Neuro-fuzzy Systems

6.1 Introduction

THIS CHAPTER deals with neuro-fuzzy systems, i.e., those soft
computing methods that combine in various ways neural net-
works and fuzzy concepts. Each methodology has its particular
strengths and weaknesses that make it more or less suitable in a giv-
en context. For example, fuzzy systems can reason with imprecise
information and have good explanatory power. On the other hand,
rules for fuzzy inference have to be explicitly built into the system
or communicated to it in some way; in other words the system can-
not learn them automatically. Neural networks represent knowledge
implicitly, are endowed with learning capabilities, and are excellent
pattern recognizers. But they are also notoriously difficult to ana-
lyze: to explain how exactly they reach their conclusions is far from
easy while the knowledge is explicitly represented through rules in
fuzzy systems.

The complementarity between fuzzy systems and learning systems,
especially ANNs, has been recognized early by researchers. Taking
again a rather courageous, and utterly unrealistic biological analogy,
we could say that, conceptually at least, mixed neural and fuzzy sys-
tems resemble nervous systems where neural cells are the low-level
perceptive and signal integration part that make possible the higher

Chapter 6

NEURO-FUZZY
SYSTEMS

Figure 6.1 Schematic

view

of how artificial

neural networks and
fuzzy systems can

202

interact
synergetically.

level functions of the brain such as reasoning and linguistic abilities.
In this metaphor the ANN part stands for the perceptive and signal
processing biological machinery, while the fuzzy part represents the
emergent “higher level” reasoning aspects. As a result, these two
technologies have been integrated in various ways, giving rise to hy-
brid systems that are able to overcome many of the limitations of
the individual techniques. Therefore, neuro-fuzzy systems are likely
to be of wider applicability on real-life problems. The reader should
be aware that the field has an enormous variety and it would be
impossible to present a complete survey in a single chapter. We
have thus been obliged to make a choice of topics that we believe
are significant and representative of modern trends but by no means
exhaustive. Two useful recent books covering in detail all the topics
treated here and more are Nauck et al. [156] and Jang et al. [104].

Fuzzy
Neural

Networks

Neural

Networks

Membership
functions
and

Rule
learning

There are two main ways in which ANNs and fuzzy systems can
interact synergetically. One is the “fuzzification” of neural networks
and the other consists in endowing fuzzy system with neural learning
features. In the first case, fuzziness may be introduced at different
levels in a neural net: the weight level, the transfer function level,
or the learning algorithm level. In the second case, the most com-
mon arrangement is for the ANN to learn membership functions or
rules for a given fuzzy system. This relationships are schematically
depicted in Figure 6.1.

More precisely, according to [156], systems that combine neural
and fuzzy ideas can be divided into three classes:

e co-operative, in the sense that neural algorithms adapt fuzzy
systems, which can in turn be distinguished in

— off-line (neural algorithms learn membership functions or
rules or both, once and for all)

— on-line (neural algorithms are used to adapt the member-
ship functions or the rules of the fuzzy system or both, as
the system operates);

e concurrent (but we would prefer to call them sequential), where
the two techniques are applied after one another as pre- or
post-processing.

e hybrid (here too, this terminology can be misleading, because,
as a matter of fact, all neuro-fuzzy systems are hybrid), the
fuzzy system being represented as a network structure, mak-
ing it possible to take advantage of learning algorithms inher-
ited from ANNs. From now on this combination will be called
“fuzzy neural networks”.

Concurrent (i.e., sequential) approaches are the weakest form of
combination between neural and fuzzy techniques, and not such an
interesting one for the purpose of this chapter. After all, the two
techniques retain their individualities and can be understood without
studying their interactions. Therefore, the first part of the chapter
describes “fuzzy neural networks”, that is, how single neural units
and networks can be given a fuzzy flavor. The second part of the
chapter deals with the other aspect of the mutual relationship that
is, using ANNSs to help design efficient fuzzy systems “cooperatively”.

6.2 Fuzzy Neural Networks

HE PURPOSE of this section is to introduce fuzzy concepts into
T single artificial neurons and neural networks. Fuzzy systems and
neural networks are certainly different soft computing paradigms;
however, they are rather complementary if one takes into accoun-
t their respective strong and weak features. Therefore, integrating
them into a single new soft computing model gives hopes of exploit-
ing their complementary nature by reinforcing the good points and
by alleviating their respective shortcomings. Fuzziness can be intro-

Section 6.2

Fuzzy NEURAL

NETWORKS

203

Chapter 6

NEURO-FUZZY
SYSTEMS

Figure 6.2 Model of a
crisp artificial neuron.

204

duced in several ways into artificial neurons. In the next section we
present a way of “fuzzifying” single neurons.

6.2.1 Fuzzy Neurons

Fuzzy models of artificial neurons can be constructed by using fuzzy
operations at the single neuron level. The fuzzy operations that have
been used for that purpose are the union and the intersection of fuzzy
sets and, more generally, t-norms and t-conorms also called s-norms
which are extensions of the usual fuzzy operations (see Chapter 3,
Section 3.2.4). A variety of fuzzy neurons can be obtained by apply-
ing fuzzy operations to connection weights, to aggregation functions
or to both of them. We shall start from the structure of an arti-
ficial neuron such as it was introduced in Chapter 2 and which is
reproduced here for ease of reference in Figure 6.2.

v
v
<

We recall that a vector x = (z1,x9,...,z,) of input values enters a
neural unit through n incoming connections after having being modi-
fied by the corresponding connection weights w = (w1, wa, ..., ,wy).
The neuron computes the sum of the weighted inputs, which is sim-
ply the scalar product w-x and produces an output signal according
to a predefined activation function g. When the function is a simple
step function the neuron fires (i.e, it produces a 1 output signal) if
w - x reaches a given thereshold value, otherwise it doesn’t fire (the
output is 0). However, for numerical reasons, it is often useful to
have g as a non-linear monotonic mapping of the type:

g:10,1] — [0, 1], (6.1)

such as a sigmoid, hyperbolic tangent or gaussian curve. In this

case the neuron emits a graded output signal between 0 and 1 (See
Chapter 2, Equation 2.2 and Equation 2.3).

