4. Approximation in Line Space

4.1 Fitting Linear Complexes

The applications of the concept of linear line complex discussed in Sec. 3.4 show
that it is important to study the problem of approximation of and with linear com-
plexes. We consider the following questions: which linear complex fits a given set of
data lines best? What is an appropriate definition of ‘best’ for various applications?
For this we have to define distance functions for lines and linear complexes, which
make the problem computationally tractable. It turns out that most approximation
problems can be accessed by least-square methods.

The Moment of a Line with respect to a Linear Complex

Consider Euclidean three-dimensional space E3, a line L and a linear complex C.
Assume that their homogeneous Pliicker coordinates are (1,1) and (e, ), respec-
tively, with ¢ # 0,1 # o (i.e., L is not an ideal line, and C is not the path normal
complex of a translation). The following definition was given by F. Klein:

Definition. Under the assumptions above, the moment of the line L with respect to
the linear complex C is defined by

m(L,C) = ved) = I—,;mm((c,a,(l,i»i. @.1)

1
———c -1
el il
If we use normalized Pliicker coordinates for L and C, which means ([l[| = {l¢|| = 1,
then (4.1) becomes m(L,C) = |2((c,T), (LI))].

Remark 4.1.1. As we did with lines, we can assign two oriented linear complexes
to a linear complex C. If C has Pliicker coordinates (¢, ¢) with ¢ # o, there are two
ways to normalize the vector ¢. Any of the coordinate six-tuples 4-(1/]|c|}) (e, €) is
called an oriented linear complex C’ belonging to C.

IfC = (¢, €) with ||c|| = 1, and the line L has the normalized Pliicker coordi-
nates (1,1), we letm(L C) = £2((¢,€), (1,1)), and call this value the moment of the
oriented line L with respect to E)

Lemma 3.4.11 shows that m(L C ) has an interpretation as a virtual work. We
will not need the moments of oriented lines and complexes, and we will always use
Equ. (4.1), which defines m(L,C) to be nonnegative. &

H. Pottmann and J. Wallner, Computational Line Geometry, 195
Mathematics and Visualization, DOI 10.1007/978-3-642-04018-4_4,
© Springer-Verlag Berlin Heidelberg 2010



196 4. Approximation in Line Space

We are interested in the set of lines whose moment with respect to the linear complex
C equals a certain constant. This set has the following geometric description:

Lemma 4.1.1. Assume that L is a line and C is a linear complex of pitch p such
that m(L,C) is defined. If P € L, r is P’s distance to the axis A of C and « is the
minimum of angles enclosed by L and a line of C incident with P, then

m(L,C) = y/r? + p?sina. 4.2)

Proof. The lines of C are path normals of the unique helical motion with pitch p
and axis A. If T denotes the path tangent of P, then obviously n/2 —a = <(L, T).
Without loss of generality, the helical motion has the form (3.6) and C therefore the
equation (3.8). Now (4.2) follows by a simple computation. 0

We see that the moment m(L, C) vanishes if and only if L € C. The set K of lines
such that /72 + p2? sin o is constant (with the symbols used in Lemma 4.1.1) is
called a cyclic quadratic complex. Its complex cones are right circular cones, and its
complex curves are circles. We will discuss it in Sec. 7.2.3.

Deviation of a Linear Complex from a Set of Lines

We assume that lines Ly, . .., Ly are given by their normalized Pliicker coordinates
(;,1;) (k]| = 1). It is fortunate that the moment of a line L; with respect to a
linear complex & is a bilinear form if we restrict ourselves to normalized Pliicker
coordinates. The sum of moments equals a quadratic function:

k

k
> om(Li, X)? =F(x%) =Y (X-L+x-L)% (4.3)
i=1

i=1

‘We use the expression (4.3) as a measure of the deviation of a linear complex X from
the set {L1,..., Ly} of lines. The function F is a positive semidefinite quadratic
form defined in R®. To compute its coordinate matrix, we observe that the product
(a-b)(c - d) is in matrix notation written as b” - (a - ¢T) - d. Thus we let

k
M=>" , 4.4)
i=1
and we see that F' can be expressed in the form
F(x,X) = (x,X)7 - M - (x,%). 4.5)

Computation of an Approximant Complex in the Regular Case

In order to compute a linear complex X which approximates the given set of lines
Ly,...,Lg, we look for normalized Pliicker coordinates (x,X) which minimize
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F(x,X). This approximation problem makes sense only for k& > 5, because oth-
erwise there is at least a one-parameter family of linear complexes which contains
all given lines. There is a unique linear complex which contains five lines in general
position, so we we always assume that k > 5.

Lemma 4.1.2. In the set of Pliicker coordinate vectors (x,X) with ||x|| = 1, the
function F of Equ. (4.3) attains its minimum X precisely for those (x,X) which fulfill

(M —-AD)-(x,X) =0, |[x]|=1, 4.6)

where D = diag(1,1,1,0,0,0), M is defined by (4.4), and X is the smallest solution
of the equation
det(M — AD) = 0. @.7

Proof. We have to minimize F(x,X) subject to the side condition G(x,X) = ||x|| =
1. This side condition is expressed in matrix notation by (x,X)7 - D - (x,X) = 1. We
introduce the Lagrangian multiplier A and solve gradz(x,X) — A grad;(x,X) = o,
which simplifies to Equ. (4.6). A nonzero solution obviously is possible if and only
if M — AD is singular.

Then M - (x,X) = A- D - (x,X), and Equ. (4.5) shows that F'(x,X) = A. This
shows that in order to minimize F we have to choose the smallest possible A. O

Remark 4.1.2. The statistical standard deviation of the approximating linear com-
plex X from the given lines equals

o=/ {k—5).

The smaller A is, the better the solution complex fits the original data Ly, ..., Ly.
‘Small’ however has only a relative meaning. If the input data are scaled by a factor
a, the value of X scales with 2. So &, which scales linearly with the input data, and
whose definition accounts for the number of input lines, should be compared with
the size of objects under discussion. o

Complexes of Zero Pitch

If the pitch p of the approximant complex C turns out to be very small, one might
be interested in fitting the input data by a singular linear complex Cy of zero pitch.
By Th. 3.1.3, such a complex consists of all lines which intersect a line Agy. Thus
we have 1o determine Ay such that it ‘almost’ intersects the input lines L1, ..., Ly.

The simplest choice is to take the axis of the approximant complex, computed
by Equ. (3.9). We achieve a better result if we minimize within the set of singular
complexes:

Lemma 4.1.3. In the set of normalized Pliicker coordinates (x,X) of singular linear
complexes (Le., ||x|| = 1, x-X = 0), the function F of Equ. (4.3) attains its minimum
A for a pair (x,X) which fulfills
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(M —AD - pK)-(x,X) =0, [x]|=1 x-x=0, (4.8)

where D is as in Lemma 4.1.2, M is given by Equ. (4.4), K is from Equ. (2.28), and
A, i satisfy
det(M — AD — uK) =0. 4.9

Proof. With the matrices M, D, and K the minimization problem F(x,X) — min,
x> = 1,x -X = 0 is transformed into to F(x,X) = (x,X)7 - M - (x,X) — min,
G(x,X) = (x,X)T-D-(x,X) =1, Hx,X) = (x,x)7 - K - (x,%) = 0.

