binomial formula

2n =

nX
k=0

�
n

k

�
:

2.7 Prove the Van der Monde formula

�
m+ n

k

�
=

kX
i=0

�
m

i

��
n

k � i

�
:

Now some typical exercises on �nding probabilities of events. The scheme
is as follows. First, we choose the set 
 and �nd the appropriate subset
A � 
. Here lies the main diÆculty because there are many possibilities and
we must be careful to be consistent. (In the solution to the next problem,
we provide three di�erent approaches, all leading to the same result.) At
the end, we count the elements of 
 and A and compute the probability
of A.

2.8 Ten people are randomly seated at a round table. What is the prob-
ability that a particular couple will sit next to each other?

2.9 If boys and girls are born equally likely, what is the probability that
in a family with three children, exactly one is a girl.

2.10 Two dice are thrown. What is the probability that the total number
of dots is

a) equal to 7, c) greater than 5,
b) equal to 3, d) an even number.

2.11 In a lottery, 6 numbers are drawn out of 49. Find the probability
that
a) 1, 2, 3, 4, 5, 6 are drawn,
b) 4, 23, 24, 35, 40, 45 are drawn,
c) 44 is one of the numbers drawn.
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2.12 What is the probability that among 25 people, at least 2 have their
birthday on the same day of the year.

2.13 Among t = 60 lottery tickets, w = 20 win prizes. We buy b = 6.
What is the probability that g = 2 will be winning? Generalize this
to arbitrary numbers t; w; b; g.

Æ 2.14 In a series of 1000 light bulbs, 2% are defective. What is the proba-
bility that among 20 bulbs bought, there are 2 faulty ones?

Æ 2.15 From a bridge deck of 52 cards, we draw 13. What is the probability
that we have 5 spades in our hand?

2.16 A bridge deck of 52 cards is dealt among the players. Suppose that I
have 4 spades and the opponents have shown (by bidding) that they
have 8 hearts. What is the probability that my partner has at least
3 spades?

For bridge players. This problem has practical consequences. Suppose that
as South you have

� AJ84 ~ 32 } 54 | KQ952

and the bidding is

N E S W
1~ pass 2~

pass pass ?

The risk of takeout double is 3} response. The best contract may be 2�,
and the estimation of the probability of a complete mis�t (partner holding
less than three spades) is important.

2.17 We draw 5 cards out of a deck of 24. What is the probability that
we have three of one kind.

2.18 In the game of poker played with the 24-card deck you get AAAKJ.
a) What is the probability of getting one Ace if you discard KJ?
b) What is the probability of getting a King or an Ace if you

discard J?

Æ 2.19 In the game of poker played with the 24-card deck you get AAKJ9.
a) What is the probability of getting one Ace or two Aces if you

discard KJ9?
b) What is the probability of getting a King or an Ace if you

discard J?
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2.20 A monkey hits a computer keyboard three times at random. What is
the chance of getting a three-letter word with a consonant followed
by two vowels? The word does not have to make sense. For simplicity,
assume that there are 100 keys.

2.21 From a pack of 52 cards, we draw one-by-one. What is the proba-
bility that an Ace will appear at the �fth turn?

2.22 How likely is it that the word ABRACADABRA will show if the
letters A, A, A, A, A, B, B, C, D, R, R are shu�ed randomly?

2.2 Hints

2.1 It suÆces to consider n-element sets of the form f1; 2; : : : ; ng. Try
1, 2, or 3-element sets. The set f1g has 2 subsets � and f1g, the set
f1; 2g has 4 subsets, and f1; 2; 3g has 8 subsets. If you add one new
element to a �nite set, how many new subsets (i.e., those containing
the new element) will arise? Now try to guess the general formula.

2.2 A permutation of a set A is a one-to-one mapping f : A! A.
If A = f1; 2; : : : ; ng, then the sequence f(1); f(2); : : : ; f(n) con-

tains all the elements of A. So one can say that a permutation of a
�nite set is the order in which the elements are arranged.
Try to �gure out the general formula by �nding all permutations

of 1-, 2-, 3-element sets. How many new permutations will arise if
you add one new element to a �nite set?