The above standard model of an artificial neuron derives some
credibility from biological data on neural cells but it is certainly a
gross oversimplification of reality. Thus, although it is a convenient
choice, there is nothing special about the weighted sum of the input
values as an aggregation operator. A step toward the fuzzification
of an artificial neuron can be done by considering other forms A of
the aggregation function according to the more general equation:

y =g (A(w,x)), (6.2)

where ¢ is the transfer function and y is the scalar output signal of
the neuron.

In fact, fuzzy union, fuzzy intersection and, more generally,
s-norms and t-norms can be used as an aggregation function for
the weighted inputs to an artificial neuron. Due to the fact that tri-
angular norms form an infinite family, there exist an infinite number
of possibilities for defining fuzzy neurons at the level of the aggrega-
tion function. In what follows, we present a particular class of fuzzy
neurons, the OR and AND neurons.

OR Fuzzy Neuron

The OR fuzzy neuron realizes a mapping from the unit hypercube
to fuzzy signals pertaining to the graded membership over the unit
interval:

OR:[0,1] x [0,1]" — [0,1]

the weights are also defined over the unit interval. The OR fuzzy
neuron uses an aggregation function that corresponds to the maxi-

Section 6.2

Fuzzy NEURAL
NETWORKS

Figure 6.3 Model of
an OR fuzzy neuron.

205

Chapter 6

Figure 6.4 Model of

206

NEURO-FUZZY
SYSTEMS

an AND fuzzy

neuron.

mum of the weighted inputs; that is, it selects the fuzzy disjunction
of the weighted inputs as follows:

y=OR(x1 AND wy,290 AND wo,...,x, AND wy,). (6.3)

This setting is depicted in Figure 6.3. As we saw in Chapter 3,
Section 3.2.4, fuzzy set logical connectives are usually defined in
terms of triangular norms A and t-conorms v7. Thus, the preceding
expression for the neuron output becomes:

y =iz & wy). (6.4)

The transfer function g is linear. In a manner analogous to standard
ANNs a bias term can be added representing a constant zy = 0
value input signal with a weight wy. Taking the bias into account
the preceding equation reads:

y=Vi-o(zj & wy). (6.5)

We observe that, for any connection k, if wy = 0 then wy AND), =
0 while if wy = 1 then wy AND z;, = x;, independent of z.

AND Fuzzy Neuron

The AND fuzzy neuron (see Figure 6.4) is similar to the OR case
except that it takes the fuzzy conjunction of the weighted inputs,
which is the same as the minimum. First the inputs are “ored”
with the corresponding connection weights and then the results are
aggregated according to the AND operation. The transfer function
g is again linear:

y=AND(z1 OR wy,z9 OR wy,...,z, OR wy). (6.6)

Analogous to the OR case, when expressed in terms of triangular
norms the output fuzzy value is given by:

y=A%(z; v wy), (6.7)

where the bias term z(is now equal to 1, giving wy AND zg = wy.

Of course, in the generalized forms based on t-norms, operators
other than min and max can be used such as algebraic and bounded
products and sums. As they stand, both the OR and the AND
logic neurons are excitatory in character, that is higher values of xzy,
produce higher values of the output signal y. The issue of inhibitory
(negative) weights deserves a short digression since their introduction
is not as straightforward as it is in the standard neural networks. In
fact, we are here in the realm of fuzzy sets and we would obviously
like to maintain the full generality of the operations defined in [0, 1].
If the interval is extended to [—1,1] as it is customary in ANNs,
logical problems arise from the fuzzy set-theoretical point of view.
The proper solution to make a weighted input inhibitory is to take
the fuzzy complement of the excitatory membership value z = 1 —z.
In this way, the generic input vector x = (z1,z2 ... z,) now includes
the complemented values as well: x = (z1,22...2,,%1,%2...Ty).
The weighted inputs x; o w;, where o is a t-norm or t-conorm, can
be general fuzzy relations too, not just simple products as in standard
neurons. As well, the transfer function g, which has been supposed
linear, can be a non-linear one such as a sigmoid. These kinds of

fuzzy neurons have been introduced by Pedrycz and coworkers [173,
195].

OR/AND Fuzzy Neuron

A generalization of the above simple fuzzy neurons is the OR/AND
neuron [95]. The OR/AND neuron is a combination of the AND
and OR neurons into a two-layer structure as depicted in Figure 6.5.
Taken as a whole, this structure can produce a spectrum of interme-
diate behaviors that can be modified in order to suit a given problem.
Looking at the figure, it is apparent that the behavior of the net can
be modulated by suitably weighting the output signals from the OR
or the AND parts through setting or learning the connection weights
c1 and ce. The limiting cases are ¢; = 0 and ¢ = 1 where the system
reduces itself to a pure AND neuron and the converse ¢; = 1, ¢g = 0,
in which case the behavior corresponds to that of a pure OR neuron.

Section 6.2

Fuzzy NEURAL

NETWORKS

207

Chapter 6

NEURO-FUZZY

SYSTEMS

Figure 6.5 The
computational
structure of an
AND/OR fuzzy

neuron.

Figure 6.6 A
three-layer artificial
neural network with
all AND fuzzy units
in the hidden layer.

208

6.2.2 Multilayered Fuzzy Neural Networks

Fuzzy neurons such as those described in the previous section can
be assembled together into multilayered networks [170]. Since the
neurons used to build the nets are in general different, the construc-
tion gives rise to non-homogeneous neural networks, in contrast with
the usually homogeneous networks that are used in the crisp ANN
domain. For example, Figure 6.6 depicts a two-layer network (not
counting the input layer) composed of a first layer with p neurons of
the same AND type and a second output layer wich aggregates all
the preceding signals with a single OR neuron. The input is consti-
tuted by 2n values including both the direct and the complemented
ones. A second possibility is to have OR neurons in the hidden layer
and a single AND neuron in the output layer (Figure 6.7). These
two types of networks have been called logic processors by Pedrycz.

