
Preface

This book summarizes and highlights progress in our understanding of Dy-
namical Systems during six years of the German Priority Research Program
“Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems”.
The program was funded by the Deutsche Forschungsgemeinschaft (DFG)
and aimed at combining, focussing, and enhancing research efforts of active
groups in the field by cooperation on a federal level. The surveys in the book
are addressed to experts and non-experts in the mathematical community
alike. In addition they intend to convey the significance of the results for
applications far into the neighboring disciplines of Science.
Three fundamental topics in Dynamical Systems are at the core of our

research effort:

– behavior for large time
– dimension
– measure, and chaos

Each of these topics is, of course, a highly complex problem area in itself
and does not fit naturally into the deplorably traditional confines of any
of the disciplines of ergodic theory, analysis, or numerical analysis alone.
The necessity of mathematical cooperation between these three disciplines is
quite obvious when facing the formidable task of establishing a bidirectional
transfer which bridges the gap between deep, detailed theoretical insight and
relevant, specific applications. Both analysis and numerical analysis play a key
role when it comes to building that bridge. Some steps of our joint bridging
efforts are collected in this volume.
Neither our approach nor the presentations in this volume are monolithic.

Rather, like composite materials, the contributions are gaining strength and
versatility through the broad variety of interwoven concepts and mathemat-
ical methodologies which they span.
Fundamental concepts which are present in this volume include bifurca-

tion, homoclinicity, invariant sets and attractors, both in the autonomous
and nonautonomous situation. These concepts, at first sight, seem to mostly
address large time behavior, most amenable to methodologies of analysis.
Their intimate relation to concepts like (nonstrict) hyperbolicity, ergodicity,
entropy, stochasticity and control should become quite apparent, however,
when browsing through this volume.
The fundamental topic of dimension is similarly ubiquitous throughout

our articles. In analysis it figures, for example, as a rigorous reduction from
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infinite-dimensional settings like partial differential equations, to simpler infi-
nite-, finite- or even low-dimensional model equations, still bearing full rel-
evance to the original equations. But in numerical analysis – including and
transcending mere discretization – specific computational realization of such
reductions still poses challenges which are addressed here.

Another source of inspiration comes from very refined measure-theoretic
and dimensional concepts of ergodic theory which found their way into algo-
rithmic realizations presented here.

By no means do these few hints exhaust the conceptual span of the arti-
cles. It would be even more demanding to discuss the rich circle of methods, by
which the three fundamental topics of large time behavior, dimension, and
measure are tackled. In addition to SBR-measures, Perron-Frobenius type
transfer operators, Markov decompositions, Pesin theory, entropy, and Os-
eledets theorems, we address kneading invariants, fractal geometry and self-
similarity, complex analytic structure, the links between billiards and spectral
theory, Lyapunov exponents, and dimension estimates. Including Lyapunov-
Schmidt and center manifold reductions together with their Shilnikov and Lin
variants and their efficient numerical realizations, symmetry and orbit space
reductions together with closely related averaging methods, we may continue,
numerically, with invariant subspaces, Godunov type discretization schemes
for conservation laws with source terms, (compressed) visualization of com-
plicated and complex patterns of dynamics, and present an algorithm, GAIO,
which enables us to approximately compute, in low dimensions, objects like
SBR-measures and Perron-Frobenius type transfer operators. At which point
our cursory excursion through methodologies employed here closes up the
circle.

So much for the mathematical aspects. The range of applied issues, mostly
from physics but including some topics from the life sciences, can also be sum-
marized at most superficially, at this point. This range comprises such diverse
areas as crystallization and dendrite growth, the dynamo effect, and efficient
simulation of biomolecules. Fluid dynamics and reacting flows are addressed,
including the much studied contexts of Rayleigh-Bénard and Taylor-Couette
systems as well as the stability question of three-dimensional surface waves.
The Ginzburg-Landau and Swift-Hohenberg equations appear, for example,
as do mechanical problems involving friction, population biology, the spread
of infectious diseases, and quantum chaos. It is the diversity of these applied
fields which well reflects both the diversity and the power of the underlying
mathematical approach. Only composite materials enable a bridge to span
that far.

The broad scope of our program has manifested itself in many meetings,
conferences, and workshops. Suffice it to mention the workshop on “Entropy”
which was coorganized by Andreas Greven, Gerhard Keller, and Gerald War-
necke at Dresden in June 2000, jointly with the two neighboring DFG Priority
Research Programs “Analysis and Numerics for Conservation Laws” and “In-
teracting Stochastic Systems of High Complexity”. For further information
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concerning program and participants of the DFG Priority Research Program
“Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems”,
including a preprint server, see

– www.math.fu-berlin.de/∼ danse/

For other DFG programs we refer to

– www.dfg.de
– www.dfg.de/aufgaben/Schwerpunktprogramme.html

At the end of this preface, I would like to thank at least some of the many
friends and colleagues who have helped on so many occasions to make this
program work. First of all, I would like to mention the members of the scien-
tific committee who have helped initiate the entire program and who have ac-
companied and shaped the scientific program throughout its funding period:
Ludwig Arnold, Hans-Günther Bothe, Peter Deuflhard, Klaus Kirchgässner,
and Stefan Müller. The precarious conflict between great expectations and
finite funding was expertly balanced by our all-understanding referees Hans
Wilhelm Alt, Jürgen Gärtner, François Ledrappier, Wilhelm Niethammer, Al-
brecht Pietsch, Gerhard Wanner, Harry Yserentant, Eberhard Zeidler, and
Eduard Zehnder. The hardships of finite funding as well as any remaining
administrative constraints were further alleviated as much as possible, and
beyond, by Robert Paul Königs and Bernhard Nunner, representing DFG
at its best. The www-services were designed, constantly expanded and im-
proved with unrivalled expertise and independence by Stefan Liebscher. And
Regina Löhr, as an aside to her numerous other secretarial activities and with
ever-lasting patience and friendliness, efficiently reduced the administrative
burden of the coordinator to occasional emails which consisted of no more
than “OK. BF”. Martin Peters and his team at Springer-Verlag ensured a
very smooth cooperation, including efficient assistance with all TEXnicalities.
But last, and above all, my thanks as a coordinator of this program go to
the authors of this volume and to all participants – principal investigators,
PostDocs and students alike – who have realized this program with their
contributions, their knowledge, their dedication, and their imagination.

Berlin, Bernold Fiedler
September 2000
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Abstract� This article reviews recent results on long	time behaviour� invariant sets
and bifurcations of evolution equations under discretization by numerical methods�
The emphasis is on time discretization� Finite	time error bounds of low order for
non	smooth data� of high order for smooth data� and attractive invariant manifolds
are tools that pervade large parts of the article� To illustrate the mechanisms� the
following combinations of dynamics
equations have been selected for a detailed dis	
cussion


�� Shadowing near hyperbolic equilibria of singularly perturbed ODEs
�� Hyperbolic periodic orbits of delay di�erential equations
�� Hopf bifurcation of semilinear parabolic equations
�� Inertial manifolds of semilinear parabolic equations
�� Attractors of damped wave equations�

Introduction

This article was written under the premise that it should

�a� survey the subject area�
�b� review work by the author in the DANSE project�
�c� give one or the other new result�

These goals are not necessarily compatible� Clearly� �b� in�icts a strong bias
on �a�� With �a� and�or �b� achieved� �c� can only be rudimentary within the
assigned pages� This caveat notwithstanding� may the reader �nd this article
useful�

What are the mechanisms that make a numerical discretization capture
the long	time dynamics of the di
erential equation� How good can the ap	
proximation be� These are the questions underlying the present article� An	
swers are di
erent for di
erent classes of equations�

�i� ordinary di
erential equations for which the Jacobian of the right	hand
side has a bound that is much smaller than the inverse of the step size
needed to approximate solutions over some �nite time �
nonsti
� ODEs��

� Project
 Large Time Behavior of Numerical Methods for Parabolic Partial Dif	
ferential Equations �Christian Lubich�
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�ii� evolution equations for which the linearization involves unbounded oper	
ators or operators of arbitrarily large norm� e�g�� partial di
erential equa	
tions� singularly perturbed ODEs� and �less obviously� delay di
erential
equations�

The present paper is concerned with class �ii�� Reference to the more de	
veloped subject of dynamics of discretized nonsti
 ODEs is made only for
a comparison of the arguments� A further distinction needs to be made be	
tween 
dissipative� and 
conservative� problems� e�g�� damped wave equations
versus Hamiltonian wave equations� The dynamic properties considered here
will be for the 
dissipative� type�

Inhomogeneous and far	spread as the class of equations is� it nevertheless
turns out that there are a few tools which go a long way with many di
erent
evolution equations and dynamic phenomena� Of these tools� I would like to
single out the roles played by low	order nonsmooth	data error bounds and
high	order smooth	data error bounds over �nite times� and the reduction
of the dynamics to the nonsti
 case via attractive invariant manifolds� It
is a strange fact that two of the papers that have in�uenced me most in
this area� have never been published� Larsson�s report ���� which highlights
the importance of error bounds for general initial data that do not admit a
smooth solution� and Nipp and Sto
er�s report ���� on an extremely useful
version of an invariant manifold theorem� That theorem is recapitulated in
Appendix A�

The sampling in the three	dimensional lattice of Dynamics × Equations
× Numerical Methods� as listed in the abstract� has been guided by the ob	
jective of showing relationships as well as di
erences among a wide variety
of problems� and admittedly by �b� above� Section � was chosen to comply
with �c�� Each section presents the analytical framework and the numeri	
cal method� and states just one theorem� The result and its background are
explained� and related results are indicated� The sections can be read inde	
pendently� but they share common ground�

Stuart ���� gives a good survey of the �eld as of ∼����� That article
concerns sectorial evolution equations� which is where most of the work has
been done� Stuart and Humphries ���� is a basic reference on the dynamics
of nonsti
 ODE discretizations� Hairer� N�rsett and Wanner ������� on time
discretization methods�

� Shadowing Near Hyperbolic Equilibria of Singularly

Perturbed Ordinary Di�erential Equations

Following ����� we consider numerical solutions to singularly perturbed di
er	
ential equations in the neighbourhood of a saddle point� We apply an implicit
Runge	Kutta method with a step size larger than the small perturbation pa	
rameter� The main result is a shadowing property� After an initial transient�
the numerical solution in a neighbourhood of the hyperbolic stationary point
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remains for all times close to some exact solution of the di
erential equa	
tion� Conversely� after the elapse of a short time also every exact solution in
the neighbourhood remains close to some numerical solution� In both cases�
the approximation takes place with the order of approximation of smooth
solutions on �nite intervals� We will see that the main di�culty� as com	
pared to the analogous problem for nonsti
 ordinary di
erential equations�
is that �nite	time errors are not uniformly small for arbitrary initial data in
an open set� This di�culty� which we will again encounter with all the other
classes of evolution equations considered in this article� is here overcome by
using strongly attractive invariant manifolds for both the continuous and the
discrete problem�

��� Analytical Framework

We consider the singularly perturbed problem

dy

dt
= f(y, z)

ε
dz

dt
= g(y, z) , 0 < ε� 1 ,

���

in the neighbourhood of a stationary point at the origin� The functions f and
g are arbitrarily di
erentiable� With subscripts denoting partial derivatives�
we assume the following�

All eigenvalues of gz(0, 0) have negative real part� ���

(fy − fzg
−1
z gy)(0, 0) has no eigenvalues on the imaginary axis� ���

The �rst condition is familiar in the theory of singularly perturbed problems
and yields the uniform well	posedness of the system as ε→ 0� see� e�g�� �����
The second assumption is equivalent to stating that for small ε the �xed point
of ��� is hyperbolic� that is� the Jacobian of the system ��� at the stationary
point has no eigenvalues on the imaginary axis�

��� Numerical Method

We consider an implicit Runge	Kutta method applied to ��� with step size
h ≥ ε �

yn+1 = yn + h
m∑
j=1

bjY
′
nj , zn+1 = zn + h

m∑
j=1

bjZ
′
nj ,

with internal stages (i = 1, . . . ,m)

Yni = yn + h
m∑
j=1

aijY
′
nj , Zni = zn + h

m∑
j=1

aijZ
′
nj
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satisfying relations of the form of ����

Y ′ni = f(Yni, Zni)

εZ ′ni = g(Yni, Zni) .

The method is determined by its coe�cents aij and bj �
We assume that the Runge	Kutta method is strongly A�stable� that is� the

stability function

R(w) = 1 + wbT (I − wOι)−11l ,

�where bT = (b1, . . . , bm)� Oι = (aij)mi,j=1� 1l = (1, . . . , 1)
T � satis�es

|R(w)| ≤ 1 for Re w ≤ 0 ,

all eigenvalues of the Runge	Kutta matrix Oι = (aij)mi,j=1 have positive real

part� and R(∞) = 1− bTOι−11l satis�es

|R(∞)| < 1 .

We require the following approximation properties� the method has classical
order p� that is� the error of the method applied to nonsti
 ordinary dif	
ferential equations is O(hp) on bounded time intervals� The approximation
properties for the singularly perturbed problem ��� depend in addition on
the stage order q� which is determined by the condition

m∑
j=1

aijc
k−1
j =

cki
k

for k = 1, . . . , q and all i . ���

Here ci is de�ned by ��� with k = 1�
A well	known and widely used class of Runge	Kutta methods satisfying

the above assumptions are the Radau IIA methods ����� which for each stage
number m ≥ 1 have p = 2m− 1� q = m� and satisfy amj = bj �j = 1, . . . ,m��
which in particular implies R(∞) = 0�

��� Statement of the Result

Theorem �� ���� Under the above assumptions� there are positive constants
r and h0 such that the following holds for 0 < ε ≤ h ≤ h0�

�A� For every Runge�Kutta solution with ‖(yn, zn)‖ ≤ r for 0 ≤ n ≤ N �
there exists a solution (y(t), z(t)) of ��� for 0 ≤ t ≤ T = Nh� such that for
0 ≤ n ≤ N

‖yn − y(nh)‖ ≤ C · (hp + εhq+1 + ερn)

‖zn − z(nh)‖ ≤

{
C · (hp + εhq + ρn) if amj = bj for j = 1, . . . ,m �
C · (hq+1 + ρn) else �
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Here ρ < 1 and C depend only on f � g� r and h0� and in particular are
independent of ε� h� and N � Moreover� for ε � h we have ρ = |R(∞)| +
O(ε/h)�

�B� Conversely� for every solution of ��� with ‖(y(t), z(t))‖ ≤ r for 0 ≤
t ≤ T = Nh� there exists a Runge�Kutta solution (yn, zn)� 0 ≤ n ≤ N �
such that the di�erence to (y(nh), z(nh)) satis�es the above bounds with ρ =
e−κh/ε� with C and κ > 0 independent of ε� h� and N �

��� Discussion and Comparison with the Nonsti� ODE Case

Theorem � is an analogue of a shadowing result of Beyn ��� for numerical
solutions near a hyperbolic stationary point of the ordinary di
erential equa	
tion

dx

dt
= f(x) , ���

where su�ciently many derivatives of the nonlinearity f are assumed to be
bounded� The following is shown in ��� Theorem ���� for pth order methods
applied with step size h�

For every numerical solution (xn)� 0 ≤ n ≤ N � which stays in a suf�
�ciently small neighborhood U of the stationary point� there is a solution
x(t) of �	� satisfying ‖xn − x(nh)‖ ≤ Chp� Conversely� for every solution
x(t) in U, 0 ≤ t ≤ T = Nh� there is a Runge�Kutta solution (xn) with
‖xn − x(nh)‖ ≤ Chp� The constant C is independent of h and N �

As in Theorem �� it is essential that the estimates remain uniform on time
intervals that can become arbitrarily large� We review brie�y the considera	
tions that lead to Beyn�s result�

Let Rh denote the Runge	Kutta map� so that Rh(x) is the result of one
step of the method applied with step size h� starting from the point x� A
numerical solution sequence (xn) thus satis�es

xn+1 = R
h(xn) .

Further� let Sh denote the �ow map of the di
erential equation ��� over time
h� so that for a solution x(t) of ��� we have

x(t+ h) = Sh(x(t)) .

The local error Rh(x) − Sh(x) then satis�es

Rh(x)− Sh(x) = O(hp+1) ,
∂Rh

∂x
(x) −

∂Sh

∂x
(x) = O(hp+1)

uniformly for x in an arbitrary compact set.

���

The �rst estimate is obtained by comparing the Taylor expansions of the
exact and the numerical solution� the second estimate follows by interpreting
the two error expressions combined as the local error of the Runge	Kutta
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method applied to the system composed of ��� and its variational equation
dv/dt = ∂f/∂x(x)v�

By the variation	of	constants formula� a sequence of exact solution values
x̃n = x(nh) satis�es a recurrence relation

x̃n+1 = e
hAx̃n + hφ(x̃n) , ���

where A is the Jacobian of ��� at the stationary point x∗ = 0� and where φ
is an h	dependent function with φ(0) = 0 and Lipschitz constant of size O(r)
in an r	neighbourhood B(r) of the stationary point� Similarly� by ���� every
numerical solution sequence satis�es a recursion of the form

xn+1 = e
hAxn + hψ(xn) , ���

where ψ has a Lipschitz constant of size O(r) +O(hp) in B(r)� and

ψ(x) − φ(x) = O(hp) uniformly in B(r)�

By the assumption of hyperbolicity� A has the form �up to a similarity trans	
form�

A =

(
A− 0
0 A+

)
where all eigenvalues of A− have negative real part and those of A+ have
positive real part� We now apply the discrete variation	of	constants formula
to the stable components in ��� and ��� in the forward direction� and to the
unstable components in the backward direction�

x−n = exp(nhA
−)x−0 + h

n−1∑
j=0

exp((n− j − 1)hA−)ψ−(xj) ,

x+n = exp((n−N)hA
+)x+N − h

N−1∑
j=n

exp((n− j − 1)hA+)ψ+(xj) .

