Chapter 11

Preliminary Results

1 Embedding properties and related facts

1.1 Poincaré inequalities

We consider some basic facts on Sobolev spaces without proof. First we collect
several inequalities which compare the L%-norm of a function v with the L4-
norm of its gradient

Vu = (Dyu,...,Dyu).

Such estimates are called Poincaré estimates. For the proofs we refer to [Nec67],
[Agm65], [Ada75], and [Fri69).

1.1.1 Lemma Let Q C R™ n > 1, be any bounded domain, let 1 < q < o0,
and let

d =d(Q) := sup |z —y|
z,yef)

denote the diameter of Q). Then
[ullza@) < Cl[Vullza@)n (L.1.1)

for allu € Wol’q(Q) where C' = C(q,d) > 0 depends only on q and d.
Proof. See [AdaT5, VI, 6.26]. 0

From (1.1.1) we conclude that the norms |u(ly1.4(q) and ||[Vul[zaq) are

equivalent on the subspace W,9(Q) € W9(Q). To get estimates for general
functions u € W19(Q), we need that 2 is a bounded Lipschitz domain, see
Section 3.2, I.
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1.1.2 Lemma Let Q C R™ be a bounded Lipschitz domain with n > 2, let
Qo C Q be any (nonempty) subdomain, and let 1 < g < co. Then

lulzoy < C(IVullzoy + | /Q wdzl) (1.12)
0

for all u € WH9(Q) where C = C(q,,Q0) > 0 is a constant.

Proof. See [Nec67, Chap. 1, (1.21)]. Inequality (1.1.2) also holds for n = 1 where
Q) is a bounded open interval. O

From (1.1.2) we conclude that [|u||y1.4(0) and ||Vul| ooy +| fQo udzx| are
equivalent norms on W1h4(Q).

The next result yields a bound for ||ul|z«q) using the norms
Vullyw—1.a(q)n and [lully-1.4(q). We need some preparations.

Let 2 C R™ be a bounded Lipschitz domain with n > 2 and let 1 < ¢ <

I._ _q
00, ¢ = 3.

Consider the spaces W~14(Q)"™ and W ~14(Q), see Section 3.6, I. Then we
identify each u € L7(£) with the functional

<Uy > v <u,v> :/uvdm , vEWol’q (Q),
Q

which yields the embedding
LY(Q) C W—H1(Q) (1.1.3)

as usual for distributions. We get

|<wo>] < ullglolly < llullgllolg

and this yields
[ullw-1a) < [Jullpao) (1.1.4)

which shows that the embedding (1.1.3) is continuous.
Further, for each u € L1(§2) we define the functional Vu = [Vu, -] by
[Vu,v] i= — <, dive >= —/ u div vdz
Q

for all v = (v1,...,v,) € C§°(2)™. Then we see that

Vu e W)™,
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and we get the estimate

Vu, ol = |<u, dive>| < Jullg[[Vollg < llullg l[ollq

which shows that

[Vul-14 == sup  ({[Vu, o]/ [[v]lig) < fullq- (1.1.5)
0£vECE (Q)n

The inequality in the next lemma is basic for the theory of the operators
div and V in the next section.

1.1.3 Lemma Let Q C R", n > 2, be a bounded Lipschitz domain and let
1< qg<oo. Then

lullo) < CIVullw-ra@)n + ullw-14(0)) (1.1.6)
for all w € LI(Q) where C = C(q,Q2) > 0 is a constant.

Proof. See [Nec67, Chap.3, Lemma 7.1] for ¢ = 2 and [Nec67b] for general
q. The proof for ¢ = 2 can be extended to all 1 < ¢ < oo if we replace the
argument based on the Fourier transform by a potential theoretic fact. Here we
use this lemma only for ¢ = 2. O

Using (1.1.4) and (1.1.5) we see that
[Vullw-1a@n + [ullw-1.00) < 2[ullzo@)- (L.1.7)
Therefore, under the assumptions of Lemma 1.1.3 we conclude that
lullzaey and [ Vulw-so@y + lullw 1)

are equivalent norms in L7(€Q).

Inequality (1.1.6) can be extended as follows:
Let £ € N and consider the spaces
wRaQ) , Wk W)
which are the dual spaces of
wol (@) wethr@)r . weth (@),

respectively. Let u : v +— [u,v] be any functional from W~=*4(Q). Then the
inequality

[, o] < llull-kallvllre < llull-rallolleire
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shows that
lullw—+-1.a0) < lullw-ra) -
The gradient Vu is treated as a functional [Vu,- -] : v — [Vu,v] defined
by
[Vu,v] = —[u, dive] , ve ()",
and using
[V, ol = lu, div o]l < jufl kg [[div olgq

IN

Cliull=kq lvllkt1.q
we get Vu € W—F14(Q)" and
IVl -rayr < Cllullw-rag)

with some C' = C(n) > 0.
1.1.4 Lemma Let Q C R™, n > 2, be a bounded Lipschitz domain and let
1< g<oo, ke N. Then

lullw-ra) < C(IVullw-r-1a@)n + [ullw-r-1.40)) (1.1.8)
for all u € W=54(Q) where C = C(q,k,Q) > 0 is a constant.

Proof. See [Nec67, Chap. 3, Lemma 7.1]. Using the estimates above we see that
the both sides of (1.1.8) define equivalent norms. Lemma 1.1.3 is obtained by
setting k = 0. g

The next lemma shows that u € L] (), Vu € LI(Q)" even implies u €

loc

Wh4(Q) if  is a bounded Lipschitz domain.

1.1.5 Lemma Let Q2 CR™ n > 2, be any Lipschitz domain and let 1 < q < co.
Then we have:
a) Ifue Ll () and Vu € L1(Q)", then

loc
ue L (Q) and therefore u € W54(Q). (1.1.9)
b) If Q is a bounded Lipschitz domain and v € L}, (), Vu € L1(Q)", then
u € LYQ) and therefore u € WH(Q). (1.1.10)

Proof. This result follows by applying [Nec67, Chap. 2, Theorem 7.6] to bounded
Lipschitz subdomains of Q2. However, we can argue directly: Indeed, b) is a
consequence of a), and a) can be derived using b). It its sufficient to prove the
result in a neighbourhood of any zy € 9. Use a local coordinate system in
xg, see Section 3.2, I, define a translation in the exterior normal direction and
apply the estimate of Lemma 1.1.2. This yields the result. 0
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1.2 Traces and Green’s formula

Let Q CR"™, n > 2, be a bounded Lipschitz domain with boundary 952, and let
1<q< o0, q’:qzl.
Our purpose is to introduce a bounded linear operator

Iiuw—Tu (1.2.1)
from W19(Q) onto Wl_%’q(aQ) so that
Tu= U|aQ (1.2.2)

holds for all u € C*°(2). This means, I'u coincides with the restriction of u
to the boundary 09 if u is smooth. In other words, I' extends the restriction
operator u — u|aq from the smooth function space C>°(Q) to the larger space
Wha(Q). Wlf%’q@Q) will be the right space such that this operator is bounded
and even surjective.

I" is called the trace operator of (2. The existence, boundedness, and sur-
jectivity of such an operator

T Whi(Q) — W a9(9),

satisfying (1.2.2) for all u € C>(Q2), follows by combining [Nec67, Chap. 2,
Theorem 5.5] with [Nec67, Chap. 2, Theorem 5.7]. See also [AdaT75, VII, 7.53].

We use the notation (1.2.2) not only for u € C*(Q) but for all u €
Whe(Q), and call Tu = ulgq the trace of u € W14(2). We consider the trace
of u as the restriction of u to 92 in the generalized sense.

The construction of I' rests on the use of the local coordinate systems,
see Section 3.2, I. If the boundedness of I' is shown on the subspace C*°(€2) C
Wh4(Q), the density property

7—”'“W1JI(Q)

C>=(Q) = WhQ), (1.2.3)
see [Nec67, Chap. 2, Theorem 3.1], then yields boundedness on W14(().
The boundedness of I' means that there is a constant C' = C(g,2) > 0 so
that the estimate
T e s (1.2.4)

holds for all uw € W14(Q2). We will simply write

Pl 3oy = 1l 3oy = 12,00

if there is no confusion. See Section 3.4, I, for the definition of this norm.
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Using the trace T'u = ulaq, we get a direct characterization of the space
WE(Q) = Cge(@) ™. Tt holds that

Wy l(Q) = {u e WH(Q); ulog = 0} (1.2.5)

for our bounded Lipschitz domain §, see [Nec67, Chap.2, Theorem 4.10] or
[Ada75, VII, 7.55].

Since I' is a surjective operator, each given element g € Wlf%’q(aﬂ) is
the trace g = u|pq of at least one u € W14(Q). Moreover, it is even possible

to select some u € W14(Q) for each g € Wl_%’q(aQ) in such a way that the
mapping

g—u with g=ulgg

is a bounded linear operator from W'~ #9(9Q) into W14(Q).
Thus there exists a bounded linear operator

T.: W29(00) — Whi(Q) (1.2.6)

with the property
ITg=g (1.2.7)

for all g € Wl_%’q(aﬁ). We call u =T'.g an extension of g from 9 to .

I'. is called an extension operator from Wl_%’q((’“)ﬂ) into Wh9(Q), see
[Nec67, Chap.2, Theorem 5.7]. The boundedness of T'. means that there is a
constant C' = C(q, Q) > 0 such that

HFEQHWL‘?(Q) < C”QHWlf%,q (1'2'8)

(09)

holds for all g € W'~ 49(9).

Green’s formula is well known in elementary classical analysis for smooth
functions, see [Miz73, Chap. 3, (3.54)] or [Nec67, Chap. 1, (2.9)]. It extends the
elementary rule of partial integration from intervals in R to higher dimensions
n > 2. The following general formulation can be derived from the classical one
by using density and closure arguments, see [Nec67, Chap. 3, 1.2].

Let u € C®(Q), v € C*(Q)", and let [,,--- dS denote the surface
integral, see Section 3.4, I. Then we get

div (uwv) = (Vu) - v+ u div v

by an elementary calculation, and Green’s formula reads

/udiv vdx:/ ulN -vdS — [ (Vu)-vdz, (1.2.9)
Q X9) Q
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where N :  +— N(z) = (Ny(z),..., Np(z)) means the exterior normal vector
field at the boundary 92, see (3.4.7), I. We can write this formula in the form

<u,dive>q = <u,N-v>5q — < Vu,v >q, (1.2.10)

see (3.4.6), I, for this notation.

Using the density property (1.2.3) and the trace operator I' above, we
can extend Green’s formula to all v € W9(Q) and v € Wh?(Q)". Then
< u, N -v >pq remains well defined as a surface integral, see (3.4.3), I, with the
traces

ulog € W 9(8Q) and N -vlaq € W77 (99) (1.2.11)

we see that ulN - v|gg € L1(09). Note that [N| € L°°(09), see (3.4.9), 1. This
leads to the following result.

1.2.1 Lemma Let Q C R™, n > 2, be a bounded Lipschitz domain with boundary
00, andletl < g < 00, ¢ := ﬁ. Then for allu € WH4(Q) andv € WH4 (Q)",

(1.2.11) holds in the trace sense and we get the formula
<u,diveo>q=<u,N-v>sq — <Vu,v>q, (1.2.12)
where N means the exterior normal field at OS2.

Proof. See [Nec67, Chap. 3, Theorem 1.1]. O

Lemma 1.2.3 will give a further extension of Green’s formula (1.2.12) to
more general functions v. For this purpose we use the more general trace oper-
ator I'y, see the next lemma, for which we need some preparation.

Inserting u = I.g € Wh9(Q) with ulgqo = g € Wl_%’q(ﬁ‘Q) and v €
Wha (Q)™ in (1.2.12), we get

<Ilg, divv>qg=<g,N-v>y9 — < VI.g,v>q,
and using (1.2.8) yields the estimate

|<g,N-v>pq] |< VI.g,v >q| + |<I.g,dive >q| (1.2.13)

<
< Clgll a1, (l0llg + 1 div vllg),
w9 09)

with some constant C' = C(q,2) > 0. This shows that the functional

< N-v>gq: g—<g,N-v>ps0 , g€ Wlf%’q(aﬁ) (1.2.14)
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is continuous in the norm ||g||W o’ for each fixed v € W4 (Q)™. There-

1—%,{;(8

fore, < -, N - v >yq belongs to the dual space of Wl_%’q(aﬁ), which is the
space

Wie10Q) = W19 (90) = W7 (09),
see (3.6.9), I. Thus we get
< N-v>p0 e W 77(9Q) forall ve Wh (Q)

and we may treat the well defined functional (1.2.14) as the trace N - v|gq of
the normal component of v at 92 in the generalized sense. Further we get from
(1.2.13) that

/ ) ’ L/
< C (ol + idiv o]9)? (1.2.15)

| < N-v>pq ||W7ﬁ’q/(8§2)

holds with some constant C' = C(q,€2) > 0.
Let E4 () be the Banach space of all v € L? ()" with div v € L7 (Q)
(in the sense of distributions) and norm [|v||g,, () = (||v||3: + ||div v||g;)$ The

same density argument as in (1.2.3) yields that

— &,
co@nr Y = Eu(Q), (1.2.16)
and therefore that

Wl,q'(Q)n”.”Eq’(Q) _ Eq/(Q) ) (1217)
Estimate (1.2.15) means that the operator

vie < N -v>a0 , veEWH(Q), (1.2.18)

from W' (Q) to W (0R2) is continuous in the norm of Ey (). Therefore,
using (1.2.17) we see that the operator (1.2.18) extends by closure to a bounded

linear operator
V< N-v>pq , vEE(Q), (1.2.19)

from E,(Q) to Wt (89).1 Tlhe functional < -, N - v >pq is therefore well
defined as an element of W~ a7 (9Q) for each v € Ey ().

