Chapter 10
Palais and Kobayashi Theorems

§1. Infinite-Dimensional Manifolds and Lie Groups

In general, the concept of differentiability (smoothness) does not require
finite dimensionality and can be defined for mappings of open sets of an arbi-
trary linear topological space £. This allows defining smooth manifolds with
charts in € in an obvious way: it suffices to replace open sets of the space
R™ with those of the space £ everywhere in the usual definition of a smooth
manifold (see the addendum). We obtain Hilbert, Banach, locally convex, etc.,
manifolds depending on the type of the space €. All such manifolds are conven-
tionally called infinite-dimensional manifolds, although this term seems not
very appropriate. The theory of such manifolds (under one or another con-
dition on the space £) almost literally repeats the finite-dimensional smooth
manifold theory in its initial part, but, for example, a smooth vector field on
an infinite-dimensional manifold might have no integral curves.

Infinite-dimensional Lie groups are defined as usual, as manifolds G with a
smooth multiplication G xG — G. The Lie algebra IG of each such group is also
defined as usual (this algebra as a linear space is isomorphic to the base space
£). For Banach Lie groups (over a Banach space £), the theory can be well
developed in parallel to finite-dimensional Lie group theory. For more general
groups, the parallelism is violated, and little is known about them. It is even
unknown if there always exist one-parameter subgroups with a given initial
vector, i.e., if the exponential mapping IG — G is always defined (although
a counterexample is also apparently unknown). If the exponential mapping
exists, it is not injective in general and does not cover any neighborhood of
the identity. ,

Of course, the absence of the general theory does not prevent the study of
one or another class of infinite-dimensional Lie groups (moreover, it even stim-
ulates special attention to them). For example, the theory of current groups,
whose elements are smooth mappings X — G of a given compact manifold
X (the case X = S! is the most interesting and well developed) into a given
finite-dimensional group G, has been intensively developed recently. Another
important class of infinite-dimensional non-Banach Lie groups, about which
essentially less is known, consists of diffeomorphism groups lef X of finite-
dimensional smooth manifolds X'.

The Lie algebra of the group Diff X is the algebra aX’ of all vector fields on
X, and the Lie algebras of subgroups of the group Diff X' are therefore subal-
gebras of the algebra aX. As in the case of finite-dimensional Lie groups, it is
natural to expect the existence (probably, with certain conditions) of a bijec-
tive correspondence between subgroups of the group Diff X and subalgebras
of the algebra aX. We consider this question for finite-dimensional subgroups
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(i.e., for subgroups that are usual Lie groups) and finite-dimensional algebras
for which the study can be entirely performed in the framework of finite-
dimensional manifolds.

Of course, the restriction to only finite-dimensional manifolds distorts the
whole picture and excludes the true perspective from the presentation, but
we must follow this line of reasoning. In what follows, we do not explicitly
mention infinite-dimensional manifolds, and their theme continues only sotto
voce. In particular, we do not introduce a topology and smoothness on the
group Diff X.

§2. Vector Fields Induced by a Lie Group Action

If a Lie group G acts smoothly and effectively on a smooth manifold X,
then for any element a € G, the mapping

L,: p—ap, pedk,

is a diffeomorphism of the manifold X onto itself, and the correspondence
L:a — L, is a monomorphic mapping of the group G into the group Diff X
of all diffeomorphisms X — X. Therefore, the group G can be considered as
a subgroup of the (abstract) group Diff X. Under this embedding, each one-
parameter subgroup Bx:t+— exptX, X € [G, of the group G turns out to be a
flow on the manifold X that is defined for all ¢ € R. The vector field generating
this flow is denoted by —X*. (We emphasize the sign: to avoid introducing it,
right-invariant instead of left-invariant fields X should be considered.) As a
derivation of the algebra of smooth functions FX, the field X* acts according
to the formula

(X*f)(p):th_{%f(p)—“f((exptx)p)’ péX, flé FX.

t
Therefore, for ahy elements X and Y of the Lie algebra, we have
(xy* ()= tim (L H0) = O (xR o X))