As the Lipschitz constants of φ and ψ can be made arbitrarily small by reduc	
ing the radius r of the neighbourhood� the Banach contraction principle yields
the following� Let (xn) be a solution of �
� with ‖xn‖ ≤ r �n = 0, . . . , N�� If
r is su�ciently small� there is a unique solution of ��� with boundary values
x̃−0 = x

−
0 � x̃

+
N = x

+
N � This solution satis�es

xn − x̃n = O(h
p) uniformly for n = 0, . . . , N .

Evidently� the same holds with the roles of xn and x̃n interchanged� This
yields Beyn�s shadowing result as stated above� We emphasize that this con	
struction depends crucially on the uniform approximation estimate ����

Let us now return to the singularly perturbed problem ��� and its Runge	
Kutta discretization� Here we face the di�culty that an approximation esti	
mate ��� does not hold when ε ≤ h� Since general solutions of ��� undergo
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rapid initial changes� the best possible local error estimate valid in a neigh	
bourhood of the stationary point is only Rh(x)− Sh(x) = O(1)�

More favourable error bounds exist only for initial values (y0, z0) which
are such that the corresponding solution (y(t), z(t)) of ��� is 
smooth� in the
sense that arbitrarily many derivatives are bounded independently of ε� For
such initial data� the following sharp �nite	time error bounds were shown
in ���� to hold for numerical solutions obtained by strongly A	stable Runge	
Kutta methods of classical order p and stage order q�

‖yn − y(nh)‖ ≤ C (hp + εhq+1)

‖zn − z(nh)‖ ≤
{
C (hp + εhq) if amj = bj for j = 1, . . . ,m �
Chq+1 else �

The constants depend on bounds for the derivatives of the solution and on
the length T of the time interval� but are independent of ε� h and n with
nh ≤ T � We note that these orders of approximation are the same as stated
in Theorem ��

The way to circumvent the missing uniformity in the error bounds� is to
make use of attractive invariant manifolds� As is known from the geometric
theory of singular perturbation problems ����� ����� there is a manifoldMε =
{(y, z) : z = sε(y)} �locally near the stationary point� which itself is onMε��
such that solutions of ��� starting onMε remain onMε and are smooth in the
above sense� Also the function sε de�ning the manifold has arbitrarily many
derivatives bounded independently of ε� An arbitrary solution (y(t), z(t)) of
��� near (0, 0) rapidly approaches a solution on Mε� There is a solution
(ỹ(t), z̃(t)) onMε such that

‖y(t)− ỹ(t)‖+ ε · ‖z(t)− z̃(t)‖ ≤ C εe−κt/ε , 0 ≤ t ≤ T ,

with some constants C and κ > 0 which do not depend on ε and T �
property
of asymptotic phase��� If (y(t), z(t)) = (y(t), sε(y(t))) is a solution of ��� on
Mε� then y(t) is a solution of the di
erential equation with smooth right	hand
side

dy

dt
= f(y, sε(y)) , ���

which has y = 0 as a stationary point� There� the Jacobian is of the form
(fy − fzg−1z gy)(0, 0)+O(ε)� By condition ���� this matrix has no eigenvalues
on the imaginary axis for small ε�

Not only the continuous system ���� but also its Runge	Kutta discretiza	
tion admits an invariant manifold� A combination of results and techniques
of ���� and ���� yields the following result� cf� Nipp and Sto
er �����

For 0 < ε ≤ h ≤ h0� there is a local attractive invariant manifoldMε,h =
{(y, z)| z = sε,h(y)} for the Runge�Kutta discretization�Mε,h is close toMε�

‖sε,h(y)− sε(y)‖ ≤

{
C εhq if bi = asi for all i ,
C hq+1 else .
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There is a property of asymptotic phase� for every (y0, z0) in an h� and ε�
independent open set that contains Mε,h� there exists (ỹ0, z̃0) ∈ Mε,h such
that the corresponding Runge�Kutta solutions satisfy

‖yn − ỹn‖+ ε · ‖zn − z̃n‖ ≤ C ερ
n , 0 ≤ n ≤ N ,

where ρ < 1 and C do not depend on ε� h� and N � For ε � h we have
ρ = |R(∞)|+O(ε/h)�

With these results at hand� the construction of the shadowing solution
in ���� proceeds in several steps� Starting from a given Runge	Kutta solution
(yn, zn)� 0 ≤ n ≤ N � of ��� staying in an r	neighborhood of (0, 0)� with r suf	
�ciently small �but independent of ε�� a solution (y(t), z(t)) of ��� shadowing
the numerical solution is constructed as follows�

�� Take the Runge	Kutta solution (ỹn, z̃n) onMε,h with the same asymp	
totic phase� so that yn − ỹn = O(ερn) for 0 ≤ n ≤ N �

�� Construct a Runge	Kutta solution (ηn) of ��� shadowing (ỹn)�
ỹn − ηn = O(εhq+1) for 0 ≤ n ≤ N �

�� Apply Beyn�s result to ��� to obtain a shadowing solution y(t) with ηn−
y(nh) = O(hp) for 0 ≤ n ≤ N � Take z(t) = sε(y(t))�

This yields part �A� of Theorem �� For part �B�� one proceeds similarly from
a given solution (y(t), z(t))� 0 ≤ t ≤ T = Nh� of ����

��� Take the solution (ỹ(t), z̃(t)) onMε with the same asymptotic phase� so
that y(t)− ỹ(t) = O(εe−κt/ε) for 0 ≤ t ≤ T �

��� Apply the converse direction of Beyn�s result to ��� to obtain a Runge	
Kutta solution (ηn) of ��� shadowing (ỹ(nh))� ỹ(nh) − ηn = O(hp) for
0 ≤ n ≤ N �

��� Construct a Runge	Kutta solution (yn, zn) of ��� on Mε,h shadowing
(ηn, sε(ηn))� ηn − yn = O(εhq+1) for 0 ≤ n ≤ N � and zn = sε,h(yn)�

Steps � and �� are the technically demanding steps in these constructions�
see ���� for the details�

��� Related Results

In the nonsti
 ODE case� Beyn ��� further shows that the local stable and un	
stable manifolds near the hyperbolic stationary point are approximated with
the order of the method� For the Runge	Kutta discretization of the singularly
perturbed problem ���� the techniques of ������� yield also that there are local
stable and unstable submanifolds of the attractive invariant manifold Mε,h

of the discretization which approximate the stable and unstable manifolds of
the reduced equation ���� again with the order of the �nite	time smooth	data
error bounds�

The results of ���� permit to relate the dynamics of Runge	Kutta dis	
cretizations of the singularly perturbed problem ��� to those of the discretiza	
tion of the nonsti
 di
erential equation ���� This reduction makes it possible
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to transfer many of the known results on the long	time behaviour of dis	
cretizations of nonsti
 ODEs to singularly perturbed problems � at least
as long as trajectories stay away from regions where some eigenvalue of gz
has non	negative real part� This restriction excludes� for example� relaxation
oscillations�

For BDF	like multistep methods applied to singularly perturbed prob	
lems� optimal	order �nite	time smooth	data error bounds were derived in
�������� and their attractive invariant manifolds were studied by Nipp and
Sto
er ����� A combination of ���� and ���� extends Theorem � to multistep
discretizations�

There is a rich literature on 
numerical shadowing�� mainly for nonsti

ordinary di
erential equations� �Zentralblatt lists over �� articles� e�g�� by
Chow� Coomes�Ko ak�Palmer� Corless� Eirola� Hadeler� Kloeden� Pilyugin�
Sauer�Yorke� Van Vleck�� Less has been done for sti
 di
erential equations
or partial di
erential equations� and apparently nothing for delay di
erential
equations�

Alouges and Debussche ��� extend Beyn�s shadowing result near hyper	
bolic equilibria to implicit Euler time discretizations of semilinear parabolic
problems� Larsson and Sanz	Serna ������� to �nite element space discretiza	
tions and full discretizations� Ostermann and Palencia ���� derive a shadowing
result for an implicit Euler time discretization of non	autonomous parabolic
problems�

The shadowing lemma of Chow� Lin and Palmer ��� combined with non	
smooth	data error bounds for �nite element and Runge	Kutta discretizations
of semilinear parabolic equations ������� yields numerical shadowing near
general hyperbolic invariant sets of such equations�

Larsson and Pilyugin ���� investigate numerical shadowing near the at	
tractor for �nite element�implicit Euler discretizations of reaction	di
usion
equations in one space dimension� using a reduction to known �nite	dimens	
ional results on Morse	Smale systems via inertial manifolds� It is shown that
every numerical trajectory shadows some exact solution of the problem after
the elapse of a �nite time�

Long	time error bounds of numerical discretizations of semilinear parab	
olic problems near asymptotically stable stationary points were obtained ear	
lier �����������

� Hyperbolic Periodic Orbits

of Delay Di�erential Equations

Following ����� we study the persistence of stable hyperbolic periodic orbits
of delay di
erential equations under numerical discretization� We show the
existence of attractive closed curves for Runge	Kutta discretizations� which
approximate the periodic orbit with the full order of the method� The proof
requires an in�nite	dimensional analytical�numerical framework and com	
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bines �nite	time error bounds for both smooth and non	smooth data with an
invariant manifold theorem�

��� Analytical Framework

We consider a delay di
erential equation with �xed delay τ > 0�

dx

dt
(t) = f(x(t), x(t − τ)) ����

where f is bounded and su�ciently often di
erentiable with bounded deriva	
tives� With d denoting the dimension of the system ����� we let

C = C([−τ, 0],Rd)

be the Banach space of Rd	valued continuous functions on [−τ, 0] equipped
with the maximum norm� which we denote by ‖·‖� For a given initial function
x0 ∈ C� Eq� ���� has a unique solution x : [−τ,∞)→ Rd� For t ≥ 0� we de�ne

xt ∈ C via xt(θ) = x(t+ θ) for θ ∈ [−τ, 0] .

To indicate the dependence of the solution section xt on the initial function
x0� we write

xt = St(x0) .

This gives a semigroup on C� Further� St : C → C is a Fr!chet di
erentiable
map� We denote its derivative at x0 ∈ C by DSt(x0)�

We assume that ���� has a stable hyperbolic periodic orbit� that is� ����
has a nonconstant periodic solution

x : R→ Rd of period ω > 0 �

and the derivative of the period map� DSω(x0)� has � as a simple eigen	
value� whereas the remaining part of the spectrum of DSω(x0) is bounded in
modulus by a number strictly smaller than �� Let

Γ = {xt : t ∈ R}

denote the periodic orbit of ���� in C�

��� Numerical Method

We restrict our attention to step sizes h > 0 for which the delay τ is an
integer multiple�

τ = νh , with integer ν .

A Runge	Kutta discretization of ���� reads as follows ����� Given an initial
function x0 ∈ C� we de�ne starting values �for i = 1, . . . ,m�

Xni = x
0(nh+ cih) , n = −ν, . . . ,−1

x0 = x
0(0)
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and set recursively for n = 0, 1, 2, . . .

xn+1 = xn + h
m∑
i=1

biX
′
ni

with internal stage relations �i = 1, . . . ,m�

Xni = xn + h
m∑
j=1

aijX
′
nj

and
X ′ni = f(Xni, Xn−ν,i) .

The method is determined by the real coe�cients aij � bj� ci �i, j = 1, . . . ,m��
where ci ∈ [0, 1]� It is explicit if aij = 0 for i ≤ j� We assume that the
Runge	Kutta method has classical order p�

For a formulation of the result on the persistence of the periodic orbit
under the discretization� we need to interpolate the discrete solution values
to functions in C� For t = nh with integer n ≥ 0� we construct

Rth(x
0) = xth ∈ C

by setting x0h = x
0 and de�ning xth(θ) for −h ≤ θ ≤ 0 by polynomial inter	

polation through xn, xn−1, . . . , xn−p �with xk = x
0(kh) for negative k�� and

we set recursively xth(θ) = x
t−h
h (θ+h) for −τ ≤ θ ≤ −h� for t = h, 2h, 3h, . . .

�

��� Statement of the Result

Theorem �� ���� In the above situation� for any given L > 0� there are
positive constants r� c� C� C0 and h0 such that the following holds for 0 <
h ≤ h0� There is a closed curve Γh ⊂ C which attracts numerical solutions at
an exponential rate�

dist(Rth(x
0), Γh) ≤ C e

−ct , t = nh > 0 ,

whenever the initial function x0 is in an r�neighbourhood of the periodic orbit�
viz� dist(x0, Γ ) ≤ r� and x0 has a Lipschitz constant not exceeding L� The
Hausdor� distance to the periodic orbit Γ is bounded by

distH(Γh, Γ ) ≤ C0 h
p .

��� Discussion and Comparison with the ODE Case

Theorem � is related to results by Braun and Hershenov ���� Beyn ���� and
Eirola ���� on invariant curves of numerical discretizations of �nonsti
� smooth
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ordinary di
erential equations with a hyperbolic periodic orbit� Theorem �
considers only the stable case� but similar to ODEs� the result could be ex	
tended to general hyperbolic periodic orbits� In the stable case� the result for
pth	order Runge	Kutta discretizations of smooth ordinary di
erential equa	
tions with su�ciently small step size h reads as follows�

There is a closed curve which is invariant under the numerical method and
O(hp) close to the stable hyperbolic orbit of the ordinary di�erential equation�
Locally� it attracts numerical solutions exponentially with an h�independent
rate�

We now indicate how this result for ordinary di
erential equations follows
directly from the attractive invariant manifold theorem of Kirchgraber� Nipp
and Sto
er ������� restated here in the appendix� Consider the di
erential
equation ��� and denote its �ow by St(x0) = x(t)� Let the equation have the
periodic orbit x(t) with period ω� By de�nition� the orbit is stable hyperbolic
if the derivative of the period map� ∂Sω(x(0))/∂x� has 1 as a simple eigen	
value� and all other eigenvalues are strictly smaller than 1 in modulus� We
now use normal coordinates� in terms of which every point in a neighbour	
hood of the periodic orbit is written as x = x(α) + β� where α ∈ R is unique
up to integer multiples of the period ω� and β is unique in the maximal in	
variant subspace of ∂Sω(x(α))/∂x that does not contain the eigenvector to
the eigenvalue 1� Written in these coordinates� the �ow map St satis�es� for
su�ciently large t� the conditions of Theorem A�� on a strip R × B� with
B a ball� The estimate ��� for the local error implies that� on �nite time in	
tervals� there is a uniform error estimate between the Runge	Kutta solution
Rth(x) = xn at t = nh and the exact solution St(x)�

Rth(x) − S
t(x) = O(hp) ,

∂Rth
∂x
(x)−

∂St

∂x
(x) = O(hp)

uniformly for x in an arbitrary compact set.

����

Hence� the Runge	Kutta map Rth is a small Lipschitz perturbation of the �ow
map� Rth thus still satis�es the assumptions of Theorem A�� for su�ciently
small h� and the existence of an attractive invariant closed curve of the nu	
merical discretization follows� Corollary A�� provides the O(hp) bound for
the distance to the periodic orbit�

We return to the delay di
erential equation ����� As in the previous sec	
tion� a principal di�culty in extending the ODE result is that the uniform
error bounds ��� or ���� are no longer valid� For the above Runge	Kutta dis	
cretization� the following �nite	time nonsmooth�data error bound is known
����� If x0, v ∈ C are Lipschitz bounded by L� and ‖v‖ ≤ 1� then the di
er	
ence between the Runge	Kutta solution xth = R

t
h(x

0) and the exact solution
xt = St(x0) corresponding to the initial function x0� is bounded by

‖Rth(x
0)− St(x0)‖ ≤ CLh , ‖DRth(x

0)v −DSt(x0)v‖ ≤ CLh
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with a constant C which depends on t� but is independent of x0 and v with
the stated properties� Without assuming additional regularity of x0, v ∈ C�
such as Lipschitz continuity� there is no uniform convergence on bounded sets
of C as h → 0� On the other hand� for su�ciently di
erentiable initial data
x0� there is the full	order smooth�data error bound ���� Sec� II����

‖Rth(x
0)− St(x0)‖ ≤ C hp ,

where C depends on bounds of the �rst p derivatives of x0� and on t�
A further di�culty not present in the ODE case results from the fact that

the numerical method incorporates the delay via past internal stages� not via
past solution values� As a consequence� a Runge	Kutta step must be viewed
as a mapping