2.3 Consider an example. For A = f1; 2; 3; 4; 5g, count the number of
3-element subsets of A. The �rst element of a subset can be chosen
in 5 ways, the second in 4, and the third in 3 ways, giving in total
5�4�3 = 60. But this is incorrect! Each subset has been counted 6
times, so we have to divide 60 by 6. To see this, consider, for example,
f1; 3; 4g. The elements of this set could have been picked in any
order. So the following sets emerge from this method of counting:
f1; 3; 4g, f1; 4; 3g, f3; 1; 4g, f3; 4; 1g, f4; 1; 3g, f4; 3; 1g. But they are
all identical!

2.4 Suppose we are counting the number of one-to-one mappings f from
the set f1; 2; 3g to f1; 2; 3; 4; 5g. First, f(1) can be chosen in 5 ways,
then f(2) in 4 ways, and, �nally, f(3) in 3 ways. The total number
is 5� 4� 3.

2.5 Suppose we are counting the number of mappings f from f1; 2; 3g
to f1; 2; 3; 4; 5g. We can choose f(1) in 5 ways, then f(2) in 5 ways,
and, �nally, f(3) also in 5 ways (the values may coincide). The total
number is 5� 5� 5 = 53.
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2.6 Use Problems 2.1 and 2.3.

2.7 Imagine choosing k balls, among which arem white balls and n black
balls. You could do that, for example, by choosing i white balls and
k � i black balls for some i between 0 and k. Counting the number
of choices in this way, you can obtain the right-hand side of Van der
Monde's formula. To obtain the left-hand side, refer to Problem 2.3.

2.8 How in practice can we seat 10 people randomly at the table?
1. We number the seats from 1 to 10, prepare a deck of 10 cards

with the same numbers on them, shu�e, then deal among the people.
The number of outcomes is the same as the number of all permuta-
tions of 10 elements. Count the \favorable" outcomes that the two
people are seated next to each other.
2. Prepare the cards and the seats as before. Now deal 2 cards

to the couple. This can be done in the same number of ways as the
number of 2-element subsets of a 10-element set. How many sets are
\favorable"?

2.9 Consider the tree in Figure 2.1.

FIGURE 2.1. Three children

All branches are equally likely. How many \favorable" ones are
there?

2.10 All possible outcomes are shown in Figure 2.2.
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FIGURE 2.2. Two dice

All possible sums are in the table:

1 2 3 4 5 6

1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12

Some sums appear more frequently than others. It would be ill-
advised to take 
 = f2; 3; : : : ; 11; 12g with uniform probability mea-
sure.

2.11 The order is irrelevant, so the model should be based on selecting
6-element subsets.

2.12 It is best to consider the opposite �rst: the probability that all 25
people have their birthdays on di�erent days. Disregard leap years
for simplicity.

2.13 Buying tickets is like selecting a subset. The same can be said about
winning and losing tickets.

2.14 See Problem 2.13, in particular the general formula given in the
solution. Here, a bulb is a ticket, a defective bulb is a prize, and
buying is the same as drawing at random.

2.15 See Problem 2.13.

2.16 The situation is similar to that in Problem 2.15. It is best to begin
with computing the probability that the partner has 0, 1, or 2 spades.

2.17 Drawing 5 cards means choosing a 5-element subset. There are 6
possible triplets: 3 Aces, Kings, Queens, Jacks, Tens, or Nines.
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2.18 You draw 1 or 2 out of the remaining 19 cards, so the sample space
consists of 1- or 2-element subsets. You have to count the \favorable"
outcomes carefully.

2.19 See Problem 2.18.

2.20 The sample space consists of all functions from the set f1; 2; 3g to
f1; 2; : : : ; 100g. Count the number of \favorable" ones.

2.21 Since the order is relevant, we consider functions (sequences) rather
than sets.

2.22 If all the letters had been di�erent, we would have a 1 in 11! chance.
But in our case, there are multiple instances of some letters and
certain permutations lead to the same word.

2.3 Solutions

2.1 The answer is 2n. We shall prove this by induction. We can as-
sume without loss of generality that the n-element set is of the form
f1; : : : ; ng.
The case n = 1 was discussed in the hint.
Induction hypothesis: Suppose that for some n = k, the k-element

set f1; 2; : : : ; kg has 2k subsets. Consider the (k + 1)-element set
f1; 2; : : : ; k; k + 1g. Each subset A of f1; 2; : : : ; k; k + 1g is either
contained in f1; 2; : : : ; kg or not depending on whether k+1 belongs
to A or not. The number of subsets A contained in f1; 2; : : : ; kg is 2k
by the induction hypothesis. The number of subsets A contained in
f1; 2; : : : ; k; k+1g but not in f1; 2; : : : ; kg is also 2k because the map-
ping A 7! A [ fk + 1g de�nes a one-to-one correspondence between
these two kinds of subsets. This means that the total number of sub-
sets of the (k+1)-element set f1; 2; : : : ; k; k+1g is 2k +2k = 2k+1,
completing the proof.

