
Chapter 7

Case Study in Least Squares
Fitting and Interpretation of
a Linear Model

This chapter presents some of the stages of modeling, using a linear multiple re-
gression model whose coefficients are estimated using ordinary least squares. The
data are taken from the 1994 version of the City and County Databook compiled
by the Geospatial and Statistical Data Center of the University of Virginia Library
and available at fisher.lib.virginia.edu/ccdb. Most of the variables come from
the U.S. Censusa. Variables related to the 1992 U.S. presidential election were orig-
inally provided and copyrighted by the Elections Research Center and are taken
from [365], with permission from the Copyright Clearance Center. The data extract
analyzed here is available from this text’s Web site (see Appendix). The data did
not contain election results from the 25 counties of Alaska. In addition, two other
counties had zero voters in 1992. For these the percent voting for each of the can-
didates was also set to missing. The 27 counties with missing percent votes were
excluded when fitting the multivariable model.

The dependent variable is taken as the percentage of voters voting for the Demo-
cratic Party nominee for President of the U.S. in 1992, Bill Clinton, who received

aU.S. Bureau of the Census. 1990 Census of Population and Housing, Population and Housing

Unit Counts, United States (CPH-2-1.), and Data for States and Counties, Population Division,

July 1, 1992, Population Estimates for Counties, Including Components of Change, PPL-7.
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43.0% of the vote according to this dataset. The Republican Party nominee George
Bush received 37.4%, and the Independent candidate Ross Perot received 18.9% of
the vote. Republican and Independent votes tended to positively correlate over the
counties.

To properly answer questions about voting patterns of individuals, subject-level
data are needed. Such data are difficult to obtain. Analyses presented here may
shed light on individual tendencies but are formally a characterization of the 3141
counties (and selected other geographic regions) in the United States. As virtually
all of these counties are represented in the analyses, the sample is in a sense the
whole population so inferential statistics (test statistics and confidence bands) are
not strictly required. These are presented anyway for illustration.

There are many aspects of least squares model fitting that are not considered in
this chapter. These include assessment of groups of overly influential observations,
and robust estimation. The reader should refer to one of the many excellent texts
on linear models for more information on these and other methods dedicated to
such models.

7.1 Descriptive Statistics

First we print basic descriptive statistics using the Hmisc library’s describe func-
tion.b

> library(Hmisc,T); library(Design,T)

> describe(counties[,-(1:4)]) # omit first 4 vars.

counties
15 Variables 3141 Observations

pop.density : 1992 pop per 1990 miles2

n missing unique Mean .05 .10 .25 .50 .75 .90 .95
3141 0 541 222.9 2 4 16 39 96 297 725

lowest : 0 1 2 3 4
highest: 15609 17834 28443 32428 52432

pop : 1990 population

n missing unique Mean .05 .10 .25 .50 .75 .90 .95
3141 0 3078 79182 3206 5189 10332 22085 54753 149838 320167

lowest : 52 107 130 354 460
highest: 2410556 2498016 2818199 5105067 8863164

bFor a continuous variable, describe stores frequencies for 100 bins of the variable. This

information is shown in a histogram that is added to the text when the latex method

is used on the object created by describe. The output produced here was created by
latex(describe(counties[,-(1:4)], descript=’counties’)).
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pop.change : % population change 1980-1992

n missing unique Mean .05 .10 .25 .50 .75 .90 .95
3141 0 768 6.501 -16.7 -13.0 -6.0 2.7 13.3 29.6 43.7

lowest : -34.4 -32.2 -31.6 -31.3 -30.2
highest: 146.5 152.2 181.7 191.4 207.7

age6574 : % age 65-74, 1990

n missing unique Mean .05 .10 .25 .50 .75 .90 .95
3141 0 153 8.286 4.9 5.7 6.9 8.2 9.5 10.9 11.9

lowest : 0.6 0.9 1.8 1.9 2.0, highest: 19.8 20.0 20.6 20.9 21.1

age75 : % age ≥ 75, 1990

n missing unique Mean .05 .10 .25 .50 .75 .90 .95
3141 0 144 6.578 3.1 3.9 5.0 6.3 7.9 9.9 11.3

lowest : 0.0 0.3 0.5 0.8 0.9, highest: 14.9 15.2 15.4 15.5 15.9

crime : serious crimes per 100,000 1991

n missing unique Mean .05 .10 .25 .50 .75 .90 .95
3141 0 2339 3008 0 286 1308 2629 4243 6157 7518

lowest : 0 39 40 41 44
highest: 13229 13444 14016 16031 20179

college : % with bachelor’s degree or higher of those age≥25

n missing unique Mean .05 .10 .25 .50 .75 .90 .95
3141 0 322 13.51 6.6 7.5 9.2 11.8 15.6 21.9 27.1

lowest : 0.0 3.7 4.0 4.1 4.2, highest: 49.8 49.9 52.3 52.8 53.4

income : median family income, 1989 dollars

n missing unique Mean .05 .10 .25 .50 .75 .90 .95
3141 0 2927 28476 19096 20904 23838 27361 31724 36931 41929

