Preface

This book summarizes and highlights progress in our understanding of Dy-
namical Systems during six years of the German Priority Research Program
“Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems”.
The program was funded by the Deutsche Forschungsgemeinschaft (DFG)
and aimed at combining, focussing, and enhancing research efforts of active
groups in the field by cooperation on a federal level. The surveys in the book
are addressed to experts and non-experts in the mathematical community
alike. In addition they intend to convey the significance of the results for
applications far into the neighboring disciplines of Science.

Three fundamental topics in Dynamical Systems are at the core of our
research effort:

— behavior for large time
— dimension
— measure, and chaos

Each of these topics is, of course, a highly complex problem area in itself
and does not fit naturally into the deplorably traditional confines of any
of the disciplines of ergodic theory, analysis, or numerical analysis alone.
The necessity of mathematical cooperation between these three disciplines is
quite obvious when facing the formidable task of establishing a bidirectional
transfer which bridges the gap between deep, detailed theoretical insight and
relevant, specific applications. Both analysis and numerical analysis play a key
role when it comes to building that bridge. Some steps of our joint bridging
efforts are collected in this volume.

Neither our approach nor the presentations in this volume are monolithic.
Rather, like composite materials, the contributions are gaining strength and
versatility through the broad variety of interwoven concepts and mathemat-
ical methodologies which they span.

Fundamental concepts which are present in this volume include bifurca-
tion, homoclinicity, invariant sets and attractors, both in the autonomous
and nonautonomous situation. These concepts, at first sight, seem to mostly
address large time behavior, most amenable to methodologies of analysis.
Their intimate relation to concepts like (nonstrict) hyperbolicity, ergodicity,
entropy, stochasticity and control should become quite apparent, however,
when browsing through this volume.

The fundamental topic of dimension is similarly ubiquitous throughout
our articles. In analysis it figures, for example, as a rigorous reduction from
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infinite-dimensional settings like partial differential equations, to simpler infi-
nite-, finite- or even low-dimensional model equations, still bearing full rel-
evance to the original equations. But in numerical analysis — including and
transcending mere discretization — specific computational realization of such
reductions still poses challenges which are addressed here.

Another source of inspiration comes from very refined measure-theoretic
and dimensional concepts of ergodic theory which found their way into algo-
rithmic realizations presented here.

By no means do these few hints exhaust the conceptual span of the arti-
cles. It would be even more demanding to discuss the rich circle of methods, by
which the three fundamental topics of large time behavior, dimension, and
measure are tackled. In addition to SBR-measures, Perron-Frobenius type
transfer operators, Markov decompositions, Pesin theory, entropy, and Os-
eledets theorems, we address kneading invariants, fractal geometry and self-
similarity, complex analytic structure, the links between billiards and spectral
theory, Lyapunov exponents, and dimension estimates. Including Lyapunov-
Schmidt and center manifold reductions together with their Shilnikov and Lin
variants and their efficient numerical realizations, symmetry and orbit space
reductions together with closely related averaging methods, we may continue,
numerically, with invariant subspaces, Godunov type discretization schemes
for conservation laws with source terms, (compressed) visualization of com-
plicated and complex patterns of dynamics, and present an algorithm, GAIO,
which enables us to approximately compute, in low dimensions, objects like
SBR-measures and Perron-Frobenius type transfer operators. At which point
our cursory excursion through methodologies employed here closes up the
circle.

So much for the mathematical aspects. The range of applied issues, mostly
from physics but including some topics from the life sciences, can also be sum-
marized at most superficially, at this point. This range comprises such diverse
areas as crystallization and dendrite growth, the dynamo effect, and efficient
simulation of biomolecules. Fluid dynamics and reacting flows are addressed,
including the much studied contexts of Rayleigh-Bénard and Taylor-Couette
systems as well as the stability question of three-dimensional surface waves.
The Ginzburg-Landau and Swift-Hohenberg equations appear, for example,
as do mechanical problems involving friction, population biology, the spread
of infectious diseases, and quantum chaos. It is the diversity of these applied
fields which well reflects both the diversity and the power of the underlying
mathematical approach. Only composite materials enable a bridge to span
that far.

The broad scope of our program has manifested itself in many meetings,
conferences, and workshops. Suffice it to mention the workshop on “Entropy”
which was coorganized by Andreas Greven, Gerhard Keller, and Gerald War-
necke at Dresden in June 2000, jointly with the two neighboring DFG Priority
Research Programs “Analysis and Numerics for Conservation Laws” and “In-
teracting Stochastic Systems of High Complexity”. For further information
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concerning program and participants of the DFG Priority Research Program
“Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems”,
including a preprint server, see

— www.math.fu-berlin.de/~ danse/
For other DFG programs we refer to

— www.dfg.de
— www.dfg.de/aufgaben/Schwerpunktprogramme.html

At the end of this preface, I would like to thank at least some of the many
friends and colleagues who have helped on so many occasions to make this
program work. First of all, I would like to mention the members of the scien-
tific committee who have helped initiate the entire program and who have ac-
companied and shaped the scientific program throughout its funding period:
Ludwig Arnold, Hans-Giinther Bothe, Peter Deuflhard, Klaus Kirchgéssner,
and Stefan Miiller. The precarious conflict between great expectations and
finite funding was expertly balanced by our all-understanding referees Hans
Wilhelm Alt, Jirgen Géartner, Francois Ledrappier, Wilhelm Niethammer, Al-
brecht Pietsch, Gerhard Wanner, Harry Yserentant, Eberhard Zeidler, and
Eduard Zehnder. The hardships of finite funding as well as any remaining
administrative constraints were further alleviated as much as possible, and
beyond, by Robert Paul Koénigs and Bernhard Nunner, representing DFG
at its best. The www-services were designed, constantly expanded and im-
proved with unrivalled expertise and independence by Stefan Liebscher. And
Regina Lohr, as an aside to her numerous other secretarial activities and with
ever-lasting patience and friendliness, efficiently reduced the administrative
burden of the coordinator to occasional emails which consisted of no more
than “OK. BF”. Martin Peters and his team at Springer-Verlag ensured a
very smooth cooperation, including efficient assistance with all TgXnicalities.
But last, and above all, my thanks as a coordinator of this program go to
the authors of this volume and to all participants — principal investigators,
PostDocs and students alike — who have realized this program with their
contributions, their knowledge, their dedication, and their imagination.

Berlin, Bernold Fiedler
September 2000
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Abstract. This article reviews recent results on long-time behaviour, invariant sets
and bifurcations of evolution equations under discretization by numerical methods.
The emphasis is on time discretization. Finite-time error bounds of low order for
non-smooth data, of high order for smooth data, and attractive invariant manifolds
are tools that pervade large parts of the article. To illustrate the mechanisms, the
following combinations of dynamics/equations have been selected for a detailed dis-
cussion:

1. Shadowing near hyperbolic equilibria of singularly perturbed ODEs
Hyperbolic periodic orbits of delay differential equations
Hopf bifurcation of semilinear parabolic equations
Inertial manifolds of semilinear parabolic equations
Attractors of damped wave equations.

Gk N

Introduction

This article was written under the premise that it should

(a) survey the subject area,
(b) review work by the author in the DANSE project,
(c) give one or the other new result.

These goals are not necessarily compatible. Clearly, (b) inflicts a strong bias
on (a). With (a) and/or (b) achieved, (c) can only be rudimentary within the
assigned pages. This caveat notwithstanding, may the reader find this article
useful!

What are the mechanisms that make a numerical discretization capture
the long-time dynamics of the differential equation? How good can the ap-
proximation be? These are the questions underlying the present article. An-
swers are different for different classes of equations:

(i) ordinary differential equations for which the Jacobian of the right-hand

side has a bound that is much smaller than the inverse of the step size
needed to approximate solutions over some finite time (“nonstiff” ODEs);

* Project: Large Time Behavior of Numerical Methods for Parabolic Partial Dif-
ferential Equations (Christian Lubich)
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(ii) evolution equations for which the linearization involves unbounded oper-
ators or operators of arbitrarily large norm, e.g., partial differential equa-
tions, singularly perturbed ODEs, and (less obviously) delay differential
equations.