We introduce two Lagrangian multipliers A, p and solve (grady — Agradg —
pgrady )(x,X) = 0, G(x,X) = 1, H(x,X) = 0. This simplifies to Equ. (4.8). The
nonzero vector (x,X) is contained in the kernel of M — AD — uK, which implies
Equ. (4.9). Equ. (4.8) immediately shows that F'(x,X) = A, ]

The solution of this problem is not as straightforward as that of the previous one.
Equ. (4.9) defines an algebraic curve in the (A, u)-plane. The set of solutions of (4.9)
together with the equations (M — AD — uK) - (x,X) = o, ||x|| = 1 in the variables
A, 14, X, X is an algebraic variety in R®. Its projection onto the coordinate space RS of
variables x, X is, in the generic case, an algebraic curve @, because then for all pairs
(A, ) satisfying (4.9) there are exactly two solutions of the other two equations.

The solutions of the minimization problem are contained in the intersections of
the curve @ with the Klein quadric, which corresponds to the equationx - X = Q.

Because of the high degree of the problem, we do not pursue further its algebraic
aspects. The solution is best computed numerically. A good starting point for an
iterative algorithm would be the approximant complex computed by minimizing
4.3).

Complexes of Infinite Pitch

Linear complexes C of infinite pitch consist of lines which intersect a certain line at
infinity. In Euclidean space, the proper lines of such a complex comprise the set of
lines orthogonal to a certain vector €. A line L with Pliicker coordinates (I,1) is in C
if and only ifl1-€ = 0.

Such complexes have been excluded from the discussion so far, because we
worked with moments and they are defined only for complexes of finite pitch.

We define the deviation of a line L of Euclidean R? from C by | cos <(L, €)|.

The deviation of a complex X with Pliicker coordinates (0,%) with |[%|| = 1 from
a given finite set Ly, ..., Ly, of lines with normalized Pliicker coordinates (;, ;) is
defined by
k
Foo(®) =) (X 1) (4.10)
i=1

The minimization of F.,(X) subject to the side condition X* = 1 leads to an ordinary
eigenvalue problem in R3.

Note that one might not know in advance whether an approximation of the given
data with such a special case of a singular complex makes sense. Input data which
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are actually contained in a complex of infinite pitch cause all coefficients in (4.7)
to vanish (the vector (0,€) obviously is contained in the kernel of both M and D).
Thus data which can be well approximated by such a complex can be detected by
the magnitude of these coefficients.

Remark 4.1.3. If small coefficients in Equ. (4.7) cause numerical difficulties then
of course one remedy is to approximate with a complex of infinite pitch. Another

possibility is to use the normalization x2 + X* = 1 instead of x> = 1. This is
equivalent to letting D = Ejg and leads to an equation of degree six instead of the
cubic equation (4.7). O

Pencils of Minimizing Complexes

It is possible that Equ. (4.7) of Lemma 4.1.2 has two small solutions A1, Ao, This
means that there are two solution complexes C;, C2 of Equ. (4.6) corresponding to
Ay and Ag, respectively, which fit the input data equally well. In fact, all complexes
of the pencil spanned by Cy, C; are close to the input lines:

Lemma 4.1.4. If C is a complex of the pencil spanned by Cy, Co with Pliicker coor-
dinates C;v* = (¢4, )R (i = 1,2) and o = <(ey, ¢2), then for all lines L

m(L,C) < 1/|sine| - (m(L,Cy) + m(L,Cz)). (4.11)

Proof. Assume that Ly = (1,)R with [[l}j = 1, that|¢;|| = 1 and that Cy = (¢, ©)R,
lle]| = 1 with (e,€) = p1(c1,€1)+p2(ez, €2). Then py, g2 < 1/|sin o) and we have
m(L,C) = |pa(er -1+ 1) +pa(ez 14T D] < |pa|-m(L, Cr) + 2] - m(L, Cz),
so the lemma is proved. a

Lemma 4.1.4 shows that the input data in the case of two small solutions A, A2 of
(4.7) are close to all complexes of a pencil of complexes. In the generic case the
carrier of this pencil (cf. Sec. 3.2) is a linear line congruence. We could also ask
whether a line which is close to all complexes of a pencil G is also close to the
lines of the carrier C(G). The answer is affirmative, but we will not give precise
estimates.

Remark 4.1.4. Assume that a pencil G of linear complexes is spanned by Cy and
C5. Consider the set of lines L with m(L,C) < ¢ for all complexes C € G. The Klein
image of this set of lines is bounded by a certain non-Euclidean distance surface. ¢

Bundles of Minimizing Complexes

It is possible that Equ. (4.7) has three small solutions A1, Az, A3. This means that
there are three projectively independent solution complexes C; of Equ. (4.6), which
fit the input data equally well, and all complexes of the bundle G spanned by
C1,Ca,C5 are close to the input data. This is shown by applying Lemma 4.1.4 twice:
We have an inequality of the form
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m(L,C) <k m(L,C;)

if C is a complex of GG, with a constant k depending on the angles between the
vectors ¢;, where C;v* = (¢;,¢;)R.

Again it is possible to show that the lines close to @/l complexes of a bundle G
are close to lines of the cartier C(G), which is a regulus in the generic case. Approx-
imation by reguli is discussed later (see p. 217). We first describe two degenerate
cases.

Fitting Bundles to Lines

To fit lines L; with a proper line bundle, i.c., one with a proper vertex, we choose
two orthogonal planes o; : m; - x — f; = 0 and 7; : m; - x — g; = 0 which contain
L;. Without loss of generality we choose m; and n; as orthogonal unit vectors. The
distance of a point x to the planes o; and 7; equals m; - x — f; and m; - ¢ — g,
respectively, so the distance of x to the line L; is computed by

d(x, L1)2 = (ml *X — fz)z + (l’li - X — gi)2-
The vertex v of the approximating bundle is therefore found as minimizer of

k k

> dx, L)’ = [(mi - x = £:)* + (n; - x - g:)?]. (4.12)

=1 i=1

A bundle of parallel lines is fitted to the lines Ly, ..., L in the following way: We
may assume that there is a vector wg and vectors 1; parallel to L; such that wy-1; > 0

for all 7. Then let 1

The bundle of lines parallel to w then is the bundle which minimizes the sum of
squared Euclidean distances (in R?) of 1; to w.

Fitting Fields to Lines

This problem is dual to the previous one, so we could solve it by applying some
duality to the input data, fitting a bundle to it, and applying the inverse duality to this
bundle. But this has the disadvantage that the resulting field is no longer minimizing
any distances defined by Euclidean geometry.

On the other hand imagine a plane € and a line L nearly parallel to it. There is a
line segment in L whose points are all close to €, but the distances of L’s points to
€ may become arbitrarily large. That is why it is better to solve a different problem:
The fitting of a field to line segments, which is discussed below.
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Fitting Complexes to Line Segments

In applications it often makes sense to define the deviation of a line L from some
unbounded set M by intersecting this line with a certain domain of interest D and
considering the deviation of L N D from M. A simple special case is to choose a
segment in L. We will show how to modify the algorithms for fitting linear com-
plexes to lines such that they become algorithms for fitting linear complexes to line
segments.

We need an appropriate definition of the distance of a line segment ab to a linear
complex C with equation € -1+ ¢ -1 = 0 and corresponding null polarity 7: By Equ.
(3.3), the lines of C incident with a are contained in the plane am with normal vector
n, = ¢ + ¢ X a. The distance of b to this plane is given by

ma (b—a)|

d(b,ar) = ]

Assume that the line L = a \ b has Pliicker coordinates (,I) with 1 = b — a. Then
by insertion of n, )
c-1+4c-1

d(b,arn) = Ttoxal

(4.13)
Obviously interchanging a and b gives an analogous expression for the distance
d(a, brr). This motivates the following

Definition. With the notation of the previous paragraph, the distance d(ab, C) be-
tween the line segment ab and the complex C is defined by

— (1 1

d(ab,C)? = d(b,ar)? +d(a,br)? = (c-1+c-1)? (-2- + —2> ,
vy ’Ub

where 1=b—a, v,=|c+exal, wp=|c+ecxb||. 414

If the line spanned by the points a and b is contained in C, then d(ab,C) = 0.