Replacing ¢’ by g, we thus obtain the following general trace lemma.
1.2.2 Lemma Let Q C R"™, n > 2, be a bounded Lipschitz domain with boundary

00, letl < qg<oo, ¢ = qzl, and let

B, (Q) = {ve LUQ)" ; divve LI(Q)} (1.2.20)
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be the Banach space with norm
. 1
[0l &, (e) = (loll§ + Idiv v][g)7 . (1.2.21)
Then there exists a bounded linear operator

Lv:v—Tvo, veE/(Q), (1.2.22)

from E4(Q) into Wﬁé’q(aQ) such that In v coincides with the functional
g <g,N-v>pq= / g(x)N(z) -v(z)dS, ge€ W (09) (1.2.23)
o0
if v e C®Q)".
Proof. See [SiS092, Theorem 5.3] or [Tem77, Chap. I, Theorem 1.2]. O
The operator Iy : v — Iy v from E () to W_%’Q(BQ) is called the gen-
eralized trace operator for the normal component. For each v € E, (), the

functional Iyv € Wfé’q(aﬁ) is called the generalized trace of the normal com-
ponent N - v at 9£2. We use the notation

Inv =< N-v>pqg= N- U|aQ (1.2.24)
for all v € E,(Q), although N - v|pq need not exist in the sense of usual traces
(unless v € WhH4(Q)™). Note that v itself need not have a well defined trace

at 0N in any sense. We refer to [Tem77, Chap.I, 1.2] and to [SiS092, (5.1)]
concerning the space E,(2).

The next lemma yields the most general formulation of Green’s formula.

1.2.3 Lemma Let Q) CR"™, n > 2, be a bounded Lipschitz domain with boundary
O, and let 1 < g < o0, ¢ = -4

Then for all u € Wl’q(Qg_;nd ve Ey(Q),
<u,dive>q = <u,N-v>g0 — < Vu,v >q (1.2.25)
where < u, N - v >5q is well defined in the sense of the generalized trace with
N vlog € W79 (09Q) , ulog € W 49(9Q).

Proof. Using (1.2.17) we find a sequence (v;)52; in Wha' (Q)™ with v=lim,_.,v;
in the norm of Ey (€2). Then we insert v; for v in formula (1.2.12) and let j — oo.
The estimate (1.2.15), used with v replaced by v — v;, shows that

<u,N-v>p0= lim <u,N-vj >oq .
J‘)OO

This leads to (1.2.25). O
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1.3 Embedding properties

The embedding properties below will be used frequently, for example in order
to estimate the nonlinear term u - Vu of the Navier-Stokes equations. The first
lemma contains a special case of Sobolev’s embedding theorem. For the proofs
we refer to [Nir59], [Fri69], [Nec67], [AdaT75].

1.3.1 Lemma Letn € N. Then we get:
a) If 1<r<n,1<g<oo, 1 <vy<oo, 0<8<1 such that
1 1

)—&-(l—ﬁ); = rE (1.3.1)

A(

S| =
S|

then

1-6
< w1 Gy (1.3.2)
< C(IIVullgr@eyn + llull L7 @ny)

HUHLQ(R”) < CHVU||€7“(R71)1L

for all uw € C§°(R™) where C' = C(n,r,q,7) >0 is a constant.
b) Ifr > n, then

1) =)
eyeRnazy [Tyl T
for all u € C§°(R™) where C' = C(n,r) > 0 is a constant.
Proof. See [Nir59], [Fri69, Part 1, Theorem 9.3]. O

< CHVUHLT(Rn)n (1.3.3)

Remarks
a) In the special case r = n we get (1—5)% = %, 0<pB<1l(¢g=o0is
excluded), 1 <y <¢g< oo, f=1-— %7 and this leads to

1—2 2
lull oy < C UVl gy ] (1.3.4)

for all w € C§°(R™). Note that an inequality of the form ||uljc < C||Vulln
is excluded.

b) The second inequality in (1.3.2) follows from the first one by Young’s
inequality (3.3.8), L.

¢) Inequality (1.3.2) leads in the case 1 < r < n, 8 =1, r < ¢, n >
2, % + % = % to the estimate

||U||Lq(Rn) S OHVU”LT(]Rn)n (135)
for all u € C§°(R"™) with C = C(n,q) > 0.

The following lemma yields a restricted result but includes the important
case ¢ = oo. It is a consequence of (1.3.3) and the Poincaré inequality (1.1.2).
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1.3.2 Lemma Let Q CR" n > 1, be an arbitrary domain with Q # R™, and
let B C R™ be any open ball with BN Q # (). Then we have:
a) If 1 < ¢ < oo, then

lullzeBray < ClIVullps@y (1.3.6)

for allu € C§°(R2) with C = C(q,2,B) > 0.
b) If ¢ > n, then
llull L (Bro) < Cl[VullLa@yn (1.3.7)

for alluw € C§°(R2) with C = C(q,2,B) > 0.

Proof. Since Q # R"™ we can choose some open ball By C R™ with By N Q = ().
To prove a) we use Poincaré’s inequality in Lemma 1.1.2 with Qg, ) replaced
by By, Q Q) means any bounded Lipschitz domain containing By and B N €.
Extending each u € C§° () by zero we get u € C§°(R"), and since u = 0 in By
we obtain from (1.1.2) that

lullasngy < el < €IVl g < ClVullzaan

for all u € C§°(Q) with some C = C(q,$, B) > 0. Indeed, C' depends only on
q, Bo and B.

To prove b) we apply the above estimate (1.3.3) to u € C§°(Q) with r
replaced by ¢. Let yo be the center of By. Then we get, extending u by zero as
above, that

||u||L°°(BﬂQ) = sup |u(z)] = sup |u(z) —u(yo)l
2€BNQ z€BNQ

_ u\r) — u(Yo
< o ot sp 1))
z€BNQ zeBnQ |z —yo|'

< C(sup |z —yol ™ 0)||Vul| Loy

z€BNQ
with C' = C(n, q) > 0. This proves the lemma. |

The next two lemmas are special cases of Sobolev’s embedding theorem
for bounded domains.

1.3.3 Lemma Let Q CR™, n > 2, be a bounded C'-domain, and let 1 < r <
n,l<g<oo, 1<y<oo, 0<3<1 so that

1

B )Jr(l—ﬁ)7 = é- (1.3.8)

S| =
S
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Then

A\

lullay < Cllullynr gl (1.3.9)

IN

c (HUHWLT(Q) + HUHL'Y(Q))

for all u € WHT(Q) N LY(Q) where C = C(Q,q,7,7) > 0 is a constant.

Proof. See [Fri69, Part 1, Theorem 10.1]. Note that the case n = r is not
excluded. In this case we have 0 < g < 1. g

The next lemma concerns the embedding of continuous functions in certain
W 4-gpaces for bounded domains.

1.3.4 Lemma Letke Ny, meN, 1 <g<oowithm—2>k n>2 and let
Q2 CR™ be a bounded C™-domain. Then, after redefinition on a subset of § of
measure zero, each u € W™4(Q) is contained in C*(Q) and

[ullery < Cllullwma) (1.3.10)
where C = C(2,m,q) > 0 is a constant.
Proof. See [Fri69, Part 1, Theorem 11.1]. O

Finally we mention a special embedding result for the two-dimensional
case.

1.3.5 Lemma Let Q C R? be any two-dimensional domain with Q # R2, let
By, B C R? be open balls with BoNQ =0, BNQ #0, and let 1 < ¢ < co. Then

[ullzaBra)y < CIVullL2(a) (1.3.11)
for all uw € C3° () where C = C(By, B,q) >0 is a constant.

Proof. Let xg be the center of By, R > 0 the radius, and let v € C§°(2). Then
we use the inequality

lu(z)| )2 2
dr | < ClVul[L2(0)2 1.3.12
</Q<$l’o|1n|zx0|/R < Ol Vullp2 (o) ( )

where C' = C(By) > 0 is a constant. An elementary proof of this inequality can
be found in [Lad69, Chap. 1, (14)].
Next we use the above inequality (1.3.9) for B withn =2, 2 < ¢ < oo, r =

7:2,6:1—%,andget

lullLasroy < llullas) < CUIVullL2my2 + llullLzs) (1.3.13)
with some C' = C'(B,q) > 0. On the right side, B can be replaced by BN Q.
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If 1 < ¢ <2 we get using (1.3.12) that

lull La(Bra) < CillullL2(Bra)

1

Ju(z)| 2\
< — 1 —
<01 s, (e —ralinje /) (/Bm<|x—xo|1n|x—xo|/z~z o

S C2 ||Vu||L2(Q)2

with constants C; = C1(B,q) > 0, Cy = Co(By, B,q) > 0. This yields the
result for 1 < ¢ < 2. If ¢ > 2 we deduce from (1.3.13) and the last inequality
for ¢ = 2 that

< C|Vullr2p2 + lull L2 (8ro)
< C([IVull 2y + Cal|VullL2(Bna)2)
S C(1+Cz)||vu||L2(Q)2

lull a(Bro)

This proves the lemma. O

1.4 Decomposition of domains

The decomposition property below will be used later on for technical reasons
in order to “approximate” an arbitrary unbounded domain 2 by a sequence of
bounded Lipschitz subdomains.

We need it, for example, for the existence proof of weak solutions, see the
proof of Theorem 3.5.1, III. A similar result as that in the following lemma is
contained in [Gal94a, III, proof of Lemma 1.1].

Recall the definition

dist(A, B) := inf —
ist(A4, B) xeé{lyeBIx Yl

for arbitrary subsets A, B C R".

1.4.1 Lemma Let Q C R™ be an arbitrary domain with n > 2. Then there
erists a sequence (Qj)J‘?‘;l of bounded Lipschitz subdomains of ) and a sequence
(%‘)?il of positive numbers with the following properties:

a) Q; CQ41, jEN,

b) dist (an+1>Qj) > €j+1> jEeN,

C) limj_,oo 6j = O,

d) Q= Uj’;l Q.
Proof. The proof rests on the following elementary considerations. Let

B.(z) = {yeR™ |y—z|<r}

be the open ball with center x € R™ and radius r > 0.
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We fix some zg € Q. Let Q be the largest domain concerning inclusions
such that

ﬁgQﬁBl(Jﬁo) s Ioeﬁ.

The boundary o of Q is compact and therefore, for a given € > 0, we can
choose finitely many balls B.(x;) with 2; € 99, j =1,...,m, and

00 ¢ | Be(xy).
j=1

Let O := Q\ Uiz, Be(zj). We can choose £ with 0 < & < 1 in such a way that
zo € Q. Obviously, Q) is a bounded Lipschitz domain, its boundary consists of
parts of the boundaries of balls. We set 1 := () and £; :=e.

Next we choose ) as the largest domain with

QQQQBQ(JU()) s xoeﬁ.

Then the domain €2 is constructed in the same way as before with 0 < ¢ < %
and € < % dist (8@,91). Now we set Qs := €, g9 := ¢ and obtain Q; C
Qo, dist (6(22,(21) > g9.

Repeating this procedure, we find by induction a sequence (Qj)j‘?il of Lip-
schitz subdomains of (2 and a sequence (g;)52; with 0 < ¢; < %, j € N. The
properties a), b) and c) are satisfied. In order to prove d) we consider any = € €.
Since 2 is a domain, we can choose some jy € N and some subdomain g C Q
such that

x € Qy C QﬁBjU(.I‘Q) , X € Q.

Let d := dist (090, z) and choose j; > jo with €;, < d. Then the above
construction shows that = € €2;,. This proves the lemma. O

1.4.2 Remark The construction above yields the following additional property:
To each bounded subdomain ' C Q with €’ C Q there exists some 7 € N such
that Q' - Qj.

1.5 Compact embeddings

Such embedding properties are needed later on in the proofs for technical rea-
sons.
Consider a bounded domain €2 C R™ with n > 1, and let 1 < ¢ < co. Then
the natural embedding
u—u o, ue WyiQ) (1.5.1)
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defines a bounded linear operator from WO1 1(Q) into LI(9) since
[ull gy < Nlullwragy » u€ Wy (). (1.5.2)

Hence the embedding W,4(Q) C L%(f) is continuous. The following lemma
shows that the embedding operator (1.5.1) is even a compact operator. This
means that each sequence (u;)52; in Wy ?(€2), which is bounded in the norm of
Wh4(Q)), contains a subsequence which converges in the norm of L%() to some
element u € L9((2). Since sup, ¢y [|u;][1,4 < o0, it even holds that u € Wyt().

1.5.1 Lemma Let Q2 CR™ n > 1, be any bounded domain, and let 1 < q < co.
Then the embedding operator u — u from Wy '(Q) into LY(Q) is compact.
Therefore, each bounded sequence in W&’Q(Q) contains a subsequence which con-
verges in the norm of LI(2) to some element of W, ().

Proof. This is a special case of Rellich’s theorem [Ada75, VI, Theorem 6.2, Part
IV]. See also [Agm65, Sec. 8, Theorem 8.3] or [Tem77, Chap. II, Theorem 1.1].

g
Next we consider the dual space L4(2)’ of LI(Q2),1 < ¢ < oo, consisting of
all linear functionals defined on L?(€2) which are continuous in the norm || - [|4.

We know, see [Nec67, Chap. 2, Proposition 2.5], each such functional has the
form

U< f,u>:/qudx , ue€ L) (1.5.3)
with some f € L9(Q), ¢ = 75 Thus we get
LY (Q) = LI(Q)’ (1.5.4)
if we identify each f € L7 () with the functional
<f,r>iu—<fiu>, uelLi(Q).
Since 1 < ¢’ < co we get in the same way that
L) = LY(Q) = LI(). (1.5.5)
Here u € L9(Q) is identified with the functional
<au>ife< fiu>, fe LY.

Thus L?(€) is a reflexive Banach space for 1 < ¢ < co. See Section 3.1 for some
explanations.

If u € W, %(Q) we can use the Poincaré inequality (1.1.1) and see that
[<fru>] < fllgllully < ClfllglVullg (1.5.6)

for all f € LY (Q) with C = C(q,Q) > 0.
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Consider now the dual space W19 (Q) = W 9(Q)" of Wy %), see
(3.6.5), 1. By (1.5.6) we know that each f € L7 () defines the continuous
functional

<f->ium< fiu>, ue WyUQ).

Thus, identifying each f with < f,- > we obtain the natural continuous embed-
ding
LY(Q) € W hI (). (1.5.7)
The embedding operator from L% (Q) into W4 (Q) can be understood
as the dual operator of the embedding operator from Wy*¢(2) into L4(Q). See
[Yos80, VII, 1] concerning dual operators. We know, see Schauder’s theorem
[Yos80, X, 4], that the dual operator of a compact linear operator is again
compact. Therefore, (1.5.7) is a compact embedding. Replacing ¢’ by ¢ we thus
obtain the following result.

1.5.2 Lemma Let Q CR™ n > 1, be any bounded domain, and let 1 < q < co.
Then the embedding
LY(Q) € W H1(Q) (1.5.8)

is compact. Therefore, each bounded sequence in L1()) contains a subsequence
which converges in the norm of W—14(Q) to some element of LI(f2).