lowest : 10903 11110 11362 11502 12042
highest: 61988 62187 62255 62749 65201

farm : farm population, % of total, 1990

n missing unique Mean .05 .10 .25 .50 .75 .90 .95
3141 0 302 6.437 0.1 0.4 1.5 3.9 8.6 16.5 21.4

lowest : 0.0 0.1 0.2 0.3 0.4, highest: 50.9 54.6 55.0 65.8 67.6

democrat : % votes cast for democratic president

n missing unique Mean .05 .10 .25 .50 .75 .90 .95
3114 27 530 39.73 22.80 27.03 32.70 39.00 46.00 53.80 58.84

lowest : 6.8 9.5 12.9 13.0 13.6, highest: 79.2 79.4 79.6 82.8 84.6

republican : % votes cast for republican president

n missing unique Mean .05 .10 .25 .50 .75 .90 .95
3114 27 431 39.79 26.67 29.50 33.80 39.20 45.50 50.90 54.80

lowest : 9.1 12.9 13.1 13.6 13.9, highest: 68.0 68.1 69.1 72.2 75.0
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Perot : % votes cast for Ross Perot

n missing unique Mean .05 .10 .25 .50 .75 .90 .95
3114 27 316 19.81 8.765 10.400 14.400 20.300 25.100 28.500 30.600

lowest : 3.2 3.3 3.4 3.6 3.7, highest: 37.7 39.0 39.8 40.4 46.9

white : % white, 1990

n missing unique Mean .05 .10 .25 .50 .75 .90 .95
3141 0 3133 87.11 54.37 64.44 80.43 94.14 98.42 99.32 99.54

lowest : 5.039 5.975 10.694 13.695 13.758
highest: 99.901 99.903 99.938 99.948 100.000

black : % black, 1990

n missing unique Mean .05 .10 .25 .50 .75
3141 0 3022 8.586 0.01813 0.04452 0.16031 1.49721 10.00701

.90 .95
30.72989 41.69317

lowest : 0.000000 0.007913 0.008597 0.009426 0.009799
highest: 79.445442 80.577171 82.145996 85.606544 86.235985

turnout : 1992 votes for president / 1990 pop x 100

n missing unique Mean .05 .10 .25 .50 .75 .90 .95
3116 25 3113 44.06 31.79 34.41 39.13 44.19 49.10 53.13 55.71

lowest : 0.000 7.075 14.968 16.230 16.673
highest: 72.899 75.027 80.466 89.720 101.927

Of note is the incredible skewness of population density across counties. This vari-
able will cause problems when displaying trends graphically as well as possibly
causing instability in fitting spline functions. Therefore we transform it by taking
log10 after adding one to avoid taking the log of zero. We compute one other derived
variable—the proportion of county residents with age of at least 65 years. Then the
datadist function from the Design library is run to compute covariable ranges and
settings for constructing graphs and estimating effects of predictors.

> older ← counties$age6574 + counties$age75

> label(older) ← ’% age >= 65, 1990’

> pdensity ← logb(counties$pop.density+1, 10)

> label(pdensity) ← ’log 10 of 1992 pop per 1990 miles^2’

> dd ← datadist(counties)

> dd ← datadist(dd, older, pdensity) # add 2 vars. not in data frame

> options(datadist=’dd’)

Next, examine how some of the key variables interrelate, using hierarchical variable
clustering based on squared Spearman rank correlation coefficients as similarity
measures.
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FIGURE 7.1: Variable clustering of some key variables in the counties dataset.

> v ← varclus(∼ pop.density + pop.change + older + crime + college +

+ income + farm + democrat + republican + Perot +

+ white + turnout, data=counties)

> plot(v) # Figure 7.1

The percentage of voters voting Democratic is strongly related to the percentage
voting Republican because of the strong negative correlation between the two. The
Spearman ρ2 between percentage of residents at least 25 years old who are college
educated and median family income in the county is about 0.4.

Next we examine descriptive associations with the dependent variable, by strat-
ifying separately by key predictors, being careful not to use this information in
formulating the model because of the phantom degrees of freedom problem.

> s ← summary(democrat ∼ pop.density + pop.change + older + crime +

+ college + income + farm + white + turnout,

+ data=counties)

> plot(s, cex.labels=.7) # Figure 7.2

There is apparently no “smoking gun” predictor of extraordinary strength although
all variables except age and crime rate seem to have some predictive ability. The
voter turnout (bottom variable) is a strong and apparently monotonic factor. Some
of the variables appear to predict Democratic votes nonmonotonically (see especially
population density). It will be interesting to test whether voter turnout is merely a
reflection of the county demographics that, when adjusted for, negate the association
between voter turnout and voter choice.
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FIGURE 7.2: Percentage of votes cast for Bill Clinton stratified separately by quartiles
of other variables. Sample sizes are shown in the right margin.
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FIGURE 7.3: Strength of marginal relationships between predictors and response using
generalized Spearman χ2.