Remark 4.1.5. The complex C defines a uniform helical motion (cf. Th. 3.1.6).
Then v, is the norm of the velocity vector n, of the point a. If p is the pitch of C and
and r, is the distance of a from C’s axis, then

vy = VTP o

The linear complex X which fits the line segments a; by, ..., agby best is defined
to be the minimizer of

k k
— 1 1\ _ -
Zd(aibi,X)z :Z<’U—2—+U—2—> (X-li+X'li)2, (4.15)
i=1 i=1 a; b;

wherel; = b; —a;, I; = a; x1; = b; x 1;, and Ua,, Up, are the velocities of a;, b; as
defined by Equ. (4.14). The solution may be computed using weight iteration: We
minimize the weighted sum
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k
F(x,%,wi,. .., w) = »_ wi(®-1; +x-L)?, (4.16)

i=1

subject to an appropriate side condition which expresses a normalization of (x,X):

Typically this would be |[x|| = 1, but if a solution complex of very large pitch is
expected it is better to use ||[X|| = 1. The solution is analogous to the one described
by Lemma 4.1.2. In the beginning we let w; = -+ = wg = 1. After the first step
we use

w; =1/v2 + 1/, i=1,...,k,

where vy, , vp; are defined by Equ. (4.14), and compute a new minimizer of (4.16).
This is iterated until the change of weights from step to step is less than some thresh-
old value.

To complete the discussion of singular cases in the previous section, we mention
how to fit a field of lines to given line segments a;b;. The simplest solution of this
problem is to find a piane approximating the points a;, b; in the usual least-squares
sense.

This procedure can be used to find a field of lines which fits given lines Ly, . . .,
Ly, within a bounded region of interest D C E3. We simply use the smallest line
segments a;b; which contain the intersection L; N D.

4.2 Kinematic Surfaces

As an application of the theoretical problem of fitting linear complexes to given lines
or line segments, we look at a problem which arises in the context of reverse engi-
neering of geometric models [196]: Given are scattered data points which are ex-
pected to fit to a simple surface, where the meaning of ‘simple’ is explained later in
this section. We want to reconstruct the surface or the geometric data which uniquely
determine it.

A particular instance of this problem is the automated reconstruction of parts
from laser scanner data and the decomposition of their boundary surface in its pla-
nar, cylindrical, etc., pieces [118, 155, 158, 195].

This section is organized as follows: First we determine surfaces which are in-
variant with respect to uniform motions and show that their surface normals are
contained in certain linear manifolds of lines. The next topic is the estimation of
these linear manifolds from scattered surface normals, and how to compute the sur-
faces from them. Last we discuss the reconstruction of surfaces which are ‘piecewise
almost’ invariant.

Consider a one-parameter subgroup M (¢) of Euclidean motions (a uniform he-
lical, rotational or translational motion, cf. Th. 3.4.3) and acurve ¢ : I — E% in
Euclidean three-space. The symbol

g(u,v) = M(u)(c(v)), ueR, vel (4.17)
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means that we apply the Euclidean motion M (u) to the curve point ¢(v). Then g
parametrizes a surface in Euclidean space. It is a cylindrical surface or cylinder
if M(t) is a group of translations, a surface of revolution, if M{(t) is a group of
rotations about an axis, and a helical surface otherwise. We refer to these types of
surface as kinematic surface.

Remark 4.2.1. A subset of Euclidean space may be a kinematic surface in several
ways: The cylinder of revolution is an example of a surface which is at the same
time a cylindrical surface, a surface of revolution, and a helical surface (see Fig. 4.1,
right). o

Invariant Surfaces

Clearly the surfaces described by Equ. (4.17) are invariant with respect to the one-
parameter group of motions which generates them: If p is a point of the surface,
then so is M (t)(p) for all ¢ € R (see Fig. 4.1). We ask for all surfaces which are
invariant under the one-parameter group M (¢):

Theorem 4.2.1. A subset & of Euclidean space E® which is both a two-dimensional
C submanifold and invariant with respect to a one-parameter group of motions
M(t) is a kinematic surface as described by Equ. (4.17).

Proof. (Sketch) It is sufficient to prove this locally. Choose a point p € & whose
velocity vector v, = d/dt|s—oM (¢)(p) is nonzero and consider a curve ¢ : I — E3
with ¢(0) = p and with {&(0),v,} linearly independent, such that the surface
glu,v) = M(u)(c(v)) is locally regular. The point g(u,v) is contained in @ by
invariance of @. Thus g locally is a diffeomorphism of an open neighbourhood of
(0,0) in the u, v parameter domain to an open subset of ¢, and & is locally parame-
trized as a kinematic surface.

If v, = 0, there is nothing to show, because M (¢)(p) = p for all ¢. O

There is a simple characterization of invariant surfaces, respectively, kinematic sur-
faces, in terms of their normals:

Lemma 4.2.2. The surface normals of a regular C* surface g : U C R?> — E3 are
contained in a linear complex if and only if the surface is contained in a kinematic
surface as defined by Equ. (4.17).

Proof. The surface normals of a kinematic surface are path normals of the curves
M(t)(p), and so the ‘if” part of the theorem follows from Th. 3.1.6.

To prove the converse, assume that all of g’s surface normals are contained in a
linear complex C, which, by Th. 3.1.6, is the path normal complex of a one-param-
eter group M (t) of motions. We consider a point p = g(ug, vo) (cf. Fig. 4.1, left).
The image g(V) of a small neighbourhood V' of (ug,v) is a two-dimensional C*
submanifold of E3. The integral curves of M’s velocity vector field v : p = v(p)
are tangent to g(U) by our assumption, which shows that especially the integral



204 4. Approximation in Line Space

curve M(t)(p) starting in p is contained in g(V'). Fig. 4.1, left, shows a sequence of
such integral curves, which are helices.

Now we can choose a curve ¢ : I — g(V') such that ¢(0) = p and {¢(0),v(p)}
is linearly independent. The kinematic surface h(¢, s) = M (t)(c(s)) locally param-
etrizes g(V'), and the proof is complete. ]

Fig. 4.1, left shows a helical surface generated as envelope of a sphere which under-
goes a uniform helical motion. This surface is both an invariant surface and a pipe
surface, which means envelope of a smooth family of spheres.

@

p(t)

p

p(t)
\_O__/

Fig. 4.1. Left: Helical pipe surface. Right: A cylinder is a multiply invariant surface:
point p with paths p(t), p'(¢), p” (¢) corresponding to different one-parameter groups
of motions leaving the surface invariant.

Multiply Invariant Surfaces

It is important to know which surfaces are invariant with respect to more than just
one one-parameter group. Before answering that question, we prove the following

Lemma 4.2.3. If C1,Cz are two different linear complexes, and My (t), Ma(t) are
corresponding one-parameter groups of motions, and a linear line congruence is in-
variant with respect to both M (t), My (t), then this congruence is a bundle of lines,
or a field of lines, or consists of all lines which intersect a proper line orthogonally.

Proof. Clearly the possibilities mentioned have this property. The converse is also
shown easily: A hyperbolic congruence is invariant only if both its axes are invari-
ant, but non-intersecting and non-parallel lines invariant under rotations and helical
motions are only the axis and the ideal line orthogonal to it.

A parabolic congruence is not invariant with respect to any Euclidean motion,
which follows from from the detailed description in Sec. 3.2.2.
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An elliptic linear congruence can have rotational symmetry, like the one de-
scribed by Equ. (3.15). It is left to the reader as an exercise to show that no elliptic
congruence can be multiply invariant (this follows from Prop. 3.2.8). 0

The following lemma enumerates all surfaces which are multiply invariant. The
result is intuitively clear anyway (cf. Fig. 4.1, right).