Proof. Use Lemma 1.5.1 and apply [Yos80, X, 4]. O

If © is a bounded Lipschitz domain, a similar compactness result also holds
for the embedding W14(Q) C L4(Q).

1.5.3 Lemma Let Q C R™, n > 1, be a bounded Lipschitz domain, and let
1 < g < o0. Then the embedding

wh(Q) C LY(Q) (1.5.9)
is compact. Therefore, each bounded sequence in W4(§2) contains a subsequence
which converges in the norm of L1(Q) to some element of W14(Q).
Proof. See [Nec67, Chap. 2, Theorem 6.3] a

The compactness of the embedding (1.5.7) can be used to improve the
estimate (1.1.6) in Lemma 1.1.3. We can “remove” the second term on the right
side of (1.1.6) under an additional condition on u. This leads to the following
result.

1.5.4 Lemma Let Q2 CR", n > 2, be a bounded Lipschitz domain, let Qg C 2,
Qo # 0, be any subdomain, and let 1 < ¢ < co. Then

lulla) < Cil|Vullw-1a@ym < C1Cs |lul|pao) (1.5.10)
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for all uw € LY(Q) satisfying
/ udr = 0; (1.5.11)
Qo

Cy = C1(q,9Q,9) > 0 and Cy = Ca(n) > 0 are constants.
Proof. Recall that Vu € W=149(Q)" with v € L4(Q2) means the functional

[Vu, -] :v— [Vu,v] = — <wu,dive >= —/udivvdm,
Q

vE Wol’q/ O™, ¢ = qLLl, see the proof of Lemma 1.1.3.
The estimate

[V, ]|

|<u, divo>] < |ullg|div vy (1.5.12)

Cllullg 10llwr.a @y

IN

for all v € Wol’q/ ()™, with C = C(n) > 0, proves the second inequality in
(1.5.10).

Thus it remains to prove the first inequality in (1.5.10). To prove it we use
a contradiction argument. Assume there does not exist a constant C' > 0 such
that

ully < ClIVul-1,

holds for all v € L(Q) with fQo udz = 0. Then for each j € N there is some
uj € L9(Q) with [lusllq > jl[Vujll-1,4, Jo, ujdz = 0. Setting

iy = |luyll 'y, jEN
we obtain a sequence (4;)32; in L(2) satisfying

- N N 1
lalg=1 . /ujdx:o, IVas)-1q < =
Qo J

for all j € N.

Since L(2) is reflexive and the sequence ()52, is bounded, there exists
a subsequence which converges weakly in L9(2) to some element u € LI(2), see
Section 3.1. For simplicity we may assume that (ﬂj)]‘?';l itself has this property.
This means that

<u,v> = lim <4;,v>

J—00
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for all v € L9 (). In particular, it follows that Jo, wdx = 0. Using

lmj oo [Vl -14 = 0,
[Vag,o]| = |<a;dive>] < [[Vigl-1g[vlle
and
[[Vu,v]] = |<u, dive>| = |j1i1£10<11j, div v > |
= leII;O|<ﬂj, divv>|:j1ergoinf|<ﬁj, div v > |

<l inf([|Va, | -1,q [[o]]1,q)
J‘}OO

= (lim inf[|Va][1q) [[0]1,q
‘]*)00

= (lim [[VEg]l-1q) l[v]1e =0,

UNS Wol’ql (€), we see that ||Vul||—1,4 = 0. Therefore, it holds that Vu = 0 in the
sense of distributions and therefore, u is a constant. The mollification method
in Section 1.7 will give a proof of this property, see (1.7.18). Since fQo udr =0
we conclude that u = 0.

On the other hand, applying inequality (1.1.6) to @, yields

la;llq =1 < C(IVajll 14 + 125l -1.9) (1.5.13)

for all j € N, where C' > 0 is the constant in (1.1.6). Since ()32, is bounded
in LI(Q2) and since the embedding L(2) € W~19(Q) is compact, see Lemma
1.5.2, there is a subsequence of (i;)72; which converges in W=14(Q) to some
4 € Li(Q). It also converges weakly to @ € LI(Q2), and therefore we get & =
u = 0. We may assume that the sequence (ﬂj);?';l itself converges in W =14((2)
to u = 0. Therefore,

N
However, from (1.5.13) we get that
L= Jim C(IVEgll-1q + 85]l-1.4) = 0.

This is a contradiction and the lemma is proved. The argument used here is
well known, see Peetre’s lemma [LiMa72, Chap. 2, Lemma 5.1]. O
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1.6 Representation of functionals

In the theory of the Navier-Stokes equations we are interested in the case that
the external force f = (f1,..., fn) has the special form

f=divF (1.6.1)

in the sense of distributions. Here I = (Fj)%,_; means a matrix and (1.6.1)
means by definition that

fi=div (Fu,...,Fu) = Y _D;Fy,
j=1

I =1,...,n. Thus the operation div applies to the columns of the matrix F'.

Below we consider some conditions which are sufficient for the representa-
tion (1.6.1). If © is bounded, we may use the Poincaré inequality and get the
following easy fact.

1.6.1 Lemma Let Q C R" be any bounded domain with n > 2, and let f €
W=t2(Q)n.
Then there exists at least one matriz F € Lz(Q)”Q satisfying

f=div F
in the sense of distributions, and
[fllw-120)n < NFll12qpnz < Cllfllw-12(0) (1.6.2)
with C = C(Q) > 0.
Proof. Consider the closed subspace
D :={Vve L*(Q)" v e W2 ()"} C L2(Q)™ (1.6.3)

of all gradients Vv = (Dju;)7,_; of functions v = (v1,...,v,) € Wy ()™, Let
the functional

f:Vu—[f,Vv], VveD

be defined by [f,Vv] := [f,v] for all v € W, *(Q)". Then the Poincaré in-
equality (1.1.1) yields some C' = C(€2) > 0 such that

£, Vol = [[f.0ll < Ifl-12llvlliz < Cllfll-12

[Vl

for all Vv € 2D. Therefore, f is a continuous functional defined on the subspace
D C L2(Q)™.
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The Hahn-Banach theorem, see [Yos80, IV, 1], yields a linear extension of
f from D to Lz(Q)"2 with the same functional norm. Then we may use the Riesz

representation theorem, see [Yos80, III, 6], and obtain a matrix F € LQ(Q)”2
satisfying

< F,Vv>= zn: /Fjl(Djvl)dx:/F-Vvdx = [f, Vo] = [f,v],
s=1/e Q
v=(v1,...,v,) € Wy*(Q)", and
[E Nl 22 < Cllfll-1.2-
Further we get
1f.0]l = < F,.Vo >| < ||F|2|[Vollz < [Fl2(v]3 +Vol3)?

for all v € W, *(Q)" which shows that
[fllw-r2) < [F]l2-
If v € C§°(2)™ we see that

n n
<FVu> = Y <FyDuy>=-Y <D;Fj,vu>
j,l=1 7,l=1

= —[div F,v] = [f,v]

holds in the sense of distributions. This yields the representation div(—F) = f
and (1.6.1) holds with F' replaced by —F'. This proves the lemma. a

Consider the bounded domain (2 as in Lemma 1.6.1 and let f € L*(Q)".
Then we identify f with the functional < f,- > and get

Few=2@)" , Ifll-12 < ClIfll2, (1.6.4)
with C from (1.1.1). This yields the continuous embedding
LA(Q)" € W h2(Q)™. (1.6.5)

Using the above lemma we see that for each f € L?(Q)" there exists some
F € L2(Q)™ satisfying

f=divF (1.6.6)
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in the sense of distributions, and
[E 20y < CllfllL2@n (1.6.7)

where C = C(2) > 0 is a constant.

If © is not bounded, then, in general, ||Vv[[;2gyn2 and [[v[lw1r2(q)» are
not equivalent norms in I/VO1 2(Q)™. Therefore, we cannot expect that each f €
W=12(Q)" has a representation f = div F with F € L2(Q)"". The following
lemma yields a criterion for this property. We have to distinguish the cases

n >3 and n = 2. If n = 2 we need an open ball Bg(xg) with center zy and
radius R.

1.6.2 Lemma
a) Let Q CR™ be any unbounded domain with n > 3 and let f € L1(Q)™ with

q= ng_fz Then there exists a matriz function F € L2(Q)”2 satisfying
f=div F (1.6.8)
in the sense of distributions, and

[fllw-r2@r < [[Fll2q)ne < CllfllLa@n (1.6.9)

with some constant C = C(n) > 0.

b) Let Q@ C R? be any unbounded domain with Q@ # R?, let zo ¢ €,
R >0, Br(zo)NQ =0, feL? (Q)?2, and suppose that

loc
||fH3\ = /Q |f(2))? |z — zo|* (In |z — 20| /R)*dz < oo. (1.6.10)
Then there exists a matriz function F € L*(Q)* satisfying
f=div F (1.6.11)

in the sense of distributions, and

I lw-ray < 1Flager < ClflIa (1.6.12)
with some constant C = C(Q) > 0.
Proof. To prove a) we use Sobolev’s inequality (1.3.5) with ¢’ = qi#l = %,
14+ 2 =1 This yields
lollgy < ClIVull2 , ve C§e ()", (1.6.13)

with C' = C(n,q) > 0.
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1+1_n+2

Since iR + ”2—;2 =1, we get the estimate

q — 2n
< fiv>] < \fllgllvlle < Cllfllg IVoll2. (1.6.14)

This shows that the functional defined by Vv — < f,v > is continuous on
the subspace D C L2 (Q)”Z, see (1.6.3), and the same argument as in the proof
of Lemma 1.6.1 yields some F' satisfying (1.6.8) and (1.6.9).

To prove b) we may assume that R = 1. Then we use the embedding
inequality (1.3.12) and obtain

2 3
v(x
/( ‘ ( )| ) dx S C||V”U||L2(Q)4
o \z — xo|ln|z — x|

for all v € C§°(2)"™ with C = C(Q) > 0. This leads to

| < fiv>]
- | / (f(@)| — ol nlz — o]) - (v() | — 0|~ (Infz — o)1) da
< CIflIAIVoll

and the assertion in b) follows in the same way as before. ]

1.7 Mollification method

This method enables us to approximate L¢-functions by C°°-functions. It will be
used later on in the proofs. See [Ada75, 11, 2.17], [Nec67, Chap. 2, 1.3], [Yos80, I,
Prop. 8], [Fri69, Part 1, (6.3)], [Miz73, Chap. 1, end of 7, and Chap. 2, Prop. 2.4,
(3)], [Agm65, Sec. 1, Def. 1.7].

Let Q C R"Ee a domain with n > 1 and let Qy C Q, Qg # 0, be a bounded
subdomain with Qg C Q. Let

By(z) ={yeR" |z —y| <r} (1.7.1)

be the open ball with center x and radius r > 0, and let the function F €
C§°(R)™ satisfy the following properties:

supp F C B1(0) , 0<F<1, Fdr =1, (1.7.2)
Flz) = F(—z) forall z e R".
Let F. € C°(R™), € > 0, be defined by
Fo(z) = "Fle'z) , z€R"™ (1.7.3)
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Then supp F. C B.(0) and the transformation formula for integrals, see [Apo74,
Theorem 15.11], yields

Fe(zx)de = | Fly)dy =1 (1.7.4)
Rﬂ. Rﬂ.
with y = %9:, dy = e "dx.

Consider any function u € L}, (Q) and set u(z) := 0 for all z ¢ . Then
we get u € L} (R™). Let u® = F. xu be defined by

u®(x) = (Fe *u)(x) :== Rn}}(x —yuly)dy , z=eR™ (1.7.5)
Using again the transformation formula for integrals we see that
ut(z) = A Felx —y)uly)dy = N F(2)u(x — z)dz (1.7.6)
with x — y = z, dy = dz, and that
u®(x) = A Fe(z —y)uly)dy = A F(2)u(xr —ez)dz (1.7.7)
with e Yz —y) = 2, y = 2 — ez, dy = e"d=.

If u is continuous in €2, then
liH(l) u®(z) = u(x) uniformly for all x € Q. (1.7.8)
E—
The proof of this fact rests on the representation
u (z) —u(x) = | F2)(u(r —ez) —u(z))dz , x€ Q.
Rn

Let u € L), 1 < ¢ < o0, and ¢ = #. Then by Hélder’s inequality
and Fubini’s theorem, see [Apo74], we get

1 1 q
| Fe xullpaay = </ ’/ F(z)d F(z)au(x —ez) dz’ dx)
Q |z|<1

< e F(z) dz) . ( |z\§1]:(z) (/n lu(z —ez)|? dac) dz)é

1
7

(/ fdz> (/ ]-'dz) lullzacey
|z|<1 |z|<1

||UHL¢1(Q)-

1
a

IN

Q=

IA
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This estimate
| Fe xullLai) < llullza)

also holds if ¢ = 1.

This shows,
Fektur Fexu , ue LI(Q) (1.7.9)

is a bounded linear operator from L4(2) to L?()) with operator norm
|Fox]| <1, e>0. (1.7.10)
Next we use the density
com)" 1 ZLa) | 1<q < oo, (1.7.11)

the property (1.7.8), which holds for each u € C§°(£2), and the uniform bound-
edness (1.7.10). This leads by an elementary calculation to

lim [[(Fe xu) —ufra@) = 0
for all u € L1(Q), 1 < ¢ < 0.

Collecting these facts yields the following result:

1.7.1 Lemma Let Q CR™ n > 1, be any domain, and let 1 < q < 00, € > 0.
Then for all u € L1(Q) we get

[(Fexw)llra < llullza@ (1.7.12)
and
;%(fs*u) =u (1.7.13)
with respect to the norm || - ||La(q)-
Proof. See [Ada75, II, Lemma 2.18]. O

We mention some further properties of the operator F.x, see [Ada75, II,
2.17-2.19]. Let Q and Qg C Q be as above. Let = € Qy and

0<e< dist (02,Q) == _inf |z~ 1.7.14
e < dist (09, Q) = inf |-yl (1.7.14)

with 0 < e < oo if 90 = 0.
Consider any distribution u € C§°(Q)’ in €, for example v € L}, (9).
Then for each fixed x € Qq, we let F.(z — -) be the test function

Fe(v—):y—F(x—y), yeq,
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and we see,
ut(z) = (Fe xu) /.7: z—yu(y)dy = [u,Fe(x — )] (1.7.15)

is well defined in the sense of distributions. In this case, the “integral” fQ coedy
is only used formally as a notation. An easy calculation yields the properties

© = Foxu €C™(Q) (1.7.16)

and

(Duf)(x) = (Fex (D)) (z) = (D*F.) xu)(x) (1.7.17)

for all x € Qp, where D* = D" ... D", o = (ai,...,05) € N§. Thus if
x € Qo, and ¢ satisfies (1.7.14), D® commutes with the operator Fex.