Following Pedrycz [170], for the first layered network type we have
that the signals z; produced at the hidden layer are given by:

2k = [A?d(ffj V wij)] A [A?:I(jj \V4 wk,(n+j))]7 k=1,2,....,p;
(6.8)
where wy, is the vector of all connection weights from the inputs to
the kth node of the hidden layer. The output value y is the single
OR-aggregation of the previous signals from the hidden layer:

Y=oz A vy). (6.9)

In the last expression the vector v is the weight vector of all the
connections from the hidden layer nodes to the single output node.
The network in which all the hidden nodes are of the OR type and the
output node is an AND fuzzy neuron (Figure 6.7) gives analogous
expressions with the A and sy symbols exchanged. If we restrict
ourselves to the pure two-valued Boolean case then the network with
the hidden OR layer represents an arbitrary Boolean function as a
sum of minterms, while the second network is its dual in the sense
that it represents any Boolean function as a product of maxterms.
More generally, if the values are continuous members of a fuzzy set
then these networks approximate a certain unknown fuzzy function.

6.2.3 Learning in Fuzzy Neural Networks

The interest of having fuzzy connectives organized in network form is
that there are thus several ways in which ANN supervised learning

Section 6.2

Fuzzy NEURAL
NETWORKS

Figure 6.7 A
three-layer artificial
neural network with
all OR fuzzy units in
the hidden layer.

209

Chapter 6

210

NEURO-FUZZY
SYSTEMS

methods can be applied to the fuzzy structure. This is a definite
plus in many situations since learning capabilities are not typical
of fuzzy systems. Of course, there exist other ways in which fuzzy
systems can learn but this particular neuro-fuzzy hybrid is useful in
light of the large amount of knowledge that has been accumulated
on the crisp ANNs versions. Supervised learning in fuzzy neural
networks consists in modifying their connection weights in a such a
manner that an error measure is progressively reduced by using sets
of known input/output data pairs. Another important requirement
is that the network thus obtained be capable of generalization; that
is, its performance should remain acceptable when it is presented
with new data (see the discussion on ANN supervised learning in
Chapter 2, Section 2.5).

Let us call the set of n training data pairs (xi,dy) for k =1,2...n,
where xj is a vector of input data and dj is the corresponding ob-
served scalar output. A single fuzzy neuron adapts its connection
weights in order to reduce a measure of error averaged over the train-
ing set:

wit!l = w! + Aw!, (6.10)

where the weight change is a given function F' of the difference be-
tween the target response d and the calculated node output y:

Aw' = F(d' — o)), (6.11)

For instance, in standard ANNs a common learning rule is the delta
rule, which uses an estimate of the gradient of the continuous neuron
activation to reduce the mean square error (Chapter 2, Section 2.5).
For fuzzy neurons, one should take into account the fact that the
weighted inputs are not simple scalar products; rather, they are more
complex relationships between fuzzy sets.

For the whole network supervised learning proceeds as follows. A
criterion function F is defined such that it gives a mesure of how well
the fuzzy network maps input data into the corresponding output.
A common form for F is the sum of the squared errors:

n

E(w) =1/2) (dy —)’ (6.12)

k=1
The goal of the learning algorithms is to systematically vary the
connection weights in such a way that E is minimized on the training

data set. This can be achieved by taking the gradient descent of £
with respect to the weights. The update step in the output weights
wj,; of the connections between unit j in the hidden layer and unit
j in the output layer can thus be found by differentiating:

OoF
8wi,j ’

Awi,j =—-n (613)
where 7 is a scale factor that controls the magnitude of the change.
The update in the input weights can be found by using the chain rule
for partial derivatives in the backpropagation style (see also Chap-
ter 2, Section 2.5). The derivation of the weight changes layer by
layer back to the input layer is straightforward but somewhat tricky.
The interested reader can find an example completely worked out
in Pedrycz’s book [170]. The network chosen for the example corre-
sponds to the three-layer system of Equation 6.8 and Equation 6.9
where the algebraic sum is used for the s-norm and the product for
the t-norm.

6.2.4 An Example: NEFPROX

Approximating a continuous unknown function specified by sample
input/output data pairs is a widespread problem. We already saw
in Chapter 2 how multilayer neural networks can implicitly approx-
imate such a mapping. Here we present another approach to this
problem by using a neuro-fuzzy system. The discussion that follows
is based on the work of D. Nauck [155, 157].

In this approach, called NEFPROX for NEuro Fuzzy function ap-
PROXimator, a neuro-fuzzy systems is seen as a three-layer feedfor-
ward network similar to the type described in the preceding section.
There are no cycles in the network and no connections exist between
layer n and layer n + j, with j > 1. The first layer represents input
variables, the hidden layer represents fuzzy rules, and the third layer
represents output variables. The hidden and output units in this
network use t-norms and t-conorms as aggregation functions, in a
manner similar to what we have seen in the previous sections. Fuzzy
sets are encoded as fuzzy connection weights and fuzzy inputs. The
whole network is capable of learning and provides a fuzzy inference
path. The end result should be interpretable as a system of linguistic
rules.

Section 6.2

Fuzzy NEURAL

NETWORKS

211

Chapter 6

212

NEURO-FUZZY
SYSTEMS

The problem to be solved is that of approximating an unknown
continuous function using a fuzzy system given a set of data sam-
ples. There is an existence proof that fuzzy systems are capable of
universal function approximation [116]. However, actually building
such an approximation for a given problem requires the specification
of parameters under the form of membership functions and of a rule
base. This identification can be done by previous knowledge, trial
and error, or by some automatic learning methodology. NEFPROX
encodes the problem parameters in the network and uses a super-
vised learning algorithm derived from neural network theory in order
to drive the mapping towards satisfactory solutions. The advantage
of the fuzzy approach over a standard neural network is that, while
the latter is a black box, the fuzzy system can be interpreted in terms
of rules and thus has more descriptive power.

The NEFPROX system is a three-layer network with the following
features:

e The input units are labeled z1,xs,...,x,. The hidden rule u-
nits are called Ry, Ro, ..., R; and the output units are denoted

as Y1,Y2,---, Ym-

e Each connection is weighted with a fuzzy set and is labeled
with a linguistic term.

e All connections coming from the same input unit and having
the same label are weighted by the same common weight, which
is called a shared weight. The same holds for the connections
that lead to the same output unit.

e There is no pair of rules with identical antecedents.

According to these definitions, it is possible to interpret a NEFPROX
system as a fuzzy system in which each hidden unit stands for a fuzzy
if-then rule. Shared weights are needed in order for each linguistic
value to have a unique interpretation. If this were not the case, it
would be possible for fuzzy weights representing identical linguistic
terms to evolve differently during learning, leading to different in-
dividual membership functions for its antecedents and conclusions
variables, which would in turn prevent proper interpretation of the
fuzzy rule base. Figure 6.8 graphically depicts the structure of a
NEFPROX system.