—lim f(@)—f((exptY)p—f((exp sX)p)+f((exp tY )(exp s X)p)
s—0 st
t—0

i (X V) (exp ¢ X)p) — f((exp £ X)p)— f((exp Y )p)+£ (p)
t—0 2

and therefore
([X*,Y*1f)(p) = (X*Y* f)(p) — (Y*X*f)(p)

_ iy L Uexp X)) (exp tY)p) — f((exp tY)(exptX)p)
t—0 2 ’
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Let t!,...,t™ be normal coordinates in a neighborhood of the identity of
the group G that correspond to a basis X3,..., X, of the Lie algebra g, and
let z1,..., " be local coordinates on X defined in a neighborhood of the point
p and vanishing at p. Further, let f = f(z) be the expression of the function f
in the coordinates z!,...,z™, and let z = x(t) be the vector-valued function
assigning the mapping a +— ap in the coordinates ¢,...,t™ and z!,...,z™.
Because ep = p, the components z*(t), i = 1,...,n, of the latter function have’
the form .
T (t) = cit® + iyt + ...,
where the dots denote terms of degree > 3 with respect to t!,...,#™ (and
¢ty = ct,). Therefore, for any element X = t2X, of the Lie algebra g, we have

F((exp X)p) = F((®)
=10+ (%) #0+ (5 #OPO +-

= 10)+ (55) (e et

62f i Jiasbh
+(a—x;é—m7>p(cacgt t +)+.,

and therefore

X*Np) =

lim f() — f((exptX)p) _ (6f> G X9,
¢

1 a
aa:p

where we write X instead of ¢*. Moreover (see (11) and (12) in Chap. 7), we
have

F(exptX)(exp t¥)p) = F(exp(t(X +¥) + (X, Y]+ Jp),

which also implies (in a clear notation)

H(exp ) et )p) = 10) +t (5% ) bxe+Y?)

+t2[2 (g;) clx, vl
D

+ (-QL) Ly (X4+Y ) (Xb+Y?)
p

ort

o*f i dya vayyb vh
+(5.’ET(9—$7> Ca(:{,(X +Y )(X +Y )]+

where, as above, the dots stand for terms of degree > 3 Wlth respect to t, and
therefore :
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f((exp tX)(exptY)p)

- ety et = 5 (5%) A% Y07+

=t2< ) z[X,Y]a-l—
=—t2( YI*H®) +... .
Therefore,
([X*, Y*]f)(p) - %l_t)% f((exp tX)(exP tY)p) t’; f((exp tY)(exp tX)p)

= (X, Y]*) (D).

This proves that [X,Y]* = [X*,Y*], i.e., that the correspondence X — X*
is a homomorphism of the Lie algebra g = 1G of the Lie group G into the Lie
algebra aX of vector fields on X.

If X* = 0, then exp(—tX)p = p for any point p € X and any ¢ € R;
because of the effectiveness of the action of the group G on the manifold X,
this is possible only for X = 0. Therefore, the homomorphism X — X*isa
monomorphism.

This means that identifying X with X*, we can (and do) consider the Lie
algebra g a subalgebra of the Lie algebra aX. We stress that in contrast to the
whole algebra aX, this subalgebra is finite dimensional. Moreover, it consists
of complete fields, i.e., those fields for which the corresponding maximal flow is
defined for all t € R. It turns out that these properties completely characterize
subalgebras of the Lie algebra aX that are Lie algebras of Lie groups acting
smoothly and effectively on the manifold X. Moreover, this assertion can be
slightly strengthened.

§3. Palais Theorem

A subset S of a Lie algebra g generates g if each subalgebra of the algebra
g containing S coincides with g. Similarly, a set S linearly generates g if it
contains a basis of the algebra g. For each complete field X € aX, the flow-on
X induced by this field is denoted by {p}.

Theorem 10.1. Let g be a subalgebra of the Lie algebra aX, and let G be a
subgroup of the group Diff X generated by all diffeomorphisms of the form o,
where t € R and X is an arbitrary complete field from g. If the Lie algebra g

1. is finite dimensional and
2. is generated by a set consisting of only complete fields,
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then the group G admits a smoothness with respect to which it is a connected
Lie group that acts smoothly and effectively on the manifold X; moreover, the
monomorphism X — X* corresponding to this action is an isomorphism of
the algebra IG onto the subalgebra g.