(xn+k, Xn+k,1, . . . , Xn+k,m)
0

k=−ν 
→ (xn+1+k, Xn+1+k,1, . . . , Xn+1+k,m)
0

k=−ν

or� extending to continuous functions via polynomial interpolation� as a map	
ping C×Cm→ C×Cm� The attractive curve Γh in C of Theorem � is in general
not an invariant curve of the numerical method� but instead it consists of the
projection to the �rst component of an attractive invariant curve in C × Cm

of the Runge	Kutta map� This leads to additional problems in bringing the
invariant manifold theorem into play� see ���� for details� Here� for simplicity�
we continue the discussion with a Runge	Kutta method for which all inter	
nal stages are linear combinations of numerical solution values� such as the
explicit or implicit Euler method or the trapezoidal rule or the implicit mid	
point rule� In this case� the numerical one	step map Rh can indeed be viewed
as a map on C� and for t = nh� the time	t numerical solution map Rth is the
n	fold composition Rth = (R

h)n�
For this special case� we now outline the arguments in the proof of Theo	

rem �� Analogous to ordinary di
erential equations� there exist normal coor	
dinates near the periodic orbit Γ = {xα : α ∈ R}� As is known from Hale ����
Ch� ���� every function x ∈ C in some neighbourhood of Γ can be written as
x = xα + β� where α ∈ R is unique up to integer multiples of the period ω�
and β is unique in the maximal invariant subspace of DSω(x(α)) that does
not contain the eigenfunction to the eigenvalue 1� It can be veri�ed that the
exact �ow map St written in normal coordinates� (α, β) 
→ (α̂, β̂)� satis�es
the conditions of the attractive invariant manifold theorem Theorem A�� in a
strip of R×C� clearly with the periodic orbit Γ as attractive invariant curve�
Consider now the closed bounded set in C�

Br,L = {β ∈ C : ‖β‖ ≤ r, β is Lipschitz bounded by L} .

Using the above nonsmooth�data error bound and a uniform Lipschitz bound
of numerical solutions xth ∈ C� it is seen� for appropriately chosen r and
L� that together with St also the Runge	Kutta map Rth written in normal
coordinates satis�es the conditions of Theorem A�� onR×Br,L for su�ciently
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small step size h� This yields the existence of an exponentially attractive
invariant curve Γh for Rth� and subsequently also for the one	step map Rh�
Since the periodic orbit x is arbitrarily di
erentiable� the smooth�data error
bound yields� uniformly for α ∈ R�

‖Rth(x
α)− St(xα)‖ ≤ C hp .

Corollary A�� requires just this bound of the di
erence of Rth and St on
the periodic orbit Γ � and hence it yields the optimal	order distance estimate
distH(Γh, Γ ) = O(h

p)�

��� Related Results

The persistence of �not necessarily stable� hyperbolic periodic orbits under
discretization has been studied also for semilinear parabolic di
erential equa	
tions� For implicit Euler time discretizations of such problems� Alouges and
Debussche ��� show the existence of invariant closed curves approximating
the hyperbolic periodic orbit with a sub	optimal order smaller than �� In
����� it is shown for Runge	Kutta time discretizations that the approxima	
tion order of the invariant curve is actually that of high	order �nite	time
error bounds for the Runge	Kutta approximation of smooth solutions of the
parabolic problem� As in the case of delay di
erential equations� the result
relies on both low	order nonsmooth	data and high	order smooth	data �nite	
time error bounds�

� Hopf Bifurcation

of Semilinear Parabolic Di�erential Equations

Following ����� we study the long	time behaviour of numerical discretizations
in a situation where hyperbolicity gets lost� in the neighbourhood of a bi	
furcation point� We consider Runge	Kutta time discretization of semilinear
parabolic equations near a generic� supercritical Hopf bifurcation� The phase
portrait is shown to persist under the discretization� and in particular� the
bifurcation point and the Hopf orbits are approximated with the high order
of �nite	time approximations to smooth solutions of the parabolic equation�
The analysis uses a reduction to two	dimensional center manifolds of both
the continuous problem and its discretization� and a comparison of the dy	
namics on the center manifolds via normal forms� The existence� smoothness�
and approximation properties of the center manifold of the discretization are
obtained by studying the discretization� by the same numerical method� of a
boundary value problem on the negative half	line�

��� Analytical Framework

We consider reaction	di
usion equations and incompressible Navier	Stokes
equations in the abstract setting of sectorial evolution equations in a Banach
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space as given in Henry�s book ����� We let the equation be parametrized by
a real bifurcation parameter λ�

du

dt
+A(λ)u = F (u, λ) . ����

We assume that the system can be transformed� via suitable spectral projec	
tions� to a block	diagonal form

dy

dt
+B(λ)y = f(y, v, λ)

dv

dt
+ L(λ)v = g(y, v, λ)

����

with the following speci�cations� The real 2 × 2	matrix B(λ) has a pair of
complex conjugate eigenvalues which cross the imaginary axis at the param	
eter value λ∗ with non	vanishing speed� i�e��

σ(−B(λ)) = {α(λ)± iω(λ)}, with α(λ∗) = 0,
dα

dλ
(λ∗) > 0, ω(λ∗) > 0 .

We further assume� with ω∗ = ω(λ∗)�

B(λ∗) =

(
0 −ω∗

ω∗ 0

)
.

The linear operator L(λ) in ���� is a densely de�ned closed operator on
a Banach space X � with domain D(L) independent of λ� The spectrum of
−L(λ) is in a sector lying strictly in the left half	plane� and L(λ) satis�es
the sectorial resolvent bound� with an angle φ < π/2 and a positive abscissa
� > 0�

‖(z + L(λ))−1‖L(X) ≤
K

|z + �|
for all complex z with | arg(z + �)| ≥ φ

uniformly for λ in an interval Λ around λ∗� The functions

λ 
→ B(λ) ∈ R2×2

λ 
→ L(λ) ∈ L(D(L), X)
are arbitrarily di
erentiable�

The nonlinearities f and g� taking values in R2 and X � respectively� are
arbitrarily di
erentiable onR2×V ×Λ� where V = D(L(λ)α) for some α < 1�
�Note� V is independent of λ because of the uniform resolvent condition�� We
assume that the left	hand side of ���� represents the linearization of the
equation at the stationary point (0, 0)� i�e��

f(0, 0, λ) = 0 , g(0, 0, λ) = 0

Dyf(0, 0, λ) = 0 , Dvf(0, 0, λ) = 0 , Dyg(0, 0, λ) = 0 , Dvg(0, 0, λ) = 0 .
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It is known ������� that the system ���� has a center manifold

Mλ = {(y, s(y, λ)) : y ∈ R
2} ,

with a de�ning function s : R2 × Λ → V which� for arbitrary integer k� is k
times continuously di
erentiable in a k	dependent neighbourhood of (0, λ∗)�
The center manifold is locally invariant and attracts solutions at an expo	
nential rate� The dynamics of the system ���� in a neighbourhood of the
stationary point (0, 0) is determined by the equation reduced to the center
manifold�

dy

dt
+B(λ)y = ϕ(y, λ) , ����

where ϕ(y, λ) = f(y, s(y, λ), λ) satis�es ϕ(0, λ) = 0, Dyϕ(0, λ) = 0� A near	
identity change of coordinates transforms ���� to normal form ���� Sections
���B and ���B�� which in polar coordinates reads for λ = λ∗ + ρ2

dr

dt
= (a ρ2 + c r2)r +O(r(ρ4 + r4))

dθ

dt
= ω∗ + b ρ2 + d r2 +O(ρ4 + r4) ,

����

where a = dα/dλ (λ∗) > 0� b = dω/dλ (λ∗)� and where the coe�cients c and
d depend on second and third derivatives of ϕ at the bifurcation point� The
normal form yields that the dynamical behaviour passes for λ growing across
λ∗ from an asymptotically stable equilibrium to an asymptotically stable
periodic orbit if c < 0� and such a change in the dynamics is possible only if
c ≤ 0� In the following we assume

c < 0 .

The periodic orbits of the reduced equation ���� are close to circles centered
at � with radius r = ρ

√
−a/c� where again ρ =

√
λ− λ∗� It will be convenient

to parametrize the periodic orbits by ρ via λ(ρ) = λ∗ + ρ2� We denote the
periodic orbit of Eq� ���� with parameter λ(ρ) by Γ (ρ)� This periodic orbit
lies on the center manifold to the parameter λ(ρ)�

��� Numerical Method

A Runge	Kutta time discretization of ���� reads

un+1 = un + h
m∑
i=1

biU
′
ni , Uni = un + h

m∑
j=1

aijU
′
nj ,

U ′ni +A(λ)Uni = F (Uni, λ) (i = 1, . . . ,m) .

The stability condition we need here is a weakened form of the strong A	
stability de�ned in Section ���� For an angle θ ≤ 1

2π� the method is called
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strongly A�θ��stable if all eigenvalues of the Runge	Kutta matrix Oι lie outside
the closed complex sector | arg(−z)| ≤ θ� and if the stability function of the
method satis�es

|R(z)| ≤ 1 for | arg(−z)| ≤ θ

and
|R(∞)| < 1 .

We assume that the method is strongly A�θ�	stable with θ > φ� where φ is
the angle in the sectorial resolvent condition� As in Section ���� we assume
that the method has classical order p and stage order q� We let

k = min(p, q + 1) .