As an application of this method we prove the following property:

Ifue Ll () and Vu=0 in the sense of } (1.7.18)

distributions, then u is a constant.

Indeed, we see that Vu®(x) = (Vu)(x) = 0 for all z € Qp and all € as in
(1.7.14). Since u® is smooth, see (1.7.16), an elementary argument shows that

¢ = C. holds in €y with a constant C. depending on €. Letting ¢ — 0 and
using (1.7.13) we see that C. converges to some constant C. Replacing Qo by
the subdomains €25, j € N, in Lemma 1.4.1, we conclude that u is constant on
the whole domain €.

The results of this subsection can also be used if u is replaced by a vector
field v = (u1,...,um), m € N. If n =1, Q C R means any open interval.

2 The operators V and div

2.1 Solvability of divv =g and Vp = f

The investigation of these operators is the first important step in the theory of
the Navier-Stokes system. The construction of the pressure p rests on properties
of V and div. Both operators div and V are connected by a duality principle,
see the proof of the lemma below. Therefore, it is sufficient to know the basic
properties of one of these operators. The approach which we use here is based on
the estimates of gradients in Lemma 1.5.4. There are several other approaches
to these operators, see [Bog79], [Bog80], [Gal94a, 111, Lemma 3.1], [vWa88], and
[Pil80].
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2.1.1 Lemma Let Q CR", n > 2, be a bounded Lipschitz domain, let Qg C 2,
Qo # 0, be any subdomain, and let 1 < g < oo, ¢’ = qiLl. Then we have:

a) For each g € LY(Q) with [, gdx = 0, there exists at least one v € W, Q)"
satisfying
divo=g , |[Vvllreay < Cllgllzaqy, (2.1.1)

where C' = C(q,Q) > 0 is a constant.
b) For each f € W=14(Q)" so that

[f,0] =0 for all ve Wh?(Q)" with divo =0,

there exists a unique p € LI(Q)) satisfying

Vp=f, /Q pdr =0, |[pllrae < Clflw-ra@n, (2.1.2)
0

where C' = C(q,$, Qo) > 0 is a constant.
Proof. First let Qg = . We set

<p,g>:=/pgdw , peLiQ), geL1(Q).
Q

Since 1 < ¢ < oo, L4(Q) and L9 (Q) are reflexive Banach spaces. There-
fore, L4(€) is the dual space of L9 () if we identify each p € L9(Q) with
the functional < p,- >, and L?(Q)) is the dual space of LI(Q2) if we identify
each g € L9 (Q) with the functional < -, g >. See [Yos80, IV, 9, (3)] for these
notions.

Consider now the closed subspaces

L5 ()

{pELq(Q);/dearz()}qu(Q),

LY ()

{g€ Lq'(Q);/ gdr =0} C L7(Q).
Q
As before we set

<p,g>=/pgdx . peLIQ), geLi(9).
Q

Each continuous linear functional defined on Lg,(Q) has a continuous lin-
ear extension to L7 (), see the Hahn-Banach theorem [Yos80, IV, 1], see also
Section 3.1. Therefore, each such functional has the form

g—<pg>, geLiQ),
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with some p € L9(2). We choose pg € R in such a way that [,(p — po) dz = 0.
Then < p,g > = < p—po, g > for g € LI (Q) and it holds that p — py € Li(Q).
This shows that L{(2) is the dual space of L (Q) if each p € LE(R) is

identified with the functional < p,- >. Correspondingly, Lg, (€2) is the dual space
of LI(€). Thus we get

LYQ) =L () . L§(Q) = Li(Q) . (2.1.3)
Next we consider the space W, A (Q)™ and its dual space
W) = Wl (@)

see (3.6.5), I. Let [f,v] denote the value of f € W=14(Q)" at v € Wol’q/(Q)”.
Then Wy'? (Q)" is the dual space of W~14(Q)" if each v € Wy'? (Q)" is iden-
tified with the functional [-,v] : f — [f,v].

Let v € Wol’q/ (€)™, Then from (1.2.5) we see that v|sqo = 0 holds in the
sense of traces, and Green’s formula (1.2.12), applied with « = 1 in Q, shows
that

/Q divodr =0 , divve LI (Q).
The linear operator
div :v— dive , ve€ Wol’q/ «o@)" (2.1.4)
from Wol’q/ Q)" to Lg/ () is bounded since
[div vl < Chllvllwre @yn (2.1.5)
with € = C1(n) > 0. Let
R(div) := {div v € L (Q) ; v € W7 ()"}
denote the range space and let
N(div) :={v € Wol’q/ (Q)"; dive =0}

be the null space of div.
Further we consider the operator

Vip—Vp , peL{Q) (2.1.6)
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from LE(Q) to W=14(Q)", defined by the relation
[Vp,v] :i=—<pdive> , ve Wol’q/(Q)” , p€ L), (2.1.7)

with range
R(V) :={Vpe W H9(Q)"; pe Li(Q)}. (2.1.8)

If Vp = 0 we see that p is a constant, see (1.7.18), and therefore p = 0 since
Jopdz = 0. Thus

N(V):={pe L) ; Vp=0}={0}. (2.1.9)
From the estimate
Vool = [<pdive>] < |pllg[div vl
< Cilpllglvllg

with C; as in (2.1.5), we see that V is a bounded operator from L{(Q) to
W—L4(Q)™. Tt holds that

IVPll-1.4 < Ciliplly » p € LG(Q). (2.1.10)

Next we use a functional analytic argument. The relation (2.1.7) means
that —V is the dual operator of div, we write

-V = div’, (2.1.11)

see [Yos80, VII, 1] for this notion.
From Lemma 1.5.4, see (1.5.10), we obtain the estimate

Iplly < CalVpll-14 > p € Lj(Q) (2.1.12)

with some constant Cy = Cs(q,) > 0. This shows that the range R(—V) =
R(V) of —V is a closed subspace of W~=1:4(2)". Therefore we conclude that the
inverse

V' 1:Vp—p, VpeR(V)

from R(V) onto L{(£2) is a bounded operator, see [Yos80, II, 6, Theorem 1].
The closed range theorem, see [Yos80, VII, 5], yields now the following

result: ,

R(div) is a closed subspace of L{ (), we have

R(div) = {g€ LI (Q); <p,g>=0 forall pe N(V)}, (2.1.13)
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and
R(V) = {f e W= H9Q)™; [f,v] =0 for all v € N(div)}. (2.1.14)
Since N(V) = {0} we conclude that
R(div) = LT (Q). (2.1.15)

Let
W (@)™ /N (div) == {[o]; v € W ()"} (2.1.16)

denote the quotient space (see [Yos80, I, 11]) of all classes [v] := v+ N(div), v €
Wy'? (Q)", equipped with the norm

1y vty = 1,}2[51 IV (v + w)]|q- (2.1.17)

Recall that || Vo], is an equivalent norm of W, q/(Q)” since  is bounded, see
(1.1.1).
We see that there exists the well defined inverse operator

div™!: div v — [v] (2.1.18)

from R(div) = Lgl(Q) onto Wol’ql(ﬂ)"/N(div). The operator div in (2.1.4) is
bounded and therefore closed, which means its graph is closed. From the closed
graph theorem, see [Yos80, II, 6, Theorem 1], we can now conclude that the
operator div™! in (2.1.18) is bounded. This means that

Tl o oy iy < Cs lldiv olly (2.1.19)
for all v € Wol"q/ (€)™ with some constant C3 = C3(q,2) > 0.

Therefore, for each g GLg,(Q) we can select a representative ve W A (Qn
such that div v =g and

Vol < Csliglly-

Note that this mapping g — v need not be linear. This proves assertion a) with
q replaced by ¢'.

To prove b) we use (2.1.14). If f € W~19(Q)" satisfies [f,v] = 0 for all
v € N(div), then from (2.1.14) we see that f € R(V), and therefore there exists
some p € L() with f = Vp; p is unique since N(V) = 0, and the estimate in
(2.1.2) follows from (2.1.12) with C := Cs.
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This proves b) in the case Qg = Q. If Qy C Q is any subdomain, then for
given f € R(V) we first choose p € LI(Q) as above, and then we set p := p—po
so that

po = |Q0|_1/ pdx, (2.1.20)
Qo

where |Qy| means the Lebesgue measure of €. Then fQo pdx = 0, and using
Holder’s inequality we get

1Bllg < 1Ipllq + [lpollq
< ol + 100l [ pdal 0
Qo
< lpllg (1 + 12077 [217)
< Cllfllw-ra@n
with C' = C(q,Q,0) > 0. The proof is complete. O

2.2 A criterion for gradients
Lemma 2.1.1 contains in particular a criterion for the property that
few i)
is a gradient of the form f = Vp with p € L7(Q). A sufficient condition is that
[f,v] =0 forall ve N(div):={v e Wol’q/(Q)"; divo =0}

where [f, v] means the value of the functional f at v.
Our aim is to improve this criterion and to show that it is sufficient to
require [f,v] = 0 only for all

v € C5o, () = {ve g7 ()"; dive =0}

This is important since C§%, (€2) is the appropriate space of test functions
in the theory of Navier-Stokes equations.

There are several approaches to such criterions. They are based on de
Rham’s theory [dRh60], see [Tem77, Chap.I, Prop. 1.1}, on Bogovski’s theory,
see [Bog80], or on an elementary argument in [SiS092]. Here we essentially follow
[SiS092], see also [Gal94a, III, proof of Lemma 1.1].

Further we will admit a general domain €2 C R™,n > 2, in the next result.
Recall that by definition, see (3.6.13), I, the following holds:

FEWL Q" iff feW Q)"

for all bounded subdomains Q¢ C Q with Q¢ C Q.
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2.2.1 Lemma Let Q@ C R", n > 2, be an arbitrary domain, let 2y C Q be
a bounded subdomain with Qy C Q, Qo # 0, and let 1 < q < oco. Suppose
few b Q)" satisfies

[f;v] =0 for all ve CF,(Q). (2.2.1)

Then there exists a unique p € L () satisfying Vp = f in the sense of
distributions and

/ pdx = 0. (2.2.2)
Qo

Proof. The lemma is proved if we show the following property:

For any bounded Lipschitz subdomain ©; C Q with Qy C €, Q; C Q, there
exists a unique p € LI(€;) with Vp = f in the sense of distributions in 2, and
with fQOpdx =0.

Indeed, using a representation of €2 as a union of bounded Lipschitz do-
mains, see Lemma 1.4.1, and the uniqueness of p in ;, we will see that p can
be extended to a well defined function defined on 2 with the desired properties.

Let €1 be such a subdomain. Then we choose, using a similar construction
as in the proof of Lemma 1.4.1, another bounded Lipschitz subdomain Q5 C Q
satisfying

0T, BT

From f € W, '(Q)" we see that f € W~14(Qy)", and since Qy is

loc
bounded we get by Lemma 1.6.1 a representation of the form

f=divF with F=(F)}_;eLi2)".

This was shown in Lemma 1.6.1 only for ¢ = 2, however the same proof holds
for 1 < g < oc.
Next we use the mollification method, see Section 1.7, and set F© := F,
F = (Fex Fy)t_; with 0 < e < dist (92, Q). This yields F* € C>(0;)™".
Our purpose is to prove the representation

div F* = VU. (2.2.3)

with some function U, € C*°(€;). To prove this we use the following elementary
procedure from [SiS092].
Let w : 7 — w(7), 0 < 7 < 1, be a continuous mapping from [0,1] to
We assume that the derivative w’ exists and is piecewise continuous on

1-
[0,1]. Such a function w is called a curve in Q;; w is called a closed curve if
w(0) = w(1).
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Further we consider a vector field g = (g1,...,9,) € C®(Q;)", and define
the curve integral

/ g(w(r) () dr = / 1 ; () () dr

with w(7) = (w1 (7), ..., wn (7)), W'(7) = (Wi (7),...,w,(7)).

An elementary classical argument shows that if this integral is zero for
each closed curve in €, then g has the form g = VU with U € C>(Q,).

To apply this argument for the proof of (2.2.3), we have to show that

1
/ (div F)(w(r)) - w'(r) dr = 0 (2.2.4)
0
for each closed curve w in €. To prove this we set
/.7:33— w'(r)dr , x € Qo,

and get Vi, . € C3°(Q2)™,

div Vyo(z) = /ZDF x —w(r))w;(r) dr

= —/0 ddT]:e(fl?—IU(T))dT

— Fla—w(0) = Flw —w(1)) =0

if w is a closed curve in Q. This leads to Vi, € C5%,(Q22)", and using the
assumption (2.2.1) and Fubini’s theorem we obtain

0 = [f,Vue] = [div F, V]
_ gn:l </ Folw—w ;(ﬂm) do

= / Z Fe(w(r) — 2)D; Fji(x)dz | wi(r)dr
0 \ =10
/0 NZﬂ /92 (D; Fo)(w(r) — x) Fji(x))dz | w)(r)dr
= /0 (div Fe(w(r)) - w' () dr.

This proves (2.2.4).
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Thus we get the representation (2.2.3) with some U, € C>°(Q;) which is
determined up to a constant. Choosing this constant in an appropriate way we
can conclude that fQo U.dx = 0. Using Lemma 1.5.4, (1.5.10), we obtain

[UellLaey < ClIVUellw-ra(ay)
= C sup (|[VUEa/U]|/HVUHq,)
0£veCEe (1)

= C sup (|<F,Vo>[/[[Vulg)
0£vECE (1)

ClIE [ Lo
with C' = C(g,0,$1) > 0 independent of .

Since ||F — F¥[|pa(q,) — 0 as € — 0, see Lemma 1.7.1, we obtain, letting
e — 0, some U € L1(Q)) satisfying

IA

Udx =0, hng) U= Ucllpage,y =0, f=divF=VU
QO E—
in Q3. To prove this, we choose 0 < 1 < € and replace F¢ by F¢ — F" U, by
U. — U, in the last estimate. U is uniquely determined.