Learning in NEFPROX is based on supervised training and em-
ploys a conceptual variation of standard backpropagation in ANNs

Section 6.2

Fuzzy NEURAL
NETWORKS

Figure 6.8 Schematic
architecture of a
NEFPROX system.
The connections
going through the
small rhombuses are
linked i.e., they share
the same weight (see
text). The figure is
adapted from Nauck
[155].

since we are in a framework where known input/output sets do usu-
ally exist. The difference with the standard algorithm is that the
method for determining the errors and propagating them backwards
to effect local weight modifications is not based on gradient descent.
This is due to the fact that the functions involved in the system are
not always differentiable, as is the case for some types of triangu-
lar norms such as minimum and maximum used here. Central to
the NEFPROX approach to learning is simplicity, speed, and inter-
pretability of the results. The system is more suitable for Mamdani-
type fuzzy systems with a small number of rules and a small number
of meaningful membership functions. Indeed, according to [157], if
very precise function approximation is called for, then a neuro-fuzzy
approach, which should be characterized by tolerance for impreci-
sion, is probably not well suited anyway and other methodologies
should be preferred.

Since fuzzy rules are used in NEFPROX to approximate the un-
known function, pre-existing knowledge can be used at the outset
by initializing the system with the already known rules, if any. The
remaining rules have to be found in the learning process. If nothing
is known about the problem, the system starts out without hidden
units, which represent rules, and incrementally learns them. This
constructive aspect of the algorithm constitutes another difference -

213

Chapter 6

with respect to the usual backpropagation learning algorithm in a
NEURO-FUZZY

fixed network architecture. Simple triangular membership functions
SYSTEMS

are used for fuzzy sets although other forms would also be permis-
sible. At the beginning of the learning process fuzzy partitions for
each input variable are specified. Fuzzy sets for output variables are
created during learning and a defuzzyfication procedure is used at
the output nodes to compare calculated and observed values. The
network structure is as described above (see also Figure 6.8). Given
a training set of patterns {sq,t1,...,s;,t,} where s € R" is an input
pattern and t € IR™ the desired output, the learning algorithm has
two parts: a structure-learning part and a parameter-learning part.
The following is a slightly simplified description of the algorithm,
more details can be found in the original work [157].

Structure Learning Algorithm
1. Select the next training pattern (s, t) from the training set.

(i)

2. For each input unit z; find the membership function p j such

that " "
pji (si) = je{mﬁfpi}{“j (si)}.

3. If there is mno rule R with weights W(z1,R) =

)
Hjs
nect it to all the output nodes.

ooy W(zp, R) = ug-;) then create the node and con-

4. For each connection from the new rule node to the output
nodes find a suitable fuzzy weight V](-::) using the membership
functions assigned to the output units y; such that V](-::) (t;) =
maxje{lym,qi}{u](-i) (t;)} and u](-i) (ty) > 0.5. If the fuzzy set is not

defined then create a new one Vr(lé)w(ti) for the output variable
y; and set W(R,y;) = I/r(lle)w.

5. If there are no more training patterns then stop rule creation;
otherwise go to 1.

6. Evaluate the rule base and change the rule conclusions if ap-
propriate.

The supervised learning part that adapts the fuzzy sets associated
to the connection weights works according to the following schema:

214

Parameter Learning Algorithm
1. Select the next training pattern (s, t) from the training set and
present it at the input layer.

2. Propagate the pattern forward through the hidden layer and
let the output units determine the output vector o.

3. For each output unit y; determine the error dy; = ¢; — 0y;.
4. For each rule unit R with output or > 0 do:

e Update the parameters of the fuzzy sets W (R, y;) using a
learning rate parameter o > 0.

e Determine the change dp = ogr(l — og)
Zyeoutput layer(QW(Rvy)(ti) - 1) ’ |6Z/|

e Update the parameters of the fuzzy sets Wz, R) using
0r and o to calculate the variations.

5. If a pass through the training set has been completed and the
convergence criterion is met then stop; otherwise go to step 1.

The learning procedure for the fuzzy sets is based on simple heuris-
tics that result in shifting the membership functions and in making
their support larger or smaller. It is possible and easy to impose
constraints on the learning procedures such as that fuzzy sets must
not pass each other or that they must intersect at some point and
so on. As usual in supervised learning algorithms, one or more vali-
dation sets of data are used and training goes on until the error on
the validation set starts to increase in order to avoid overfitting and
to promote generalization (see also Chapter 2, Section 2.5).

NEFPROX has been tested on a well-know difficult benchmark
problem: the Mackey-Glass system. The Mackey-Glass delay-
differential equation was originally proposed as a model of white
blood cell production:

dz 0.2z(t — 1)
— = ————— — 0.12(¢), 6.14
dt 1+20(t—r) z(?) (6.14)
where 7 is a parameter. Using a value of 7 = 17 the resulting series
is chaotic. Training data can be obtained by numerical integration of
the equation. A thousand values were calculated of which the first
half were used for training and the rest for validation. The NEF-

PROX system used to approximate the time series has four input

Section 6.2

Fuzzy NEURAL

NETWORKS

215

Chapter 6

216

NEURO-FUZZY
SYSTEMS

and one output variable and each variable was initially partitioned
by seven equally distributed fuzzy sets with neighboring membership
functions intersecting at degree 0.5. After learning, 129 fuzzy rules
were created. The resulting system approximates the function quite
well in the given range. The results are only slightly worse than
those that have been obtained on the same problem with another
neuro-fuzzy system called ANFIS [103] (see next section) but the
learning time is much shorter.

Two related neuro-fuzzy approaches are NEFCON and NEF-
CLASS which are used, respectively, for control applications and
for classification problems [155]. NEFCON is similar to NEFPROX
but has only one output variable and the network is trained by re-
inforcement learning using a rule-based fuzzy error measure as a
reinforcement signal. NEFCLASS sees pattern classification as a
special case of function approximation and uses supervised learning
in a manner similar to NEFPROX to learn classification rules.