The present paper is concerned with class (ii). Reference to the more de-
veloped subject of dynamics of discretized nonstiff ODEs is made only for
a comparison of the arguments. A further distinction needs to be made be-
tween “dissipative” and “conservative” problems, e.g., damped wave equations
versus Hamiltonian wave equations. The dynamic properties considered here
will be for the “dissipative” type.

Inhomogeneous and far-spread as the class of equations is, it nevertheless
turns out that there are a few tools which go a long way with many different
evolution equations and dynamic phenomena. Of these tools, I would like to
single out the roles played by low-order nonsmooth-data error bounds and
high-order smooth-data error bounds over finite times, and the reduction
of the dynamics to the nonstiff case via attractive invariant manifolds. It
is a strange fact that two of the papers that have influenced me most in
this area, have never been published: Larsson’s report [35] which highlights
the importance of error bounds for general initial data that do not admit a
smooth solution; and Nipp and Stoffer’s report [47] on an extremely useful
version of an invariant manifold theorem. That theorem is recapitulated in
Appendix A.

The sampling in the three-dimensional lattice of Dynamics x Equations
x Numerical Methods, as listed in the abstract, has been guided by the ob-
jective of showing relationships as well as differences among a wide variety
of problems, and admittedly by (b) above. Section 5 was chosen to comply
with (c). Each section presents the analytical framework and the numeri-
cal method, and states just one theorem. The result and its background are
explained, and related results are indicated. The sections can be read inde-
pendently, but they share common ground.

Stuart [55] gives a good survey of the field as of ~1995. That article
concerns sectorial evolution equations, which is where most of the work has
been done. Stuart and Humphries [56] is a basic reference on the dynamics
of nonstiff ODE discretizations, Hairer, Ngrsett and Wanner [19,20] on time
discretization methods.

1 Shadowing Near Hyperbolic Equilibria of Singularly
Perturbed Ordinary Differential Equations

Following [41], we consider numerical solutions to singularly perturbed differ-
ential equations in the neighbourhood of a saddle point. We apply an implicit
Runge-Kutta method with a step size larger than the small perturbation pa-
rameter. The main result is a shadowing property: After an initial transient,
the numerical solution in a neighbourhood of the hyperbolic stationary point



Dynamics Under Numerical Discretization 471

remains for all times close to some exact solution of the differential equa-
tion. Conversely, after the elapse of a short time also every exact solution in
the neighbourhood remains close to some numerical solution. In both cases,
the approximation takes place with the order of approximation of smooth
solutions on finite intervals. We will see that the main difficulty, as com-
pared to the analogous problem for nonstiff ordinary differential equations,
is that finite-time errors are not uniformly small for arbitrary initial data in
an open set. This difficulty, which we will again encounter with all the other
classes of evolution equations considered in this article, is here overcome by
using strongly attractive invariant manifolds for both the continuous and the
discrete problem.

1.1 Analytical Framework

We consider the singularly perturbed problem

d
d_:ll{ = f(yvz)
i (1)
had 1
e 9(y,2) , 0<ex1,

in the neighbourhood of a stationary point at the origin. The functions f and
g are arbitrarily differentiable. With subscripts denoting partial derivatives,
we assume the following.

All eigenvalues of g,(0,0) have negative real part. (2)

(fy — f-959,)(0,0) has no eigenvalues on the imaginary axis.  (3)

The first condition is familiar in the theory of singularly perturbed problems
and yields the uniform well-posedness of the system as € — 0; see, e.g., [50].
The second assumption is equivalent to stating that for small € the fixed point
of (1) is hyperbolic, that is, the Jacobian of the system (1) at the stationary
point has no eigenvalues on the imaginary axis.

1.2 Numerical Method

We consider an implicit Runge-Kutta method applied to (1) with step size
h>e:

Yn+1 = Yn +thJ'Y’r;j y  An+l = Zn —i—thjZ;lj s

Jj=1 Jj=1

with internal stages (i = 1,...,m)

m m
Vi =yn+hY_ayYy;,, Zni=zan+h) a2,

j=1 j=1



472 Christian Lubich

satisfying relations of the form of (1):

Yo = f(Yais Zni)
eZy; = 9(Yni, Zni) -

The method is determined by its coefficents a;; and b;.
We assume that the Runge-Kutta method is strongly A-stable, that is, the
stability function
R(w) =14 wb" (I —w@)~'1,

(where b7 = (b1, ..., bm), @ = (ai;)7%—y, 1= (1,...,1)T) satisfies
|R(w)] <1 for Rew <0,

all eigenvalues of the Runge-Kutta matrix @ = (aij);?szl have positive real
part, and R(00) = 1 — b7 Q11 satisfies

|R(c0)| < 1.

We require the following approximation properties: the method has classical
order p, that is, the error of the method applied to nonstiff ordinary dif-
ferential equations is O(h?) on bounded time intervals. The approximation
properties for the singularly perturbed problem (1) depend in addition on
the stage order q, which is determined by the condition

k
Zaijc’“l = % for k=1,...,q andalli. (4)

Here ¢; is defined by (4) with k£ = 1.

A well-known and widely used class of Runge-Kutta methods satisfying
the above assumptions are the Radau ITA methods [20], which for each stage
number m > 1 have p = 2m — 1, ¢ = m, and satisfy a,,; =b; (j =1,...,m),
which in particular implies R(c0) = 0.

1.3 Statement of the Result

Theorem 1. [41] Under the above assumptions, there are positive constants
r and hg such that the following holds for 0 < e < h < hg.

(A) For every Runge-Kutta solution with ||(yn,zn)|| <7 for 0 <n < N,
there ezists a solution (y(t),z(t)) of (1) for 0 <t < T = Nh, such that for
0<n<N

lyn — y(nh)|| < C - (h? 4 chT™ 4 ep™)

_ C-(h?+eh?+p") ifamj=0>b; forj=1,...,m,
oo - sl < { & (it 2P0 o
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Here p < 1 and C depend only on f, g, r and hy, and in particular are
independent of €, h, and N. Moreover, for ¢ < h we have p = |R(c0)| +
O(e/h).

(B) Conversely, for every solution of (1) with ||(y(t),z(¢))|| < 7 for 0 <
t < T = Nh, there exists a Runge-Kutta solution (yn,zn), 0 < n < N,
such that the difference to (y(nh),z(nh)) satisfies the above bounds with p =
e="h/e with C and k > 0 independent of €, h, and N.

1.4 Discussion and Comparison with the Nonstiff ODE Case

Theorem 1 is an analogue of a shadowing result of Beyn [4] for numerical
solutions near a hyperbolic stationary point of the ordinary differential equa-
tion i

x

=), )
where sufficiently many derivatives of the nonlinearity f are assumed to be
bounded. The following is shown in [4, Theorem 3.1] for pth order methods
applied with step size h:

For every numerical solution (z,), 0 < n < N, which stays in a suf-
ficiently small neighborhood U of the stationary point, there is a solution
z(t) of (5) satisfying ||z, — x(nh)|| < ChP. Conversely, for every solution
z(t) in U,0 < ¢t < T = Nh, there is a Runge-Kutta solution (z,) with
|z — x(nh)|| < ChP. The constant C is independent of h and N.

Asin Theorem 1, it is essential that the estimates remain uniform on time
intervals that can become arbitrarily large. We review briefly the considera-
tions that lead to Beyn’s result.

Let R" denote the Runge-Kutta map, so that R"(z) is the result of one
step of the method applied with step size h, starting from the point z. A
numerical solution sequence (z,,) thus satisfies

Tptl = Rh(:cn) .

Further, let S* denote the flow map of the differential equation (5) over time
h, so that for a solution z(t) of (5) we have

z(t+h) = S"(z(t)) .
The local error R"(z) — S"(z) then satisfies

ORM oSh
e @)~ 5

uniformly for x in an arbitrary compact set.

R"(z) — S"(z) = O(hP*1) x) = O(h"*1)

(6)

The first estimate is obtained by comparing the Taylor expansions of the
exact and the numerical solution, the second estimate follows by interpreting
the two error expressions combined as the local error of the Runge-Kutta
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method applied to the system composed of (5) and its variational equation
dv/dt = 0f [Ox(x)v.