Consider now all possible Lipschitz subdomains €2; as defined above with
Qo C Q. Each bounded subdomain € C Q with ' C  is contained in such a
domain 21, see Remark 1.4.2.

Defining p by U constructed above in each such {2;, the uniqueness of
U because of fQo U dx = 0 yields in this way a uniquely determined function
p € L () with f = Vp in the whole domain €. This proves the lemma. O

loc

If in particular € is a bounded Lipschitz domain, we can improve the above
result, see the next lemma, and show that even p € L9(2). Moreover p satisfies
the important estimate (1.5.10). For the proof we use the scaling argument, see,
e.g., the proof of [Tem77, Chap.I, Theorem 1.1].

2.2.2 Lemma Let Q CR", n > 2, be a bounded Lipschitz domain, let Qg C 2,
Qo # 0, be any subdomain, and let 1 < q < oo. Suppose f € W—L4(Q)" satisfies

[f;v] =0 forall ve CF,(Q). (2.2.5)
Then there exists a unique p € L1(QY) satisfying

/ pdr=0, f=Vp
Qo
in the sense of distributions. The estimate

IpllLa) < Cillfllw-ra@yr < CiCallpllLa(e) (2.2.6)
holds with constants C1 = C1(q,Q0,) > 0 and Cy = Ca(n) > 0.
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Proof. First we assume additionally that 2 is starlike with respect to some

xo € Q. This means that the line {zo + te; t € R} intersects the boundary 02

in exactly two points for each vector e € R”. We may assume, for simplicity,

that o = 0. This property enables us to apply the following scaling argument.
Let 0 <e <1,

Q. :={r eR"; excQ}

and let the functional f. € W=19(Q.)" be defined by [f.,v] := [f,v:], v €
Wol’q’ (Q:)™, where v, € Wol’ql ()" is defined by v (z) :=v(elz), x € Q.

Let v € C§%, (). Then v. € C§%, (), and from (2.2.5) we get that [f.,v] =
0 for all v € C§%(€.). Applying Lemma 2.2.1 yields a unique p. € Ll (Q.)
satisfying fﬂo pedr = 0 and f. = Vp, in Q.. Note that Q C Q. and therefore
ﬁ0 c Qs

Since Q C Q. we get p. € L), 0 < € < 1. Therefore we may apply
Lemma 1.5.4 and estimate (1.5.10). This yields

IPllzae) < ClIIVpellw-ra@n = Cllfellw-1.a0)n

with C'= C(q,Q) > 0 not depending on &.

Let now 3 < e < 1 and v € C§%(€). Extending v by zero we get v €

6% (). Then a calculation shows that

q
IVvellp @y < 20V0llpy @y 0=~
and
|[f€7v]| - Hfﬂ'UsH S ||fHW—1"q(Q)"HVUEHLq’(Q)nQ
< 2lfllw-ra@ VUl o gyn2-
This yields
[Pellza) < Cllfellw-ra@n < 2C|[fllw-ra@r (2.2.7)

for $ <e< 1.

Since C' does not depend on ¢, we are able to let ¢ — 1. Choose % <
gj <1, j € N, with lim; ..e; = 1, and set p; := p.;, j € N. The uniform
boundedness in (2.2.7) shows the existence of a subsequence of (p;)$2; which
converges weakly in L(2) to some p € L%(£2). We may assume that the sequence
itself has this property. With f; := f., we get

<p, dive>q = lim <p;,dive>q = lim [-Vp;,v]q
]4)00 j*»OO

lim [—fj,vlo = lim [, vjl

J—00

[_fvv]Q
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for all v € C§°(2)", where v; := v, is defined as above by v, (v) := v(ej_lm),
x € 2. This shows that f = Vp in the sense of distributions. The weak conver-
gence of p; to p yields that fQo pdx = 0. This proves the uniqueness property
of p.

The weak convergence property shows, see Section 3.1 or the proof of
Lemma 1.5.4, that

IPllzeq) < lim inf {|psllze@) < 2C 0 llw-rac@)-

This proves the lemma for starlike domains.

The case of a general bounded Lipschitz domain 2 can be reduced to the
case above by the following localization argument. Using the definition of a
Lipschitz domain, we easily find bounded starlike subdomains £2,...,€,, CQ
such that

Q=Q U---UQy,.

For j=1,...,mlet f; € W=19(Q;)" be the restriction of f to Wol’ql (Q;)".
Consider first the case that Qy € Q. Then from Lemma 2.2.1 we obtain
a unique p € L] (Q) satisfying f = Vp, fQOpdx = 0. Since Q; C Q we get
in particular that Vp = f;, 7 = 1,...,m, in the sense of distributions in €2;.
On the other hand, the result above yields some p; € L4(Q;) with Vp; = f;,
j € N, which is uniquely determined up to a constant. Therefore we get p+C; =
pj, 7 =1,...,m, where C; is a constant. This proves that p € L9(Q). If Qy C Q2
is any subdomain, we choose a subdomain f, C Q with 'y C Q. This yields as
above some p € L1(Q)) with Vp = f and f%ﬁdx = 0. Subtracting a constant
from p yields the desired p € LI(Q) with Vp = f and fﬂopdx = 0. Since
p € L1(Q), the estimate (2.2.6) now follows from Lemma 1.5.4, (1.5.10). This
completes the proof. O

The following density property is an important consequence of Lemma
2.2.2. Note that this property need not hold in unbounded domains, see [Hey76]
for counter examples.

2.2.3 Lemma Let Q CR", n > 2, be a bounded Lipschitz domain, and let
1 < g < oo. Then C§5, () = {v € C(Q)™;div v = 0} is dense in the space
N(div) = {v € Wy (Q)";div v = 0} with respect to the norm || - lwria@m =
Il ll1q- Thus

co @' = Ndi). (2.2.8)

Proof. We use a functional analytic argument. To prove (2.2.8), it suffices to
show that each functional f € W14 (Q)*, ¢ = q%’l, from the dual space
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W14 (Q)" of W, 9(Q)" which vanishes on 6%, () even vanishes on N (div).
Then (2.2.8) must be valid, otherwise we would find by the Hahn-Banach theo-
rem some f € W14 (Q)" with [f,v] = 0 for all v € C5%,(Q) and [f,vo] # 0 for
some vy € N(div).

Thus let f € W54 (Q)" be given with [f,v] = 0, v € C6, (). From
Lemma 2.2.2 we see that f = Vp with some p € L7 (). It follows that

[f,v] = [Vp,v] = — <p, dive> (2.2.9)

for all v € Cg°(Q)". Since f is continuous in |[Vvl|,, and since p € L7 (2), we
conclude that (2.2.9) even holds for all v € W;9(Q)". Tt follows that

[f,v] = —<pdive>=0, ve N(div).

This proves the lemma. O

2.3 Regularity results on divo =g
Lemma 2.1.1 yields a solution v € Wy'?(2)" of the system
divo=g, v|spa=0 (2.3.1)

for each given g € LI(Q)) with fﬂgdx = 0. In the regularity theory of the
Navier-Stokes equations we need solutions v of (2.3.1) with higher regularity
properties if g is sufficiently smooth. The next lemma yields such a result. See
[Bog80] or [Gal94a, ITI, 3] for a different approach to the regularity theory of
(2.3.1).

2.3.1 Lemma Let QQ C R", n > 2, be a bounded Lipschitz domain, and let
1< qg< oo, ke N. Then for each g € Wg’q(Q) with ngdaz = 0, there exists at

least one v € Wéﬂ_l’q(Q)" satisfying
divo=yg , [[vfwrra@yn < Cllgllweaq) (2.3.2)
with some constant C = C(q, k,Q) > 0.

Proof. See [Gal94a, III, Theorem 3.2] for another proof. The result also holds
for k = 0 and is contained in this case in Lemma 2.1.1, a). We use the same
argument as for k = 0, now for kK > 1. For kK = 0 the proof rests on inequality
(1.5.10) which follows from (1.1.6) by a compactness argument, see the proof
of Lemma 1.5.4. The same argument can be used in the case k > 1. Instead of
(1.1.6) we now use the corresponding inequality (1.1.8) for k > 1. The analogous
compactness argument as in the proof of Lemma 1.5.4 yields instead of (1.5.10)
the inequality

lullw-ra@ynewy < CillVullw-r-14)n < C1Colullw-ra)  (2.3.3)
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for all w € W=%4(Q) with constants C; = C1(q,k,Q) > 0, Cy = Co(n, k) > 0.
W=F4(Q)/N (V) means the quotient space modulo the null space N(V), which
consists of the constants. If k = 0, W=%4(Q)/N(V) = L1(Q)/N(V) can be
identified with L§(Q) = {u € LY(Q); [,udz = 0}.

The proof of Lemma 2.3.1 follows from (2.3.3) with ¢ replaced by ¢’ = -2

q—1
by the same duality principle as in the proof of Lemma 2.1.1. It follows that the
bounded linear operator

div :v— divw

from WETH(Q)" to W ?(Q) has the closed range Wy () N LI(€2). There-
fore, the inverse operator div™" from Wé“’q(Q) N L{(2) onto the quotient space
Wy 9(Q)"/N(div), N(div) :== {v € W 9(Q)"; div v = 0}, is bounded.
This proves the existence of some v € W§+1’Q(Q)” satisfying (2.3.2). The proof
is complete. O

2.4 Further results on the equation divev = g

Modifying the duality argument in the proof of Lemma 2.1.1 we find some other
solution classes of this equation. Here we need the traces, see Section 1.2, II,
and the exterior normal vector field N at the boundary 99, see (3.4.7), 1.

2.4.1 Lemma Let Q) C R"™, n > 2, be a bounded Lipschitz domain with boundary
00, and let 1 < ¢ < 0o. Then we have:
a) For each g € W—14(Q) there exists at least one v € LY(Q)™ satisfying

divv=g
in the sense of distributions, and
[vllza@n < Cllgllw-1.40) (24.1)

with some constant C = C(q,2) > 0.
b) For each g € LY(Q) with [, gdx =0, there exists at least one v € L1()"
satisfying

divv =g

in the sense of distributions, N -v|pq = 0 in the sense of generalized traces
(1.2.24), and

vl < Cllgllzaa) (2.4.2)
with some constant C = C(q,?) > 0.
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Proof. To prove a) we consider the operator
div :v— divw
from L(Q)" to W~14(Q), and its dual operator div' = —V,
—Vip— Vp,
from Wy? () to L7 ()", ¢ = 4. We get
[p, dive] =< —=Vp,v >

for all p € Wol’q,(ﬂ) and v € L1(2)". From Poincaré’s inequality (1.1.1) we see
that —V has a closed range. Therefore, div has also a closed range which is the
whole space W~14(Q), since {0} is the null space of —V; see the closed range
theorem [Yos80].

The inverse operator div_! from W~19(Q) to the quotient space L(Q)"/
N(div), N(div) := {v € L1(Q)™; div v = 0}, is therefore bounded. This yields
a).

To prove b) we define the operator
div :v— divw
with domain

D(div) := {v € LY(Q)"; div v € LI(Q), N -v|pq =0} C LI(Q)"
and range R(div) C L7(9). From Green’s formula (1.2.25) we conclude that
Jo div vdz =0 for v € D(div). To see this we set u = 1 in (1.2.25). This yields
R(div) C L§(Q) = {g € L(Q); |, gdx = 0}. The trace N - v|gq is well defined
since D(div) C E,(Q), see Lemma 1.2.2.

D(div) is dense in L7(Q)™ since C§°(2)™ C D(div). We consider div as an
operator from D(div) to R(div) C Lg(f).

Lg/ (€2) is the dual space of L{ (), see (2.1.3). Next we define the operator

V:p—Vp
with domain D(V) := {p € Lg/(Q); Vp € LY ()"} € WH7(Q) and range
R(V) C LY (Q)™. Tt holds that N(V) = {p € Lg,(Q); Vp =0} = {0} since

Vp=20, /pdsz
Q

implies p = 0, see (1.7.18). Green’s formula (1.2.25) yields

<pdive>= — < Vp,v>
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for all p € D(V) and v € D(div). This means, —V is the dual operator of div.
Poincaré’s inequality (1.1.2) implies that R(—V) is closed in L7 (Q)". There-
fore, R(div) C L{(£2) is closed too, and since N(—V) = {0}, we conclude that
R(div) = L{(92) and that

inf v+ < Cdiv v
LdnE ot ly < Cldiv o,

with N(div) := {v € D(div); dive = 0}, C = C(¢,2) > 0. Thus we may
choose v in such a way that (2.4.2) is satisfied. This proves b). O

2.5 Helmbholtz decomposition in L>-spaces

In this subsection 2 C R" is an arbitrary domain with n > 2. We consider the
Hilbert space L?(2)" with scalar product

<fvg>Q=<f,g>=/f-gdx,
Q

the subspace

yareoarreny NP

120 =CE@" | @) = {fecE@ div f=0),  (251)
and the space

GQ) = {f € Q)" Tpe L) : f = V). (252)

In other words, L2(Q) is the closure of C3%(Q) in the norm | - |2 =

| - l22(0)n, and G(Q) is the space of those f € L?(Q2)™ for which there is some
p € L? (Q) satisfying f = Vp in the sense of distributions. “3” means “there
exists”.

The next lemma shows that G(£2) is orthogonal to L2(), we write

G(Q) = Ly ()"

for this property. This leads to the unique decomposition (2.5.4) of each f €
L?(Q)™ which is called the Helmholtz decomposition of f. In particular we see
that G(Q) is a closed subspace of L?(Q)". See [Gal94a, 11, 1], [FuM77], [SiZ98]
concerning the Helmholtz decomposition in L%-spaces with 1 < g < oc.

2.5.1 Lemma Let Q) C R" n > 2, be any domain. Then
GO ={fel*>V)"; < fiuv>=0 foral veL%Q)}, (2.5.3)
and each f € L*(Q)"™ has a unique decomposition

f=Jo+Vp (2.5.4)
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with fo € LZ(Q), Vp € G(Q), < fo,Vp>=0,

I£115 = 1 foll3 + V13- (2.5.5)

Remark As a consequence of this lemma we obtain a bounded linear operator
P: f Pf from L?(Q)" onto L2(f) defined by Pf := f, with fj as in (2.5.4).
P is called the Helmholtz projection of L?(Q)" onto L2(Q) .