6.2.5 A Second Example: The ANFIS System

ANFIS stands for Adaptive Network-based Fuzzy Inference System
and is a neuro-fuzzy system that can identify parameters by using
supervised learning methods [103]. ANFIS can be thought of as a
network representation of Sugeno-type fuzzy systems with learning
capabilities. ANFIS is similar in spirit to NEFPROX but, with re-
spect to the latter, learning takes place in a fixed structure network
and it requires differentiable functions. The ANFIS heterogeneous
network architecture is constituted by a number of layers of nodes
which have the same function for a given layer but are different from
one layer to the next. For example, consider the fuzzy inference
system with two inputs z and y and a single output z [103]. For a
first-order Sugeno model, a rule set using a linear combination of the
inputs can be expressed as:

IF z is A1 AND y is Bo THEN fi =piz + quy + 1

IF 2 is Ay AND y is By THEN fo = poi + goy +1o 00)
The reasoning mechanism for this model is:
gl g, (6.16)
w1 + wa

Layer 1 Layer 2 Layer 3

Layer 4

Layer 5

The ANFIS network architecture corresponding to this Sugeno model
is shown in Figure 6.9. The layers in the net are constituted by nodes
having the same function for a given layer. The functionalities of the
layers are as follows:

Layer 1: Denoting by O;; the output of node 7 in layer /, each node
in layer 1 is an adaptive unit with output given by:

Ol,i = /J,Ai((II), 1= 1,2 (6.17)

Ol,i = ,uBi_Q(ac), 7 = 3,4

where z and y are input values to the node and A; or B; 5 are fuzzy
sets associated with the node. In other words, each node in this layer
generates the membership grades of the premise part. The member-
ship functions for A; and B; can be any appropriate parameterized
membership function such as triangular, trapezoidal, Gaussian or
bell-shaped.

Layer 2: Each node in this layer is labeled II and computes the firing
strength of each rule as the product of the incoming inputs or any
other t-norm operator:

O, = wi = pa,(2) & g, (y), i = 1,2 (6.18)

Layer 3: Each node in this layer is labeled N and it calculates the
ratio of the i-th rule’s firing strength to the sum of all rules’ firing
strengths:

O3, = w; = (6.19)

Section 6.2

Fuzzy NEURAL
NETWORKS

Figure 6.9 ANFIS
architecture
corresponding to a
two-input first-order
Sugeno fuzzy model
with two rules (see
text). The figure is
adapted from the
work of Jang and Sun
[103].

217

Chapter 6

218

NEURO-FUZZY
SYSTEMS

Layer 4: Each node in this layer has the following function:

Os; = wifi = wi(pix + qiy + ri), (6.20)

where w; is the output of layer 3 and {p;, ¢;,;} is the parameter set
(see Equation 6.15).

Layer 5: There is a single node X in this layer. It aggregates the
overall output as the summation of all the incoming signals:

05 1= szfz - Zw;fl (6'21)

This completes the construction of the network which is seen to
have the same functionality as the equivalent Sugeno model.

Learning in ANFIS

The ANFIS learning algorithm is a hybrid supervised method based
on gradient descent and least-squares methods. In the forward phase,
signals travel forward up to layer 4 and the relevant parameters are
fitted by least-squares. In the backward phase the error signals travel
backward and the premise parameters are updated as in backprop-
agation. More details of the algorithm can be found in [103]. It is
worth noting that the ANFIS network with its learning capabilities
can be built by using the fuzzy toolbox available in the MATLAB
package.

Function Modeling and Time Series Prediction

ANFIS can be applied to non-linear function modeling and time se-
ries prediction. ANFIS gives excellent results on the prediction of
the time series generated by the numerical integration of the Mackey-
Glass delay-differential equation prediction of the time series gener-
ated by the numerical integration of this equation, better than most
other approaches for function approximation such as those based on
neural networks of various types [103] and on standard function fit-
ting methods. The ANFIS system shows excellent non-linear fitting
and generalization capabilities on this example. As well, the num-
ber of parameters and the training time is comparable or less than
what is required by ANN methods, with the exception of the neuro-
fuzzy system NEFPROX, which learns faster and has slightly fewer
parameters, as we saw above.

ANFIS for Neuro-Fuzzy Control

Fuzzy control has been introduced in Chapter 3, Section 5.2.4. The
time evolution of a dynamical system can be described by the fol-
lowing differential equation:

dx
E = F(Xa u)a

where x represents the state of the system and u is a vector of
controllable parameters. The control action is formally given by a
function g that maps the system state into appropriate parameters
for a given control problem:

We have seen in Chapter 3, Section 5.2.4 that the problem of find-
ing optimal control policies for non-linear systems is mathematically
very difficult, while fuzzy approaches have proved effective in many
cases. Since a wide class of fuzzy controllers can be transformed
into equivalent adaptive networks, ANFIS can be used for building
intelligent controllers that is, controllers that can reason with sim-
ple fuzzy inference and that are able to learn from experience in the
ANN style.

6.3 “Co-operative” Neuro-fuzzy Systems

NOTHER LEVEL of integration between artificial neural networks
A and fuzzy systems tries to take advantage of the array of adapta-
tion and learning algorithms devised for the former to tune or create
all or some aspects of the latter, and vice versa.

One important thing to note is that such approaches refrain from
casting the fuzzy system into a network structure, or fuzzifying the
elements of the neural network, unlike other approaches discussed in
Section 6.2.

One could also note that, under this perspective, radial-basis func-
tion networks, a type of neural network with bell-shaped activation
functions instead of sigmoid, might be interpreted as neuro-fuzzy
networks in their own way, simply by considering their activation
functions as membership functions.

Section 6.3

“CO-OPERATIVE”

NEURO-FUZZY
SYSTEMS

219

Chapter 6

220

NEURO-FUZZY
SYSTEMS

6.3.1 Adaptive Fuzzy Associative Memories

A possible interpretation of a fuzzy rule, proposed by Kosko [115],
views it as an association between antecedent and consequent vari-
ables. Kosko calls a fuzzy rule base complying with that semantic
interpretation a fuzzy associative memory (FAM).

Associative Memories

An associative memory consists of memory components of the form
(k,1), where k is a key and i the information associated with it.
Retrieval of a memory component depends only on its key and not on
its place in the memory. Recall is done by presenting a key k*, which
is simultaneously compared to the keys of all memory components.
The information part * is found (or reported missing) within one
memory cycle.

