Part I

Transact-SOL Basics

CHAPTER 1

Transact-SOL Overview

THE MAIN GOAL OF THIS BOOK is to show how stored procedures and triggers are
used to implement real-world solutions with SQL Server 2000. In order to accom-
plish this goal the reader must have a fundamental understanding of Transact-
SQL (T-SQL). With this in mind, the book has been organized so that the material
presented in Part One (Chapter 1 to 8) can serve as a reference for both Parts Two
and Three. Part One not only covers the basics of T-SQL, but also contains a
description of every programming concept (e.g., T-SQL built-in functions) used in
the remainder of the book. If you see a code segment or reference that you do not
understand in Parts Two and/or Three, be assured that it is explained in Part One.

This chapter begins a series of five whose purpose is to introduce you to the
basic concepts of T-SQL. A general overview of the language is covered here, data
types in Chapter 2, data definition language (DDL) in Chapter 3, and data mani-
pulation language (DML) in Chapters 4 and 5. If you are a novice user of SQL
Server, I encourage you to read these chapters thoroughly before taking on the
rest of the book.

If you already have a good understanding of T-SQL you will probably want to
jump ahead to Chapter 7 and read about user-defined functions, which are new to
SQL Server 2000. If you are a frequent user of views, you will want to make sure you
read Chapter 8 so you can understand the new indexing features that are now avail-
able. Otherwise, feel free to jump to Part Two and start reading about procedures.

NOTE Sample Code

The sample code for the book can be downloaded at either
http://www.apress.com orhttp://www.SQLBook.com. Download
CodeCentric.zip and extract and access a chapter's sample file(s)
as needed. For most chapters there is only a single .sql file, but for
Chapters 10, 13, and 14, multiple files are used.

Chapter 1

Before You Get Started

This book uses a lot of examples to demonstrate the various functionality available
in SQL Server 2000 and each one is included in the example file(s) that accompany
each chapter. The example files were created so that you could more easily imple-
ment the examples as you read along. Query Analyzer is used extensively to
execute the examples, so the various components and functionality available in
the tool are discussed here.

Query Analyzer

Query Analyzer is an application that allows you to interact with the SQL Server
database engine. It is not really a part of SQL Server, but simply a tool that comes
with the product that makes it easier to use. Query Analyzer has been greatly
enhanced in SQL Server 2000, so you can now use it to accomplish the following:

Create and execute queries.

* Use templates that contain the basic syntax of commonly used database
objects.

Analyze and script database objects using Object Browser.

» Execute stored procedures using Object Browser.

Perform query optimization analysis using the Show Execution Plan option.

¢ Locate database objects using Object Search.

Debug stored procedures using the T-SQL Debugger.

Query Analyzer Components

When you launch Query Analyzer you are prompted to provide login information.
Once you have provided a valid login and connected to the target server, the
windows shown in Figure 1-1 are displayed.

Query Window is shown on the right and Object Browser is shown on the left.

& SOL Query Analyzer [_[Z]<]
File Edt OQuew Took Window Help

R = e =R s =

Obiect Browser NS 0 uery - ACE.Nothwind.garth - Unfitledi
EEED =l T =

EE=3

o co

[master

[model

B msdb

[Morthwind

1 oubs

[Realsdventures

[tempdb

(23 Common Dbjects

F{ Configuration Functions
[=-[23 Cursor Functions

(23 Date and Time Functions
(211 Mathematical Functions
(21 Agaregate Functions
F-{ Metadata Functions
(2 Secuity Functions

(23 String Functions

(21 System Functions

(L] System Statistical Functions
(2 Test and Image Functions
F-Z] Rowset Functions:
(-0 System Data Types

Lo

|ACE 8.0) [gath (51) [Northwind | 00000 [Drows [Ln1,Coll

%3 Objects ! Templates

Connections: 1 | [NUM |

Figure 1-1. Query Analyzer

Query Window

The Query Window is where you will do most of your SQL programming so it is
important that you understand the multiple panes of which it is composed.
Table 1-1 describes the panes used in Query Window.

Table 1-1. Query Window Panes

PANE DESCRIPTION

Editor Where you type and execute SQL statements. Statements can be executed by

clicking the Run button on the toolbar or by pressing CTRL+E. When the pane

contains multiple statements, one or more can be executed in isolation by
highlighting each and pressing CRTL+E.