By the variation-of-constants formula, a sequence of exact solution values
Zn, = z(nh) satisfies a recurrence relation

En+1 = ehAin + h¢(§n) ) (7)

where A is the Jacobian of (5) at the stationary point z* = 0, and where ¢
is an h-dependent function with ¢(0) = 0 and Lipschitz constant of size O(r)
in an r-neighbourhood B(r) of the stationary point. Similarly, by (6), every
numerical solution sequence satisfies a recursion of the form

Tn+1 = ehAl'n + h¢(xn) ) (8)
where 1 has a Lipschitz constant of size O(r) + O(h*) in B(r), and
Y(z) — ¢(x) = O(hP) uniformly in B(r).

By the assumption of hyperbolicity, A has the form (up to a similarity trans-

form) 4
-0
=0 %)
0 At

where all eigenvalues of A~ have negative real part and those of AT have
positive real part. We now apply the discrete variation-of-constants formula
to the stable components in (7) and (8) in the forward direction, and to the
unstable components in the backward direction:

n—1
x, =exp(nhA )zy +h Z exp((n —j — 1)hRA Y™ (x;) ,
7=0
N-1
z = exp((n — N)hAT)z, — h Z exp((n —j — )hAT )Y (z;) .
j=n

As the Lipschitz constants of ¢ and ¥ can be made arbitrarily small by reduc-
ing the radius r of the neighbourhood, the Banach contraction principle yields
the following: Let (z,,) be a solution of (8) with ||z,|| <r (n=0,...,N). If
r is sufficiently small, there is a unique solution of (7) with boundary values
Ty =1y, Th = 2. This solution satisfies

Ty, — Ty, = O(KP) uniformly forn=0,...,N .

Evidently, the same holds with the roles of x, and Z, interchanged. This
yields Beyn’s shadowing result as stated above. We emphasize that this con-
struction depends crucially on the uniform approximation estimate (6).

Let us now return to the singularly perturbed problem (1) and its Runge-
Kutta discretization. Here we face the difficulty that an approximation esti-
mate (6) does not hold when € < h. Since general solutions of (1) undergo
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rapid initial changes, the best possible local error estimate valid in a neigh-
bourhood of the stationary point is only R"(z) — S"(z) = O(1)!

More favourable error bounds exist only for initial values (yo, z9) which
are such that the corresponding solution (y(t), z(¢)) of (1) is “smooth” in the
sense that arbitrarily many derivatives are bounded independently of €. For
such initial data, the following sharp finite-time error bounds were shown
in [18] to hold for numerical solutions obtained by strongly A-stable Runge-
Kutta methods of classical order p and stage order g:

lyn — y(nh)|| < C (hP + ehdtt)

C (P +ehd) ifapm; =b;for j=1,...,m,
Hzn—z(nh)Hg{C}EqH‘H? ) 181;;] ; for j m

The constants depend on bounds for the derivatives of the solution and on
the length T of the time interval, but are independent of €, h and n with
nh < T. We note that these orders of approximation are the same as stated
in Theorem 1.

The way to circumvent the missing uniformity in the error bounds, is to
make use of attractive invariant manifolds. As is known from the geometric
theory of singular perturbation problems [14], [46], there is a manifold M, =
{(y,2) : z=s:(y)} (locally near the stationary point, which itself is on M.),
such that solutions of (1) starting on M, remain on M. and are smooth in the
above sense. Also the function s. defining the manifold has arbitrarily many
derivatives bounded independently of . An arbitrary solution (y(t), z(t)) of
(1) near (0,0) rapidly approaches a solution on M,.: There is a solution
(y(t),z(t)) on M, such that

ly(6) =GOl + - [l2(8) = Zt)]| < Cee™™/*, 0<t<T,

with some constants C' and k > 0 which do not depend on € and T' (“property
of asymptotic phase”). If (y(t), z(t)) = (y(t), sc(y(¢))) is a solution of (1) on
M, then y(t) is a solution of the differential equation with smooth right-hand

side
dy

at = f(y» sa(y)) ) 9)

which has y = 0 as a stationary point. There, the Jacobian is of the form
(fy — f-9-194)(0,0) + O(¢). By condition (3), this matrix has no eigenvalues
on the imaginary axis for small €.

Not only the continuous system (1), but also its Runge-Kutta discretiza-
tion admits an invariant manifold. A combination of results and techniques
of [47] and [18] yields the following result; cf. Nipp and Stoffer [48].

For 0 < e < h < hy, there is a local attractive invariant manifold M. p, =
{(y,2)| z = se,n(y)} for the Runge-Kutta discretization. M. p, is close to M. :

Ceh? if b; =ag; foralli,
Isents) = se()l < { G T2
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There is a property of asymptotic phase: for every (yo,zo) in an h- and e-
independent open set that contains M.y, there exists (Yo,z0) € M. such
that the corresponding Runge-Kutta solutions satisfy

Hyn_gn”+5Hzn_znngof‘:pna 0<n<N,

where p < 1 and C do not depend on €, h, and N. For ¢ < h we have
p = |R(0)| + O(e/h).

With these results at hand, the construction of the shadowing solution
in [41] proceeds in several steps. Starting from a given Runge-Kutta solution
(Yn, zn), 0 < n < N, of (1) staying in an r-neighborhood of (0,0), with r suf-
ficiently small (but independent of €), a solution (y(t), z(¢)) of (1) shadowing
the numerical solution is constructed as follows.

1. Take the Runge-Kutta solution (yn,z,) on M, ; with the same asymp-
totic phase, so that y, — gn = O(ep™) for 0 <n < N.

2. Construct a Runge-Kutta solution (7,) of (9) shadowing (¥, ):
Un — Mn = O(ehd™1) for 0 < n < N.

3. Apply Beyn’s result to (9) to obtain a shadowing solution y(t) with 7, —
y(nh) = O(hP) for 0 <n < N. Take z(t) = s.(y(t)).

This yields part (A) of Theorem 1. For part (B), one proceeds similarly from
a given solution (y(t),z(t)), 0 <t <T = Nh, of (1).

1’. Take the solution (¥(¢),z(t)) on M. with the same asymptotic phase, so
that y(t) — y(t) = O(ce="*/¢) for 0 < t < T.

2’. Apply the converse direction of Beyn’s result to (9) to obtain a Runge-
Kutta solution () of (9) shadowing (y(nh)): y(nh) — n, = O(hP) for
0<n<N.

3’. Construct a Runge-Kutta solution (yn,z,) of (1) on M, shadowing
(Mns 8e(Mn)): M — Yn = O(ehT) for 0 < n < N, and 2, = ¢ 1 (Yn)-

Steps 2 and 3’ are the technically demanding steps in these constructions;
see [41] for the details.

1.5 Related Results

In the nonstiff ODE case, Beyn [4] further shows that the local stable and un-
stable manifolds near the hyperbolic stationary point are approximated with
the order of the method. For the Runge-Kutta discretization of the singularly
perturbed problem (1), the techniques of [41,47] yield also that there are local
stable and unstable submanifolds of the attractive invariant manifold M, p,
of the discretization which approximate the stable and unstable manifolds of
the reduced equation (9), again with the order of the finite-time smooth-data
error bounds.

The results of [41] permit to relate the dynamics of Runge-Kutta dis-
cretizations of the singularly perturbed problem (1) to those of the discretiza-
tion of the nonstiff differential equation (9). This reduction makes it possible
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to transfer many of the known results on the long-time behaviour of dis-
cretizations of nonstiff ODEs to singularly perturbed problems — at least
as long as trajectories stay away from regions where some eigenvalue of g,
has non-negative real part. This restriction excludes, for example, relaxation
oscillations.

For BDF-like multistep methods applied to singularly perturbed prob-
lems, optimal-order finite-time smooth-data error bounds were derived in
[40,49], and their attractive invariant manifolds were studied by Nipp and
Stoffer [49]. A combination of [49] and [41] extends Theorem 1 to multistep
discretizations.

There is a rich literature on “numerical shadowing”, mainly for nonstiff
ordinary differential equations. (Zentralblatt lists over 40 articles, e.g., by
Chow, Coomes/Kogak/Palmer, Corless, Eirola, Hadeler, Kloeden, Pilyugin,
Sauer/Yorke, Van Vleck.) Less has been done for stiff differential equations
or partial differential equations, and apparently nothing for delay differential
equations.