Proof. According to the Cartan theorem, there exists a connected and sim-
ply connected Lie group G whose Lie algebra [ is isomorphic to the algebra g.
An element of the Lie algebra IG (left-invariant vector field on G) correspond-
ing to the vector field X € g under this isomorphism is denoted by X.

At each point (a, D) € G X X of the direct product G x X, the tangent space

T(a,p) (5 X X) is naturally decomposed into the direct sum of the tangent
spaces Tag and T,X. Therefore, each field X ¢ g defines the vector ()?a, Xp)
in T(a,5)(9 x X) (we recall that g C a X ), and all such vectors form a subspace
Diap) in To (G x X).

Exercise 10.1. Show that the following statements hold:

1. The subspaces P("‘P) smoothly depend on the point (a,p), i.e., they compose

a distribution D on G x X.
2. The distribution D is involutive. : -
[Hint: The vector fields (a,p) = (Xa, Xp) generate a F(G x X)-module aD ]

Therefore, according to the Frobenius theorem, a unique maximal integral

submanifold of the distribution D passes through any point (a, p) € GxX. For !
brevity, these integral manifolds are called leaves. We note that by definition
each leaf is a connected submanifold of the manifold G x X (in general, it is
only immersed). A leaf passing through the point (e, p), where e is the identity
of the group 5, is denoted by £,.
The formula _
a(b,p) = (ab,p), a,beG, peax,

obviously defines a smooth and effective (even free) action of the group G on
the manifold G x X. For any element a € G, the corresponding left translation

La: (5,p) = (ab,p), (b,p) € G x A,
is such that its differential
(@La) b,p): T(o,0) (G x X) = T(ab,p) (G x X)
acts on the vectors (X, X,) by
(4La)@.0)(Xb, Xp) = (AL )oK, Xp) = (X, X,),
where L, is the left translation in the group G. Therefore,
(@La) 6,5) Do) = D(ab,p)

for any point (b,p) € G x X and any element ¢ € G (by definition, this means
that the distribution D is invariant with respect to the action of the group G
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on GXx X). This directly implies that for any leaf £, the submanifold al = L, L
is also a leaf. _

Therefore, the correspondence £ — aL defines the action of the group G
on the set {L} of all leaves. If (a,p) € L, then (e,p) € a~1L and therefore
a”lf = Ly, ie., L =aLly. This proves that any leaf L has the form aL,, where
a € G and p € X. By definition, this means that each orbit of the action of
the group G on the set {L} contains a leaf of the form £,.

We note that because each leaf is a conservative submanifold (a submanifold
Y of a manifold X is said to be conservative if for any smooth manifold Z,
the mapping ¢: Z — Y iff it is smooth as a mapping into X, i.e., a smooth
mapping 10 ¢: Z — X, where 1 ) — X is an immersion), the mapping

L—aLl, (b,p) (abp), (b,p) €L,

of the leaf L onto the leaf aL induced by the left translation L, is a diffeomor-
phism. Let m,: L, — G be the restriction of the projection

prl:ng—>§, (a,q) — a,

to L,. Because the submanifold £, is conservative, the mapping 7, is smooth.

Because (dprl)(a,p)()?a,Xq) = X, for any field X € g and any point
(a,q) € GxX , the differential (dmp)(e,q) of the mapping m, at the point
(a,9) € L, is an isomorphism of the space D, q) = T(a,q)Lp onto the space
T.G. Therefore, the mapping m, is étale, and it is therefore invertible on a
neighborhood V,, of the point (e, p) in £p, i.e., there exists a neighborhood U,
of the identity e of the group G and a smooth mapping

p:Up = Ly 1)
such that 7, 0 ¢, = id on Up.

Lemma 10.1. The neighborhood U, can be chosen one and the same for
all points p e X.

The neighborhood U}, chosen in such a way is denoted by U. It is clear that
we can assume without loss of generality that the neighborhood U is connected.