Associative memories can be implemented as neural networks, and
in that case one speaks of neural associative memories: if a key
pattern is presented to a neural associative memory, the activations
of the output units represent the corresponding information pattern.

Fuzzy Associative Memories

When a variable z takes up values in a finite discrete domain X =
{z1,...,2m}, a fuzzy set A with membership function ps: X — [0, 1]
can be viewed as a point v 4 in the m-dimensional hypercube, iden-
tified by the co-ordinates

va = (1a(81), o1 (Em))-
Accordingly, a fuzzy rule R of the form

IF z is A THEN y is B

can be viewed as a function mapping v (a point in [0,1]™) to vp
(a point in the hypercube, say [0, 1]* defined by the domain Y of y).

A fuzzy associative memory is a two-layer network, with one input
unit for each discrete value z; in every domain X of input variables
and one output unit for each discrete value y; in the output variable
domain Y. Activation for all units can range in [0,1] and is to
be interpreted as the degree of membership of the relevant discrete
value in the relevant linguistic value. The weights between input
unit-output unit pairs can range in [0, 1] and the activation function

for output unit u; is

Uj = VY v A Wiy (6.22)

i=1,....,m

A FAM is determined by its connection weight matrix W = (w;j),
withi=1,...,mand j =1,...,s. Such a FAM stores just one rule.
Matrix W is called fuzzy Hebb matrix.

Given an input fuzzy set A in the form of a vector v, and the
corresponding output fuzzy set B in the form of a vector upg, the
fuzzy Hebb matrix storing their association is given by the correlation
minimum encoding [115]

W =vou, wj=uv Au;. (6.23)
The associative recall is given by

u=voW, uj= v v Awj. (6.24)

i=1,...,m

The recall is always correct if h(pa) > h(up), where h(-) is the height
of a membership function, i.e., the maximum degree of membership.
If we restrict our attention to normal fuzzy sets, then the recall will
always be correct.

Summarizing, the concept of a FAM should be nothing really new
to the reader. Once the notational details are clear, one can recognize
that a FAM is simply a matrix-vector representation of a fuzzy rela-
tion or a fuzzy rule, and one which resembles very closely two-layer
neural networks.

FAM Systems
Because combination of multiple fuzzy Hebb matrices into a single
matrix is not recommended lest a severe loss of information is in-
curred, each rule of a fuzzy rule base should be represented by a
distinct FAM. The overall output of the system is then given by the
component-wise maximum of all FAM outputs. Such a fuzzy system,
shown in Figure 6.10, is called a FAM system.

The FAM system is completed by a fuzzification and a defuzzifi-
cation component, and by weights associated with each FAM.

One strength of a FAM’s striking resemblance with a two-layer
artificial neural network is that we can borrow some learning tech-
niques and make FAMs adaptive.

Section 6.3

“CO-OPERATIVE”

NEURO-FUZZY
SYSTEMS

221

Chapter 6

NEURO-FUZZY
SYSTEMS

Figure 6.10 General
scheme of a FAM

222

system.

Learning in Adaptive FAMs

Kosko suggests two approaches to learning for adaptive FAMs. The
first possibility is to learn the weights associated with FAMs’ outputs.
The second and more interesting is to create FAMs completely by
learning.

The learning procedure proposed by Kosko is differential competi-
tive learning, a form of adaptive vector quantization (see Chapter 2,
Section 2.6.2).

Given a data set of examples of inputs and correct output val-
ues, with n input variables and one output variable, the idea is to
build a two-layer network with as many input units as variables (i.e.,
n + 1) and as many output units as the number of possible rules
one could build from the given variable and a predefined partition of
their domains (that is, the user must determine the linguistic values
in advance). To begin with, all the input units are connected to all
the output units and the output units are completely connected by
inhibitory links. The examples in the data set form clusters in the
product space of all variables; the learning process is supposed to
develop prototypes of these clusters; each cluster is interpreted as
an instance of a fuzzy rule and their best matching prototypes are
selected by the learning process. Therefore, the learning procedure
selects the FAMs to be included in the system and assigns them a
weight; if further training data are collected during the use of the
FAM system, the learning process can resume and continue concur-
rently with the operation of the system, by updating the rule weights
or by deleting or adding rules.

6.3.2 Self-Organizing Feature Maps

An approach similar to Kosko’s differential competitive learning is
proposed by Pedrycz and Card [171]. They use a self-organizing
feature map (cf. Chapter 2, Section 2.6.3) with a planar competition
layer to cluster training data, and they provide means to interpret
the result of learning as linguistic rules.

The self-organizing map has an input layer with n units, where n is
the number of variables in a dataset record. The output layer of the
map is a ny X ng lattice of units. Inputs and connection weights are
in [0,1]. It is convenient to specify the connection weights between
input and output units as a three-dimensional matrix W = (w;, i,.),
where iy =1,...,n1,%590=1,...,n0,and 1 =1,...,n.

The result of learning a set of sample records (or vectors) xj =
(Tk1y---ZTkn), k = 1,...,m, shows whether two input records are
similar, i.e., belong to the same class. However, if n is sufficiently
large, the structure of the problem is not usually detected in the two-
dimensional map. Rather, Pedrycz and Card provide a procedure for
interpreting the result using linguistic variables.

After learning, each variable z; can be described by a matrix W,
which contains the weights of the connections between the relevant
input unit u; and all the output units. This constitutes the map for
a single variable, or feature. The procedure consists in specifying
a number of fuzzy sets A(Z) for each variable z;, with membership
function p A(” These membershlp functions are applied to matrix

W, to obtaln an equal number of transformed matrices A“) (W5).

The transformed matrices have higher values in those areas of the
ma_F that are compatible with the linguistic concept represented by

]]lEach combination of linguistic terms is a possible linguistic de-
scription of a cluster of records from the data set. To check a linguis-
tic description for validity, the transformed matrices are intersected,
yielding a matrix D = (d;, ;,), which can be interpreted as a fuzzy
relation among the variables:

D= Ao (Wo. diiy = min {0 (i) (625)

Ji seeesTl

Each linguistic description is a valid description of a cluster if
the relevant fuzzy relation D has a non-empty a-cut D,. If the

Section 6.3

“CO-OPERATIVE”

NEURO-FUZZY
SYSTEMS

223

Chapter 6

224

NEURO-FUZZY
SYSTEMS

variables are separated into input and output variables, according to
the particular problem at hand, then each valid linguistic description
readily translates into an IF-THEN rule.