7.2 Spending Degrees of Freedom/Specifying Predictor
Complexity

As described in Section 4.1, in the absence of subject matter insight we might spend
degrees of freedom according to estimates of strengths of relationships without a
severe “phantom d.f.” problem, as long as our assessment is masked to the contribu-
tions of particular parameters in the model (e.g., linear vs. nonlinear effects). The
following S-Plus code computes and plots the nonmonotonic (quadratic in ranks)
generalization of the Spearman rank correlation coefficient, separately for each of a
series of prespecified predictor variables.

> s ← spearman2(democrat ∼ pop.density + pop.change + older + crime +

+ college + income + farm + black + white + turnout,

+ data=counties, p=2)

> plot(s) # Figure 7.3

From Figure 7.3 we guess that lack of fit will be more consequential (in descending
order of importance) for racial makeup, college education, income, and population
density.
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7.3 Fitting the Model Using Least Squares

A major issue for continuous Y is always the choice of the Y -transformation. When
the raw data are percentages that vary from 30 to 70% all the way to nearly 0 or
100%, a transformation that expands the tails of the Y distribution, such as the
arcsine square root, logit, or probit, often results in a better fit with more normally
distributed residuals. The percentage of a county’s voters who participated is cen-
tered around the median of 39% and does not have a very large number of counties
near 0 or 100%. Residual plots were no more normal with a standard transformation
than that from untransformed Y . So we use untransformed percentages.

We use the linear model
E(Y |X) = Xβ, (7.1)

where β is estimated using ordinary least squares, that is, by solving for β̂ to
minimize

∑
(Yi−Xβ̂)2. If we want to compute P -values and confidence limits using

parametric methods we would have to assume that Y |X is normal with mean Xβ
and constant variance σ2 (the latter assumption may be dispensed with if we use
a robust Huber–White or bootstrap covariance matrix estimate—see Section 9.5).
This assumption is equivalent to stating the model as conditional on X,

Y = Xβ + ε, (7.2)

where ε is normally distributed with mean zero, constant variance σ2, and residuals
Y − E(Y |X) are independent across observations.

To not assume linearity the Xs above are expanded into restricted cubic spline
functions, with the number of knots specified according the estimated “power” of
each predictor. Let us assume that the most complex relationship could be fitted
adequately using a restricted cubic spline function with five knots. crime is thought
to be so weak that linearity is forced. Note that the term “linear model” is a bit
misleading as we have just made the model as nonlinear in X as desired.

We prespecify one second-order interaction, between income and college. To save
d.f. we fit a “nondoubly nonlinear” restricted interaction as described in Equa-
tion 2.38, using the Design library’s %ia% function. Default knot locations, using
quantiles of each predictor’s distribution, are chosen as described in Section 2.4.5.

> f ← ols(democrat ∼ rcs(pdensity,4) + rcs(pop.change,3) +

+ rcs(older,3) + crime + rcs(college,5) + rcs(income,4) +

+ rcs(college,5) %ia% rcs(income,4) +

+ rcs(farm,3) + rcs(white,5) + rcs(turnout,3))

> f
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Linear Regression Model

Frequencies of Missing Values Due to Each Variable

democrat pdensity pop.change older crime college income farm white turnout

27 0 0 0 0 0 0 0 0 25

n Model L.R. d.f. R2 Sigma

3114 2210 29 0.5082 7.592

Residuals:

Min 1Q Median 3Q Max

-30.43 -4.978 -0.299 4.76 31.99

Coefficients:

Value Std. Error t value Pr(>|t|)