Lemma 4.2.4. A connected regular C! surface g : U — E®, all of whose surface
normals are contained in two different linear complexes Cy, Co, is contained in a
plane, or sphere, or cylinder of revolution.

Proof. Denote the pencil of linear complexes spanned by C; and C by G. If N is a
surface normal, then by Lemma 3.2.2, N € 1, N € C; isequivalent to N € C(G).
If C € G and M (t) is the uniform motion whose path normal complex equals C,
then Lemma 4.2.2 shows that the surface g(U) locally is a kinematic surface with
respect to M(t). As C(G)y is a two-dimensional quadric, it is determined by the
surface normals of arbitrarily small open subsets of g{U'). This implies that C(G)
is invariant by such an M(t), and so C(G) must be as described by Lemma 4.2.3.
We now choose special uniform motions M (¢), namely: (i) if C(G) is degener-
ate with a proper vertex O, consider all rotations about O if (i) C(G) is degenerate
with an ideal vertex A,, choose all translations orthogonal to A,,; if (iii) C(G) is
hyperbolic with proper axis A4, choose a rotation about A and a translation parallel
to A. The last remaining case, a field of lines, cannot occur. The statement we want
to prove now follows locally from Lemma 4.2.2 and globally from connectedness
of g(U). Cases (i), (ii), and (iii) correspond to the sphere, the plane, and the cylinder
of revolution. O

Corollary 4.2.5. The only connected surfaces which are invariant with respect to
two independent one-parameter groups of Euclidean motions are spheres, planes,
and cylinders of revolution.

Fitting Complexes to Scattered Surface Normals

To approximate scattered data points py, . . ., pr by a kinematic surface we proceed
as follows: First we estimate the surface normals IVy, ..., Ny at the data points.
There exist solutions of this problem which will not be discussed here (see e.g.
[78]). We assume that the input data are evenly distributed. If not, we have to apply
data reduction algorithms first (see [122]). Lemma 4.2.2 shows that in order to find
the one-parameter subgroup which generates the approximating kinematic surface,
we have to fit a linear complex C to the surface normals. This is done by using the
methods described in this section. With Equ. (3.9) we compute axis A and pitch p
of the generating motion. Of course there are several different cases according to
dimensionality of the solution and magnitude of the pitch.

1. If p is small compared to the diameter of the input point cloud we may want to
fit a complex of zero pitch to the input normals. This corresponds to input data
with rotational symmetry.
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2. If p 1s very large, we could fit a linear complex of infinite pitch. This leads to a
cylindrical surface which approximates the input data.

3. If a pencil of complexes fits the input normals, Cor. 4.2.5 shows that they are
close to the surface normals of spheres, planes, or cylinders.

Remark 4.2.2. Small portions of input data will often lead to a pencil of nearly
equally good solutions and it depends on further information what one can do in
this case: If the input data are not expected to be multiply invariant, we may be
able to gather more sample points and run the approximation algorithm again. If a
kinematic surface fits the input data well in small regions, we have to paste together
pieces of kinematic surfaces. This is discussed below. &

Remark 4.2.3. In reverse engineering applications the input data can have large
measurement errors or possibly include data points which belong to another part of
the object which does not fit the same kinematic surface.

Thus an approximation method must be able to cope with outliers, which is not
the case for the least squares method in the form presented above. Therefore, one
may use a robust regression method to compute an initial estimate (e.g., an estimate
of a least median of squares solution) and then refine it by either rejecting outliers
or by down-weighting their influence on the final approximant.

This kind of noise filtering based on so-called M-estimators has been inves-
tigated in detail both in statistics and in computer vision. Note that the formulae
presented here are nicely compatible with M-estimation, since we just have to re-
formulate the various functions F' to be minimized as a weighted sum of squares of
moments, using one of the weighting schemes suggested in the literature {171]. ©

Remark 4.2.4. The minimization of the function F of Equ. (4.3) is motivated by
the following approach: Consider the one-parameter group M (¢) of helical motions
associated with a linear complex C with Cy* = (¢, ¢)R, ||c|| = 1. The velocity v(x)
of the point x is given by Equ. (3.25). Assume that we have found estimates V; of
surface normals at the data points x;, which have normalized Pliicker coordinates
(n;, ;). Then

ni-v(xi) _E-ni+c-ﬁi

vl (vl

cosy; = cos <(v(x;),n;) =

Minimizing the function
k
G(c,T) = Z cos® v;
i=1
with the side condition [¢|| = 1 is a nonlinear problem. We did minimize the func-

tion F' of Equ. (4.3). Equ. (4.2) shows that

k

F(e,d) = Y (r? 4+ p?) cos”
=1
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where 7; is the distance of data point d; to the axis of C. This is a reasonable and
geometrically meaningful simplification of G — min. In fact by using a weight
iteration as in Equ. (4.16) it is even possible to minimize G. &

Fitting Kinematic Surfaces to Scattered Data Points

After we have found a one-parameter subgroup M (¢} of Euclidean motions which
fits the estimates of surface normals, we try to find the approximating surface itself.
This is done by ‘projecting’ the input data points d;, 7 = 1,..., k into an appro-
priate plane e, where the image of the point d; is found by following its trajectory
M (t)(d;) until it intersects €. As the trajectories of points may intersect planes more
often than once (indeed, even infinitely many times), this definition has to be more
precise in order to make the projection well defined:

1. If M(t) is subgroup of translations, the only restriction is that € must not be par-
allel to the trajectories of points. It makes sense to choose the plane orthogonal
to the vector of the translation.

2. If M(¢) is a subgroup of rotations about a fixed axis A, we choose ¢ such that
it contains A. Then all trajectories except those of A’s points will intersect € in
two points (see Fig. 4.2).

The mapping becomes well defined if we choose one of the two closed half-
planes defined by A in € and intersect all trajectories with this half-plane.

3. If M(t) is a uniform helical motion of pitch p and axis A, choose e orthogonal to

A. Then all trajectories intersect € once. It turns out that for actual computations
this choice is not always the best, especially if p is small.
A choice which works well in practice is to choose ¢ as the path normal plane of
one of the data points. All trajectories intersect this plane in a finite number of
points. If the points are close together the intersection points cluster in a finite
number of well separated subsets.

After performing the intersection, the points p; should lie close to a certain curve,
if the original points lie close to a kinematic surface. This curve can be fitted to the
points p;, (cf. [106, 158] and Fig. 4.2). The surface generated by this curve under the
action of M (¢) is the approximant we have been looking for.

Remark 4.2.5. ‘Projecting’ data points into a reference plane should keep artificial
distortions to a minimum. In cases 1 and 2 of the above list, the distance of a data
point to the eventual solution surface is the same as the distance of the projected
point to the curve which is fitted to these projected points.

In case 3, however, the first method, which always works, does not have this
property — the smaller p and the farther the data points are from the axis, the more
distances increase. The second method of projection is less trivial in its implemen-
tation, but avoids these distortions to a certain extent. &
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Fitting Special Surfaces

In computer-aided design, simple surfaces whose normals form a well known subset
of line space occur very often. These include planes, spheres, cylinders or cones of
revolution, and tori, some of which are multiply invariant. It is useful to specialize
the general approximation algorithms for these surfaces:

1. A plane is easily fitted to scattered data points, so if the input data are known
to be contained in a plane, the whole machinery described above is actually not
necessary.