2.5.2 Lemma Let Q CR", n > 2, be any domain, and let f = fo + Vp be the
Helmholtz decomposition of f € L?>(Q)". Then
P:L*(Q)" — L2(Q), (2.5.6)

defined by Pf := fo for all f € L*(Q)", is a bounded linear operator with
operator norm || P|| < 1. Thus

IPA < Ifll . f e L2, (25.7)
P has the following properties:

P(Vp) =0, (I-P)f=Vp, P2f=Pf,
(I-P?f=(I~-P)f, <Pfg>=<fPg> |fl5=IPfl3+I~P)fI3

for all f,g € L2(2)".

From these properties we easily conclude that P is a selfadjoint operator,
and that P’ = P, where P’ means the dual operator of P, see Section 3.2 for
this notion.

Proof of Lemma 2.5.1. First we prove the characterization (2.5.3) of the sub-
space G(Q) in (2.5.2). The space on the right side of (2.5.3) is by definition the
orthogonal subspace of L2(f2). Thus we have to show that

G(Q) = L2(Q)*. (2.5.8)
To prove (2.5.8) let f € L2(9)*. Then for any bounded subdomain Qo C
with Qg C Q we get, using Poincaré’s inequality (1.1.1), that
|<fiv>] < Afllzllvllizz@on < ClFll2 IVl L2 gp)n
for all v € C§° ()™ with C' = C(£) > 0. This shows that
;e W@

oc

Next we observe that [f,v] =< f,v >= 0 for all v € C§5, (). Lemma 2.2.1

yields some p € L} (£2), uniquely determined up to a constant, which satisfies

f = Vp in the sense of distributions. This shows that f € G(Q2).
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Conversely, let f € G(Q) with f = Vp, p € L? (). Then < Vp,v > =
— < p, divo >=0 for all v € C§%(2), and since Vp € L*(2)", this even holds
for all v € L2(£2). This proves (2.5.8).

Using some elementary Hilbert space properties, see Section 3.2, we get
the unique orthogonal decomposition f = fo + Vp for each f € L?(Q)" with
feLi(Q), Vpe L2(Q)+ = G(Q); (2.5.5) is obvious. This proves the Lemma.

O

Proof of Lemma 2.5.2. The Hilbert space theory yields a uniquely determined
projection operator P from L?()" onto the subspace L2(); the properties of
P are obvious. This yields the lemma. O

For special domains we can improve the properties of the Helmholtz de-
composition f = fy + Vp. In particular we are interested in bounded Lipschitz
domains and in the case ) = R™. In these cases we can give special important
characterizations of L2(Q) and G(Q).

In the following lemma, N - f|so means the generalized trace, see (1.2.24),
and N the exterior normal field at 99, see (3.4.7), I. Note that the trace N- f|aq
in (2.5.9) is well defined since f € E»(2), see (1.2.20).

2.5.3 Lemma Let Q) C R™, n > 2, be a bounded Lipschitz domain with boundary
0). Then
LE(Q) = {fe L*(Q)"; div f =0, N - floo = 0} (2.5.9)

and

G(Q) :== {f e L2(Q)"; Ipc L*(Q): f = Vp}. (2.5.10)

Proof. In other words, G(f2) is the space of all f € L*(Q)" for which there is
some p € L?(Q2) with f = Vp in the sense of distributions.
To prove (2.5.10), it suffices to show the following property:

p € L. (Q), Vp e L*(Q)" implies p € L*().

This is a consequence of Lemma 1.1.5, b). Thus we obtain (2.5.10).

To prove (2.5.9), let L be the space on the right side of (2.5.9). From
G(Q) = L2(2)* we get by an elementary Hilbert space argument that G(£2)+
= L2(Q)tL = L2(Q). Thus it remains to show that L = G(Q2)L.

To prove this let f € G(2)1. By definition

G == {f e LX Q)" < f,Vp>=0 forall Vpe G(Q)},

and therefore we obtain in particular < f,Vp > = 0 for all p € C§°(2). This
means that div f = 0 in the sense of distributions. It follows that f € F2(Q),
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see Lemma 1.2.2. Using (2.5.10) we get < f,Vp > = 0 for all p € W12(Q).
Green’s formula (1.2.25) now yields that

O0=<p,divf>a=<p,N-f>p0 —<Vp, f>0=<p,N-[f>sq

for all p € WH2(Q). This shows that N - flsqo = 0 and therefore that f € L.
Thus we have G(Q2)*+ C L.

Conversely let f € L. Then f € E5(Q) and Green’s formula (1.2.25) yields
< f,Vp >q = < divf,p >q= 0 for all Vp € G(Q). This shows that f € G(Q)*.
Therefore we get L = G(2)1 and (2.5.9) holds. The proof is complete. O

In the case 2 = R™ we can prove the following characterization of the
spaces L2(2) and G(9).

2.5.4 Lemma Letn €N, n> 2. Then
L2(R™) = {f € L*(R™)™; div f = 0}, (2.5.11)
and G(R™) is the closure of the space
VORRY) = {Vp; p e CF(R)} (2.512)
with respect to the norm || - || L2(gnyn. Thus

lI-ll2

G(R™) = VC&(R™) (2.5.13)

Proof. First we prove (2.5.13). For this purpose we use the scaling method and
the mollification method, see Section 1.7.

To prepare the scaling argument we consider a function ¢ € C§°(R") with
the properties

0<e<1l, pE)=1if |z|<1, e@)=0 if |z|>2, (2.5.14)
and define the functions
©; €ECFR™) , ¢i(z):=p('z) , x€R™ jeN. (2.5.15)
It follows that lim; .. ;(x) =1 for all x € R", and setting
Bj:={zx eR"; |z|<j} , Gj:=By\Bj, (2.5.16)

we get supp V; C Gj, supp ¢; C Baj, j € N. See [SiS096] for the method
concerning .
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To show (2.5.13) we consider any Vp € G(R") = {Vp € L*(R")"; p €

L? (R™)} and choose constants K, j € N, such that

loc
/ (p—Kj)de=0, jeN
G

Applying Poincaré’s inequality (1.1.2) to Gy, we get
lp = Killr2eyy < ClIVPllL2yy (25.17)

with some constant C' > 0. Using the transformation formula for integrals with
x = jy, dx = j™dy, we obtain

(/G o) — KPde) = (/G Ip(Gy) — K, Pdy)* 5

J

lp — Kjllr2(c,)

IN

Ciz (| |Vyp(iy)Pdy)®
G

N[

= Cj2j25( [ |Vp(x)Pdz)
Gv

= CjlIVplr2a,m

with C as in (2.5.17) since
/ (p(y) — Kj)dy = 7" / (p(z) — K;)dz = 0.
Gi G,
Thus we get

Ip = Kjllez,) < 3CIVpllrzy » j €N (2.5.18)

Setting p; = ¢;(p— K;) and using Vp; = (Vy;)(p— K;)+¢;V(p—K;) =
(Ve;)(p — Kj) + ¢;Vp, we obtain

IVp = Vpjllrzemy < IVP— @i Vpllr2@eyn + (Vi) — Kj)lL2@neyn

IA

C/
VP —¢;VpllL2@nyn + 7||P = Kjllzz;)m

with Vip;(2) = V(i ~'z) = 771 (Ve)(j~'2) and C' == sup, [Vp(z)].
Lebesgue’s dominated convergence lemma, see [Apo74], yields

Jim [Vp = ¢;Vpllz2gn)» (2.5.19)

J—0o0
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since |1 — p;(2)] = |1 — o @) < 2 and limj o [1 — 9(j~12)| = 0 for cach
x € R™. Using (2.5.18) we get

VP = VpillL2@nyn < VP = ¢;VDllL2@nyn + C'ClVDl|L2(c))n-

Together with
Jm [Vpliaye = Jim ([ [Vp@)do)t =0
J

and (2.5.19) we conclude that

JEI& ||Vp - vijLz(Rn)n =0. (2.5.20)

_ Next we use the mollification method, see Lemma 1.7.1. Since supp p; C
B,; we can approximate each p; by C§°-functions in the gradient norm. Using
the operator F.*, € > 0, see (1.7.5), we find for each j € N some ¢; > 0 such
that

1
||vp] - fsj *vpj||L2(Rn)n S —.

.

With V(F., xp;j) = Fe, x (Vp;), see (1.7.17), we get
1
IVpj = V(Fe; *pj)llrz@nyn < ; (2.5.21)
for all j € N.
Setting p; := F., * p; we see that p; € C°(R™), j € N, and combining
(2.5.20) with (2.5.21) leads to

JEII; ||Vp - Vﬁj ||L2(Rw)n =0.
This proves (2.5.13).

To prove (2.5.11), let L be the space on the right side of (2.5.11). Recall,
div f = 0 is understood in the sense of distributions. Since

we only have to show that L C L2(R"). For this purpose let f € L. Then
< f,Vp>=—[div f,p] =—< div f,p>=0 (2.5.22)

for all p € C§°(R™). Since f € L?(R™)" and since the space of all Vp with
p € CP(R") is dense in G(R™) in the norm || - ||2, see (2.5.13), we see that
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< f,Vp >=0 holds as well for all Vp € G(R"). This means that f € G(R")*,
and we see that

f€GRY: = 2R = L2(RY).

Thus we get f € LZ(R") and L C L%(R™) which proves (2.5.11). The proof of
the lemma is complete. 0

Finally we mention an important density property which follows by the
same approximation argument as above.

2.5.5 Lemma Letn € N, n> 2. Then
C’gfa(R")H.”Wm(Rn)" = {v e WH(R™)"; div v = 0}, (2.5.23)

Thus C§S,(R™) = {v € C§°(R")"; div v = 0} is dense in the space on the right
side of (2.5.23) with respect to the norm of WH2(R™)™.

Proof. Recall that
1.2mnyn _ 17L2mnye . Aeermnsal w2 @nyn
WHEAR™M)™ = Wy (R™)™ = C(R™)™ ) (2.5.24)
see (3.6.17), L.
To prove (2.5.23), let v € Wy *(R™)" = W2(R")" with div v = 0. Then
we have to construct some v; € C§%, (R"), j € N, such that

lim HU — 'Uj”Wl,E(]Rn)n = 0. (25.25)
71— 00

For this purpose we use the same approximation method as in the last
proof, and consider ¢;, B;,Gj,j € N, as in (2.5.15), (2.5.16), F, as in (2.5.21).
Then we construct some w; € W&’Z(Gj)", j € N, such that

div w; = div (p;v) = (Vg;) - v (2.5.26)

and
hm ||w]||W12(G]) =0. (2527)
j—o0

Assume for a moment that we already have such a sequence (w;)32 ;. Then
a similar argument as in (2.5.19) shows that

lim |[v = @jvllwr2@n) =0,
j—oo
and setting v; := @;v —wj, j € N, we get div 9; =0 and

lim HU - f}jHWl,z(Rn) =0.
J—00
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A similar argument as in (2.5.21) leads to

hm ||’l~)7 — fgj * ﬁj”Wl,Q(Rn) =0.
J—00

Then we set v; := F., * ¥; and obtain
DjGCSO(Rn)n, diVUj:]‘—gj* diV’[)j:O7 7 €N,

see (1.7.17), and (2.5.25) follows.
Thus it remains to construct the above sequence (w; )‘7’11 For this purpose
we use Lemma 2.1.1, a). First we observe that

div (pjv)dz = / (Vgj)-vdz =0. (2.5.28)
Baj G
This follows from Green’s formula (1.2.12) with « = 1. Then we use the trans-
formation = jy, z € G;, y € G, and setting w;(y) = w;(jy) = w;(x), we
get from (2.5.26) the transformed equations
div @;(y) = 5(Ves)Gy) - v(iy) (2.5.29)
now in Gy for all j € N. Using (2.5.28) we see that

/ (div &) () dy = j / (Vo) (Gy) - v(iy) dy
Gy

G

= jj_”/ (Voi)(z) -v(z)ds = 0,

Gj
and Lemma 2.1.1, a), yields a solution w; € We2(G)" satisfying
. . . . 1
Vsl < € ([ 1i(Te)0)- ol dn)
1

for all j € N with some fixed C' = C(G;) > 0. Then w; € Wy'*(G;)" defined by
w;(z) = w;(y), * = jy, is a solution of (2.5.26), and we get

I, V“’a‘@)'%)% =t ([ iwmwray)

J

Vw2, = (

2

7N IV@s |2 < Cj2 (/

_ C(/G.

J

(V) () - o) dy)

2

(Vs (@) - v dm)
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- e ( | 1vo6 ) -v<x>|2dx>

< j Gl

1

2

N

for all j € N, with some C; = C1(G1) > 0 not depending on j.
Then with Poincaré’s inequality for G; we obtain

(/G |wj<sc>|2(m>é ([ o)

c.y(/ |vywj<y>|2dy)

Gy

= Czi(/
G

= CojIVwjllr2q,)
< GOyl z2a;)

with some Cy = C3(G1) > 0 and C as above.
Since obviously

[[w; ||L2(Gj)

IN

J

IV, ()| dw)

Jim loflz2(6;yn = 0,

we conclude from these estimates that (2.5.27) is satisfied. This completes the
proof. |

3 Elementary functional analytic properties

3.1 Basic facts on Banach spaces

For the convenience of the reader, and in order to fix notations, we collect some
elementary facts on Banach spaces and in particular on Hilbert spaces. We
mainly refer to [Yos80], [HiPh57], [Heu75].

Let X be a (real) Banach space with norm |v|x = |jv]|, v € X. By
definition, the dual space X’ of X is the Banach space of all linear continuous
functionals

froe=[f,v], veX
with norm

Ifllx = sup_(|[f,v]|/llv]x)-
0#veX
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Sometimes we write f = [f,-]; [f,v] always means the value of the functional
f at v.

A linear functional f : v — [f,v], v € X, is continuous iff there is a
constant C' = C(f) > 0 such that

£, < Cllvllx  forallve X. (3.1.1)

It holds that ||f||xs = inf C(f), which is the infimum over all such con-
stants C(f) for fixed f. Therefore, if (3.1.1) holds with any C' = C(f), then

Iflx < C. (3.1.2)
A sequence (Uj)?il in X converges strongly to some v € X iff

lim o — ;]| = 0;
—00

we write v = s — lim; o v; in this case. The sequence (v;)2; in X converges
weakly to v € X iff

Jim [£.0,] = [0

for all f € X'; we write v = w — lim;_, v; in this case.

X is reflexive iff each linear continuous functional on X’ has the form
f=1fv], fe X' with some fixed v € X. We write [-,v] for this functional.
Usually we identify each v € X with the functional [-,v]. Then X can be
identified with (X’) = X" and we write X" = X if X is reflexive.