Results ~ Where the results of the statements are displayed. By default, this pane is
not displayed until a statement is executed. You can toggle the display of
this pane by clicking the right-most icon on the toolbar.

Message Where error messages are displayed. This pane simply overlays the Results

Pane when an executed SQL Statement causes an error message to be
displayed.

Transact-SQL Overview

Chapter 1

Table 1-1. Query Window Panes (Continued)

PANE

Execution
Plan

Trace

Statistics

DESCRIPTION

Where the graphical representation of the execution plan is displayed. This
pane is not displayed by default, but can be activated by clicking Query on
the main menu, selecting Show Execution Plan and then executing a SQL
Statement. Once the statement has been executed a tab labeled Execution
Plan will be displayed next to the Results tab. Simply click it to see a graphi-
cal representation of the execution plan.

Where server trace information is displayed. It is not displayed by default,
but can be activated by clicking Query on the main menu, selecting Show
Server Trace and then executing a SQL Statement. Once the statement has
been processed a tab labeled Trace will be displayed to the right of the
Results tab.

Where statistics about the statements processed and the connection ses-
sion are displayed. It is not displayed by default, but can be activated by
clicking Query on the main menu, selecting Show Client Statistics and then
executing a SQL Statement. Once the statement has been processed a tab
labeled Statistics will be displayed to the right of the Results tab.

The last three panes described in Table 1-1 are optional for good reason. They
display more advanced information that is used to optimize queries and/or trou-

bleshoot performance problems. The Execution Plan Pane is used extensively in
Appendix C, which discusses query optimization techniques. You should, however,
postpone reading it until you complete Part Two of the book. The Trace and Statis-

tics Panes are not used in this book, so if you would like to learn more about each

one, see Books Online topics: Viewing and Analyzing Traces and Query Window
Statistics Pane.

TIP Looking Up References in Books Online

This book contains numerous references to topics in Books Online. To find a
particular topic, simply open Books Online via the SQL Server program
group, click the Search tab, type in the topic verbatim in the input box and
click List Topics.

Object Browser

Object Browser is new to SQL Server 2000, and it is an extremely useful tool. In pre-
2000 versions of SQL Server I often needed both Query Analyzer and Enterprise
Manager open at the same time in order to program. Object Browser includes the
functionality (for example, easy access to a table’s column names and data types)
that formerly caused me to use Enterprise Manager, so I no longer need to have
both applications open while developing.

Object Browser allows you to do the following:

 View all the objects in an instance of SQL Server.

 Create a script that shows the statements used to create an object.

Create a script that allows you to modify or alter an object.

View the data in a table or view.
e Execute a stored procedure.

* Add an extended property to an object. An extended property is used to add
metadata to a database object.

Delete a database object.
* View many of the built-in functions available in SQL Server 2000.
* View the available data types and their associated characteristics.

In order to use Object Browser to view all the objects in a database, simply
expand the target database and expand the folder of the type of object you wish to
view. You can place an object’s name in the Editor Pane by clicking it and dragging
it from the browser window into the pane. The various scripting options that are
available for an object are accessed by right-clicking the target object and selecting
the desired scripting option from the pop-up menu. To view the data in a table or
view, simply right-click the object and select Open. In like manner, executing a
stored procedure is as simple as right-clicking the target procedure and selecting
Open. An extended property can be added to an object by right-clicking the object
and selecting Extended Properties from the pop-up menu. To delete an object sim-
ply right-click it and select Delete. To get the syntax for a function shown in the
Common Objects area into the Editor Pane, right-click the target and select the
desired scripting option. To see the data types available in SQL Server 2000, simply
expand the System Data Types folder. A description of the data type is displayed
when you place your mouse over each item.

Transact-SQL Overview

Chapter 1

Object Search

Object Search, new to SQL Server 2000, allows you to search for an object in one or
more databases. You activate Object Search by clicking the database/magnifying
glass icon on the toolbar or by clicking Tools on the main menu and selecting Object
Search. The window displayed as a result of either action is shown in Figure 1-2.