2. A line is easily fitted to scattered data points in a plane. This situation occurs
when the original data points belong to a part of a half-cone of revolution, where
half-cone means one of the two halves of a cone which are separated by the
vertex. After reconstruction of the axis A and projecting the input data into a
half-plane as described above, a line has to be fitted to the projections of points,

3. A sphere with center x is fitted to scattered points p; by minimizing

. ((2x —~ p; "Pj)‘ (p; “Pj))z
=2 5. - 5,17

, (4.18)

2y

where summation is over all index pairs 4, j such that ||p; — p;|| is not too small
compared with the extension of the point cloud p,.

The motivation for this is the following: The single terms in this sum are the
squared distances of the point x to the bisector plane of p; and p;, which is
numerically ill-defined if ||p; — p;]| is small.

4. A circle is fitted to points in a plane by minimizing the same expression, with
the only difference that the variables (4.18) are vectors of R?. This occurs if the
input data belong to a torus: After projection of the data points to a half-plane
which contains the axis we have to fit a circle to these points.

For solutions of the problem of fitting special surfaces based on their representation
as algebraic varieties, we refer to the literature [118, 163].

Example 4.2.1. This example concerns scattered data (e.g. obtained by a laser scan-
ner) from an object whose boundary is a surface of revolution. The surface normals
at the data points are estimated (see Fig. 4.2, left). The pitch in this case is nearly
zero, which shows that the original data come from a surface of revolution. We let
p = 0 and project the input data into a half-plane which contains the axis (Fig.
4.2, center). The curve which fits these points was found by a moving least squares
method according to [106]. O

Example 4.2.2. We again consider reconstruction of surfaces from scattered data.
The difference to Ex. 4.2.1 is that the data do not come from a surface of revolution,
but from a pipe surface, which is defined as the envelope of spheres of equal radius
whose center runs in the spine curve.

A pipe surface is locally well approximated by a surface of revolution: If we
replace the spine curve by its osculating circle, we get a torus which is in second
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Fig. 4.2. Reconstruction of a surface of revolution: Left: data points, estimates of
normal vectors, and axis computed from this estimation. Center: points projected
onto a plane and a curve approximating this point set, Right: final surface of revolu-
tion.

order contact with the pipe surface in all points of a common circle. If we consider
only small parts of the given point cloud, it is easy to determine such approximat-
ing tori, whose spine curves then locally approximate the spine curve of the pipe
surface. The result of such an approximation is shown in Fig. 4.3. An application
of this is the recovery of constant radius rolling ball blends in reverse engineering
[99]. Using locally approximating surfaces of revolution, we can also reconstruct
so-called moulding surfaces [108]. These are generated by a moving planar curve,
whose carrier plane rolls on a cylinder surface. With local fits by right circular cones
or cylinders, the reconstruction of developable surfaces may be performed [25]. <©

(ot

Wby,
RN T4

5

w

% g y
ST e s

G Tee AN

N E Soptorssd

ERYS KL

~

Fig. 4.3. Pipe surface: Left: data points and estimates of normal vectors, Center:
approximate spine curve, Right: reconstruction of pipe surface.

Example 4.2.3. Fig. C.3 illustrates reverse engineering of an actual object.
This object is one of the so-called Darmstadt benchmarks suggested by J. Ho-
schek; the pictures were generated by the BSolid prototype Reverse Engineering
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system, developed by the Computer and Automation Research Institute and Cad-
mus Consulting and Development Ltd., Budapest. &

Approximation by Kinematic Surfaces Using Additional Information

Reverse engineering of CAD models might also make use of further geometric in-
formation such as parallelity, concentricity, or orthogonality, if available.

1. If the direction x of the axis A of a surface of revolution is known in advance,
minimization of the function F(x,X) of Equ. (4.3) is much easier, because the
constraint ||x{| = 1 can be fulfilled automatically, and x - X = 0 is now a linear
side-condition.

2. Similarly, the problem simplifies if we reconstruct a surface of revolution and
know a point b of the axis A. If A’s normalized Pliicker coordinates are (x, X),
then X = b x x and F'(x,X) of Equ. (4.3) is a function of x alone. The constraint
x - X = 0 is fulfilled automatically.

Thus minimizing F' is an ordinary eigenvalue problem.

3. An analogous situation occurs when fitting a surface of revolution, whose axis
is constrained in a plane. Suppose that this plane is defined by a point b and
two independent basis vectors v1,va. We let n = v; X v and have the linear
relations

X = p1V1 + p2Va, ')Z:(b+r1v1+72v2)xx:bxx+7'n.

Thus the function F' may be expressed in terms of pj, p2, 7.
4. Finally, if the axis has to intersect a given line L with Pliicker coordinates 1,1,
we have to make use of the linear intersection condition

x-1+x-1=0.

The minimization of F subject to this condition together with the normalization
[x]| = 1 is similar to minimization of F' subject to the condition thatx - X = 0.

Remark 4.2.6. The first three cases in the list above lead to the minimization of
a quadratic function subject to a normalization condition. This common property
can also be seen in the Klein image: In line-geometric terms, we are looking for an
approximant complex whose Klein image must lie in a certain projective subspace
U of P5:

For helical surface reconstruction without additional constraints (cf. Lemma
4.1.2), we can define U = P83, which is actually no restriction. For reconstruc-
tion of surfaces of revolution in cases 1-3 of the above list, U is a plane contained
in the Klein quadric:

In case 1, this plane is the Klein image of all lines parallel to a given vector. In
case 2, this plane is the Klein image of all lines incident with the point b. In case
3, this plane is the Klein image of a field. The fact that U is a subset of the Klein
quadric explains why the quadratic side condition x-X = 0 is fulfilled automatically
in cases 1-3.
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Case 4 of the list above is different, as is the problem of finding a minimizing
singular complex (cf. Lemma 4.1.3): Here the solution complexes are restricted to a
quadratic variety V in P®. In the case of singular complexes, V is the Klein quadric.
In case 4 of the above list V' is a tangential intersection of the Klein quadric. O

4.3 Approximation via Local Mappings into Euclidean 4-Space

In this section we discuss approximation methods in line space which are based
on local mappings into Euclidean 4-space. ‘Local’ means that these mappings are
defined in open subsets of line space.dt does not necessarily mean that these subsets
are small.

Stereographic Projection

It is sometimes useful to identify a part of a quadric with an affine space. One fa-
miliar example is a map projection which identifies part of the globe with (part of)
a sheet of paper.

Definition. Assume that @ is a quadric in P™, the point Z is in &, and Q is a
hyperplane with Z & Q). Then the projection

c:?-Q, X—»Xo=(XVINQ 4.19)
is called the stereographic projection of @ to Q) with center Z.
An example of a stereographic projection has been given in Ex. 1.1.37.

Lemma 4.3.1. We use the notation of the definition above. If T is ®’s tangent plane
at the center Z, then the stereographic projection is a one-to-one correspondence
between & \ T and Q \ T. Hyperplanar sections &' of ¢ are mapped onto (n —
2)-dimensional projective subspaces of Q if and only if ' contains the projection
center.

Proof. We know that all lines not tangent to @ intersect @ in exactly two points or
not at all. This shows that especially all non-tangential lines Z V X with X € Q
intersect the quadric @ in exactly one further point besides Z. Thus o : $\ T ——
Q \ T is one-to-one and onto.