Alouges and Debussche [1] extend Beyn’s shadowing result near hyper-
bolic equilibria to implicit Euler time discretizations of semilinear parabolic
problems, Larsson and Sanz-Serna [37,38] to finite element space discretiza-
tions and full discretizations. Ostermann and Palencia [51] derive a shadowing
result for an implicit Euler time discretization of non-autonomous parabolic
problems.

The shadowing lemma of Chow, Lin and Palmer [9] combined with non-
smooth-data error bounds for finite element and Runge-Kutta discretizations
of semilinear parabolic equations [35,43] yields numerical shadowing near
general hyperbolic invariant sets of such equations.

Larsson and Pilyugin [36] investigate numerical shadowing near the at-
tractor for finite element/implicit Euler discretizations of reaction-diffusion
equations in one space dimension, using a reduction to known finite-dimens-
ional results on Morse-Smale systems via inertial manifolds. It is shown that
every numerical trajectory shadows some exact solution of the problem after
the elapse of a finite time.

Long-time error bounds of numerical discretizations of semilinear parab-
olic problems near asymptotically stable stationary points were obtained ear-
lier [25,34,53].

2 Hyperbolic Periodic Orbits
of Delay Differential Equations

Following [29], we study the persistence of stable hyperbolic periodic orbits
of delay differential equations under numerical discretization. We show the
existence of attractive closed curves for Runge-Kutta discretizations, which
approximate the periodic orbit with the full order of the method. The proof
requires an infinite-dimensional analytical/numerical framework and com-
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bines finite-time error bounds for both smooth and non-smooth data with an
invariant manifold theorem.

2.1 Analytical Framework

We consider a delay differential equation with fixed delay 7 > 0,
dz
) = f(a(t), 2t - 7)) (10)

where f is bounded and sufficiently often differentiable with bounded deriva-
tives. With d denoting the dimension of the system (10), we let

¢ =C([-,0],R%)

be the Banach space of R%-valued continuous functions on [—7, 0] equipped
with the maximum norm, which we denote by ||-||. For a given initial function
z° € C, Eq. (10) has a unique solution z : [~7, 00) — R%. For t > 0, we define

i eC via z'(0) =x(t+6) for 6€[-7,0].

To indicate the dependence of the solution section z! on the initial function
0

x’, we write
zt =84z .
This gives a semigroup on C. Further, S* : C — C is a Fréchet differentiable
map. We denote its derivative at 2° € C by DS*(z?).
We assume that (10) has a stable hyperbolic periodic orbit, that is, (10)
has a nonconstant periodic solution

7z:R - R? of period w>0,

and the derivative of the period map, DS“(z"), has 1 as a simple eigen-
value, whereas the remaining part of the spectrum of DS“(z°) is bounded in
modulus by a number strictly smaller than 1. Let

r={z":tcR}
denote the periodic orbit of (10) in C.

2.2 Numerical Method

We restrict our attention to step sizes h > 0 for which the delay 7 is an
integer multiple:

T=vh, with integer v .
A Runge-Kutta discretization of (10) reads as follows [19]: Given an initial
function z° € C, we define starting values (for i = 1,...,m)
Xpni = 2%(nh + c;h) | n=-v,...,—1

zo = z°(0)
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and set recursively for n =0,1,2,...

i=1

with internal stage relations (i =1,...,m)
m

Xni=xn + hzain;j
j=1

and
X,;” = f(XniaXn—u,i) .

The method is determined by the real coefficients a;;, bj, ¢; (¢, =1,...,m),
where ¢; € [0,1]. It is explicit if a;; = 0 for ¢ < j. We assume that the
Runge-Kutta method has classical order p.

For a formulation of the result on the persistence of the periodic orbit
under the discretization, we need to interpolate the discrete solution values
to functions in C. For t = nh with integer n > 0, we construct

R (2% =z} eC

by setting 29 = z° and defining !, () for —h < 6 < 0 by polynomial inter-
polation through @, Zy_1,...,Tn_p (With zx = 2°(kh) for negative k), and
we set recursively % (0) = x5 "( +h) for —7 <@ < —h, for t = h,2h, 3h,. ..

2.3 Statement of the Result

Theorem 2. [29] In the above situation, for any given L > 0, there are
positive constants r, ¢, C, Cy and hg such that the following holds for 0 <
h < hg. There is a closed curve I, C C which attracts numerical solutions at
an exponential rate,

dist(R! (x°),I,) < Ce ", t=nh>0,

whenever the initial function z° is in an r-neighbourhood of the periodic orbit,
viz. dist(z%, I") < r, and 2° has a Lipschitz constant not exceeding L. The

Hausdorff distance to the periodic orbit I' is bounded by

diStH(Fh,F) < CyhP .

2.4 Discussion and Comparison with the ODE Case

Theorem 2 is related to results by Braun and Hershenov [7], Beyn [6], and
Eirola [12] on invariant curves of numerical discretizations of (nonstift) smooth
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ordinary differential equations with a hyperbolic periodic orbit. Theorem 2
considers only the stable case, but similar to ODEs, the result could be ex-
tended to general hyperbolic periodic orbits. In the stable case, the result for
pth-order Runge-Kutta discretizations of smooth ordinary differential equa-
tions with sufficiently small step size h reads as follows.

There is a closed curve which is invariant under the numerical method and
O(hP) close to the stable hyperbolic orbit of the ordinary differential equation.
Locally, it attracts numerical solutions exponentially with an h-independent
rate.

We now indicate how this result for ordinary differential equations follows
directly from the attractive invariant manifold theorem of Kirchgraber, Nipp
and Stoffer [32,47] restated here in the appendix. Consider the differential
equation (5) and denote its flow by S*(zg) = z(t). Let the equation have the
periodic orbit Z(t) with period w. By definition, the orbit is stable hyperbolic
if the derivative of the period map, 85“(Z(0))/0z, has 1 as a simple eigen-
value, and all other eigenvalues are strictly smaller than 1 in modulus. We
now use normal coordinates, in terms of which every point in a neighbour-
hood of the periodic orbit is written as = T(a) + 3, where a € R is unique
up to integer multiples of the period w, and 3 is unique in the maximal in-
variant subspace of 95“(Z(«))/0x that does not contain the eigenvector to
the eigenvalue 1. Written in these coordinates, the flow map S? satisfies, for
sufficiently large ¢, the conditions of Theorem A.1 on a strip R x B, with
B a ball. The estimate (6) for the local error implies that, on finite time in-
tervals, there is a uniform error estimate between the Runge-Kutta solution
R} (z) = x,, at t = nh and the exact solution S*(z),

OR} as! )
(@) = (@) = O(h)

uniformly for x in an arbitrary compact set.

R} (z) — S'(z) = O(h?) , (11)

Hence, the Runge-Kutta map R}, is a small Lipschitz perturbation of the flow
map. R}, thus still satisfies the assumptions of Theorem A.1 for sufficiently
small h, and the existence of an attractive invariant closed curve of the nu-
merical discretization follows. Corollary A.2 provides the O(h?) bound for
the distance to the periodic orbit.

We return to the delay differential equation (10). As in the previous sec-
tion, a principal difficulty in extending the ODE result is that the uniform
error bounds (6) or (11) are no longer valid. For the above Runge-Kutta dis-
cretization, the following finite-time nonsmooth-data error bound is known
[29]: If 2°,v € C are Lipschitz bounded by L, and ||v|| < 1, then the differ-
ence between the Runge-Kutta solution z} = R} (z°) and the exact solution
x! = S*(2°) corresponding to the initial function z°, is bounded by

IR, (%) = §*(2°)| < CLh ;| DR} (2%)v — DS*(2°)v]| < CLA
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with a constant C' which depends on ¢, but is independent of z° and v with
the stated properties. Without assuming additional regularity of z°,v € C,
such as Lipschitz continuity, there is no uniform convergence on bounded sets
of C as h — 0. On the other hand, for sufficiently differentiable initial data
29, there is the full-order smooth-data error bound [19, Sec. 11.17]

IR}, (%) — S*(2°)|| < C kP,

where C' depends on bounds of the first p derivatives of 2, and on ¢.