��� Statement of the Result

Theorem �� ���� In the above situation� there exist h0 > 0� λ0 < λ
∗� ρ0 > 0�

and constants C and C∗� such that for all positive time steps h ≤ h0� there
is a parameter value λ∗h with

|λ∗h − λ
∗| ≤ C∗hp

such that the following holds�
�i� For every λ ∈ [λ0, λ∗h)� the Runge�Kutta discretization has the asymp�

totically stable equilibrium point 0�
�ii� For every ρ ∈ (0, ρ0]� the Runge�Kutta discretization with parameter

λh(ρ) = λ
∗
h+ρ

2 has an attractive invariant closed curve Γh(ρ)� Its Hausdor�
distance to the periodic orbit Γ (ρ) with parameter λ(ρ) = λ∗ + ρ2 satis�es

distH
(
Γh(ρ), Γ (ρ)

)
≤ C ρhk .

��� Discussion and Comparison with the ODE Case

For ordinary di
erential equations

dx

dt
= f(x, λ)

the question of the behaviour of Hopf bifurcation under numerical discretiza	
tion was �rst considered by Brezzi� Ushiki and Fujii ���� They state an ana	
logue of Theorem � for the explicit Euler method and give an outline of a
proof for the two	dimensional case�

Hairer and Lubich ���� study the behaviour of Runge	Kutta methods near
a Hopf bifurcation of ordinary di
erential equations with real	analytic right	
hand side via a backward analysis of numerical integrators� It is shown in
������ that there exists a modi�ed di
erential equation

dx̃

dt
= fh(x̃, λ)
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such that the numerical solution map Rth departs from the �ow Sth of the
modi�ed di
erential equation by only exponentially small terms in the step
size� for a �xed t = nh�

Rth(x)− S
t
h(x) = O(e

−γ/h)

uniformly for x in any complex compact subset of the domain of analyticity�
The constant γ > 0 is inversely proportional to a Lipschitz constant of f �
The real	analytic function fh is O(hp) close to f � again uniformly on complex
compact sets� The modi�ed di
erential equation undergoes a Hopf bifurcation
at a parameter λ∗h = λ

∗+O(hp)� Although the hyperbolicity of the Hopf orbits
deteriorates as λ approaches the bifurcation point� the exponential smallness
of the error allows us to use the approximation result of hyperbolic periodic
orbits �see Sect� ���� down to parameters that are exponentially close to
the bifurcation point� λ ≥ λ∗h + e

−γ/(2h)� For such a λ� we thus obtain the
existence of an attractive invariant closed curve of the discretization which
is exponentially close to the periodic orbit of the modi�ed equation for the
same parameter value�

Backward analysis is a powerful tool for studying numerical discretiza	
tions even in non	hyperbolic situations in nonsti
 ordinary di
erential equa	
tions� However� it is not applicable to partial di
erential equations due to
the unboundedness of the operator� �See� however� ���� for some partial re	
sults in that direction when very strong smoothing properties such as Gevrey
regularity are available��

The proof of Theorem � follows a standard procedure in the analysis
of bifurcations ���������� outlined already in Section ���� reduction of the
dynamics to a center manifold and analysis of the normal form of the reduced
equation� The �rst step is to construct a center manifold of the discretization�
and to study its relationship to the center manifold of the continuous problem�
In ����� the center manifold is constructed from a boundary value problem
on the negative half	line�

dy

dt
+ B(λ)y = f(y, v, λ) , y(0) = η

dv

dt
+ L(λ)v = g(y, v, λ) , lim sup

t→−∞
‖v(t)‖ <∞ ,

from which the function s : R2 ×Λ→ V de�ning the center manifoldMλ is
obtained by setting

s(η, λ) = v(0) .

Similarly� the center manifold of the Runge	Kutta discretization is obtained
by formally applying the Runge	Kutta method to this boundary value prob	
lem� Existence� attractivity� smoothness and approximation properties of the
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discrete center manifold then follow from studying the numerical discretiza	
tion of the boundary value problem� Using the convolution quadrature in	
terpretation of the Runge	Kutta method ���� and exploiting the temporal
smoothness of the solution of the boundary value problem� which follows
from the smoothness of the function s� the following result is obtained�
There exists a center manifold

Mλ,h = {(y, sh(y, λ)) : y ∈ R
2}

which is invariant under the numerical method and uniformly in h and λ
exponentially attractive� The de�ning function sh : R

2×Λ→ V has the same
regularity properties as s� with derivatives bounded uniformly in h� There is
the approximation estimate

‖sh(y, λ)− s(y, λ)‖ ≤ C |y|h
k

in the norm of the space V � and the same order of approximation is valid for
any �xed number of derivatives of sh − s with respect to y and λ�

The next step is to compare the normal forms of the time	h �ow map of
the reduced di
erential equation on R2 and of the Runge	Kutta map reduced
to the discrete center manifold� giving another map on R2� This comparison
uses the above estimates for sh and leads to a situation to which Theorem A��
and Corollary A�� can be applied� This yields the existence of invariant curves
and the approximation properties as stated in Theorem ��

We remark that this construction can of course be carried out also in
the ODE situation� In that case� the approximation estimate in Theorem �
improves to the full order k = p�

A related construction can be used also for �nite element space discretiza	
tions of reaction	di
usion equations and subsequently for full discretizations
�joint work by S� Larsson and the author� in preparation�� There are addi	
tional di�culties due to the fact that the method is then no longer invariant
under the transition from ���� to ����� and that the equilibrium point of the
di
erential equation need not lie in the �nite element space� Multistep time
discretization is studied by H� Selhofer �doctoral thesis in preparation��

� Inertial Manifolds of Semilinear Parabolic Equations

Following ����� we show high	order approximation of the inertial manifold
of a semilinear parabolic equation by inertial manifolds of full discretizations
combined of a spectral Galerkin method in space and a Runge	Kutta method
in time� The result follows by a combination of low	order nonsmooth	data
error bounds and high	order error bounds for smooth data over �nite time
intervals� and once more with the invariant manifold theorem of the appendix�
The smoothness of solutions on the inertial manifold� as implied by time
analyticity and Gevrey regularity� renders the high order of approximation
possible�
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��� Analytical Framework

The following applies to the complex Ginzburg	Landau and Kuramoto	Siva	
shinsky equations and to classes of reaction	di
usion equations with analytic
nonlinearities in one or two space dimensions� cf� ���� and references therein�
The limitation of the space dimension is due to a spectral gap condition�
which is needed in the proof of existence of an inertial manifold and which is
not satis�ed by the three	 �or higher	� dimensional Laplacian�

We consider the evolution equation

du

dt
+Au = F (u) ����

under the following assumptions� the operator A is of the form A = (1+ia)L�
where a ∈ R and L is a self	adjoint� densely de�ned linear operator on a
separable Hilbert space H� with a compact inverse and eigenvalues

0 < λ1 ≤ λ2 ≤ . . .↗ +∞ .

For some α < 1� the nonlinearity is de�ned on V = D(Lα)� The function
F : V → H is at least twice continuously Fr!chet di
erentiable�

We denote the norm on H by | · |� that on V by ‖ · ‖� Let Pm denote the
orthogonal projection on the space spanned by the �rst m eigenfunctions of
L� and let Qm = I − Pm be the projection on the orthogonal complement�
B(ρ) denotes the ball of radius ρ in V centered at the origin� As in previous
sections� St denotes the time	t �ow of the evolution equation�

We are interested in an inertial manifold M for ���� as introduced by
Foia"� Sell and Temam ����� This is a positively invariant set �more precisely�
for a �xed ρ > 0� M satis�es St(M ∩ B(ρ)) ⊂ M for all t ≥ 0� de�ned
through a Lipschitz continuous function s : PmV → QmV via

M = {v ∈ V : Qmv = s(Pmv)} .

M is exponentially attracting� there exist ν > 0 and a constant C �depending
on ρ� such that for all u0 ∈ V with ‖u0‖ ≤ ρ�

dist(St(u0),M) ≤ C e
−νt for all t ≥ 0 .

The dynamics of the in�nite	dimensional evolution equation ���� is then de	
termined by its restriction to the inertial manifold� which is a �nite	dimens	
ional ordinary di
erential equation�

The existence of an inertial manifold is known under the following condi	
tions� ���� has an absorbing ball� i�e�� there exist r > 0 and� for every ρ > 0�
a τ(ρ) > 0 such that

‖v‖ ≤ ρ implies ‖St(v)‖ ≤ r for all t ≥ τ(ρ) .