If # = & N H, where H is a hyperplane, then ¢’ contains Z if and only if H
contains Z, so Z V H is (n — 1)-dimensional (otherwise, if ' does not contain Z,
it has dimension n), and the statement follows. |

The meaning of Lemma 4.3.1 is the following: If we disregard all points of ¢ which
are also contained in the center’s tangent plane, the stereographic projection gives a
one-to-one correspondence between the quadric and the affine space Q \ T.
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Example 4.3.1. (cf. Ex. 1.1.37) We consider the projective extension of Euclidean
space E3.If & is the unit sphere, Z is its north pole, and @) is the equator plane, then
besides Z there are no points of ¢ which are contained in the north poles’ tangent
plane 7. The line T' N @ is at infinity. Lemma 4.3.1 says that the stereographic
projection is a one-to-one correspondence between the points of the unit sphere
different from the north pole, and the points of the equator plane. O

Stereographic Projection of the Klein Quadric

The set £ of the lines of three-dimensional projective space can be identified, via
the Klein mapping, with the Klein quadric My C P®. The set £° of proper lines of
Euclidean space can be identified with the Klein quadric without a plane, which is
the Klein image of the ideal field of lines (cf. Sec. 2.1.3). Unfortunately £° (or its
Klein image) does not have the structure of an affine space. Therefore we try to find
an appropriate stereographic projection which identifies a certain subset of £ with
an affine space.

If Lz is a line, then Z := Lzvy € Mj. The tangent plane of M4 at Z contains
the y-images of all lines which intersect Lz. We introduce a Cartesian coordinate
system in E3 and let Z equal the horizontal line at infinity, which is contained in all
planes z = const. Then Lzy = Z = (0,0,0,0,0, )R

A line L of Euclidean space, which does not intersect Lz, i.e., is not horizontal,
intersects both planes 7_ : z = 0 and 74 : z = 1 in points x_ = (z1,z2,0) and
x4 = (z3, 24, 1). The Pliicker coordinates of L are computed by

L’Y = (1,$1,I2,0)/\(1,.’1}3,$4,1)R
(4.20)
= (3 — z1,24 — T2, 1,0, —21, 7174 — Ta73)R.
P? is equipped with homogeneous coordinates (zo3 : ... : ®12). The hyperplane

Q : 12 = 0 does not contain the center Z, and projection of L onto @ from the
center Z gives the point

(ZVILy)NQ = (z3 — 21,24 — T2, 1,22, —21, )R
Thus z1, 2, T3, x4 are affine coordinates in the hyperplane @), and the mapping
o:L €L (z1,z9,23,24) € R (4.21)

is, apart from a linear coordinate transformation, nothing but the stereographic pro-
jection,

Distances between Lines

We have to define a distance function between lines. If we restrict ourselves to non-
horizontal lines L, we can use the stereographic projection o defined by Equ. (4.21):
If q is a positive definite quadratic form in R?*, then 1/q(Go — Ho) serves as a
distance between lines G, H.
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We give a more detailed construction of such a distance function: We use the
intersection points of lines with the planes 7_ : 2 =0and 7y : 2 = 1. If G, H are
two non-horizontal lines, denote the four intersection points by g_ = (g1, g2,0),
g, = (93,94,1), h = (h1,h2,0), hy = (hs3, hg,1). With the notation of Equ.
4.21), Go = (91,92, 93,94), Ho = (ha, ha, hs, hy).

Fig. 4.4. Distance between lines measured horizontally.

We consider the correspondence
(1-Ng_ +Ag, = (1 - Mh + My, A€ [0,1],

(cf. Fig. 4.4) between the line segments [g_, g, ] and [h_,h]. The lines which
connect associated points are all horizontal and are contained in a hyperbolic parab-
oloid (by Prop. 1.1.40), or in a plane (if G, H are coplanar). An average distance of
associated points is then given by

4G, H) = / [(1— M) —ho) + Alg. - hy)J%dA (422)
= ho)?+ (g —hy)®+ (g_ —h ) (g, —hy).
Because of
4
d(G,H)* = Z(gi —hi)? + (91 — h1)(gs — ha) + (92 — h2)(ga — ha), (4.23)

this is the distance of points Go,Ho defined by the quadratic form

q(z1, z2, 23, €4) = 23 + -+ + 7] + 2123 + T4, (4.24)
which is positive definite, as is clearly seen from its definition. If x = (z1,...,z4),
then

1 1/2
qx)=xT-G-x, with G= 1/2 ! 1 1/2 (4.25)

1/2 1
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We define the g-norm and the g-scalar product by
Ixlly = ¢, (x,3)g =xT-G-y. (4.26)

Remark 4.3.1. Consider a point p = (zp, yp, 2p) of the line segment [g_,g. ]. In
Equ. (4.22) we integrated its distance to the line H, which is measured within the
horizontal plane z = z,. The shortest distance of p to H differs from that distance
by a factor A with cos ¢ < X < 1, ¢ being the angle enclosed by H and the z-axis.

If lines have the property that the angle enclosed with the z-axis does not exceed
a certain value, then the distance function defined here is bounded by the Euclidean
distance between lines times a certain factor.

This is in accordance with the well known property of stereographic map projec-
tions that d(o(P), o0 (Q))/d(P, Q) increases if P and ) converge towards the center
of the projection. <&

Stereographic Projection of Complexes

We apply the stereographic projection o of Equ. (4.21) to sets of lines, such as reguli
R, linear congruences A, or linear complexes C. Their subsets of non-horizontal
lines are denoted by the symbols R°, A°, C°, respectively. But we will still speak
of a regulus, a linear congruence, and a linear complex, even if the horizontal lines
are missing.

Lemma 4.3.2. Consider a linear complex C with Pliicker coordinates Cy* = (c,
C)R = (cor : ... : c12). If C is regular and co3 # O, then C°0 is a quadric. If
co3 = 0, then C°c is a hyperplane. If cos # 0 and C is a singular complex, then C°c
is a quadratic cone. All image quadrics are homothetic, and so are all image cones.

Proof. Equ. (4.20) shows that o maps C° to the algebraic variety with equation

C: 603(331334 — 132.’133) - (C()2 + 023)131 + (001 - Cgl)IEQ (427)

+ca3z3 + c3124 + ¢10 = 0.

This is a hyperplane if and only if cg3 = 0, and a quadratic variety otherwise.
Up to the scalar factor cys, all possible image quadrics share the quadratic term
124 — Tazs. Two quadrics with the same quadratic terms in their equations are
homothetic, i.e., differ from each other only by a central similarity and a translation,
and so do singular quadratic varieties.

A linear complex is singular if and only if its Klein image is a quadratic cone
(and therefore contains pencils of concurrent lines). This property is preserved by
a central projection. This shows that regular complexes project to regular quadrics,
and singular complexes to singular quadratic varieties. a

Remark 4.3.2. We projectively extend Euclidean four-space and consider the pro-
jective quadric ¢ which contains C°¢. Its affine part is given by Equ. (4.27), and
its equation in homogeneous coordinates (zg : ... : z4) is co3(T174 — Toz3) +
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(—(coz + caa)x1 + (co1 — ¢31)x2 + 233 + 3124 + C12T0) To = 0. Its intersec-
tion with the ideal hyperplane zo = 0 is the quadric

v Ly = T1T4 — ToT3 = 0,

which is independent of C. If we look at the stereographic projection, we see why
this must be so: The horizontal lines of C \ C° are those whose Klein image is
contained in the tangent hyperplane of the Klein quadric at the projection center Z.
They project to the quadric ¥. Every surface tangent at Z contained in the Klein
quadric appears as a projection ray, and so the ideal part of the stereographic image
is the same for all linear complexes. O

Remark 4.3.3. The linear complexes C with cg3 = 0 contain the horizontal line at
infinity. Their Klein image contains the projection center, so the stereographic image
is the hyperplane C°c : —(co2 + ¢ca3)x1 + (co1 — €31)T2 + 2323 + c3124 + 12 = 0.
(cf. Equ. (4.27)). <&

Remark 4.3.4. The geometry of circles and lines in the Euclidean plane is called
Mibius geometry. Circles may be defined as those real conics whose intersection
with the ideal line has the equation zg = z2 + 22 = 0. It is well known (see
Ex. 1.1.37 or the paragraph preceding Equ. (8.21)) that circles and lines are precisely
the stereographic images of planar sections of the unit sphere in R3.