A further difficulty not present in the ODE case results from the fact that
the numerical method incorporates the delay via past internal stages, not via
past solution values. As a consequence, a Runge-Kutta step must be viewed
as a mapping

0 0
(xn+k7 XnJrk,la e 7Xn+k:,m)k:_y — (xn+1+k:a Xn+1+k:,17 cee 7Xn+1+k,m)k:_y

or, extending to continuous functions via polynomial interpolation, as a map-
ping CxC™ — CxC™. The attractive curve I}, in C of Theorem 2 is in general
not an invariant curve of the numerical method, but instead it consists of the
projection to the first component of an attractive invariant curve in C x C™
of the Runge-Kutta map. This leads to additional problems in bringing the
invariant manifold theorem into play; see [29] for details. Here, for simplicity,
we continue the discussion with a Runge-Kutta method for which all inter-
nal stages are linear combinations of numerical solution values, such as the
explicit or implicit Euler method or the trapezoidal rule or the implicit mid-
point rule. In this case, the numerical one-step map R" can indeed be viewed
as a map on C, and for ¢ = nh, the time-t numerical solution map R} is the
n-fold composition R = (R")™.

For this special case, we now outline the arguments in the proof of Theo-
rem 2. Analogous to ordinary differential equations, there exist normal coor-
dinates near the periodic orbit I' = {Z* : @ € R}. As is known from Hale |21,
Ch. 10], every function = € C in some neighbourhood of I' can be written as
x =T+ (3, where a € R is unique up to integer multiples of the period w,
and (3 is unique in the maximal invariant subspace of DS“(Z(«)) that does
not contain the eigenfunction to the eigenvalue 1. It can be verified that the
exact flow map S* written in normal coordinates, (a, 3) — (@, 3), satisfies
the conditions of the attractive invariant manifold theorem Theorem A.1 in a
strip of R x C, clearly with the periodic orbit I" as attractive invariant curve.
Consider now the closed bounded set in C,

B, ={B€C:|p| <r, B is Lipschitz bounded by L} .

Using the above nonsmooth-data error bound and a uniform Lipschitz bound
of numerical solutions z!, € C, it is seen, for appropriately chosen r and
L, that together with S* also the Runge-Kutta map R} written in normal
coordinates satisfies the conditions of Theorem A.1 on R x B, 1, for sufficiently



482 Christian Lubich

small step size h. This yields the existence of an exponentially attractive
invariant curve I, for R}, and subsequently also for the one-step map R".
Since the periodic orbit T is arbitrarily differentiable, the smooth-data error
bound yields, uniformly for a € R,

IR, @) — S"(@)|| < ChP .

Corollary A.2 requires just this bound of the difference of R} and S* on
the periodic orbit I, and hence it yields the optimal-order distance estimate
distg (I, I') = O(hP).

2.5 Related Results

The persistence of (not necessarily stable) hyperbolic periodic orbits under
discretization has been studied also for semilinear parabolic differential equa-
tions. For implicit Euler time discretizations of such problems, Alouges and
Debussche [2] show the existence of invariant closed curves approximating
the hyperbolic periodic orbit with a sub-optimal order smaller than 1. In
[43], it is shown for Runge-Kutta time discretizations that the approxima-
tion order of the invariant curve is actually that of high-order finite-time
error bounds for the Runge-Kutta approximation of smooth solutions of the
parabolic problem. As in the case of delay differential equations, the result
relies on both low-order nonsmooth-data and high-order smooth-data finite-
time error bounds.

3 Hopf Bifurcation
of Semilinear Parabolic Differential Equations

Following [44], we study the long-time behaviour of numerical discretizations
in a situation where hyperbolicity gets lost, in the neighbourhood of a bi-
furcation point. We consider Runge-Kutta time discretization of semilinear
parabolic equations near a generic, supercritical Hopf bifurcation. The phase
portrait is shown to persist under the discretization, and in particular, the
bifurcation point and the Hopf orbits are approximated with the high order
of finite-time approximations to smooth solutions of the parabolic equation.
The analysis uses a reduction to two-dimensional center manifolds of both
the continuous problem and its discretization, and a comparison of the dy-
namics on the center manifolds via normal forms. The existence, smoothness,
and approximation properties of the center manifold of the discretization are
obtained by studying the discretization, by the same numerical method, of a
boundary value problem on the negative half-line.

3.1 Analytical Framework

We consider reaction-diffusion equations and incompressible Navier-Stokes
equations in the abstract setting of sectorial evolution equations in a Banach
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space as given in Henry’s book [24]. We let the equation be parametrized by
a real bifurcation parameter \,

d
7;‘ + AN = F(u, \) . (12)
We assume that the system can be transformed, via suitable spectral projec-

tions, to a block-diagonal form

W BOW= ) "
L0 = gy )

with the following specifications. The real 2 x 2-matrix B(\) has a pair of
complex conjugate eigenvalues which cross the imaginary axis at the param-
eter value A\* with non-vanishing speed, i.e.,

o(=B(\) = {a(\) £iw(\)}, with a(X*) =0, Z—iw) >0, w(A*) > 0.

We further assume, with w* = w(A\*),

B(\*) = (u? _6“> .

The linear operator L(A) in (13) is a densely defined closed operator on
a Banach space X, with domain D(L) independent of A. The spectrum of
—L(\) is in a sector lying strictly in the left half-plane, and L(X) satisfies
the sectorial resolvent bound, with an angle ¢ < 7/2 and a positive abscissa
£>0,

K
|z + ¢

1(z+ L) e < for all complex z with |arg(z + £)| > ¢

uniformly for A in an interval A around A*. The functions

A+ B(\) € R2x2

are arbitrarily differentiable.
A= L(A) € L(D(L),X)

The nonlinearities f and g, taking values in R? and X, respectively, are
arbitrarily differentiable on R%? x V x A, where V' = D(L())®) for some a < 1.
(Note, V is independent of A because of the uniform resolvent condition.) We
assume that the left-hand side of (13) represents the linearization of the
equation at the stationary point (0,0), i.e.,

f<070’)\):0, g<070’>\):0
Dyf(O,O,/\)ZO, va(O,O,/\)ZO, Dyg(O,O,)\)ZO, Dvg(O,O,/\)ZO.
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It is known [24,59] that the system (13) has a center manifold
My = {(yas(ya)‘)) HYVAS RQ} )

with a defining function s : R? x A — V which, for arbitrary integer k, is k
times continuously differentiable in a k-dependent neighbourhood of (0, A\*).
The center manifold is locally invariant and attracts solutions at an expo-
nential rate. The dynamics of the system (13) in a neighbourhood of the
stationary point (0,0) is determined by the equation reduced to the center
manifold,

W BOW =) | (14)

where ¢(y, A) = f(y, s(y, ), A) satisfies p(0,\) =0, Dyp(0,) = 0. A near-
identity change of coordinates transforms (14) to normal form [60, Sections
2.2B and 3.1B], which in polar coordinates reads for A = \* + p?

d
T = ap T ert)r + 0(r(p* + 1))

(15)
% =w* +bp®+dr*+0(p* +r1),

where a = da/dX\ (A*) > 0, b = dw/dX (A\*), and where the coefficients ¢ and
d depend on second and third derivatives of ¢ at the bifurcation point. The
normal form yields that the dynamical behaviour passes for A growing across
A* from an asymptotically stable equilibrium to an asymptotically stable
periodic orbit if ¢ < 0, and such a change in the dynamics is possible only if
¢ < 0. In the following we assume

c<O0.

The periodic orbits of the reduced equation (14) are close to circles centered
at 0 with radius r = py/—a/c, where again p = v/X — \*. It will be convenient
to parametrize the periodic orbits by p via A(p) = A* + p?. We denote the
periodic orbit of Eq. (12) with parameter A(p) by I'(p). This periodic orbit
lies on the center manifold to the parameter A(p).