& 501 Query Analyzer - [Object Search - ACE. garth - 4]

(A Fle Edit Querp Tooks ‘indow Help =18
R E e R HigER e |
Dbject Browser x|

|8 AcEiat) = Obiect name: [eal: =l I Case sersitive __rm Nawi
Fpe Database: [0 e =l e

c Hit limit: [100 =]

New Seaich |
master (17 Al obigct types
model [T Syster table EIr Column Help
msdb EIF User table T Index
Worthwind o Yiew Sl Trigger
- pubs Z Stored procedurs ZAT Extended procedurs
8 ‘Healzgve"‘u'es €. User defined function 7= I DRI constraint
e[tom
3 Conmon Otiscts T Edtonded property

(23 Configuration Functions Prapery rame [cal> =l
Cursor Funclions =
Date and Time Functions T D -
Mathematical Functions
- Aagregats Fundlions db neme [oumer [object name ohject type object table
(] Metadata Functions
Security Funelions

Stiing Functions

Spstem Functions

System Stalistical Functions
Text and Image Functions
(23 Rowset Functions

44 Gystem Data Types

%5 Obiects [E] Templates] Ready [&CE @) [oath (54 [COR0D [Oroms

| |Connections: 2 | [NUM |

Figure 1-2. Object Search

Object Search gives you the ability to restrict a search by object name, data-
base location, object type, or extended property name or value.

T-SQL Debugger

The T-SQL Debugger is new to SQL Server 2000, but there have been other stored
procedure debuggers available as add-ins to Visual C++, Visual Basic, and Visual
Interdev. This tool is described in detail in the “Debugging Stored Procedures”
section of Chapter 11.

Transact-SQL Overview
General Comments on Query Analyzer

The following sections should help you better understand some of the additional
features available in Query Analyzer.

Displaying Results

In pre-2000 versions of SQL Server the data displayed in the Results Pane was shown
in plain text. In SQL Server 2000, the default behavior is to display the results in a grid.
You also have the ability to pipe the results generated by a statement to a file. You can
toggle these options by clicking Query on the main menu and selecting the desired
option. Should you want to revert back to pre-2000 behavior and always display
results in text, you change the default setting by completing the following:

1. Click Tools on the main menu and select Options.

2. Click the Results tab and change the option for the Default Results Target
select box.

3. Click OK. Now the default is permanently changed.

Commenting Multiple Statements

As you build the statements used to create the various database objects required
by your project, you often fill the Editor Pane with quite a bit of text. Should you
have statements that you do not want to execute, but are not quite ready to delete
from the pane, you can easily comment them out by completing the following:

1. Highlight the statement(s) you wish to comment out.

2. Click Edit on the main menu, highlight Advanced and select Comment
Out.

This adds the inline comment marks double-dashes (--) to the start of each line.
You can use the same Advanced option to remove the comment marks as well.

Add-In Tools

You can add shortcuts to commonly used programs to the Tools option from the
main menu. For example, I often use the GWD Text Editor when writing ASP pages,
so I added a shortcut to GWD using this approach. In order to add a program
shortcut complete the following:

1. Click Tools on the main menu and select Customize.

Chapter 1

10

2. Click the Tools tab and then click the Add icon (top-most icon with red
arrow pointing to the right).

3. Typein a descriptor for the shortcut and press Enter.

4. Typein or select (using the Ellipsis button) the location and name of the
file used to launch the application and click OK.

Once this process is complete, a shortcut to the application is available under
the Tools option. Simply highlight Tools, select the shortcut and the program is
launched.

Shortcuts to Stored Procedures

You can add shortcuts to commonly used stored procedures by associating the
procedure with a defined key-combination. In order to create a hot-key combo
shortcut to a stored procedure complete the following:

1. Click Tools on the main menu and select Customize.
2. Select an open key-combo, type in the stored procedure name, and click OK.

Once this is complete the stored procedure will be executed when both the
Editor Pane is active and the key-combo is pressed. We will cover how this done in
detail in the middle of Chapter 11 in the sidebar titled “Configure Hot-Key Combo
in Query Analyzer.”

Explore Query Analyzer

Query Analyzer contains quite a bit of functionality and has a number of configu-
ration options. Since you will be spending so much time using this tool I
encourage you to explore all the options available in the Tools, Options dialog.
Understanding how Query Analyzer can work for you will make you a more effi-
cient programmer.

Transact SQL

T-SQL is Microsoft’s implementation of SQL (Structured Query Language) and
includes both standards-dictated and extended functionality. In order to fully
understand the last sentence you need to know that there is a standard SQL that is
defined and published by ANSI (American National Standards Institute) and

ISO (International Organization for Standardization). The ANSI/ISO Standard is
commonly referred to as ANSI SQL and includes all the functionality, syntax and
data types that a software vendor’s implementation of SQL must support in order
to be ANSI-compliant. ANSI SQL (current version SQL-99) has three levels of com-
pliance: entry, intermediate and full. To meet one of the levels of compliance a
vendor’s implementation of SQL must support all the functionality, syntax and data
types of the particular level. SQL Server 2000 is entry-level compliant with SQL-92—
the previous ANSI Standard—and, just so you know, there is no implementation of
SQL (e.g., Oracle’s PL/SQL) that is fully compliant with the ANSI Standard.