If X is reflexive, each bounded sequence (v;)52; in X contains a subse-
quence which converges weakly to some v € X. For simplicity we will always
assume that the sequence itself has this property. In this case

Jol < Tim inf flo;| < sup Joy]. (3.1.3)
Jj—o0 j

Let D C X be any subspace of X and let D denote the closure of D in the

norm | - ||. D is called dense in X iff D = X. We also write D'l = X in this
case.

Consider two Banach spaces X and Y with norms ||-||x, |||y, respectively.
Let

B:vw— Bv , veD(B)

be any linear operator with domain D(B) C X and range R(B) := {Bv; v €
D(B)} € Y. N(B) := {v € D(B); Bv = 0} means the null space of B, and
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G(B) :={(v,Bv); v € D(B)} C X xY means the graph of B. If D(B) = X, B
is called densely defined. The norm

[ollpes) = llvllx +[[Bully v e D(B) (3.1.4)

is called the graph norm of D(B). B is called closed if the graph G(B) is closed
in X x Y with respect to the norm ||v||x + ||wlly, (v,w) € X x Y. If B is closed,
D(B) is a Banach space in the graph norm || - || p(p).

Let N(B) = {0}. Then B is injective and

vl 55y = IBvlly , ve D(B) (3.1.5)

is called the homogeneous graph norm of D(B). Even if B is closed, D(B) need
not be a Banach space in this norm. The completion D(B) of D(B) consists of
all (classes of) Cauchy sequences (v;)52; in D(B) with respect to this norm.
Let v = (v;)52; be any element of D(B). Then, by definition, (Bv)$2, is
a Cauchy sequence in R(B) C ). Setting
Bv:=s— lim Bv; , v€ E(B) (3.1.6)
J—00
we get a (well defined) linear operator from D(B) to Y which is an extension
of the given operator v — Bv, v € D(B). This extension is called the closure
extension of B from D(B) to D(B), we simply use the same notation B for this

extension. Note that D(B) D D(B) C X, but D(B) need not be a subspace
of X.

Let B : D(B) — Y, D(B) C X, be a densely defined closed operator.
Then the dual operator B’ : f — B’f with domain D(B’) C )’ and range
R(B’) C X’ is well defined by the following property:

It holds that [f, Bv] = [B'f,v] for all f € D(B’), v € D(B), and B’ is
maximal with this property (that is, D(B’) is the totality of all f € )’ such
that v +— [f, Bv], v € D(B), is continuous in ||v]|x).

If one of the spaces R(B), R(B’) is closed, then both are closed and
R(B)={w e Y; [f,w]=0forall f € N(B)}, R(B')={g € X’; [g,v] =0 for
all v € N(B)}; see the closed range theorem [Yos80, VII, 5]. If R(B) is closed,
then there is a constant C' > 0 with

|Bvlly = C|[v]llx/n(B) (3.1.7)
for all v € D(B), where

= inf
| [v] | x/n(B) erl%(B) lv+ ol x

means the quotient norm of [v] = v + N(B); see [Yos80, I, 11] and the closed
graph theorem [Yos80, II, 6, Theorem 1].
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Let X and Y be reflexive Banach spaces and let B : v — Bv, v € D(B),
be a closed linear operator with dense domain D(B) C X and range R(B) C ).
Suppose (v;)52, is a sequence in D(B) with the following property:

(v;)72; converges weakly in X to some v € X, (3.1.8)

and sup || Bv;|y < oo.
J

Then v € D(B) and we get the estimate

1Bully < lim inf [|Bvjlly < sup | Bujly. (3.1.9)
J

The proof of (3.1.9) rests on the following facts, see [Yos80, V, 1]. The pairs
(vj, Bvj), j € N, yield a bounded sequence with respect to the graph norm
(3.1.4), and the graph G(B) is a reflexive Banach space with this norm. There-
fore we get a subsequence which converges weakly in G(B) to some element
(0, Bv) € G(B), and we may assume that the sequence itself has this property.
Since (v;)32, converges to v € X weakly, we get © = v, B0 = Bv and v € D(B);
(3.1.9) now follows from (3.1.3).

Let B : v — Buv be any closed linear operator with dense domain D(B) C
X and range R(B) C Y, and suppose that N(B) = {0}. This means that
B is injective. Then the inverse operator B~! : D(B~!) — X with domain
D(B7') = R(B) C Y and range R(B~!) = D(B) C X, is well defined by
B7'Bv = for all v € D(B). B~! is a closed operator.

Suppose B : v — Bwv is a bounded linear operator from X to ). Thus
D(B) = X, and

1Bl := sup (IBvlly/lvlx) < oo

veX
Then ||B|| is called the norm of B. B is called compact iff for each bounded
sequence (v;)72; in X, the sequence (Bv;)72; contains a subsequence
which converges strongly in ) to some element of ).

Finally we consider an operator B : X — X which is only a mapping and
need not be linear. B is called completely continuous iff

B is continuous and for each bounded sequence (v;)52, in X,
the sequence (Bv;)72; contains a subsequence which (3.1.10)
converges strongly to some element of X.

We need the following result.
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3.1.1 Lemma (Leray-Schauder principle) Let X be a Banach space and let
B : X — X be a completely continuous operator. Assume there exists some
r > 0 with the following property:

If veX, 0<A<1, v=ABuv, then |v||x < (3.1.11)
Then there exists at least one v € X with v = B, ||v||x <.
Proof. See [LeSch34], [Lad69, Chap. 1, Sec. 3], [Zei76, 6.5, Theorem 6.1]. O

3.2 Basic facts on Hilbert spaces

Here we mainly refer to [Yos80], [Kat66], [ReSi75], [Heu75] and [Wei76]. Let H
be a (real) Hilbert space with scalar product < w,v > =< u,v > and norm
lullzr = ||ul| =< w,u >2, u,v € H. Then H' denotes the dual space of all
continuous linear functionals defined on H.

The Riesz representation theorem, see [Yos80, III, 6], shows that each
element of H' has the form

v <uv>, veH

with some fixed v € H. As usual, this functional < u,- > will be identified with
u, and we therefore obtain that H' = H.

Let B : v — Bv be a closed linear operator with dense domain D(B) C H
and range R(B) C H. Then the dual (adjoint) operator B’ with (dense) domain
D(B') C H and range R(B’) C H is determined by the property

<u,Bv>=< B'u,v> forallve D(B), ue D(B), (3.2.1)

and D(B’) is the totality of all u € H such that the functional v —< u, Bv >,
v € D(B), is continuous in ||v||z.

If B = B, that is if D(B) = D(B’) and Bv = B'v for all v € D(B), B
is called a selfadjoint operator. A selfadjoint operator B is called positive if
<wv,Bv> > 0forall v e D(B).

If N(B) = {v € D(B); Bv = 0} = {0}, B is injective and we define
the inverse operator B~! : D(B™!) — H by D(B™') = R(B), R(B™!) =
D(B), B™'Bv = v for all v € D(B). If B is positive selfadjoint, B~! is also
positive selfadjoint. See [Yos80, VII, 3] concerning these facts.

B is bounded iff D(B) = H and there exists some C' = C'(B) > 0 such
that

|Bv|| < C|lv|| forall ve H. (3.2.2)
The operator norm || B|| is the infimum of all C(B) with (3.2.2). Thus
1B < © (3.23)

for all C = C(B) > 0 with (3.2.2).
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Let D C H be any closed subspace of H. Then
D :={uc H; <u,v>=0 forallve D} (3.2.4)

is called the orthogonal subspace of D. Each u € H has a unique decomposition
u = uq + ug with u; € D, uy € D+,

The operator P : u — Pu, defined by Pu := u; for all u € H, is called the
projection of H onto D. P is a positive selfadjoint operator with P2 = P and
operator norm || P|| < 1.

Let I denote the identity. If P is the projection of H onto D, then I — P
is the projection onto D+, and

lull> = [|[Pul® + [|(I — Pyul? for all ue H. (3.2.5)

Let D C H be a dense subspace, and let S(u,v) € R be defined for all
u,v € D with the following properties:

v — S(u,v), v € D, is a linear functional for each u € D
S(u,v) = S(v,u) and S(u,u) >0 for all u,v € D.

Then S : (u,v) — S(u,v) is called a positive symmetric bilinear form with
dense domain D = D(S) C H.
By
<u,v> +S(u,v) , w,veD, (3.2.6)

we obtain a scalar product and by
(lull? + S(u,u)> , ueD, (3.2.7)

we get the corresponding norm in D. S is called closed if D is complete with
respect to this norm. This means that D is a Hilbert space with the scalar
product (3.2.6). We need the following result:

3.2.1 Lemma Let H be a Hilbert space with scalar product < -,- > and norm
- |l, and let S : (u,v) — S(u,v) be a closed positive symmetric bilinear form
with dense domain D = D(S) C H.

Then there exists a uniquely determined positive selfadjoint operator B :
D(B) — H with dense domain D(B) C D, satisfying:

D(B) is the totality of all w € D such that the
functional v — S(u,v), v € D, is continuous in ||v|, (3.2.8)
and S(u,v) =< Bu,v > for allu € D(B), v e D.

Proof. See [Kat84, VI, Theorem 2.6] or [Wei76, Satz 5.37]. The proof rests on
the Riesz representation theorem, applied to the scalar product (3.2.6). O
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We need this lemma in order to define the Stokes operator A for arbitrary
domains Q C R"™, n > 2.

Next we mention some facts on the spectral representation of selfadjoint
operators, see [Yos80, XI, 5-7 and 12], [Kat84, Chap. V], [Wei76, 7.2]. Here we
only need the special case of positive selfadjoint operators.

For each A € [0,00), let E) be a projection operator which projects H
onto a subspace D) C H. We call {E); A > 0} a family of projections. Let
0 < A\g < co. Then we write

Ey, = s— lim E, (3.2.9)

0
— Ao

iff Ey,v=s—1limy_y, Exv holds for all v € H (strong convergence of opera-
tors).

Suppose {Ey; A > 0} has the following properties:

a) E)\E“:EME)\:E)\ , 0§>\§/¢<OO
b) Ex=s—lim, ,2E, , 0<pu<A<oo
C) E() =0 5 S—lim)\*,ooE)\ =1.

Then {Ex; A > 0} is called a resolution of the identity I on [0, c0). Condi-
tion a) means that £, and E,, commute and that Dy C D,, for A < p. It follows
that E, — Ex, A < p, is again a projection operator, and that A — |[E\vl|? is
monotonously increasing for each v € H. Condition b) means that A\ — E) is
left continuous in the interval (0, 00) with respect to the strong convergence of
operators. Fg = 0 means zero as an operator, and the last condition means that
limy oo |Jv — Exv|| =0 for all v € H.

For each continuous function g : A — g(\), A > 0, we can define the usual
Stieltjes integral

b
[ odiEsel? . ver. o<b<o
0

as a limit of Riemann-Stieltjes sums of the form

m m

D90 (1B 0l = 1B,y 0l®) = - g() I(Ex; — Bx,_y)ol?

j=1 =1

where 0 = \g < A1 < -+ < Ay, = b, max |A; — \j_1]| — 0, see [ApoT74, 7.3].
If g(A) > 0 for all A > 0, and if

[e'S) b
| o diEl? = tim [ gydlEwl?
0 —Jo

exists for some v € H, we simply write [, g(\) d||Exv||* < oc.
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Let g : A— g(A), A >0, be a continuous real function. Then the integral

b
/g()\)dEAveH , 0<b<oo, veH
0

is well defined as the strong limit of the usual Riemann sums of the form
Z;”:l g(N) (Ex; — Ex,_,)v, 0=X <A1 <--- < Ap = b, and

b b
|| / 9N dEsw|]? = / (V) || Exv]”.
0 0

If [7° g%(\) d||[Exv||? < oo for some v € H, then the integral

00 b
/ g(A\)dE\v := s — lim g(\) dEyv
0

b—oo Jo

exists. We thus obtain a well defined operator
/Ooog()\) dEy : v /Ooog()\) dEy\v (3.2.10)
which is selfadjoint and has the dense domain
D (/Ooog()\) dEA> = {ve H; /Ooogz()\)dHE)\sz < 00} (3.2.11)
We see that
I /Ooog(x) dEso|® = /OoogZ(A)d||E,\v|2 (3.2.12)

and that

< (/ g\ dEA> v,0 > = / g \)d|| Exvl|? (3.2.13)
0 0
for all v € D(f;~ g(A) dEy). In particular for all v € H we get
v = / dEyv , |jv|]* = / d||Exv|?. (3.2.14)
0 0

If g(A) > 0 for all A > 0, then with (3.2.13) we see that [;* g(\) dEy is
positive selfadjoint, and if

sup [g(A)| < oo,
A>0
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we conclude from (3.2.11) and (3.2.12), that [~ g(A\)dEy is a bounded operator
with D(f;* g(A\) dEx) = H and operator norm

o0
|| / gV B < sup lgV)] (3.2.15)
0 A>0
In particular,

/ MdEy with D(/ )\dEA> ={v e H; / N d||Eyvl|* < oo} (3.2.16)
0 0 0

is a positive selfadjoint operator.

Let now B : D(B) — H be any positive selfadjoint operator with (dense)
domain D(B) C H. Then there exists a uniquely determined resolution

{Ex; A >0}
of identity such that
B = / MdEy , D(B)={ve€ H,; / M d||Eyv|* < oo} (3.2.17)
0 0
This is called the spectral representation of B; see [Yos80, XI, 5], [Kat66, VI,
5.1].