Intercept 6.258e+01 9.479e+00 6.602144 4.753e-11

pdensity 1.339e+01 9.981e-01 13.412037 0.000e+00

pdensity’ -1.982e+01 2.790e+00 -7.103653 1.502e-12

pdensity’’ 7.637e+01 1.298e+01 5.882266 4.481e-09

pop.change -2.323e-01 2.577e-02 -9.013698 0.000e+00

pop.change’ 1.689e-01 2.862e-02 5.900727 4.012e-09

older 5.037e-01 1.042e-01 4.833013 1.411e-06

older’ -5.134e-01 1.104e-01 -4.649931 3.460e-06

crime 1.652e-05 8.224e-05 0.200837 8.408e-01

college 5.205e-01 1.184e+00 0.439539 6.603e-01

college’ -8.738e-01 2.243e+01 -0.038962 9.689e-01

college’’ 7.330e+01 6.608e+01 1.109281 2.674e-01

college’’’ -1.246e+02 5.976e+01 -2.084648 3.718e-02

income 1.714e-05 4.041e-04 0.042410 9.662e-01

income’ -6.372e-03 1.490e-03 -4.275674 1.963e-05

income’’ 1.615e-02 4.182e-03 3.861556 1.150e-04

college * income -8.525e-05 5.097e-05 -1.672504 9.453e-02

college * income’ 7.729e-04 1.360e-04 5.684197 1.437e-08

college * income’’ -1.972e-03 3.556e-04 -5.545263 3.183e-08

college’ * income -9.362e-05 8.968e-04 -0.104389 9.169e-01

college’’ * income -2.067e-03 2.562e-03 -0.806767 4.199e-01

college’’’ * income 3.934e-03 2.226e-03 1.767361 7.727e-02

farm -5.305e-01 9.881e-02 -5.368650 8.521e-08

farm’ 4.454e-01 1.838e-01 2.423328 1.544e-02

white -3.533e-01 2.600e-02 -13.589860 0.000e+00

white’ 2.340e-01 5.012e-02 4.668865 3.158e-06

white’’ -1.597e+00 9.641e-01 -1.656138 9.780e-02

white’’’ -1.740e+01 1.648e+01 -1.055580 2.912e-01

turnout -7.522e-05 4.881e-02 -0.001541 9.988e-01

turnout’ 1.692e-01 4.801e-02 3.524592 4.303e-04
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Residual standard error: 7.592 on 3084 degrees of freedom

Adjusted R-Squared: 0.5036

The analysis discarded 27 observations (most of them from Alaska) having missing
data, and used the remaining 3114 counties. The proportion of variation across
counties explained by the model is R2 = 0.508, with adjusted R2 = 0.504. The
estimate of σ (7.59%) is obtained from the unbiased estimate of σ2. For the linear
model the likelihood ratio statistic is −n log(1 − R2), which here is −3114 log(1 −
0.5082) = 2210 on 29 d.f. The ratio of observations to variables is 3114/29 or 107,
so there is no issue with overfitting.c

In the above printout, primes after variable names indicate cubic spline com-
ponents (see Section 2.4.4). The most compact algebraic form of the fitted model
appears below, using Equation 2.26 to simplify restricted cubic spline terms.

> latex(f)

E(democrat) = Xβ, where

Xβ̂ =

62.57849

+13.38714pdensity − 3.487746(pdensity − 0.4771213)3
+

+13.43985(pdensity − 1.39794)3
+ − 10.82831(pdensity − 1.812913)3

+

+0.8761998(pdensity − 2.860937)3
+

−0.2323114pop.change + 9.307077×10−5(pop.change + 13)3
+

−0.0001473909(pop.change− 2.7)3
+ + 5.432011×10−5(pop.change− 29.6)3

+

+0.5037175older− 0.004167098(older− 9.6)3
+ + 0.007460448(older− 14.5)3

+

−0.003293351(older− 20.7)3
+ + 1.651695×10−5crime

+0.5205324college− 0.002079334(college− 6.6)3
+ + 0.17443(college− 9.45)3

+

−0.2964471(college− 11.8)3
+ + 0.123932(college− 15)3

+

+0.0001644174(college− 27.1)3
+

+1.71383×10−5 income− 1.222161×10−11(income− 19096)3
+

+3.097825×10−11(income− 25437)3
+ − 1.925238×10−11(income− 29887)3

+

+4.957448×10−13(income− 41929)3
+

+income[−8.52499×10−5 college− 2.22771×10−7(college− 6.6)3
+

−4.919284×10−6(college− 9.45)3
+ + 9.360726×10−6(college− 11.8)3

+

−4.283218×10−6(college− 15)3
+ + 6.454693×10−8(college− 27.1)3

+]

cThis can also be assessed using the heuristic shrinkage estimate (2210 − 29)/2210 = 0.987,

another version of which is proportional to the ratio of adjusted to ordinary R2 as given on p. 64.

The latter method yields (3114− 29− 1)/(3114− 1)× 0.5036/0.5082 = 0.982.
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+college[1.482526×10−12(income− 19096)3
+ − 3.781803×10−12(income− 25437)3

+

+2.368292×10−12(income− 29887)3
+ − 6.901521×10−14(income− 41929)3

+]

−0.5304876farm + 0.00171818(farm− 0.4)3
+ − 0.002195452(farm− 3.9)3

+

+0.0004772722(farm− 16.5)3
+

−0.353288white + 0.0001147081(white− 54.37108)3
+

−0.0007826866(white− 82.81484)3
+ − 0.008527786(white− 94.1359)3

+

+0.03878391(white− 98.14566)3
+ − 0.02958815(white− 99.53718)3

+

−7.522335×10−5 turnout + 0.0004826373(turnout− 34.40698)3
+

−0.001010226(turnout− 44.18553)3
+ + 0.000527589(turnout− 53.13093)3

+

and (x)+ = x if x > 0, 0 otherwise.

Interpretation and testing of individual coefficients listed above is not recom-
mended except for the coefficient of the one linear effect in the model (for crime)
and for nonlinear effects when there is only one of them (i.e., for variables modeled
with three knots). For crime, the two-tailed t-test of partial association resulted in
P = 0.8. Other effects are better interpreted through predicted values as shown in
Section 7.8.