At this point you may be wondering two things:

1. Whyis T-SQL only compliant with entry-level SQL-92?

2. Why would SQL 2000 provide extended functionality that is not required
to be ANSI-compliant?

The answer to the first question is simple: it would have taken too much time
to implement the new standard in the 2000 version of the product. According to
Microsoft, it does plan to adhere to entry-level compliance of SQL-99 with the next
major release of SQL Server. (I have no idea when this will be, and Microsoft isn't
giving too many hints.) Don’'t worry about the lack of compliance with the new
standard, though. Rest assured that you will be able to perform all the data definition
and manipulation operations necessary to build world-class database applica-
tions with the current version of the product.

The answer to the second question is that Microsoft wants to make T-SQL
easier to use than pure ANSI SQL. Let’s face it, certain aspects of SQL are a little dif-
ficult to comprehend and not everyone has the time learn how to implement all
their solutions using ANSI SQL. If Microsoft has the ability to simplify certain data
definition and manipulation operations by extending the functionality of ANSI
SQL, the company will produce a more marketable product and certainly make
the lives (at least the programming aspect) of its customers a little easier.

There is, however, a group of professionals (let’s call them SQL purists) who
are against extending the functionality of ANSI SQL because using SQL that is not
ANSI-compliant produces non-portable code. Non-portable means you cannot
take the exact code that works in SQL Server and use it in another RDBMS (rela-
tional database management system) like Oracle or Informix. The purists make a
valid point; but quite frankly, I don't think there are a lot of developers whose code
will be used with more than one RDBMS. As far as I am concerned, the only time
the extra effort required to use pure ANSI SQL is justified is when you are a soft-
ware vendor (e.g., SAP) who supports multiple RDBMSs.

Transact-SQL Overview

11

Chapter 1

12

ANSI versus T-SOL Example

Let’s take a look at an example that shows how a T-SQL extension of ANSI SQL can
make programming a little easier. Most of you are familiar with columns whose
value auto-increments when a new row is added to a table. Those of you with
Access experience will know that the application uses an AutoNumber data type to
implement this functionality. SQL Server does not have a data type that causes a
column to auto-increment. Instead, it uses a property associated with a column’s
definition to indicate that the value will be incremented when a new row is
added. The following CREATE TABLE statement shows how to create a column
whose value increments by 1 when a new row is added to the table. Please note
that the result of executing the statement in Query Analyzer is shown below the
“--Results--" indicator.

USE tempdb

go

CREATE TABLE Customers

(

Cus_UniqueID int IDENTITY(1,1) PRIMARY KEY,
Cus_Name varchar(30)

)

--Results--
The command(s) completed successfully.

The Cus_UniquelD column is defined with an int (integer) data type and the
IDENTITY property is what makes the column increment by 1 when a new row is
added. The (1,1) after IDENTITY indicates the seed and increment value can be set
when the table is created. If you wanted to have an initial value of 10 and incre-
ment it by 5 each time a record is added, you would use (10,5). You can also omit
the (seed, increment value) part of the IDENTITY property, in which case the
values default to one and one. If you use Enterprise Manager to create a table it is
no more work than clicking a check box to add the property to a column. Itis a
little more work than Access, but still pretty easy.

The following code shows how to insert and review a row inserted into the
Customers table.

USE tempdb
Go
INSERT Customers (Cus_Name) VALUES ('Big Red Machine Co.")

SELECT Cus_UniqueID, Cus_Name
FROM Customers

--Results--

(1 row(s) affected)

Cus_UniqueID Cus_Name

1 Big Red Machine Co.

When a column is defined with the IDENTITY property, it is not referenced in
the INSERT statements executed on the table. SQL Server determines the next
value and populates the column accordingly.

The ANSI SQL approach to implementing an auto-incrementing column does
not involve setting any column-level properties. Instead, you modify the INSERT
statement executed on the table so that a new value is calculated when a record is
added. The following table structure is needed to demonstrate this approach.