3.2 Numerical Method
A Runge-Kutta time discretization of (12) reads
Un+1 :un—i—thlUT/” ; Unz :un+hZaUUy/LJ )
i=1 j=1

The stability condition we need here is a weakened form of the strong A-
stability defined in Section 1.2. For an angle 6 < %ﬂ', the method is called
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strongly A (0)-stable if all eigenvalues of the Runge-Kutta matrix @ lie outside
the closed complex sector |arg(—z)| < 6, and if the stability function of the
method satisfies

|R(z)| <1 for |arg(—=2)| <80

and
|R(c0)| < 1.

We assume that the method is strongly A(#)-stable with 8 > ¢, where ¢ is
the angle in the sectorial resolvent condition. As in Section 1.2, we assume
that the method has classical order p and stage order q. We let

k =min(p,q+1) .

3.3 Statement of the Result

Theorem 3. [44] In the above situation, there exist hg > 0, Ao < A*, po > 0,
and constants C and C*, such that for all positive time steps h < hg, there
is a parameter value A}, with

AL — N < C*hP

such that the following holds:

(i) For every X € [Ao, \};), the Runge-Kutta discretization has the asymp-
totically stable equilibrium point 0.

(ii) For every p € (0, pol, the Runge-Kutta discretization with parameter
Au(p) = Ap+ p? has an attractive invariant closed curve I'y(p). Its Hausdorff
distance to the periodic orbit I'(p) with parameter \(p) = \* + p? satisfies

disty (I (p), I'(p)) < C ph* .

3.4 Discussion and Comparison with the ODE Case
For ordinary differential equations

ﬁ:f<'717’>‘)

dt
the question of the behaviour of Hopf bifurcation under numerical discretiza-
tion was first considered by Brezzi, Ushiki and Fujii [8]. They state an ana-
logue of Theorem 3 for the explicit Euler method and give an outline of a
proof for the two-dimensional case.
Hairer and Lubich [16] study the behaviour of Runge-Kutta methods near
a Hopf bifurcation of ordinary differential equations with real-analytic right-
hand side via a backward analysis of numerical integrators. It is shown in
[3,16] that there exists a modified differential equation

dz ~
= = F@N)
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such that the numerical solution map R}, departs from the flow S} of the
modified differential equation by only exponentially small terms in the step
size: for a fixed t = nh,

Rj,(x) — S}(2) = O(e™/")

uniformly for  in any complex compact subset of the domain of analyticity.
The constant v > 0 is inversely proportional to a Lipschitz constant of f.
The real-analytic function f is O(hP) close to f, again uniformly on complex
compact sets. The modified differential equation undergoes a Hopf bifurcation
at a parameter A\;; = \*+O(hP). Although the hyperbolicity of the Hopf orbits
deteriorates as A approaches the bifurcation point, the exponential smallness
of the error allows us to use the approximation result of hyperbolic periodic
orbits (see Sect. 2.4) down to parameters that are exponentially close to
the bifurcation point: A > A} + e~7/(2h)_ For such a A, we thus obtain the
existence of an attractive invariant closed curve of the discretization which
is exponentially close to the periodic orbit of the modified equation for the
same parameter value.

Backward analysis is a powerful tool for studying numerical discretiza-
tions even in non-hyperbolic situations in nonstiff ordinary differential equa-
tions. However, it is not applicable to partial differential equations due to
the unboundedness of the operator. (See, however, [45] for some partial re-
sults in that direction when very strong smoothing properties such as Gevrey
regularity are available.)

The proof of Theorem 3 follows a standard procedure in the analysis
of bifurcations [33,58,59] outlined already in Section 3.1: reduction of the
dynamics to a center manifold and analysis of the normal form of the reduced
equation. The first step is to construct a center manifold of the discretization,
and to study its relationship to the center manifold of the continuous problem.
In [44], the center manifold is constructed from a boundary value problem
on the negative half-line,

d

BNy =N, y(0)=n

dv .

S LN =glyv,)) . lmsup v < oo,
dt t——o0

from which the function s : R? x A — V defining the center manifold M is
obtained by setting

s(n,A) = v(0) .

Similarly, the center manifold of the Runge-Kutta discretization is obtained
by formally applying the Runge-Kutta method to this boundary value prob-
lem. Existence, attractivity, smoothness and approximation properties of the
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discrete center manifold then follow from studying the numerical discretiza-
tion of the boundary value problem. Using the convolution quadrature in-
terpretation of the Runge-Kutta method [42] and exploiting the temporal
smoothness of the solution of the boundary value problem, which follows
from the smoothness of the function s, the following result is obtained.
There exists a center manifold

Mo =A{(y,sn(y,N) : y € R?}

which is invariant under the numerical method and uniformly in h and A
exponentially attractive. The defining function sp, : R2x A — V has the same
reqularity properties as s, with derivatives bounded uniformly in h. There is
the approxzimation estimate

Isn(y, X) = s(y, M| < C ly| A*

in the norm of the space V, and the same order of approximation is valid for
any fized number of derivatives of s, — s with respect to y and .

The next step is to compare the normal forms of the time-h flow map of
the reduced differential equation on R? and of the Runge-Kutta map reduced
to the discrete center manifold, giving another map on R2. This comparison
uses the above estimates for s;, and leads to a situation to which Theorem A.1
and Corollary A.2 can be applied. This yields the existence of invariant curves
and the approximation properties as stated in Theorem 3.

We remark that this construction can of course be carried out also in
the ODE situation. In that case, the approximation estimate in Theorem 3
improves to the full order k = p.

A related construction can be used also for finite element space discretiza-
tions of reaction-diffusion equations and subsequently for full discretizations
[joint work by S. Larsson and the author, in preparation]. There are addi-
tional difficulties due to the fact that the method is then no longer invariant
under the transition from (12) to (13), and that the equilibrium point of the
differential equation need not lie in the finite element space. Multistep time
discretization is studied by H. Selhofer [doctoral thesis in preparation].

4 Inertial Manifolds of Semilinear Parabolic Equations

Following [11], we show high-order approximation of the inertial manifold
of a semilinear parabolic equation by inertial manifolds of full discretizations
combined of a spectral Galerkin method in space and a Runge-Kutta method
in time. The result follows by a combination of low-order nonsmooth-data
error bounds and high-order error bounds for smooth data over finite time
intervals, and once more with the invariant manifold theorem of the appendix.
The smoothness of solutions on the inertial manifold, as implied by time
analyticity and Gevrey regularity, renders the high order of approximation
possible.
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4.1 Analytical Framework

The following applies to the complex Ginzburg-Landau and Kuramoto-Siva-
shinsky equations and to classes of reaction-diffusion equations with analytic
nonlinearities in one or two space dimensions; cf. [57] and references therein.
The limitation of the space dimension is due to a spectral gap condition,
which is needed in the proof of existence of an inertial manifold and which is
not satisfied by the three- (or higher-) dimensional Laplacian.

We consider the evolution equation

T + Au = F(u) (16)
under the following assumptions: the operator A is of the form A = (1+ia)L,
where a € R and L is a self-adjoint, densely defined linear operator on a
separable Hilbert space H, with a compact inverse and eigenvalues

0<)\1§)\2§/‘+OO

For some a < 1, the nonlinearity is defined on V' = D(L?). The function
F:V — H is at least twice continuously Fréchet differentiable.

We denote the norm on H by | -|, that on V by || - ||. Let P,, denote the
orthogonal projection on the space spanned by the first m eigenfunctions of
L, and let Q,,, = I — P, be the projection on the orthogonal complement.
B(p) denotes the ball of radius p in V centered at the origin. As in previous
sections, St denotes the time-t flow of the evolution equation.

We are interested in an inertial manifold M for (16) as introduced by
Foiag, Sell and Temam [15]. This is a positively invariant set (more precisely,
for a fixed p > 0, M satisfies S*(M N B(p)) C M for all t > 0) defined
through a Lipschitz continuous function s : P,V — @,V via

M={veV:Qunv=s(Pyv)}.

M is exponentially attracting: there exist ¥ > 0 and a constant C' (depending
on p) such that for all ug € V' with |Jug|| < p,

dist(S*(ug), M) < Ce ™  forall t>0.

The dynamics of the infinite-dimensional evolution equation (16) is then de-
termined by its restriction to the inertial manifold, which is a finite-dimens-
ional ordinary differential equation.