7.4 Checking Distributional Assumptions

As mentioned above, if one wanted to use parametric inferential methods on the
least squares parameter estimates, and to have confidence that the estimates are
efficient, certain assumptions must be validated: (1) the residuals should have no
systematic trend in central tendency against any predictor variable or against Ŷ ;
(2) the residuals should have the same dispersion for all levels of Ŷ and of individual
values of X; and (3) the residuals should have a normal distribution, both overall
and for any subset in the X-space. Our first assessment addresses elements (1) and
(2) by plotting the median and lower and upper quartiles of the residuals, stratified
by intervals of Ŷ containing 200 observations.d

> r ← resid(f)

> xYplot(r ∼ fitted(f), method=’quantile’, nx=200,

+ ylim=c(-10,10), xlim=c(20,60),

+ abline=list(h=0, lwd=.5, lty=2),

+ aspect=’fill’) # Figure 7.4

No trends of concern are apparent in Figure 7.4; variability appears constant. This
same kind of graph should be done with respect to the predictors. Figure 7.5 shows

dThe number of observations is too large for a scatterplot.
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FIGURE 7.4: Quartiles of residuals from the linear model, stratifying Ŷ into intervals
containing 200 counties each. For each interval the x-coordinate is the mean predicted
percentage voting Democratic over the counties in that interval. S-Plus trellis graphics
are used through the Hmisc library xYplot function.

the results for two of the most important predictors. Again, no aspect of the graphs
causes concern.

> p1 ← xYplot(r ∼ white, method=’quantile’, nx=200,

+ ylim=c(-10,10), xlim=c(40,100),

+ abline=list(h=0, lwd=.5, lty=2),

+ aspect=’fill’)

> p2 ← xYplot(r ∼ pdensity, method=’quantile’, nx=200,

+ ylim=c(-10,10), xlim=c(0,3.5),

+ abline=list(h=0, lwd=.5, lty=2),

+ aspect=’fill’)

> print(p1, split=c(1,1,1,2), more=T) # 1 column, 2 rows

> print(p2, split=c(1,2,1,2)) # Figure 7.5

For the assessment of normality of residuals we use q–q plots which are straight
lines if normality holds. Figure 7.6 shows q–q plots stratified by quartiles of popu-
lation density.

> qqmath(∼r | cut2(pdensity,g=4)) # Figure 7.6

Each graph appears sufficiently linear to make us feel comfortable with the normality
assumption should we need it to hold.
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FIGURE 7.5: Quartiles of residuals against population density (top panel) and % white
(bottom panel).
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FIGURE 7.6: Quantile–quantile plot for estimated residuals stratified by quartiles of
population density.
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7.5 Checking Goodness of Fit

Flexible specification of main effects (without assuming linearity) and selected in-
teraction effects were built into the model. The principal lack of fit would be due to
interactions that were not specified. To test the importance of all such (two-way, at
least) interactions, including generalizing the income × college interaction, we can
fit a linear model with all two-way interactions:

> f2 ← ols(democrat ∼ (rcs(pdensity,4) + rcs(pop.change,3) +

+ rcs(older,3) + crime + rcs(college,5) + rcs(income,4) +

+ rcs(farm,3) + rcs(white,5) + rcs(turnout,3))^2)

> f2$stats

n Model L.R. d.f. R2 Sigma

3114 2974 254 0.6152 6.975

The F test for goodness of fit can be done using this model’s R2 and that of the
original model (R2 = 0.5082 on 29 d.f.). The F statistic for testing two nested
models is

Fk,n−p−1 =
R2−R2

∗
k

1−R2

n−p−1

, (7.3)

where R2 is from the full model, R2
∗ is from the submodel, p is the number of

regression coefficients in the full model (excluding the intercept, here 254), and k
is the d.f. of the full model minus the d.f. of the submodel (here, 254 − 29). Here
F225,2860 = 3.54, P < 0.0001, so there is strong statistical evidence of a lack of
fit from some two-way interaction term. Subject matter input should have been
used to specify more interactions likely to be important. At this point, testing a
multitude of two-way interactions without such guidance is inadvisable, and we
stay with this imperfect model. To gauge the impact of this decision on a scale that
is more relevant than that of statistical significance, the median absolute difference
in predicted values between our model and the all-two-way-interaction model is
2.02%, with 369 of the counties having predicted values differing by more than 5%.

7.6 Overly Influential Observations

Below are observations that are overly influential when considered singly. An as-
terisk is placed next to a variable when any of the coefficients associated with that
variable changed by more than 0.3 standard errors upon removal of that observation.
DFFITS is also shown.

> g ← update(f, x=T) # add X to fit to get influence stats

> w ← which.influence(g, 0.3)
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> dffits ← resid(g, ’dffits’)

> show.influence(w, data.frame(counties, pdensity, older, dffits),

+ report=c(’democrat’,’dffits’), id=county)

Count college income white turnout democrat dffits

Jackson 4 * 5 *14767 100 38 17 -0.8

McCreary 4 * 5 *12223 99 40 31 -0.8

Taos 2 18 *20049 73 46 66 0.6

Duval 1 6 *15773 79 39 80 0.5

Loving 5 * 4 *30833 87 *90 21 -0.9

Starr 2 7 *10903 62 23 83 0.8

Menominee 5 * 4 *14801 * 11 30 60 -0.6

One can see, for example, that for Starr County, which has a very low median family
income of $10,903, at least one regression coefficient associated with income changes
by more than 0.3 standard errors when that county is removed from the dataset.
These influential observations appear to contain valid data and do not lead us to
delete the data or change the model (other than to make a mental note to pay more
attention to robust estimation in the future!).