USE tempdb
go
CREATE TABLE Customers_ANSI

(
Cus_UniqueID int PRIMARY KEY,
Cus_Name varchar(30)

)
--Results--

The command(s) completed successfully.

The following INSERT statement will calculate the next value dynamically
when a new row is added to the Customers_ANSI table.

USE tempdb

go

INSERT Customers ANSI

SELECT COALESCE(MAX(Cus_UniqueID)+1,1),
'Big Red Machine Co.'

FROM Customers_ANSI

SELECT Cus_UniqueID, Cus_Name
FROM Customers_ANSI
--Results--

(1 row(s) affected)

Cus_UniqueID Cus_Name

1 Big Red Machine Co.

Transact-SQL Overview

13

Chapter 1

14

It is not important that you understand exactly how the INSERT statement
works. The point here is to show that using a T-SQL extension is quite a bit easier
than using pure ANSI SQL.

You must decide which approach to use in your applications. As for me, [am
going to risk the wrath of the SQL purists and use the IDENTITY approach in both
this book and my real-world applications.

TIP ANSI versus T-SQL Extension

There is no single resource that details what functionality available in
T-SQL is not ANSI-compliant. There is, however, a configurable option that
can be set to warn you when you are using code that does not adhere to the
specified level of compliance. The option is called FIPS_Flagger and accepts
the three levels of compliancy (entry, intermediate, and full) as arguments.

FIPS_Flagger is a very unusual name when compared to other configurable
settings available in SQL Server 2000. The name is derived from the Federal
Information Processing Standard (FIPS), which was written by the National
Institute of Standards and Technology under the direction of Congress. FIPS
defines the minimum functionality to which a product must adhere before
the US Government can purchase it.

For more information on this option, see the Books Online topic: Set
Fips_Flagger.

T-SQL Syntax Elements

Like any other programming language, T-SQL is composed of different syntax
elements. The syntax elements of T-SQL are listed in Table 1-2.

Table 1-2. Syntax Elements of T-SQL

ELEMENT

Identifiers

Data Types

Functions

Expressions

Comments

Keywords

DESCRIPTION

Names of the database objects within an instance of SQL Server. All
objects (e.g., databases, tables, stored procedures, views) have an associ-
ated identifier. There are two types of identifiers available in SQL Server
2000: Regular and Delimited. Regular identifiers conform to the rules for
specifying an identifier (e.g., no embedded spaces) while Delimited iden-
tifiers do not. When a Delimited identifier is referenced, it must be
surrounded by either brackets or double-quotes (e.g., [Table Name]). For
more information on the rules for identifiers, please see the Books Online
topic: Using Identifiers.

Types of data a column, variable or parameter can contain. The data
types available in SQL Server 2000 are discussed in Chapter 2.

Code elements that accept zero, one or more parameters and return a
value to the calling statement. SQL Server 2000 has both built-in and
user-defined functions. The GETDATE() function (which returns the
server’s current system time) is an example of a built-in function. One
might create a user-defined function to more easily calculate the number
of business days in a given date range.

SQL Statements or elements that can be resolved to a single value. A
column, variable or IF statement are examples of statements or elements
that resolve to a single value.

Text descriptions that allow code to be more easily understood. There are
two methods of commenting code in SQL Server 2000. You can either use
a double-dash (--) to comment a single line of code or the foreslash aster-
isk...asterisk foreslash (/*...*/) to comment one or more lines of code.

Reserved words used by SQL Server 2000. There are more than 150
reserved keywords in this version of SQL Server and they are detailed in
the Books Online topic: Reserved Keywords.

T-SOL DDL and DML

T-SQL is comprised of two types of statements: data definition language (DDL)
and data manipulation language (DML). The statements that compose each are
listed in the following sections.

Transact-SQL Overview

15

Chapter 1

16

DDL Statements

DDL statements are used to create, alter or delete a database object. These state-
ments affect the structure of the object and no data is added, updated or deleted.
The DDL statements in T-SQL follow. The text of each statement should make it
obvious the function it performs.

CREATE DATABASE ALTER DATABASE
DROP DATABASE CREATE TABLE
ALTER TABLE DROP TABLE

CREATE VIEW ALTER VIEW

DROP VIEW CREATE PROCEDURE
ALTER PROCEDURE DROP PROCEDURE
CREATE TRIGGER ALTER TRIGGER
DROP TRIGGER CREATE FUNCTION
ALTER FUNCTION DROP FUNCTION

DML Statements

DML statements are used to insert, update and delete data held in the objects
defined with DDL statements. The DML statements available in T-SQL are:

SELECT INSERT
UPDATE DELETE
TRUNCATE TABLE

In addition to the statements listed here there is another class of DML state-
ments that are categorized as control-of-flow. The control-of-flow statements are
discussed in detail in Chapter 4.