Compared to Kosko’s FAMs, Pedrycz and Card’s approach is more
computationally expensive, because all combinations of linguistic
terms must be examined in order to produce the desired fuzzy rule
base. Furthermore, the determination of a sufficiently high thresh-
old « for assessing description validity and of the right number of
neurons in the output layer is a problem that has to be individual-
ly solved for every learning problem. However, the advantages are
that the rules are not weighted and that the user-defined fuzzy sets
have a guiding influence on the learning process, leading to more
interpretable results.

6.3.3 Learning Fuzzy Sets for Sugeno-Type Fuzzy Systems

A method for learning the fuzzy sets in a Sugeno-type fuzzy rule-
based system using supervised learning is the one proposed by No-
mura and colleagues [169].

First of all, the assumption is made that linguistic values referred
to by rule antecedents are defined by parameterized triangular fuzzy
numbers, that is, membership functions of the form

_ 9lz=C] _b b
u(x)z{l 275 O-ssasC+y (6.26)

0 otherwise,

where C' is the center and b is the base, or width, of the triangle.
The consequent of a rule just consists of a crisp value wy (this is a
degenerate case of the Sugeno model). The product is used as the
t-norm.

The learning algorithm is based on gradient descent using the half
squared error as the error measure:

m

hse = 2 3" (e — wi)% (6.27)
k=1

where ;. is the value computed by the fuzzy system and y; is the

actual value in the training data set. Since the type of Sugeno model

adopted applies only differentiable operations, both to determine the

degree of truth of the antecedents (product) and to aggregate the

outputs of all the rules (weighted average), the calculation of the

changes for the parameters C' and b of each membership function
and wy of each rule is equivalent to the generalized delta rule (cf.
Chapter 2, Section 2.5) for multilayer neural networks.

The only caution one must have is that the triangular membership
functions are not differentiable in three points. However, it is not too
difficult to devise satisfactory heuristics that overcome this potential
problem.

One disadvantage of this approach is that the semantics of the
linguistic values depend on the rules they appear in. Whereas in
the initial (hand-crafted) rule base identical linguistic terms are de-
scribed by distinct yet identical membership functions, the learning
procedure changes this state of affairs, by modifying the member-
ship functions of each term independently of the others. Such effect
is undesirable, for it obfuscates the interpretation of the resulting
rule base. A way to overcome this difficulty, proposed by Bersi-
ni, Nordvik, and Bonarini [27] would be to make identical linguistic
terms share the same membership function.

6.3.4 Fuzzy ART and Fuzzy ARTMAP

A Fuzzy ART (for “Adaptive Resonance Theory”) neural network
[41] is a self-organizing neural network capable of clustering collec-
tions of arbitrarily complex analog input patterns via unsupervised
learning.

Fuzzy ART Neural Networks

The Fuzzy ART neural network architecture, illustrated in Fig-
ure 6.11, consists of two subsystems, the attentional subsystem and
the orienting subsystem. The attentional subsystem consists of two
layers L1 and Lo. L is called the input layer because input patterns
are applied to it; Lo is called the category or class representation
layer because it is the layer where category representations, i.e., the
clusters to which input patterns belong, are formed. The orienting
subsystem consists of a single node (the reset node), which accepts
inputs from the nodes in Ly and Ly and the input pattern directly;
its output affects the nodes in Lo.

Patterns are assumed to be n-dimensional vectors in [0, 1]"; the
input to the Fuzzy ART network is formed by putting the pattern
and its complement in a 2n-dimensional vector x.

Section 6.3

“CO-OPERATIVE”

NEURO-FUZZY
SYSTEMS

225

Chapter 6

NEURO-FUZZY
SYSTEMS

Figure 6.11 Network

226

architecture of a
Fuzzy ART.

.
1 Orienting
' Subsystem

Attentional

&Jbsygemi H

Layer L,

Each category j in Ly corresponds to a vector w; = (wj1, ..., wj2n)
of weights. All these weights are initially set to one: such a category
is said to be uncommitted. After a category has been chosen to
represent an input pattern, it is referred to as a committed category
or node.

Training a Fuzzy ART means tuning its weights so as to cluster the
input patterns x1, ..., xp into different categories, according to their
similarity. The dataset of patterns is repeatedly presented to the
Fuzzy ART in the given order, as many times as necessary. Training
is considered accomplished when the weights do not change during
a complete dataset presentation. This training scenario is called off-
line training.

Off-line training proceeds as follows: each time an input pattern x;
is presented, the input Tj(x;) to each category node j is calculated
as

if j is uncommitted;

(6.28)

n
Ti(x;) =< & 7 :
j(x:) { [xiAw;] if § is committed.

a+|w;[?

Now, let’s call j* the node in Ls receiving the maximum input from
L17

i* = arg max T;(x;).
j g max j(xi)

Two cases require special actions:

1. if node j* is uncommitted, a new uncommitted node in Loy is
introduced, and its weights are all initialized to one;

2. if node j* is committed but

(i.e., it does not satisfy the vigilance criterion), it is disqualified
by setting T« (x;) = —1 and the next maximum-input node in
L» is considered, until either case 1 is verified or j* satisfies the
vigilance criterion.

At this point, the weights associated with node 5* are modified ac-
cording to the equation

W < Wi A X;.

Quantity p € [0,1] is the vigilance parameter, affecting the res-
olution of clustering: small values of p result in coarse clustering,
whereas larger values result in finer clustering of input patterns. Pa-
rameter « € (0,400) is called the choice parameter.

The A operation in the above equations is the componentwise min-
imum, and could be replaced in principle by any t-norm.

Fuzzy ARTMAP

A Fuzzy ART module generates the categories needed to classify the
input by unsupervised learning, according to a similarity criterion.
A composition of Fuzzy ART modules makes up a Fuzzy ARTMAP
[40], a neuro-fuzzy architecture capable of learning the relationship
between data and user-defined categories (supervised learning).