7.7 Test Statistics and Partial R2

Most of the partial F -statistics that one might desire are shown in Table 7.1.

> an ← anova(f)

> ane

> plot(an, what=’partial R2’) # Figure 7.7

The 20 d.f. simultaneous test that no effects are nonlinear or interacting provides
strong support for the need for complexity in the model. Every variable that was
allowed to have a nonlinear effect on the percentage voting for Bill Clinton had a
significant nonlinear effect. Even the nonlinear interaction terms are significant (the
global test for linearity of interaction had F5,3084 = 7.58). college × income inter-
action is moderately strong. Note that voter turnout is still significantly associated
with Democratic voting even after adjusting for county demographics (F = 19.2).
Figure 7.7 is a good snapshot of the predictive power of all the predictors. It is very
much in agreement with Figure 7.3; this is expected unless major confounding or
collinearity is present.

eThe output was actually produced using latex(an, dec.ss=0, dec.ms=0, dec.F=1,
scientific=c(-6,6)).
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TABLE 7.1: Analysis of Variance for democrat

d.f. PartialSS MS F P

pdensity 3 18698 6233 108.1 < 0.0001
Nonlinear 2 4259 2130 36.9 < 0.0001

pop.change 2 8031 4016 69.7 < 0.0001
Nonlinear 1 2007 2007 34.8 < 0.0001

older 2 1387 694 12.0 < 0.0001
Nonlinear 1 1246 1246 21.6 < 0.0001

crime 1 2 2 0.0 0.8408
college (Factor+Higher Order Factors) 10 17166 1717 29.8 < 0.0001

All Interactions 6 2466 411 7.1 < 0.0001
Nonlinear (Factor+Higher Order Factors) 6 8461 1410 24.5 < 0.0001

income (Factor+Higher Order Factors) 9 12945 1438 25.0 < 0.0001
All Interactions 6 2466 411 7.1 < 0.0001
Nonlinear (Factor+Higher Order Factors) 4 3163 791 13.7 < 0.0001

college × income (Factor+Higher Order Factors) 6 2466 411 7.1 < 0.0001
Nonlinear 5 2183 437 7.6 < 0.0001
Nonlinear Interaction : f(A,B) vs. AB 5 2183 437 7.6 < 0.0001
Nonlinear Interaction in college vs. Af(B) 3 1306 435 7.6 < 0.0001
Nonlinear Interaction in income vs. Bg(A) 2 1864 932 16.2 < 0.0001

farm 2 7179 3590 62.3 < 0.0001
Nonlinear 1 339 339 5.9 0.0154

white 4 22243 5561 96.5 < 0.0001
Nonlinear 3 2508 836 14.5 < 0.0001

turnout 2 2209 1105 19.2 < 0.0001
Nonlinear 1 716 716 12.4 0.0004

TOTAL NONLINEAR 19 23231 1223 21.2 < 0.0001
TOTAL NONLINEAR + INTERACTION 20 37779 1889 32.8 < 0.0001
TOTAL 29 183694 6334 109.9 < 0.0001
ERROR 3084 177767 58

7.8 Interpreting the Model

Our first task is to interpret the interaction surface relating education and income.
This can be done with perspective plots (see Section 10.5) and image plots. Often
it is easier to see patterns by making ordinary line graphs in which separate curves
are drawn for levels of an interacting factor. No matter how interaction surfaces
are drawn, it is advisable to suppress plotting regions where there are very few
datapoints in the space of the two predictor variables, to avoid unwarranted extrap-
olation. The plot function for model fits created with the S-Plus Design library
in effect makes it easy to display interactions in many different ways, and to sup-
press poorly supported points for any of them. In Figure 7.8 is shown the estimated
relationship between percentage college educated in the county versus percentage
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FIGURE 7.7: Partial R2s for all of the predictors. For college and income partial R2

includes the higher-order college × income interaction effect.

voting Democratic, with county median family income set to four equally spaced
values between the 25th and 75th percentiles, and rounded. Curves are drawn for
intervals of education in which there are at least 10 counties having median family
income within $1650 of the median income represented by that curve.

> incomes ← seq(22900, 32800, length=4)

> show.pts ← function(college.pts, income.pt) {
+ s ← abs(income - income.pt) < 1650

+ # Compute 10th smallest and 10th largest % college

+ # educated in counties with median family income within

+ # $1650 of the target income

+ x ← college[s]

+ x ← sort(x[!is.na(x)])

+ n ← length(x)

+ low ← x[10]; high ← x[n-9]

+ college.pts >= low & college.pts <= high

+ }

> plot(f, college=NA, income=incomes, # Figure 7.8

+ conf.int=F, xlim=c(0,35), ylim=c(30,55),

+ lty=1, lwd=c(.25,1.5,3.5,6), col=c(1,1,2,2),

+ perim=show.pts)

The interaction between the two variables is evidenced by the lessened impact of
low education when income increases.
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FIGURE 7.8: Predicted percentage voting Democratic as a function of college education
(x-axis) and income (four levels used to label the curves) in the county. Other variables
are set to overall medians.