Naming Convention

A discussion on naming convention can often lead to harsh words from even the
nicest developers. In my seven years of working with databases I have seen quite a
few different naming conventions, and the ones that bothered me the most had
little or no consistency. One could argue that a naming convention that is not con-
sistent really is not a naming convention at all. I agree and think consistency
should be maintained at all costs.

The naming convention you use is not dictated by SQL Server (other than, of
course, the rules for identifiers), but by either personal preference or that man-
dated by your employer. The naming convention used for table and column
names referenced in this book is described here. The naming convention used for
other database objects is described when those objects are introduced if the con-
vention is not intuitively obvious.

I use mixed-case plural descriptors for table names. A table that holds informa-
tion about customers would be named Customers. A table that holds information
about the orders a customer places would be named CustomersOrders.

I use the first three characters of the table name in which a column is located
as a prefix for column names when a one-part name is used and the first three
characters of each part when a multi-part table name is used. The primary keys for
the Customers and CustomersOrders tables would be Cus_UniquelID and
CusOrd_UniquelD, respectively. The “UniqueID” portion is not dictated by the
table name, but by the value held in the column. The column that held the cus-
tomers’ names would be Cus_Name and the one that held the addresses would be
Cus_Address. When a foreign key is placed in a table the original column name is
used. A partial listing of the columns contained in Customers and Customers-
Orders is shown in Figure 1-3.

Customers CustomersOrders
Cus_UniqueID CusOrd_UniqueID
Cus_Name LCUS_UniqueID
Cus_Address CusOrd _Date

CusOrd_PONumber

Figure 1-3. Customers and CustomersOrders Table Layouts

I have often seen naming conventions that attempt to embed the data type in
a column name, but this has never appealed to me. From a relational database
standpoint, I am more interested in foreign key references than the data type used
to define a column. Plus, I do not see much value in knowing a column holds char-
acter data unless I also know the maximum allowable length. Column names like
strCustomerName or intCustomerID only leave me wondering if the maximum
length of the customer’s name is 30, 40, or 50 characters and if the maximum value
used to uniquely identify a customer is 255 or 32,767 or something larger.

Transact-SQL Overview

17

Chapter 1

18

Deja.com Power Search

I am a big fan of using the resources on the Internet to help me find better ways
to implement solutions for my clients. One of the most helpful sites I have found
is Deja.com at http://www.deja.com. Deja.com has a newsgroup search feature
called Power Search that allows you to focus on a particular newsgroup (their
terminology is Forum) and specify search criteria, such as Subject and Author.

You can access Power Search at http://www.deja.com/home_ps.shtml and use the
available parameters to limit the scope of the search. When I want to research a
SQL Server administrative issue, for example, I populate the Subject field with a
keyword used to designate the topic and the Forum field with “microsoft.pub-
lic.sqlserver.administration.” I then execute the query by clicking Search.

If you are not sure which newsgroup is the most applicable for your issue, you
can use the wildcard character for searching multiple newsgroups at the same
time. For example, if you wanted to search all the Microsoft SQL Server news-

groups, you would populate Forum with “microsoft.public.sqlserver.*”

Using Power Search is a heck of lot faster than posting to a newsgroup and then
waiting for someone to respond. Plus, it is highly likely that the particular prob-
lem you are trying to solve has been previously addressed in the newsgroups, so
why waste bandwidth and other people’s time by requesting help when the
answer is only a few clicks away?

Before You Go

This chapter presented an introduction to Query Analyzer, a general overview of
T-SQL, and the naming convention used for the tables and columns presented in
this book. It also provided a very useful Internet-related tip to help you quickly
find information, troubleshoot problems, or see how other developers are imple-
menting similar solutions.

The next chapter provides a detailed description of the data types available in

SQL Server 2000. It also covers a couple of topics that should allow you to better
understand why there are so many different data types available and some of the
advantages of using one over another.

2 Springer
http://www.springer.com/978-1-893115-83-5

Code Centric: T-SQL Programming with Stored
Procedures and Triggers

wells, G.

2001, XX, 695 p. 137 illus., Softcover

ISEM: 978-1-893115-83-5

A product of Apress