2.2 The answer is n! = 1� 2� � � � � n.
To see this, let us count all possible permutations of f1; 2; : : : ; ng

by putting its elements into numbered cells. Number 1 can be placed
in n cells, which leaves n � 1 free cells in which to put the next
number. This means that there are n� (n� 1) ways in which 1 and
2 can be placed in the cells. Next, we have n� 2 free cells in which
to put 3, which gives n�(n�1)�(n�2) ways of placing 1, 2, and 3.
After placing all n numbers in this manner, we see that this can be
done in n� (n� 1)� � � � � 2� 1 = n! ways, as claimed.
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2.3 The answer is

n� (n� 1)� � � � � (n� k + 1)

1� 2� 3� � � � � k
:

To select a k-element subset, choose the elements one-by-one. The
�rst can be chosen in n ways, the second in n � 1 ways, and so
on. The number of all possibilities is the product in the numerator.
This method of counting distinguishes between k-element sequences
ordered in a di�erent way. To obtain the number of k-element subsets
(where the order of elements does not matter), we have to divide
by the number of permutations of a k-element set, i.e., by k! =
1� 2� 3� � � � � k.

2.4 The answer is m�(m�1)�(m�2)�� � ��(m�n+1). Without loss
of generality, we can assume that the domain of our mappings is the
set f1; 2; 3; : : : ; ng and the range is f1; 2; 3; : : : ;mg. The value f(1)
can be selected in m ways, f(2) in m � 1 ways, and so on. After n
steps, we have the total number of possibilities as claimed.

2.5 The answer is mn. Without loss of generality, we can assume that
the domain of our mappings is the set f1; 2; 3; : : : ; ng and the range
is f1; 2; 3; : : : ;mg. The value f(1) can be selected in m ways, f(2)
also in m ways (it is possible that f(1) = f(2)), and so on. After n
steps, we get the result.

2.6 The left-hand side of the equality to be veri�ed is the number of all
subsets of an n-element set. On the right, we have the sum of the
numbers of 0-, 1-, 2-, : : : ; n-element sets. Together, they exhaust all
possible subsets.

2.7 Consider an (m+n)-element set A. The number of k-element subsets
in A is

�
m+n
k

�
; see Problem 2.3. Now, take an m-element set B and

an n-element set C such that A = B [ C and consider those k-
element subsets in A that have i elements in B and k � i elements
in C. There are

�
m
i

��
n
k�i
�
such subsets, again by Problem 2.3. The

sum from i = 0 to k gives the number of all k-element subsets in A,
which proves Van der Monde's formula.

2.8 We give 3 solutions depending on the model for seating 10 persons
randomly at a round table.
1. Having numbered the seats from 1 to 10, we shu�e and deal

a deck of 10 cards with these numbers. Here, 
 is the set of all
permutations of a 10-element set, so #
 = 10!. A permutation is
\favorable" when the couple sit next to each other, i.e., draw (1; 2) or
(2; 3) or : : : or (9; 10) or (10; 1) (the table is round), or the inverted
pairs (2; 1) or (3; 2) or : : : or (1; 10). This gives 20 possibilities. The
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remaining 8 people can be seated in any order, so we multiply by 8!.
The required probability is

20� 8!

10!
=

2

9
:

2. We consider the cards drawn by the couple as a set (the order
does not matter) and we are not bothered with the rest of the people.
So, 
 is the set of all 2-element subsets of a 10-element set with
#
 =

�
10
2

�
. There are 10 \favorable" sets: f1; 2g, f2; 3g, : : : , f10; 1g,

so the probability is

10�
10
2

� = 10
10�9
1�2

=
2

9
:

3. The neatest solution which comes to mind is this. One part-
ner draws a card. There are 9 left with 2 \favorable" ones, so the
probability that the couple will sit together is 2

9 , as before.

2.9 There are eight possibilities:

BBB, BBG, BGB, BGG, GGG, GGB, GBG, GBB,

out of which three are \favorable." The probability is 3
8 .