Figure 7.9 shows the effects of all of the predictors, holding other predictors to
their medians. All graphs are drawn on the same scale so that relative importance
of predictors can be perceived. Nonlinearities are obvious.

> plot(f, ylim=c(20,70)) # Figure 7.9

Another way to display effects of predictors is to use a device discussed in Sec-
tion 5.3. We compute Ŷ at the lower quartile of an X, holding all other Xs at their
medians, then set the X of interest to its upper quartile and again compute Ŷ . By
subtracting the two predicted values we obtain an estimate of the effects of predic-
tors over the range containing one-half of the counties. The analyst should exercise
more care than that used here in choosing settings for variables nonmonotonically
related to Y .

> s ← summary(f)

> options(digits=4)

> plot(s) # Figure 7.10

All predictor effects may be shown in a nomogram, which also allows predicted
values to be computed. As two of the variables interact, it is difficult to use contin-
uous axes for both, and the Design library’s nomogram function does not allow this.
We must specify the levels of one of the interacting factors so that separate scales
can be drawn for each level.

> f <- Newlabels(f, list(turnout=’voter turnout (%)’))
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FIGURE 7.9: Partial effects of all county characteristics in the model.
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FIGURE 7.10: Summary of effects of predictors in the model using default ranges (in-
terquartile). For variables that interact with other predictors, the settings of interacting
factors are very important. For others, these settings are irrelevant for this graph. As an
example, the effect of increasing population density from its first quartile (1.23) to its third
quartile (1.987) is to add approximately an average of 2.3% voters voting Democratic. The
0.95 confidence interval for this mean effect is [1.37, 3.23]. This range of 1.987 − 1.23 or
0.756 on the log10 population density scale corresponds to a 100.756 = 5.7-fold population
increase.
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TABLE 7.2

Characteristic Points

Population density 10/mile2 (log10 = 1) 30
No population size change 27
Older age 5% 6
Median family income $29500

and 40% college educated 27
Farm population 45% 37
White 90% 8
Voter turnout 40% 0

> nomogram(f, interact=list(income=incomes),

+ turnout=seq(30,100,by=10),

+ lplabel=’estimated % voting Democratic’,

+ cex.var=.8, cex.axis=.75) # Figure 7.11

As an example, a county having the characteristics in Table 7.2 would derive the
indicated approximate number of points. The total number of points is 135, for
which we estimate a 38% vote for Bill Clinton. Note that the crime rate is irrelevant.

7.9 Problems

1. Picking up with the problems in Section 3.10 related to the SUPPORT study,
begin to relate a set of predictors (age, sex, dzgroup, num.co, scoma, race,
meanbp, pafi, alb) to total cost. Delete the observation having zero cost from
all analyses.f

(a) Compute mean and median cost stratified separately by all predictors (by
quartiles of continuous ones; for S-Plus see the help file for the Hmisc

summary.formula function). For categorical variables, compute P -values
based on the Kruskal–Wallis test for group differences in costs.g

(b) Decide whether to model costs or log costs. Whatever you decide, justify
your conclusion and use that transformation in all later steps.

fIn S-Plus issue the command attach(support[support$totcst > 0 | is.na(support$
totcst),]).

gYou can use the Hmisc spearman2 function for this. If you use the built-in S-Plus function

for the Kruskal–Wallis test note that you have to exclude any observations having missing values

in the grouping variable. Note that the Kruskal–Wallis test and its two-sample special case, the

Wilcoxon–Mann–Whitney test, tests in a general way whether the values in one group tend to be
larger than values in another group.
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FIGURE 7.11: Nomogram for the full model for predicting the percentage of voters in a
county who voted Democratic in the 1992 U.S. presidential election.
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(c) Use all nonmissing data for each continuous predictor to make a plot
showing the estimated relationship, superimposing nonparametric trend
lines and restricted cubic spline fits (use five knots). If you used a log
transformation, be sure to tell the nonparametric smoother to use the
log of costs also. As the number of comorbidities and coma score have
heavily tied values, splines may not work well unless knot locations are
carefully chosen. For these two variables it may be better to use quadratic
fits. You can define an S-Plus function to help do all of this:

doplot ← function(predictor, type=c(’spline’,’quadratic’)) {
type ← match.arg(type)

r ← range(predictor, na.rm=T)

xs ← seq(r[1], r[2], length=150)

f ← switch(type,

spline = ols(log(totcst) ∼ rcs(predictor, 5)),

quadratic= ols(log(totcst) ∼ pol(predictor, 2)))

print(f)

print(anova(f))

plot(f, predictor=xs, xlab=label(predictor))

plsmo(predictor, log(totcst), add=T, trim=0, col=3, lwd=3)

scat1d(predictor)

title(sub=paste(’n=’,f$stats[’n’]),adj=0)

invisible()

}
doplot(pafi)

doplot(scoma, ’quadratic’)

etc.