The existence of an inertial manifold is known under the following condi-
tions: (16) has an absorbing ball, i.e., there exist r > 0 and, for every p > 0,
a 7(p) > 0 such that

vl <p implies ||S'(v)|| <r forall t>7(p).

The second condition is a spectral gap condition: for a sufficiently large con-
stant K,
Amt1 = Am = KA L .
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Finally, it is needed that A, is sufficiently large compared to a Lipschitz
constant of F. Under these conditions, the existence of an inertial manifold
of dimension m actually follows directly from Theorem A.1, used with @ = S*
for t = ¢/Am+1 with a sufficiently small constant c.

For our approximation results, we make use of strong regularity results in time
and space, which are known to hold for the differential equations mentioned
in the beginning of this subsection; cf. [52].

Analyticity in time: for every v € V of norm bounded by p, the function
t — S*(v) is analytic on the intersection of a complex sector |argt| < ¢
with a strip [Im¢#| < ¢, and is bounded there by ||S*(v)| < C uniformly for
loll < p.

Gevrey regularity: for a given p > 0, there exist a constant C and a time
> 0 such that S*(v) is in the domain of exp(+(tA4)'/?) and

lexp((tA)?)S ()| <C for o] <p, 0<t<T.

4.2 Numerical Method

We consider a spectral Galerkin discretization in space combined with Runge-
Kutta discretization in time. The spectral Galerkin method yields an ap-
proximation to the solution of (16) in the space Vi spanned by the first N
eigenfunctions of A. With Py denoting the orthogonal projection on Vi, the
method solves

duN

7+AUN=PNF(UN) s UN(O):PNU() .
This problem is discretized in time by a strongly A(6)-stable Runge-Kutta
method of order p and stage order g; cf. Section 3.2. The angle 6 should be
larger than arg(1 + ia). We set again

k = min(p,q¢+1) .
The time step is again denoted by h, and we let for brevity
A= (N,h).

The numerical approximation at time ¢ = nh is written as R% (uo).

4.3 Statement of the Result

Theorem 4. [11] In the above situation, for given p > 0, there exist positive
constants Cy, C1, Ca, ¢, £, k (independent of the dimension m of the inertial
manifold M) such that the following holds for N and h with A\, /AN+1 < K
and hi,, < k. There exists a manifold M a that is positively invariant under
the numerical method (more precisely, R\, (MaNB(p)) C Ma fort =nh >
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0). It is defined by a function sa : P,V — Qp,V, which is Lipschitz bounded
by £, via
Ma={veV:Qnv=sa(Pnv)}.

Ma attracts all numerical solutions starting with ||ug|| < p exponentially,
dist(RY (uo), Ma) < Coe™ ™2 for all t=nh>0.

The Hausdorff distance to the inertial manifold of (16) is bounded by

diStH(MA,M) <Cire &V AN+1/Am + Cs ()\mh)/c .

4.4 Discussion

Theorem 4 gives exponential convergence in space and high order in time.
We have included the dependence on the dimension m because the spectral
gap condition is usually satisfied for infinitely many m, leading to a nested
sequence of inertial manifolds with growing attractivity exponents v. More-
over, even the smallest possible m may be quite large in applications. The
way the distance estimate depends on m shows that only the time and length
scales of the differential equation reduced to the inertial manifold need to be
resolved properly by the discretization for an accurate approximation of the
inertial manifold.

We outline a proof of Theorem 4 that uses Theorem A.1 and Corol-
lary A.2, whereas [11] employs a Hadamard graph transform adopted from
[30].

The existence of an inertial manifold of the discretization can be proved
using Theorem A.1 and a nonsmooth-data error bound. Combining the results
of [43] and [55, Sect. 3.3] on time and space discretizations, respectively, the
following finite-time error bound is obtained: uniformly for ||ug| < p and
0<t<T,

1R (uo) — 8" (o)l < C (¢7Allog Al + (h/t)" + (tAn+1)*"")

The same bound holds also for the derivative, || DR (uo)—DS*(uo)| z(v)- The
error bound implies the existence of an absorbing ball of the discretization for
sufficiently small h and large N. Consequently, the dynamics is not changed
if the scheme is modified outside a sufficiently large ball in V', say of radius 7.
We can then achieve that the above error bounds hold globally on V. In the
light of Theorem A.1, R, is thus a small Lipschitz perturbation of S*. Hence,
for t = ¢/A\p41 with sufficiently small ¢, together with S* also R, satisfies the
conditions of that theorem. This yields the existence of the inertial manifold
of the discretization.

The distance estimate between the inertial manifolds M and M, can
be based on Corollary A.2. This requires to estimate R (ug) — S*(uo) only
for ug € M, which is achieved via a study of the regularity of solutions
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on M and using smooth-data finite-time error bounds. Theorem 4.1 of [42]
gives the following error bound. If the solution u(t) = S*(up) satisfies, with

d(t) = QnF(u(t)) = Qn(du/dt + Au(t)),

T
[u® ()] + / [+ (6)] dt <
0

T
A do)] + / A= d (b)) dt < o |
0

(where u®) denotes the kth time derivative of u, and d’ the time derivative
of d), then
| R (uo) — S*(uo)|| < C(uh* + 6n)

for 0 < ¢ < T'. Solutions on the inertial manifold M N B(r) can be continued
backward in time, and they stay in MNB(7) at least for a time that is inverse
proportional to A,, (recall that the equation and the scheme were modified
outside 7). With a time ¢t ~ A}, we can thus employ the time analyticity
and Gevrey regularity estimates to obtain

p=0(\%), oy =0(eVAvs/in)

uniformly for ug € MNB(r). Corollary A.2 then yields the desired high-order
distance bound.

4.5 Related Results

The existence of inertial manifolds for spectral discretizations in space was
studied by Foiag, Sell and Temam [15] and Jones and Stuart [30]. The distance
estimate of Theorem 4.1 of [15], in a framework which corresponds to the case
a=1/2is O()\Ei/f). The bound of [30] is O()\%jrll), which corresponds to the
nonsmooth-data finite-time error bound. (The dependence on m is considered
explicitly in these papers, but is not reproduced here.)

The first results on the existence of inertial manifolds of time discretiza-
tions were given by Demengel and Ghidaglia [10]. Full discretizations were
subsequently studied by Jones and Stuart [30]. Those authors consider lin-
early implicit Euler and fractional step time discretizations and obtain dis-
tance estimates of the low order of nonsmooth-data error bounds. Shardlow
[54] studies multistep time discretizations and also obtains low-order distance
estimates of an order not exceeding 1.

Lord [39] establishes discrete Gevrey regularity for finite difference meth-
ods for the complex Ginzburg-Landau equation and uses it to study approx-
imation of the inertial manifold.

C'-approximation of inertial manifolds has been studied by Jones, Stuart
and Titi [31].
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5 Attractors of Damped Wave Equations

For a specially constructed time discretization combined with a spectral
Galerkin space discretization of a dissipative wave equation, we show the
existence of an attractor of the discretization which lies close to that of the
partial differential equation. The result relies on a nonsmooth-data finite-time
error bound, which is not available for usual time discretizations.

5.1 Analytical Framework
We consider the abstract damped wave equation

d?u du

) + a— + Au = g(u) (17)
with a positive damping parameter o > 0. The linear operator A is assumed
to be a self-adjoint, densely defined operator on a Hilbert space H, with a
compact inverse and eigenvalues 0 < A\; < Ay < .... We let V = D(A1/2)
and set X = V x H. The norm on X is denoted by | - ||, viz. ||(u,v)||?> =
|AY/2u|? + |v|?, where | - | is the norm on H.

For the nonlinearity we assume that for some vy > 0,

g:V = DA : , : .

are continuously Fréchet differentiable,
g: D(AU-M/2y 5 H
and that it permits unique solutions S*(ug,vo) = (u(t),du/dt(t)) of (17) in
X for all times ¢ and initial values (ug,vo) € X.

We further assume that (17) has a (global) attractor, that is, a compact
set A C X which is invariant under the flow, viz. S*(A) = A for all ¢, and
which attracts bounded sets in X. The latter means that for every bounded
set B in X and for every € > 0, there is a ¢ty (which depends on ¢ and B),
such that S*(B) is in an e-neighbourhood of A for ¢ > t.