2.10 Counting the \favorable" outcomes in Figure 2.2, we easily get the
following answers:

a) 6
36 =

1
6 , c) 26

36 =
13
18 ,

b) 2
36 =

1
18 , d) 18

36 =
1
2 .

2.11 
 consists of all 6-element subsets of the set f1; 2; : : : ; 49g. Thus,
#
 =

�
49
6

�
. In cases a) and b), we have one \favorable" outcome, so

the probability is

1�
49
6

� = 1
49�48�47�46�45�44

1�2�3�4�5�6
=

1
10068347520

720

=
1

13983816
:

In case c), the number of selections containing a speci�c number, 44
in this case, is equal to the number of ways the remaining 5 numbers
can be chosen out of 48, which is

�
48
5

�
. The probability is equal to

�
48
5

�
�
49
6

� = 48�47�46�45�44
1�2�3�4�5

49�48�47�46�45�44
1�2�3�4�5�6

=
6

49
:

2.12 The desired probability is equal to p = 1� q, where q is the proba-
bility that all 25 people have birthdays on di�erent days.
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The sample space is the set of all functions from f1; 2; : : : ; 25g
to f1; 2; : : : ; 365g with #
 = 36525 (we disregard leap years for
simplicity). The number of assignments with di�erent birthdays is
the same as the number of one-to-one mappings: 365�364�� � ��341.
Dividing these two, we have

q =
365� 364� � � � � 341

36525
=

365

365
� 364

365
� � � � � 341

365
� 0:40;

so p � 0:60, which is surprisingly large.

2.13 The sample space consists of all 6-element subsets of a 60-element
set, so #
 =

�
60
6

�
. Our 2 winning tickets are 2-element subsets of

the set of 20. To each such a selection, there correspond
�
40
4

�
ways in

which the remaining, losing, tickets can be selected. It follows that

p =

�
20
2

�� �404 ��
60
6

� � 0:35:

The general formula has the form

p =

�
w
g

�� �t�wb�g
�

�
t
b

� :

2.16 The sample space consists of all 13-element subsets of a 31-element
set (52 � 13 � 8, excluding our hand and the hearts shown), so
#
 =

�
31
13

�
. The number of hands with 0 spades is

�
22
13

�
(since there

are 9 spades among the 31 cards), with 1 spade 9� �2212�, and with

2 spades
�
9
2

�� �2211�. So the answer is
p = 1�

�
22
13

�
+ 9� �2212�+ �92�� �2211��

31
13

� � 0:85:

2.17 The sample space consists of all 5-element subsets of the 24-element
set of cards, so #
 =

�
24
5

�
. Three aces can be selected in

�
4
3

�
ways

and the remaining 2 cards in
�
20
2

�
ways. Multiply this by 6 to get

p =
6� �43�� �202 ��

25
5

� � 0:086:

2.18 a) We have #
 =
�
19
2

�
= 171 and there are 18 \favorable" outcomes:

the remaining Ace with any of the other 18 cards. So p = 18
171 �

0:1052:
b) We have #
 =

�
19
1

�
= 19 and there are 4 \favorable" outcomes:

three Kings and the remaining Ace, so p = 4
19 � 0:2105:



2.3 Solutions 25

2.20 Taking 
 to be the set of all functions from f1; 2; 3g to f1; 2; : : : ;
100g, we have #
 = 1003. There are 20 consonants and 6 vowels.
The number of \favorable" outcomes is 20�6�6 and the probability
is

p =
20� 6� 6

1003
= 0:00072:

2.21 Consider 5-element sequences of cards, i.e., one-to-one mappings
from f1; 2; 3; 4; 5g to f1; 2; : : : ; 52g with #
 = 52�51�50�49�48:
To represent the event in question, we count all sequences of 4 cards
out of 48 and multiply by 4, as there are 4 aces in the deck. Hence,

p =
48� 47� 46� 45� 4

52� 51� 50� 49� 48
� 0:05989:

2.22 Suppose that we label each letter with a number from 1 to 11. The
sample space is the set of permutations of 11 numbers, so #
 = 11!.
We count the permutations giving the required word: The letters A
can be rearranged in 5! ways, and B and R in 2! ways each, so we
obtain 5!� 2!� 2! \favorable" outcomes and

p =
5!� 2!� 2!

11!
=

1

83160
:
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