Analogously, those quadrics in P* whose intersection with the ideal hyperplane
has the equation ¢ = z1x4—x2x3 = 0, together with the hyperplanes of P3, are the
elements of a generalized Mobius geometry, and they are precisely the stereographic
images of planar sections of the Klein quadric. &

Fitting a Linear Complex to Data Lines

Consider a finite number of lines L; in Euclidean three-space and assume a Carte-
sian coordinate system such that no line is horizontal. Then the angles enclosed by
the lines L; and the z-axis are less or equal some value ¢y < 7/2. A smaller ¢g is
better for what follows than a larger one.

We apply the transformation o of Equ. (4.21) to L; and get points X; = L;o
with coordinate vectors x; € R*. We have to fit a surface of the form (4.27) to
them. One possibility to solve this problem is the following (cf. [193]): Consider
the function

Fa(x) = ao(z124 — T223) + @121 + - - - + aazq + as,

where a = (aq,--.,05), X = (z1, T2, T3, z4). We could define a ‘distance’ of the
point xo € R* to the surface F, = 0 by the value | F,(xo)|. However, what we actu-
ally want is to measure distances between points with the quadratic form ¢ defined
by Equ. (4.24). In order to relate these two distance functions in a neighbourhood of
the surface F,(x) = 0, we first consider ordinary Buclidean distance in R*, which
has no geometric meaning in line space. The function F}, has the Taylor expansion
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Fy(x +h) = Fy(x) + (grad, (x),h) + o(]|h])). (4.28)

The symbol ( , ) denotes the ordinary Euclidean scalar product, and the symbol
o(f(h)) means a remainder term with the property that o( f(h))/||h|] — 0 as h
converges towards zero.

Further, F,(x)/|| grad 5, (x)]| is a first order approximant to the distance of a point
x to the surface F = 0, as x tends towards this surface.

Let G equal the coordinate matrix of the bilinear form g (see Equ. (4.25)). We
consider the g-gradient of F,, which is defined by

grad(F? (x) =G gradg (x). (4.29)

Then the Taylor expansion (4.28) is valid if we replace the scalar product, norm,
and gradient, by their g-variants, as defined by (4.26). This is clear from definition
of the g-gradient. Moreover, the function

Fa(x) = Fa(x)/|| grad® (x)|l

is a first order approximant of the signed g-distance of the point x to the surface
F, = 0. We therefore look for a which minimizes

k

> (Fa(x))?. (4.30)

1=1

Then the surface F,(x) = 0 will be a reasonable least squares fit for the data points
X;. Because the coefficients of a enter F' in a linear way and because of the low
polynomial degree of the problem this nonlinear least-squares problem is computa-
tionally tractable.

Remark 4.3.5. If the surface F,(x) = 0 has a singular point s (this happens if the
coefficient vector a belongs to a singular linear complex), then the vector (Vi Fy)(s)
is zero, and so data points near s will cause problems (such data points belong to
lines near the axis of the singular complex).

The surfaces F,(x) = 0 and F,(x) = 0 are the same. This shows that in order
to minimize the expression in (4.30) it is necessary to normalize the vector a in some
way. The methods to solve this minimization problem are similar to those of Sec.
4.1. O

Fitting a Linear Congruence to Data Lines

A linear line congruence A is the carrier of a pencil of linear complexes. If this
pencil is spanned by linear complexes C and C’, then No = Ca N C'o. The two
equations C°¢ : a'(zy24 + zax3) + -+ and C'° : a"(z124 + z223) + -+ of the
form (4.21) which define A°c have the same quadratic terms, so an appropriate
linear combination is linear. We see that Ao is defined by one linear and one quad-
ratic equation, so it is a quadric or possibly a singular quadratic variety contained
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in a three-dimensional hyperplane of R*. Because o preserves the linear incidence
structure, it is clear that oval and ruled quadrics N’ correspond to elliptic and hy-
perbolic linear congruences N, respectively. A parabolic congruence N is mapped
to a quadratic cone, and a bundle or field of lines is mapped to a plane.

If Ly, Lo, .. . is a finite set of lines, we consider the stereographic image points
x; = L;o. In order to fit a linear congruence to the lines L;, we first look for a
hyperplane H which contains, as best as possible, all points x;, where ‘best’ is in
the sense of the metric define by the quadratic form ¢ of Equ. (4.24). This procedure
is easy and consists of an obvious modification of the same procedure in Euclidean
space: Assume that H has the equation (a, x), -+ao = 0, where the g-scalar product
is defined by Equ. (4.26). We minimize _,((a, X;)q + ao)? under the side condition
that |jal|, = 1. This leads to an ordinary eigenvalue problem.

Having found H, we project the points x; g-orthogonally onto H. Within H, we
have to approximate the points x; by a quadric ) which appears as intersection of
one of the quadrics of Equ. (4.27) with H. This is similar to the problem of fitting
a complex to data points — the quadratic coefficients of Q’s equations are already
known up to a common factor.

If the best fitting quadric degenerates into a plane within H, then the original hy-
perplane fitting problem would have had a one-parameter family of solutions. This
case can be detected by the appearance of two small solutions of the characteristic
equation analogous to (4.7).

Fitting a Regulus to Data Lines

The Klein image of a linear congruence is a (possibly degenerate) quadratic variety
contained in a three-dimensional subspace of P®. A regulus is a quadratic contained
in a subspace which is two-dimensional. So the problem of fitting a regulus to data
lines is transformed into the problem of fitting a plane to the data points, and af-
terwards fitting a conic (or possibly a line) to a planar set of points. Like in the
previous case, the quadratic coefficients in the conic’s equation are already known
up to a scalar factor. The metric used for a least squares fit is based on the quadratic
form g of Equ. (4.24).

Interpolating and Approximating Real-Valued Functions of Lines

We consider the problem of scattered data interpolation and approximation for
functions defined in line space. Assume that we are given a finite sequence of data
lines L; and real numbers r;. We also define a region of interest D within line space,
where the interpolant is to be defined.

We want to construct a function F' which is defined on all lines L within some
domain of interest, and either exactly or approximately assumes the values r; at the
lines L;.

One possible way to solve this problem is the following [140]: Assume that a
finite number of open spherical caps I cover the unit sphere, and that this covering
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is symmetric with respect to the origin. A antipodal pair +I7;, —I7; of caps is de-
termined by its axis A; of rotational symmetry and its spherical radius p;. For each
axis A;, consider the set £; C D of lines with <(4;, L) < p;.

We choose a Cartesian coordinate system such that A; is parallel to its z-axis
and consider the mapping o of Equ. (4.21). Thus for all ¢ we get image points
o;(L;) € R* for those data lines L; which are contained in £;. It is well known
how to perform scattered data interpolation and approximation in Euclidean R* (cf.
[78]), so we may assume that we have constructed real-valued functions F; whose
domain is R* and which assume the values r; at the points o;(L;). At last we have to
glue the functions F; together, using weight functions w; defined on the unit sphere.
Denote one of the unit vectors parallel to the line L by I(L). Then

F(L) =) wi((L))Fi(oi(L))

is a solution, if the weight functions w; have the following properties: (i) w;(n) =
w;(—n) for all 4,n (the weights are symmetric with respect to the origin), (ii)
>, wi(n) = 1 for all n (the weights form a partition of unity), and (iii) w; is zero
outside I; U (—1I7%).