For each continuous real function g : [0,00) — R, we define as above the
selfadjoint operator

o(B) = /0 o\ dE, (3.2.18)
with domain
Dlg(B) = o H: | TRV dl Byl < oo},

If supy>q[g(A)| < o0, g(B) is bounded with D(g(B)) = H, and we see that
v e D(B) implies g¢g(B)v € D(B) and Bg(B)v = g(B)Bv. (3.2.19)
This property means that g(B) commutes with B; see [Yos80, XI, 12]. Then

Bg(B)v = / Ag(A)dEyv for all v € D(B). (3.2.20)
0
In particular we define the fractional powers
B := / \“dE, , D(B%):={veH, / M| Byv|? < o0} (3.2.21)
0 0

for all o > 0. It holds that B* = I for o = 0.
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For all u > 0, we consider the resolvent
(I +B)~ ! = / (u+N)"tdEy, (3.2.22)
0

which is the inverse of I + B. This operator is bounded with norm

I(u! +B)7! < il;lg(qu)\)_l < uh (3.2.23)

If there is a 6 > 0 with £y, = 0 for 0 < XA < §, then B is obviously
invertible and has the bounded inverse operator

(oo}
B—lz/ A LdEy (3.2.24)
1)

with [|[B71] < supyss A1

Let N(B) = {v € D(B); Bv = 0} be the null space of B and let Py be
the projection operator from H onto N(B). Then we conclude that

Py =s— ;\ir% Eyx , A>0, (3.2.25)

holds in the strong sense. This means that N(B) = [\, Da-

Therefore, the jump of A — E) at A = 0 determines the null space N(B) of
B. B is injective, i.e., N(B) = {0}, iff A — E) is right continuous at A = 0
with respect to the strong convergence.

Let now N(B) = {0}. Then for each v € H the function A — ||[E\v||?, A >
0, is right continuous at A = 0. This enables us to obtain an integral represen-
tation of the inverse operator

B™':D(B™YY—~H , DB™')=R(B),

although A — A~! is not a continuous function defined on the whole interval
[0,00) as in (3.2.18). We obtain (with 6 > 0) the representation

B v = / AN HdEyw = s — }in})/ M YdEyw , ve DB,  (3.2.26)
0 —VJs
B! is positive selfadjoint, and
D(B™Y) ={ve H; |B |? :/ A2 d||Eyv|]? < oo} (3.2.27)
0

More generally, in the case N(B) = {0} we can define the operator B~ :
D(B™®) — H for @« > 0 by

B % :/ A"%dEy\v = s—%ir%/ A"YdE\v , ve D(B™Y) (3.2.28)
0 —0Js
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with domain
D(B™) ={ve H; |Bv|* = / A2 Eyv||? < oo} (3.2.29)
0

Then N(B) = {0} implies N(B%) = {0}, D(B~%) C H is dense, B~* is
positive selfadjoint, and

B~® — (Bfl)a _ (Ba)fl.

Thus B~ is the inverse operator of B*, and therefore we get D(B®) = R(B~%)
and D(B™%) = R(B%). If 0 < a <1 we obtain

D(B) C D(B*) , D(B™')C D(B™®). (3.2.30)
These properties follow from the integral representations above.

Next we assume that the given positive selfadjoint operator B is defined
by the form S with domain D(S) as in Lemma 3.2.1. In this case we get

S(u,u) = < Bu,u> = < Biu,B*u> = ||B%u|\2

/ Nd|| Eyul?
0

for all u € D(B). Then a closure argument shows that

D(B?)=D(S) , S(u,u)=|B>ul®> forall ue D(S). (3.2.31)

We conclude from the spectral representation B = fooo AdE) that Bu =10
holds for u € D(B) iff S(u,u) = 0. Therefore,

N(B) ={0} iff {ue D(S); S(u,u) =0} ={0}. (3.2.32)
This means that B is injective iff S(u,u) = 0 implies that v = 0.

The next lemma yields the interpolation inequality for fractional powers.

3.2.2 Lemma Let B: D(B) — H, D(B) C H, be a positive selfadjoint operator
in the Hilbert space H, and let 0 < o < 1. Then
[Bv]| < [[Bu]|*[[o[I'=* < afBul| + (1 - a)|v] (3.2.33)

for all v e D(B).
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Proof. Using the spectral representation and Holder’s inequality, see [Yos80, I,
3, (5)], we obtain

1Bl =[xl
0
e [eY e l—a
< ([ Ramel) ([ amop)
= |[Bul** [l 4=,
and apply Young’s inequality (3.3.8), I. This proves the lemma. g

Finally we need a special result on fractional powers which is due to Heinz
[Heib1].

3.2.3 Lemma (Heinz) Let Hy, Ho be two Hilbert spaces with norms || -1, - |2,
respectively. Let B : Hiy — Hs be a bounded linear operator from Hy into Ho
with operator norm ||B||, and let

A1 . D(Al) — H1 s AQ . D(A2) — H2

be positive selfadjoint injective operators with domains D(A1) C Hy, D(A2) C
Hs. Suppose B maps D(A;) into D(As) and

|A2Bu|la < C||Awv|1 for all v € D(A;) (3.2.34)

with some constant C > 0.
Then for 0 < a <1, B maps D(AY) into D(AS), and the inequality

|ASBollz < C[|IB|* || Afv]y (3.2.35)

holds for all v € D(AY).

Proof. See [Heibl] or [Tan79, Theorem 2.3.3], [Kre71, Chap.I, Theorem 7.1].
Inequality (3.2.35) is called the Heinz inequality. a

3.3 The Laplace operator A

After discussing the operators div and V, see Section 2, the Laplacian
A= divV=Di+.-.-+ D2

is the next important operator which occurs in the Navier-Stokes equations
(1.1.1), I. The purpose of this subsection is to consider some basic facts on A
mainly for the whole space R™, n > 1. These are potential theoretic properties.
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We need the Riesz potential and the Bessel potential. For the proofs we refer
to [Ste70], [Tri78], [Ada75], [SiS096].

First let @ C R™, n > 1, be an arbitrary domain. We consider the Hilbert
space L?(Q) with scalar product

<Uv > =< Uu,v>q = /uvdx,
Q

norm |jul|2) = [lullz = Jullz0 =< v,u >2, and define the bilinear form
with domain D(S) C L?(Q) by setting

D(S) :==We2(Q) , S(u,v) :=< Vu, Vv >:= /(Vu) <(Vu)dz  (3.3.1)
Q

for u,v € D(S). Recall that < Vu,Vv >= 37 | [ (Dju)(D;v)dzr. Since

Wol’Q(Q) is complete with respect to the norm

(lull3 + S(u,u)) = (full3 + [Vall3)? , (3.3.2)

the form S is closed. S is obviously symmetric and positive. Therefore, by
Lemma 3.2.1 we obtain a positive selfadjoint operator B : D(B) — L*(Q)
with dense domain D(B) C W,"*(Q) satisfying the relation

< Vu,Vo >=< Bu,v> forallue D(B), veW,?*).
Setting v € C§°(§2), we see that
Bu = —-Au = —div Vu
holds in the sense of distributions. Therefore we set B = —A. Thus the operator
—A:D(-A) — L*(Q)
is defined by
D(=A) = {u e W3*(Q); v+— < Vu,Vo > is continuous in [|v|jz}  (3.3.3)
and by
< (=A)u,v >=<Vu, Vo> forue D(-A), veW;?Q). (3.3.4)

Obviously Vu = 0 implies u = 0 for all u € VVO1 2(Q). Therefore, see
(3.2.21) and (3.2.28), the fractional powers

(-A)% =/ A% dEy, (3.3.5)
0
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with domain
D((-A)%) = {v € L(9); / A% d| Bxoll2 < oo},
0

are well defined for all @ € R. Here { E\; A > 0} denotes the resolution of identity
for —A, see Section 3.2.
An equivalent characterization is

D(—=A) = D(A) = {u e Wo(Q); Aue L*(Q)} (3.3.6)
with Au € L?(Q) in the sense of distributions.

Consider now the case & = R”, n > 1. Then we have Wol’z(R”) =
WH2(R"), see (3.6.17), L. In this case there exists an explicit characterization
of the spectral representation (3.3.5) which is obtained by using the Fourier
transform F. F is defined by

Fow) = [ @)l yer,

in the sense of distributions, see [Yos80, VI, 1], [Ste70, III, 1.2], [Tri78, 2.2.1].
For this purpose we have to work for the moment in the corresponding complex
function spaces. This requires us to use complexifications of the real function
spaces.

Then a calculation shows, see [Ste70, Chap. V, 1.1, (4)], that w and (—A) 2 u
satisfy the integral equation

u(z) = m lR{n|az — |7 (=A) S u(y)dy , xeR" (3.3.7)

for 0 < o < m, where y(a,n) := 72 2°T($)/T(% — ). I means the Gamma
function. The expression (3.3.7) is called the Riesz potential; it can be directly
estimated by the Hardy-Littlewood theorem, see [Tri78, 1.18.8, Theorem 3|. The
result is the following lemma.

3.3.1 Lemma Let neN, 0<a<n, 2<qg<o0,

n n

and suppose that u € D((—A)%). Then u € LY(R") and
lull oy < CI(—A)3 ull 2, (3.3.9)
with some constant C = C(a,n) > 0.

Proof. See [Ste70, Chap.V, 1.2, Theorem 1]. It is shown that in this case the
integral (3.3.7) converges absolutely for almost all z € R™, the Hardy-Littlewood
theorem, see also [Tri78, 1.18.8], yields the result. O



11.3.3 The Laplace operator A 103

The following lemma concerns the special case n = 1. In this case, we write
(=A)su = f, u = (—A)"%f, and we are mainly interested in the estimate
(3.3.9). Now we admit that f € L"(R) with 1 < r < co. The following result
rests again on the Hardy-Littlewood theorem.

3.3.2 Lemma Let0<a<l1, 1<7r<q<oo with
1 1
oa+—=-, (3.3.10)
q r
and suppose f € L™(R). Then the integral

u(t) = /R|t—7'|°‘71f(7')d7

converges absolutely for almost all t € R, and

lullzew < Clflre (3.3.11)
with some constant C = C(a, q) > 0.
Proof. See [Ste70, Chap.V, 1.2] or [Tri78, 1.18.9, Theorem 3]. O

Next we consider the positive selfadjoint operator I — A with domain
D(I — A) = D(A). We can define I — A also directly by using the form

<u,v> + < Vu,Vu > (3.3.12)

instead of (3.3.1), see Lemma 3.2.1.
In this case u and (I — A)%u satisfy for a > 0 the integral equation

u(z) = R"Ga(x (I - A)Zu)(y)dy , xeR™, (3.3.13)

where G, is defined by

Golz) = (4m)" 2 r(a/2)—1/ e gmt/Am =1t (mnte)/2 gy (3.3.14)
0

z € R™, see [Ste70, Chap. V, 3, (26)]. The expression (3.3.13) is called the Bessel
potential. There are similar estimates as for the Riesz potential (3.3.7). We only
need the following special case.

3.3.3 Lemma LetneN, 1 <a<2, 2<qg< o0, with

n n
— =1+ 3.1
a+ . +3 (3.3.15)
and suppose that u € D((I — A)%). Then u € WH4(R™) and
Hu”Wl,q(Rn) S CH(I — A)%UHLZ(R“) (3316)

with some constant C = C(a,n) > 0.
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Proof. A direct proof follows using [Ste70, Chap. V, (29), (30)] and the Hardy-
Littlewood estimate [Tri78, 1.18.8, Theorem 3| in the same way as before. It
is based on the estimate of the potential (3.3.13). Another proof rests on the
following argument. First we use [Ste70, V, 3, Theorem 3] or [Tri78, 2.3.3, (2)],
[Ada75, Theorem 7.63, (f)] in order to show that the norms

||u||W1,q(Rn) and ||(I — A)%U”LQ(Rn) (3.3.17)
are equivalent. Then we use the embedding inequality
1 a
(I —A)2ullpamny < Cl(I—A)2ul2®n (3.3.18)

with ¢, as in (3.3.15); this follows from [Ada75, Theorem 7.63, (d)] or [Tri78,
2.8.1, Remark 2]. See also [Tri78, 2.8.1, (15)]. This yields the result. O

3.4 Resolvent and Yosida approximation

In the theory of the Navier-Stokes equations the Yosida approximation is used
for technical reasons as a “smoothing” procedure which approximates L?- func-
tions by more regular functions. See [Ama95, I11.6.1] concerning general proper-
ties, and see [Soh83], [Soh84], [MiSo88] concerning applications to the Navier-
Stokes equations.

Let H be a Hilbert space and let B : D(B) — H be a positive selfadjoint
operator as in (3.2.17). Then we consider the resolvent

o0

(u1+B)*1:/0 (W+N)"rdEy , u>0 (3.4.1)

as defined in (3.2.22). The relation
(I + B) Y (ul +Bw = (uI + B)(ul +B) v

/0 S N+ N dBy

oo
/ dE\v =v
0

holds for all v € D(B). For each k € N we define the operator

Jh=Jdyp=U+k'B) ' =k(kI+B)"'= / (1+k'N)"MEy . (3.4.2)
0

This representation shows that

Jyv € D(B) forall ve H, k€N, (3.4.3)
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and that -
BJy :/ M1+ E7IN)"AEy (3.4.4)
0

is a bounded operator with operator norm

|BJe|l < sup [AM14+E7'N)7Y <k, (3.4.5)
A>0

see (3.2.15). In the same way we get

[Jell < sup [(1+ 5707 < 1. (3.4.6)
A>0

The operators Ji, k € N, are called the Yosida approximation of the identity I.
We have the following result; see [Yos80, IX, 9 and 12] or (in a slightly modified
formulation) the proof of [Fri69, Part 2, Theorem 1.2] for more details.

3.4.1 Lemma Let H be a Hilbert space and let B : D(B) — H be a positive
selfadjoint operator with (dense) domain D(B) C H. Let Ji, k € N, be defined
by (3.4.2).

Then we have:

Jrv € D(B) for allv € H, BJy is bounded with (3.4.5), (3.4.7)
BJyv = JiBv for allv € D(B), Ji is bounded with (3.4.6), o

and
v o= §s— klim Jyv  forallv e H, (3.4.8)
— 00
By = s-— klim BJgv  for allv € D(B). (3.4.9)
— 00

Proof. The properties (3.4.7) immediately follow from the spectral representa-
tion (3.4.1), see Section 3.2.

The property (3.4.8) means that limy_, ||[v — Jiv|| = 0. To prove this we
use (3.2.12), get

lv = Jivl|?

= 2elP = | [ = (1 k7N dBsl?
0
_ / (1= (14 kN2 d| Exol?,
0
(1 - (14 k~tX)71)?2 < 1, and obtain

Jim (1 - A+EN™H2 = lim (=) =0
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for all A > 0. Then we use Lebesgue’s dominated convergence theorem [Apo74],
and see that
2

oo A
1 — 2 = 1 _— 2 =
klgr;o||v Jev|| /0 klglolo (k:—i—)\) d||Exv| 0.
Let v € D(B). Then BJgv = J,Bv, and from above we get

Jim |Bv — BJyo|* = Jim [1(7 - Ji)Bv|* = 0.

This proves the lemma.
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