The second condition is a spectral gap condition� for a su�ciently large con	
stant K�

λm+1 − λm ≥ K λ
α
m+1 .
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Finally� it is needed that λm is su�ciently large compared to a Lipschitz
constant of F � Under these conditions� the existence of an inertial manifold
of dimension m actually follows directly from Theorem A��� used with Φ = St

for t = c/λm+1 with a su�ciently small constant c�

For our approximation results� we make use of strong regularity results in time
and space� which are known to hold for the di
erential equations mentioned
in the beginning of this subsection� cf� �����

Analyticity in time� for every v ∈ V of norm bounded by ρ� the function
t 
→ St(v) is analytic on the intersection of a complex sector | arg t| < φ
with a strip |Im t| < c� and is bounded there by ‖St(v)‖ ≤ C uniformly for
‖v‖ ≤ ρ�

Gevrey regularity� for a given ρ > 0� there exist a constant C and a time
t > 0 such that St(v) is in the domain of exp(+(tA)1/2) and

‖ exp((tA)1/2)St(v)‖ ≤ C for ‖v‖ ≤ ρ, 0 ≤ t ≤ t .

��� Numerical Method

We consider a spectral Galerkin discretization in space combined with Runge	
Kutta discretization in time� The spectral Galerkin method yields an ap	
proximation to the solution of ���� in the space VN spanned by the �rst N
eigenfunctions of A� With PN denoting the orthogonal projection on VN � the
method solves

duN

dt
+AuN = PNF (uN ) , uN (0) = PNu0 .

This problem is discretized in time by a strongly A(θ)	stable Runge	Kutta
method of order p and stage order q� cf� Section ���� The angle θ should be
larger than arg(1 + ia)� We set again

k = min(p, q + 1) .

The time step is again denoted by h� and we let for brevity

∆ = (N,h) .

The numerical approximation at time t = nh is written as Rt∆(u0)�

��� Statement of the Result

Theorem �� ���� In the above situation� for given ρ > 0� there exist positive
constants C0� C1� C2� c� �� κ �independent of the dimension m of the inertial
manifold M� such that the following holds for N and h with λm/λN+1 ≤ κ
and hλm ≤ κ� There exists a manifoldM∆ that is positively invariant under
the numerical method �more precisely� Rt∆(M∆ ∩B(ρ)) ⊂M∆ for t = nh ≥
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0�� It is de�ned by a function s∆ : PmV → QmV � which is Lipschitz bounded
by �� via

M∆ = {v ∈ V : Qmv = s∆(Pmv)} .

M∆ attracts all numerical solutions starting with ‖u0‖ ≤ ρ exponentially�

dist(Rt∆(u0),M∆) ≤ C0 e
−tν/2 for all t = nh ≥ 0 .

The Hausdor� distance to the inertial manifold of ���� is bounded by

distH(M∆,M) ≤ C1 e
−c
√
λN+1/λm + C2

(
λmh
)k
.

��� Discussion

Theorem � gives exponential convergence in space and high order in time�
We have included the dependence on the dimension m because the spectral
gap condition is usually satis�ed for in�nitely many m� leading to a nested
sequence of inertial manifolds with growing attractivity exponents ν� More	
over� even the smallest possible m may be quite large in applications� The
way the distance estimate depends on m shows that only the time and length
scales of the di
erential equation reduced to the inertial manifold need to be
resolved properly by the discretization for an accurate approximation of the
inertial manifold�

We outline a proof of Theorem � that uses Theorem A�� and Corol	
lary A��� whereas ���� employs a Hadamard graph transform adopted from
�����

The existence of an inertial manifold of the discretization can be proved
using Theorem A�� and a nonsmooth�data error bound� Combining the results
of ���� and ���� Sect� ���� on time and space discretizations� respectively� the
following �nite	time error bound is obtained� uniformly for ‖u0‖ ≤ ρ and
0 < t ≤ T �

‖Rt∆(u0)− S
t(u0)‖ ≤ C

(
t−αh| logh|+ (h/t)k + (tλN+1)

α−1
)
.

The same bound holds also for the derivative� ‖DRt∆(u0)−DS
t(u0)‖L(V )� The

error bound implies the existence of an absorbing ball of the discretization for
su�ciently small h and large N � Consequently� the dynamics is not changed
if the scheme is modi�ed outside a su�ciently large ball in V � say of radius r̂�
We can then achieve that the above error bounds hold globally on V � In the
light of Theorem A��� Rt∆ is thus a small Lipschitz perturbation of St� Hence�
for t = c/λm+1 with su�ciently small c� together with St also Rt∆ satis�es the
conditions of that theorem� This yields the existence of the inertial manifold
of the discretization�

The distance estimate between the inertial manifolds M and M∆ can
be based on Corollary A��� This requires to estimate Rt∆(u0) − S

t(u0) only
for u0 ∈ M� which is achieved via a study of the regularity of solutions



Dynamics Under Numerical Discretization ���

on M and using smooth�data �nite	time error bounds� Theorem ��� of ����
gives the following error bound� If the solution u(t) = St(u0) satis�es� with
d(t) = QNF (u(t)) = QN (du/dt+Au(t))�

‖u(k)(0)‖+

∫ T
0

‖u(k+1)(t)‖ dt ≤ µ ,

‖A−1d(0)‖+

∫ T
0

‖A−1d′(t)‖ dt ≤ δN ,

�where u(k) denotes the kth time derivative of u� and d′ the time derivative
of d�� then

‖Rt∆(u0)− S
t(u0)‖ ≤ C(µh

k + δN )

for 0 ≤ t ≤ T � Solutions on the inertial manifoldM∩B(r) can be continued
backward in time� and they stay inM∩B(r̂) at least for a time that is inverse
proportional to λm �recall that the equation and the scheme were modi�ed
outside r̂�� With a time t ∼ λ−1m � we can thus employ the time analyticity
and Gevrey regularity estimates to obtain

µ = O(λkm) , δN = O(e
−c
√
λN+1/λm)

uniformly for u0 ∈ M∩B(r)� Corollary A�� then yields the desired high	order
distance bound�

��� Related Results

The existence of inertial manifolds for spectral discretizations in space was
studied by Foia"� Sell and Temam ���� and Jones and Stuart ����� The distance
estimate of Theorem ��� of ����� in a framework which corresponds to the case

α = 1/2� is O(λ
−1/4
N+1 )� The bound of ���� isO(λα−1N+1)� which corresponds to the

nonsmooth	data �nite	time error bound� �The dependence onm is considered
explicitly in these papers� but is not reproduced here��

The �rst results on the existence of inertial manifolds of time discretiza	
tions were given by Demengel and Ghidaglia ����� Full discretizations were
subsequently studied by Jones and Stuart ����� Those authors consider lin	
early implicit Euler and fractional step time discretizations and obtain dis	
tance estimates of the low order of nonsmooth	data error bounds� Shardlow
���� studies multistep time discretizations and also obtains low	order distance
estimates of an order not exceeding ��

Lord ���� establishes discrete Gevrey regularity for �nite di
erence meth	
ods for the complex Ginzburg	Landau equation and uses it to study approx	
imation of the inertial manifold�
C1	approximation of inertial manifolds has been studied by Jones� Stuart

and Titi �����
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� Attractors of Damped Wave Equations

For a specially constructed time discretization combined with a spectral
Galerkin space discretization of a dissipative wave equation� we show the
existence of an attractor of the discretization which lies close to that of the
partial di
erential equation� The result relies on a nonsmooth	data �nite	time
error bound� which is not available for usual time discretizations�

��� Analytical Framework

We consider the abstract damped wave equation

d2u

dt2
+ α
du

dt
+Au = g(u) ����

with a positive damping parameter α > 0� The linear operator A is assumed
to be a self	adjoint� densely de�ned operator on a Hilbert space H� with a
compact inverse and eigenvalues 0 < λ1 ≤ λ2 ≤ . . .� We let V = D(A1/2)
and set X = V × H� The norm on X is denoted by ‖ · ‖� viz� ‖(u, v)‖2 =
|A1/2u|2 + |v|2� where | · | is the norm on H�

For the nonlinearity we assume that for some γ > 0�

g : V → D(Aγ/2)

g : D(A(1−γ)/2)→ H
are continuously Fr!chet di
erentiable�

and that it permits unique solutions St(u0, v0) = (u(t), du/dt(t)) of ���� in
X for all times t and initial values (u0, v0) ∈ X �

We further assume that ���� has a �global� attractor� that is� a compact
set A ⊂ X which is invariant under the �ow� viz� St(A) = A for all t� and
which attracts bounded sets in X � The latter means that for every bounded
set B in X and for every ε > 0� there is a t0 �which depends on ε and B��
such that St(B) is in an ε	neighbourhood of A for t ≥ t0�

We refer to Temam ���� Ch� IV� for conditions which ensure the existence
of an attractor� and for concrete examples of damped wave equations having
an attractor�

��� Numerical Method

The choice of time discretization requires more care than in the preceding
sections� In contrast to the parabolic case� standard numerical integration
schemes for ���� do not admit convergent nonsmooth	data error bounds�
which are needed here� Instead we consider a time	stepping method in the
spirit of �������� To motivate the method� we start from the variation	of	
constants formula(

A1/2u(t+ h)
v(t+ h)

)
= E(hA1/2)

(
A1/2u(t)
v(t)

)
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+ h

∫ 1
0

E((1− θ)hA1/2)

(
0

−αv(t+ θh) + g(u(t+ θh))

)
dθ ,

where v = du/dt and

E(ξ) =

(
cos ξ sin ξ
− sin ξ cos ξ

)
.