We refer to Temam [57, Ch. IV] for conditions which ensure the existence
of an attractor, and for concrete examples of damped wave equations having
an attractor.

5.2 Numerical Method

The choice of time discretization requires more care than in the preceding
sections. In contrast to the parabolic case, standard numerical integration
schemes for (17) do not admit convergent nonsmooth-data error bounds,
which are needed here. Instead we consider a time-stepping method in the
spirit of [17,28]. To motivate the method, we start from the variation-of-
constants formula

(i) e (%)
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1 Lo 0
e [ 2= 0ma) (o S gtuts o) @

where v = du/dt and

E(g):( cosfsinf) |

—siné cosé

Expressing the term v(¢ + 6h) under the integral once more by the same
formula and dropping terms of formal order O(h?) leads to the following
method:

(Al/Qun+1> = (B(hAY?) ~ had(hA'/?) (A1/2un)

Un+41 Un

+ hW(hAW)( (0 )

g(un)
with

29 = [ B -00 (§)) Boea

v = [ E(-0)as.

The integrals can be evaluated analytically. They are such that the entries
of the transformed matrices D(£)~1(®(£),¥(€))D(€) with D(¢) = diag(é,1)
are entire functions of £2.

As space discretization we take a standard spectral Galerkin method.
With Py denoting the orthogonal projection on the space Hy (or Vi) spanned
by the first N eigenfunctions, and with Ay the restriction of A to Hy, this
space discretization is obtained by replacing A by Ay and g by Pyg in the
above formula.

The numerical solution starting from (ug, v9) € Xy = Viy x Hy is denoted
by R% (uo,v0) = (un,vy) at t = nh, where again A symbolizes the pair (N, h)
of discretization parameters.

Remark. The above method is just a particular example of a class of
methods that are exact solvers for d?u/dt?>+ Au = 0. It is a first-order method
when applied to initial value problems (17) that admit a smooth solution. A
second-order method could be constructed along similar lines.

Remark. Even in cases where an eigendecomposition of the matrix arising
from the space discretization is computationally not feasible, as in finite ele-
ment methods, the method can be efficiently implemented using superlinearly
convergent Krylov subspace approximations of matrix function times vector
products; cf. [28].



494 Christian Lubich

5.3 Statement of the Result

Theorem 5. If the discretization is sufficiently fine, it has a (local) attractor
An. The semi-distance to the attractor A converges to 0 as h — 0, N — co.
More precisely, for every € > 0 and every bounded set B in X, there exist
positive hg, Ny, tog such that

dist(R (uo,v0), A) <& for t>tg

whenever (ug,vg) € BN X and N > Ny, h < hg.

5.4 Discussion and Related Results

Theorem 5 is apparently the first result on the dynamics of a fully discretized
dissipative wave equation. An analogue of Theorem 5 for spectral Galerkin
semi-discretization in space was obtained already by Hale, Lin and Raugel
[22]. However, the derivation of a corresponding result for time discretizations
was hampered by the fact that standard time discretization methods admit
no convergent error bounds where the error is measured in the same norm in
which bounds for the initial data are specified. Such a nonsmooth-data error
bound does exist for the numerical method of Section 5.2:

For every p > 0 and T > 0, there exists C' such that
| R (w0, v0) — S*(uo, vo)|| < C (Y + A3%,)

for all (ug,v0) € Xn with ||(ug,vo)|| < p and for 0 <t =nh <T.

This is proved below. With this error bound, the distance estimate of The-
orem 5 then follows by an argument given by Larsson [35]: Let ¢ > 0 and
let B be a bounded set in X, of which we may assume that it contains the
e-neighbourhood of 4. We choose T such that

dist(S*(B), A) := sup dist(S*(z), A) < e for t>1iT.
r€B

If the discretization is sufficiently fine, the above error bound yields for By =
BNXy
dist(R%Y (Bn), A) <e for AT <t<T,

and in particular, R} (By) C By for such t. Hence, the bound must hold for
all t > %T. This proves the distance estimate of Theorem 5. The existence
of an attractor Aa of the discretization then follows from the discrete-time
version of Theorem I.1.1 in [57].

Like other results in the spirit of [22], such as [13,26,35,39] on parabolic
problems, Theorem 5 gives no estimate for the distance between Aa and A,
nor for the dimension of A, and no information about the discrete flow
on Ax. It also does not ensure that Aa lies close to every point on the
attractor A. The latter has been shown for gradient flows by Hale and Raugel
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[23], but is not true in general. Hill and Siili [27] study set convergence Ax —
Ao, where Ay is a compact invariant subset of A. The shadowing results cited
in Section 1.5 relate the dynamics on the discrete attractor to those of the
partial differential equation in situations where the attractor is a hyperbolic
invariant set or where the system has Morse-Smale structure.

5.5 Proof of the Nonsmooth-Data Error Bound

By the variation-of-constants formula, the solution (u(t),v(t)) = S*(ug,vo)
satisfies

(Alﬁf (+t ;;) h)) = (B(hAY?) — had(na/2)) (Aﬁ:)(@)

+ hu'/(hAl/2)<g(u0(t))) +d(t)

with the defect

d(t) :h/O E((1—60)hA'?) <g(u(t+9h§)) _g<u<t))) 9 + O(h?) .

By our assumption on g we have
lg(u(t +6R)) — g(u(t))] < LIAC™2(u(t + 6h) — u(t)| = O(K")

where the last estimate follows again from the variation-of-constants formula
of Section 5.2. Hence, |d(t)| = O(h'*7). By a standard stability estimate, this
yields the error bound for the semi-discretization in time,

1R}, (w0, v0) — S*(uo, wo)|| < C'AY,

uniformly for ||(uo,vo)|]] < p and 0 < ¢t < T. The difference between the
semi-discrete and the fully discrete numerical solution is estimated similarly,
using
(I = Py)g(u)]l = O(A\yYy) -
This yields
IR (o, v0) — R, (uo, )|l < C A,

uniformly for ||(ug,vo)|| < p and 0 < ¢ < T, and the desired error bound
follows.

A Attractive Invariant Manifolds

Attractive invariant manifold theorems can be traced back to Hadamard
a hundred years ago, and their usefulness has been rediscovered and re-
established ever since. Here we give a version due to Kirchgraber, Lasagni,
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Nipp, and Stoffer [32], which is particularly useful in applications because of

its explicit handling of constants. A proof is contained in the report [47].
Consider a map @ : A x B — A x B defined on the Cartesian product of

a Banach space A and a closed bounded subset B of another Banach space.

-~

We write &(a, 8) = (@, 8) with

a=a+ F(a,p)
B= Glap).

We assume that F' and G are Lipschitz bounded, with Lipschitz constants
Loa, Lag and Lg,, Lgg with respect to o, (. If these Lipschitz constants are
sufficiently small, then the map @ has an attractive invariant manifold. More
precisely, the following holds.

Theorem A.1. [32,47] If Loa + Lgg + 24/LagLlsa < 1, then there is a
function s : A — B, Lipschitz bounded by ¢ < 2Lga/(1 — Laa — Lgg), such
that

M= {(a,s(a)) : ¢ € A}
is invariant under ®. M attracts orbits of ¢ with rate r = {Log + Lgg < 1,
i.e., the inequality ||3 — s(@)|| < 7|8 — s(a)|| holds for all (a, ) € A x B.

Remark. If A = R, and if F', G are periodic in « with period w, then s is
again w-periodic.

Corollary A.2. Consider maps @, ®: Ax B — Ax B. Assume D, o
satisfy the conditions of Theorem A.1 with the same Lipschitz constants
Lo, Lag; Lga, Lag. Let s and s be the functions defining the attractive in-

variant manifolds M and M, respectively. If the bound
|®(c, ) — (e, )| <6 for all (a,B) € M

holds in the norm ||(«, B8)|| = £ ||| + ||B]] on A x B, then

forall a€ A.

For our applications of this result it is essential that a bound of ®— & is
needed only on the invariant manifold M, not on all of A x B (as is required
in the formulation of [47]). The result as stated follows by tracing the proof
in [47], or with the alternative proof in [29].
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