A Fuzzy ARTMAP, illustrated in Figure 6.12, consists of two Fuzzy
ART modules, ART, and ART}, plus a MAP module. ART, receives
in input the patterns to be classified; ART} receives in input the
m user-defined classes to which the patterns belong, and generates
an internal category layer corresponding to it. The MAP module
connects the two Fuzzy ART modules and tries to minimize the
difference between the classes generated by ART, from data and the
user-defined classes generated by ART}. In other words, the MAP
module builds a mapping from the n inputs to the m classes, possibly
by acting on the vigilance parameter p, of ART,.

Among the main features of Fuzzy ART and Fuzzy ARTMAP are
the minimization of the predictive error, the maximization of code
compression and generalization, the dynamic introduction of new
categories when needed, the possibility of distinguishing exceptions
from noise, and fast convergence. All these features make this type
of neuro-fuzzy architecture very popular in a variety of applications.

Section 6.4

“CO-OPERATIVE”

NEURO-FUZZY
SYSTEMS

227

Chapter 6

NEURO-FUZZY
SYSTEMS

Figure 6.12 Network
architecture of a
Fuzzy ARTMAP.

228

6.4 Applications of Neuro-fuzzy Systems

EURO-FUZZY SYSTEMS are passing from their infancy, where re-
N search on foundations and methodologies predominates over ap-
plications, to maturity, where principles and methodologies become
technology deployed on the field. This passage has been fostered by
several methodological developments that have been described in the
previous sections. In this last section, which roughly follows Chapter
14 of [223], we give an overview of neuro-fuzzy systems applications
that have gained their acceptance on the field, without any ambition
of being comprehensive. In fact, new valuable applications appear
every year, and any attempt at making a survey would soon become
obsolete.

6.4.1 Engineering

Neuro-fuzzy approaches have been used in a variety of engineering
applications, including consumer electronics, control, diagnostics,
manufacture, biotechnology, power generation, chemical processes,
power electronics, communications, and software resource manage-
ment. It is now rather well established that neuro-fuzzy systems can
adequately adapt to changing environmental conditions.

Ishibuchi and colleagues [102] applied an ANFIS-like fuzzy neural
network (Sugeno-type fuzzy rules with gradient descent learning) to
rice tasting, which involves the development of a six-variable fuzzy
relation.

Of particular interest to our synergetic vision of soft computing
is the work reported by Pao [162], where neural networks, fuzzy
logic, and evolutionary algorithms are combined to support the task
of process monitoring and optimization in electric power utilites,
including heat rate improvement and NO emission minimization.

6.4.2 Diagnostics in Complex Systems

Neuro-fuzzy systems have been applied to several problems arising
in the aerospace industry, like control surface failure detection for a
high-performance aircraft [184]. The detection model is developed
using a linear dynamic model of an F-18 aircraft. The detection
scheme makes use of a residual tracking error between the actual
system and the model output to detect and identify a particular fault.
Two parallel models detect the existence of a surface failure, whereas
the isolation and magnitude of any one of the possible failure modes
is estimated by a neuro-fuzzy decision algorithm. Simulation results
demonstrate that detection can be achieved without false alarms
even in the presence of actuator/sensor dynamics and noise.

Typical examples of complex systems whose modeling and moni-
toring is of critical importance are nuclear reactors. Several applica-
tions of neuro-fuzzy techniques have been described in the literature
[224].

6.4.3 Control

Neuro-fuzzy systems have found broad application in control, proba-
bly more so than in any other field. Controlled plants are as diverse
as industrial sewing machines [213] and fusion reactors [250], home
electric appliances [236] like refrigerators, air-conditioning systems,
and welding machines, and consumer electronic devices such as hand-
held video cameras.

6.4.4 Robotics

In the field or robotics, neuro-fuzzy systems have been employed
for supervisory control, planning, grasping, and guidance. Grasping

Section 6.4

APPLICATIONS OF

NEURO-FUZZY
SYSTEMS

229

Chapter 6

230

NEURO-FUZZY
SYSTEMS

[61] has to do with the control of robotic arms with three or more
fingers; the main issue is finding an optimal coordination of the forces
applied to the object, in order to hold it firmly without squeezing
or damaging it. On-line learning ensures that grasp parameters are
continuously adjusted to current conditions.

Approaches based on Fuzzy ART have been used for autonomous
robot guidance and navigation: for instance, Bonarini and Ludovi-
co [30] report on a system that is able to learn a topological map
derived from different robot sensors, and use it to navigate in un-
structured environments. Their approach is based on the definition
and identification of grounded concepts by integrated instances of
Fuzzy ART.

6.4.5 Image Processing

Image processing and pattern recognition are a field in which neural
networks play a prominent role, especially because it naturally lends
itself to massively parallel and connectionist processing of the type
supported by ANNs. However, in recent years, neuro-fuzzy systems
have been designed and investigated to improve on ANN performance
in image processing tasks both at low level, such as in image quality
enhancement and image manipulation, and high level, such as in edge
detection, pattern recognition, medical and environmental imaging.

6.4.6 Finance

ANNs have been used for years by the financial community in in-
vestment and trading because of their ability to identify patterns of
behavior that are not readily available and complex relations among
variables that are hidden by chaos and noise. Much of this work
has never been published for obvious reasons, although generic and
casual accounts of it have been given.

Since the mid 1990s, neuro-fuzzy techniques have been incorpo-
rated into some financial applications. For instance, a neuro-fuzzy
decision support system is described in [96], which tries to deter-
mine whether a given stock is underpriced or overpriced by learning
patterns associated with either condition.

Another neuro-fuzzy system [39] is capable of evaluating portfo-

Section 6.4

lios by using currency exchange rate fluctuations and expert knowl-
edge given in the form of fuzzy IF-THEN rules; the merit of the
neuro-fuzzy system is its ability to automatically fine tune the ex-

APPLICATIONS OF
NEURO-FUZZY

pert knowledge with a backpropagation-like algorithm. SYSTEMS

231

2 Springer
http://www.springer.com/978-3-540-42204-4

Soft Computing

Integrating Evolutionary, Neural, and Fuzy Systems
Tettamanzi, A.G.B.; Tomassini, M.

2001, X, 328 p., Hardcover

ISBEN: 278-3-540-42204-4