Note that the purpose of Parts (c) and (d) is to become more famil-
iar with estimating trends without assuming linearity, and to compare
parametric regression spline fits with nonparametric smoothers. These
exercises should not be used in selecting the number of degrees of free-
dom to devote to each predictor in the upcoming multivariable model.

(d) For each continuous variable provide a test of association with costs and
a test of nonlinearity, as well as adjusted R2.

2. Develop a multivariable least squares regression model predicting the log of
total hospital cost. For patients with missing costs but nonmissing charges,
impute costs as you did in Problem 2b in Chapter 3. Consider the following
predictors: age, sex, dzgroup, num.co, scoma, race (use all levels), meanbp, hrt,
temp, pafi, alb.

(a) Graphically describe how the predictors interrelate, using squared Spear-
man correlation coefficients. Comment briefly on whether you think any
of the predictors are redundant.
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(b) Decide for which predictors you want to “spend” more than one degree
of freedom, using subject–matter knowledge or by computing a measure
(or generalized measure allowing nonmonotonic associations) of rank cor-
relation between each predictor and the response. Note that rank corre-
lations do not depend on how the variables are transformed (as long as
transformations are monotonic).

(c) Depict whether and how the same patients tend to have missing values
for the same groups of predictor and response variables.

(d) The dataset contains many laboratory measurements on patients. Mea-
surements such as blood gases are not done on every patient. The PaO2/F iO2

ratio (variable pafi) is derived from the blood gas measurements. Using
any method you wish, describe which types of patients are missing pafi,
by considering other predictors that are almost never missing.

(e) Impute race using the most frequent category. Can you justify imputing
a constant for race in this dataset?

(f) Physicians often decide not to order lab tests when they think it likely
that the patient will have normal values for the test results. Previous
analyses showed that this strategy worked well for pafi and alb. When
these values are missing, impute them using “normal values,” 333.3 and
3.5, respectively.

(g) Fit a model to predict cost (or a transformation of it) using all predictors.
For continuous predictors assume a smooth relationship but allow it to
be nonlinear. Choose the complexity to allow for each predictor’s shape
(i.e., degrees of freedom or knots) building upon your work in Part 2b.
Quantify the ability of the model to discriminate costs. Do an overall
test for whether any variables are associated with costs.

Here are some hints for using Design library functions effectively for this
problem.

• Optionally attach the subset of the support data frame for which
you will be able to get a nonmissing total hospital cost, that is,
those observations for which either totcst or charges are not NA.

• Don’t use new variable names when imputing NAs. You can always tell
which observations have been imputed using the is.imputed function,
assuming you use the impute function to do the imputations.

• Run datadist before doing imputations, so that quantiles of pre-
dictors are estimated on the basis of “real” data. You will need to
update the datadist object only when variables are recoded (e.g.,
when categories are collapsed).

(h) Graphically assess the overall normality of residuals from the model. For
the single most important predictor, assess whether there is a systematic
trend in the residuals against this predictor.
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(i) Compute partial tests of association for each predictor and a test of
nonlinearity for continuous ones. Compute a global test of nonlinearity.
Graphically display the ranking of importance of the predictors based on
the partial tests.

(j) Display the shape of how each predictor relates to cost, setting other
predictors to typical values (one value per predictor).

(k) For each predictor estimate (and either print or plot) how much Ŷ
changes when the predictor changes from its first to its third quartile, all
other predictors held constant. For categorical predictors, compute dif-
ferences in Ŷ between all categories and the reference category. Antilog
these differences to obtain estimated cost ratios.h

(l) Make a nomogram for the model, including a final axis that translates
predictions to the original cost scale if needed (note that antilogging
predictions from a regression model that assumes normality in log costs
results in estimates of median cost). Use the nomogram to obtain a pre-
dicted value for a patient having values of all the predictors of your
choosing. Compare this with the predicted value computed by either the
predict or Function function in S-Plus.

(m) Use resampling to validate the R2 and slope of predicted against ob-
served response. Compare this estimate of R2 to the adjusted R2. Draw
a validated calibration curve. Comment on the quality (potential “ex-
portability”) of the model.

(n) Refit the full model, excluding observations for which pafi was imputed.
Plot the shape of the effect of pafi in this new model and comment on
whether and how it differs from the shape of the pafi effect for the fit in
which pafi was imputed.

Hints: Analyses (but not graph titles or interpretation) for Parts (a), (b), (c),
(e), and (j) can be done using one S-Plus command each. Parts (f), (h), (i),
(k), (l), and (n) can be done using two commands. Parts (d), (g), and (m)
can be done using three commands. For part (h) you can use the resid and
qqnorm functions or the pull-down 2-D graphics menu in Windows S-Plus.
plot.lm(fit object) may also work, depending on how it handles NAs.

hThere is an option on the pertinent S-Plus function to do that automatically when the differ-
ences are estimated.
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