Expressing the term v(t + θh) under the integral once more by the same
formula and dropping terms of formal order O(h2) leads to the following
method� (

A1/2un+1
vn+1

)
=
(
E(hA1/2)− hαΦ(hA1/2)

)(
A1/2un
vn

)

+ hΨ(hA1/2)

(
0
g(un)

)

with

Φ(ξ) =

∫ 1
0

E((1− θ)ξ)

(
0 0
0 1

)
E(θξ) dθ

Ψ(ξ) =

∫ 1
0

E((1− θ)ξ) dθ .

The integrals can be evaluated analytically� They are such that the entries
of the transformed matrices D(ξ)−1(Φ(ξ), Ψ(ξ))D(ξ) with D(ξ) = diag(ξ, 1)
are entire functions of ξ2�

As space discretization we take a standard spectral Galerkin method�
With PN denoting the orthogonal projection on the spaceHN �or VN � spanned
by the �rst N eigenfunctions� and with AN the restriction of A to HN � this
space discretization is obtained by replacing A by AN and g by PNg in the
above formula�

The numerical solution starting from (u0, v0) ∈ XN = VN×HN is denoted
by Rt∆(u0, v0) = (un, vn) at t = nh� where again ∆ symbolizes the pair (N,h)
of discretization parameters�

Remark� The above method is just a particular example of a class of
methods that are exact solvers for d2u/dt2+Au = 0� It is a �rst	order method
when applied to initial value problems ���� that admit a smooth solution� A
second	order method could be constructed along similar lines�

Remark� Even in cases where an eigendecomposition of the matrix arising
from the space discretization is computationally not feasible� as in �nite ele	
ment methods� the method can be e�ciently implemented using superlinearly
convergent Krylov subspace approximations of matrix function times vector
products� cf� �����
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��� Statement of the Result

Theorem �� If the discretization is su�ciently �ne� it has a �local� attractor
A∆� The semi�distance to the attractor A converges to 0 as h→ 0� N →∞�
More precisely� for every ε > 0 and every bounded set B in X� there exist
positive h0� N0� t0 such that

dist(Rt∆(u0, v0),A) < ε for t > t0

whenever (u0, v0) ∈ B ∩XN and N > N0� h < h0�

��� Discussion and Related Results

Theorem � is apparently the �rst result on the dynamics of a fully discretized
dissipative wave equation� An analogue of Theorem � for spectral Galerkin
semi	discretization in space was obtained already by Hale� Lin and Raugel
����� However� the derivation of a corresponding result for time discretizations
was hampered by the fact that standard time discretization methods admit
no convergent error bounds where the error is measured in the same norm in
which bounds for the initial data are speci�ed� Such a nonsmooth�data error
bound does exist for the numerical method of Section ����

For every ρ > 0 and T > 0� there exists C such that

‖Rt∆(u0, v0)− S
t(u0, v0)‖ ≤ C

(
hγ + λ−γN+1

)
for all (u0, v0) ∈ XN with ‖(u0, v0)‖ ≤ ρ and for 0 ≤ t = nh ≤ T �

This is proved below� With this error bound� the distance estimate of The	
orem � then follows by an argument given by Larsson ����� Let ε > 0 and
let B be a bounded set in X � of which we may assume that it contains the
ε	neighbourhood of A� We choose T such that

dist(St(B),A) := sup
x∈B
dist(St(x),A) < 1

2ε for t ≥ 1
2T .

If the discretization is su�ciently �ne� the above error bound yields for BN =
B ∩XN

dist(Rt∆(BN ),A) < ε for 1
2T ≤ t ≤ T ,

and in particular� Rt∆(BN ) ⊂ BN for such t� Hence� the bound must hold for
all t ≥ 1

2T � This proves the distance estimate of Theorem �� The existence
of an attractor A∆ of the discretization then follows from the discrete	time
version of Theorem I���� in �����

Like other results in the spirit of ����� such as ������������� on parabolic
problems� Theorem � gives no estimate for the distance between A∆ and A�
nor for the dimension of A∆� and no information about the discrete �ow
on A∆� It also does not ensure that A∆ lies close to every point on the
attractor A� The latter has been shown for gradient �ows by Hale and Raugel
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����� but is not true in general� Hill and S#li ���� study set convergence A∆ →
A0� where A0 is a compact invariant subset of A� The shadowing results cited
in Section ��� relate the dynamics on the discrete attractor to those of the
partial di
erential equation in situations where the attractor is a hyperbolic
invariant set or where the system has Morse	Smale structure�

��� Proof of the Nonsmooth�Data Error Bound

By the variation	of	constants formula� the solution (u(t), v(t)) = St(u0, v0)
satis�es(

A1/2u(t+ h)
v(t+ h)

)
=
(
E(hA1/2)− hαΦ(hA1/2)

)(
A1/2u(t)
v(t)

)

+ hΨ(hA1/2)

(
0

g(u(t))

)
+ d(t)

with the defect

d(t) = h

∫ 1
0

E((1− θ)hA1/2)

(
0

g(u(t+ θh))− g(u(t))

)
dθ +O(h2) .

By our assumption on g we have

|g(u(t+ θh))− g(u(t))| ≤ L|A(1−γ)/2(u(t+ θh)− u(t))| = O(hγ) ,

where the last estimate follows again from the variation	of	constants formula
of Section ���� Hence� |d(t)| = O(h1+γ)� By a standard stability estimate� this
yields the error bound for the semi	discretization in time�

‖Rth(u0, v0)− S
t(u0, v0)‖ ≤ C h

γ ,

uniformly for ‖(u0, v0)‖ ≤ ρ and 0 ≤ t ≤ T � The di
erence between the
semi	discrete and the fully discrete numerical solution is estimated similarly�
using

|(I − PN )g(u)| = O(λ
−γ
N+1) .

This yields
‖Rt∆(u0, v0)−R

t
h(u0, v0)‖ ≤ C λ

−γ
N+1

uniformly for ‖(u0, v0)‖ ≤ ρ and 0 ≤ t ≤ T � and the desired error bound
follows�

A Attractive Invariant Manifolds

Attractive invariant manifold theorems can be traced back to Hadamard
a hundred years ago� and their usefulness has been rediscovered and re	
established ever since� Here we give a version due to Kirchgraber� Lasagni�
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Nipp� and Sto
er ����� which is particularly useful in applications because of
its explicit handling of constants� A proof is contained in the report �����

Consider a map Φ : A×B → A×B de�ned on the Cartesian product of
a Banach space A and a closed bounded subset B of another Banach space�
We write Φ(α, β) = (α̂, β̂) with

α̂ = α+ F (α, β)

β̂ = G(α, β) .

We assume that F and G are Lipschitz bounded� with Lipschitz constants
Lαα� Lαβ and Lβα� Lββ with respect to α� β� If these Lipschitz constants are
su�ciently small� then the map Φ has an attractive invariant manifold� More
precisely� the following holds�

Theorem A��� ������� If Lαα + Lββ + 2
√
LαβLβα < 1� then there is a

function s : A → B� Lipschitz bounded by � < 2Lβα/(1 − Lαα − Lββ)� such
that

M = {(α, s(α)) : α ∈ A}

is invariant under Φ� M attracts orbits of Φ with rate r = �Lαβ + Lββ < 1�

i�e�� the inequality ‖β̂ − s(α̂)‖ ≤ r ‖β − s(α)‖ holds for all (α, β) ∈ A×B�

Remark� If A = R� and if F � G are periodic in α with period ω� then s is
again ω	periodic�

Corollary A��� Consider maps Φ� Φ̃ : A × B → A × B� Assume Φ� Φ̃
satisfy the conditions of Theorem A�� with the same Lipschitz constants
Lαα, Lαβ, Lβα, Lββ� Let s and s̃ be the functions de�ning the attractive in�

variant manifolds M and M̃� respectively� If the bound

‖Φ̃(α, β)− Φ(α, β)‖ ≤ δ for all (α, β) ∈M

holds in the norm ‖(α, β)‖ = � ‖α‖+ ‖β‖ on A×B� then

‖s̃(α) − s(α)‖ ≤
δ

1− r
for all α ∈ A .

For our applications of this result it is essential that a bound of Φ̃ − Φ is
needed only on the invariant manifoldM� not on all of A×B �as is required
in the formulation of ������ The result as stated follows by tracing the proof
in ����� or with the alternative proof in �����
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