Remark 4.3.6. Examples of such function are the so-called Franke-Little weights
(cf. e.g. [9], p-112), which are defined as follows: assume that a; is a unit vector
parallel to the axis A; and choose an integer m > 1. Then let

@y(m) = max(|n-a;|/cos pi, 0)"
w(n) = Y @i(n)
wi(n) = f@(n)/w(n)

These weights are m times continuously differentiable, their support is +I5 U —TI75
by definition, and they sum up to one, also by definition. &

Parallel Robots

Consider a six-legged parallel manipulator (or parallel robot, cf. Fig. 4.5). Here
a rigid body X (the ‘moving system’) is connected with another one (the ‘fixed
system’ Xy) by six bars of variable length (‘legs’), which have spherical links at
both ends. A motion of X' is understood as smooth family of positions X(¢), caused
by a change in the legs’ lengths.

Geometrically, we may think of the legs L,;, ¢ = 1,...,6 as of lines. Special
cases of such manipulators appear for example in flight simulators. They have,
within bounds, the maximum degree of freedom possible, and the direct connection
between the moving and the fixed system makes it possible to move heavy loads in a
fast and precise manner. Research on parallel manipulators has been quite active in
the past decade {123, 86]: We will show how the investigation of the mechanism’s
stability benefits from line geometry and from approximation methods in line space
[155].
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Fig. 4.5. Six-legged parallel manipulator. Left: Mechanism which is stable for all leg
lengths. Right: Unstable position of another mechanism. The infinitesimal degree of
freedom equals two.

Static Stability and Kinematic Stability

We consider ‘mechanical structures’ which consist of rigid bodies joined together
by links. In statics there is the notion of stability of such a structure: A force acting
on some point causes forces in the various joints of the structure, and if the structure
is considered linearly elastic, also reversible deformations which depend linearly
on these forces. An unstable or singular structure responds to exterior forces by
‘infinite’ induced forces — we can imagine that arbitrarily small exterior forces
cause finite displacements.

Obviously if the structure admits a flexion (i.e., it is a mechanism), then it is
unstable in this sense. A flexion consists of motions of the individual parts of the
mechanical structure which are compatible with the joints.

For structures whose parts are joined by spherical links (frameworks), this notion
of static stability is known to be equivalent to the following ‘kinematic’ stability.

Definition. Assume a framework F consisting of rigid parts K, ..., K,, where
Ky is assumed fixed. An infinitesimal flexion of F' is an assignment of velocity vec-
tors v(x) to all x € F such that v is not identically zero, but is zero in Ko and
coincides with an infinitesimal motion of Euclidean space if restricted to any K. If
F admits an infinitesimal flexion, then F' is called unstable or singular, otherwise it
is called stable.

If the framework admits a smooth flexion which leaves K, fixed, then clearly the ve-
locity vector field of this flexion serves as an infinitesimal flexion. It is even possible
to show that a framework which admits any continuous flexion has an infinitesimal
flexion, so that all flexible frameworks are singular. The following lemma is an im-
mediate consequence of Th. 3.4.2:

Lemma 4.3.3. A six-legged parallel manipulator is singular as a framework if and
only if the legs L1, ..., Lg are contained in a linear line complex.

Proof. A velocity vector v; assigned to a L;’s ‘moving’ endpoint x; fits into an
infinitesimal rigid body motion of L; leaving the other endpoint fixed if and only if
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v; 1 L;, and so L; is a path normal for any infinitesimal motion of X. As the set of
path normals is a linear complex for all infinitesimal motions, the lemma follows. [

A singular position of the parallel manipulator is one where small forces cause large
displacements, which makes it e.g. unfit for use in a flight simulator. In practice it
is also important to keep at a certain distance from singular positions, because the
above mentioned ratio of displacement to force is not actually infinite, but too large
in a whole neighbourhood of a singular position.

Snapping between Neighbouring Positions

It may happen that the parts of two different frameworks are congruent, without
the frameworks themselves being congruent. We can think of a framework taken
apart and rebuilt in a different way. Two such positions may be very close to each
other. This situation is to be avoided in structures actually built, because it can easily
happen that the framework snaps from one position to the other.

It is easy to see that a parallel manipulator which has two neighbouring positions
Fy, Fy is very close to a singular structure: Consider the endpoints xi,...,xg of
the legs and their two position x;~ and x; . Obviously there is a rigid body motion
which transforms x; to x; . According to Remark 3.1.6 the lines incident with the
midpoints m; = (x; + x;) and orthogonal to the vector x; — x; belong to
a linear complex. This shows that the closer the points x;,x; are, the closer is
the manipulator to a singular one, and the better the legs can be fitted by a linear
complex.

This can be checked with the tools shown in Sec. 4.1. Because of inavoidable
imperfections of an actual structure these methods are also needed when testing for
singular positions.

Degree of Singularity

If the legs are contained in a linear manifold of complexes, then its dimension plus
one is called the degree of singularity. Degree 1 means that there is only one linear
complex which the legs belong to. The methods presented in Sec. 4.1 can be used
to detect such cases.

Example 4.3.2. As an example, we consider a so-called Stewart-Gough platform
(see Fig. 4.5). Here the spherical links are arranged in two planes « of the moving
and 70 of the fixed system. We assume that the moving system moves in a trans-
lational manner such that the plane m remains constant. The legs have to vary their
lengths and we get a two-parameter family of structures which is e.g. parametrized
by the position of a point (u, v) within .

Fig. 4.6 shows the deviation of the legs which belong to parameter values (u, v)
to the nearest linear complex (the stability function). This deviation is defined by
Equ. (4.3) and the nearest linear complex is found according to Lemma 4.1.2.

Computation of the stability function requires the fitting of many linear com-
plexes to lines. This is done numerically and is reasonably fast if we have good
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Fig. 4.6. The stability function of a six-legged parallel manipulator.

initial values for iterative algorithms — in this particular case initial values are pro-
vided by the solution complexes for neighbouring positions. &

Remark 4.3.7. Line geometry also plays arole in the study of singular positions of
serial robots. For example, if the mapping of the configuration space of a 6R robot
to the Euclidean motion group is singular, then the six rotation axes are contained
in a linear complex. O

4.4 Approximation in the Set of Line Segments

We have already studied line segments in various places. Here we investigate briefly
the set of oriented line segments of Euclidean 3-space E2 and show how to solve
approximation problems in it.

An oriented line segment pq is identified with a member of R® = R3 x R3 in
the obvious way:

(z17""$6) = (p17P2,P3,Q17Q2>‘13)- (431)

Oriented line segments pp’ of zero length are identified with a point of Euclidean
space, and are mapped to the three-dimensional diagonal subspace A with equation
i —Tg =29 —x5 =23 —2g = 0.

The mapping pq’ > §p’ is expressed in RS by (xy,...,2¢) = (24, T5, T6, 1,
T2, wg).

Distances between Line Segments

In order to define a distance between two line segments p,q; (i = 1,2), we do as in

(4.22) and consider a similarity transformation which maps p; — py, q; — q5:
(1= APy +Aq = (1= A)p2 +Aqz (A €[0,1]).

The distance is then defined as
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1
Ao, ) = 3 / (1= NP1 o) + A - w)Pdr  (432)

= (p;—P2)’ + (a1 —4)* + (p1 — P2) - (4, — 92)-

Obviously this distance is simply the distance between the two points in R® which
correspond to the segments p;q; with respect to the quadratic form

g(x) =z} + -+ + 2 + T124 + 2225 + T3T6. (4.33)

This means that the identification of a line segment with its corresponding point
in R® gives us a point model for the set of oriented line segments, together with a
distance function which is Euclidean.

Remark 4.4.1. Among the applications of this concept is approximation in line
space with additional information, for instance approximation of ruled surfaces to-
gether with boundary curves (see [26]).

Approximation in line space via stereographic projection (see Sec. 4.3) is ac-
tually a special case of approximation of line segments: We assign to a line G the
segments ngf’ and use the distance (4.32). O
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