We prove Lemma 10.1 below in order not to interrupt the proof of the
theorem. -

Let m > 1, and let U™ be the set of all elements of the group G of the
form ay - --- - ap, where a1,...,a,, € U. We suppose that U™ C @,L,.
(Because mp 0 ¢, = id on U, this holds for m = 1.) By definition, the inclusion
U™ C mpLp means that for any element a € U™, there exists a point ¢ € X
such that (a,q) € Ly, i.e., L, = aL,. But because 740 g = id on U, we have
U C 7Ly and therefore

aU C a(mgLq) = 7pLyp.
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Therefore, because the element a € U™ is arbitrary, we have U m+l — g™y C
mpLp. By induction, this proves that U™ C mpLp for any m > 1 and there-
fore (because the group G is generated by the neighborhood U) G = mpL,.
Therefore, the mapping p: Ly — G is surjective.

In particular, this implies that for any element a € §, we have a point of
the form (a~!,q), where ¢ € X, in the leaf £,. Moreover, (e,q) € alp and
therefore £, = aL,. Because the leaves aL, are (as we know) all leaves of the
distribution D, this proves that any leaf of the distribution D has the form
Ly, p € X, i.e., the mapping p — L, of the manifold & onto the set {Lp} is
surjective.

We now more carefully consider the open set V,, = U (in £, and therefore
inm, 17 = £, N (U x X)) that is diffeomorphically projected on U. Let (a,9)
be a point in £, such that mp(a,q) € U but (a,q) ¢ V, (i.e., such that a € U
but (a, q) # ¢p(a))- Because the manifold G x X is Hausdorff, the manifold £,
is also Hausdorff (prove this!), and the points (a, ¢) and ¢,(a) therefore admit
disjoint neighborhoods @; and O C Vj, in L. Because mp(a, q) = mp(pp(a)),
we can assume without loss of generality that m,O; = 7,02, and therefore
01NV, = 0 (because the mapping 7, is injective on V;). Therefore, each point
(a,q) € ;U that does not belong to V;, admits a neighborhood in £, that
does not intersect V,. This means that the set V, is not only open but also
closed in 7, 1. Because the set V, (being diffeomorphic to the neighborhood
U) is connected, this proves that the set V; is a connected component of the
set m, y.

This component is characterized by the fact that (e,p) € V. Any other
component of the set n, 'U contains a point of the form (e,q) and therefore
has the form V,, where g is a point for which £, = L,. Because Vg is also
diffeomorphically projected on U, this proves that the mapping m, ezactly
covers the neighborhood U.

For any point a € G, the set aU is its neighborhood, and because any
connected component of the set 7, ! (aU) has the form aVg, where (a,q) € Lp,
and, moreover, mplqv, = a o Tqlv, © a~!, the mapping 7, regularly covers this
neighborhood. Therefore, the mapping 7, is a covering. (We recall that the
leaf £, as well as the group G, is a connected manifold.) Because the group
G is simply connected by assumption and therefore has only trivial coverings,
the mapping p is a diffeomorphism.

In particular, this means that any leaf £ = L, contains only one point of
the form (e, q), ¢ € X (namely, the point (e, p)), i.e., the mapping p — Lp of
the manifold X onto the set {L} of leaves of the distribution D is bijective.

Therefore, the action of the group G on the set {L} is transported to X.
(For any element a € G and any point p € X, the point ap € X, by definition,
is a point q in X such that £, = aL,.) To study this action, we need to make
the choice of the neighborhood U more precise and describe the mappings ¢,
explicitly.
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Lemma 10.2. The Lie algebra g admits a basis
X1, .., Xm, (2)
consisting of smooth vector fields.

We also defer the proof of Lemma 10.2.
This lemma implies that the formulas

Bt X1+ +tmXm) =expt1 Xy - -+ - exptmXm,
Pt1 X1+ + tmXm) = @m0+ 0
correctly define certain mappings
ﬁ:g—>§ and p:g—G.

It is easy to see that the mapping § is étale at the point 0, i.e., this point
admits a neighborhood U(® in the algebra g on which the mapping 8 is a
diffeomorphism onto a certain neighborhood U of the identity of the group
G (we see below that the latter neighborhood is the neighborhood U, for
any point p € X; therefore (as the notation hints), we can consider it the
neighborhood U in Lemma. 10.1).

Lemma 10.3. The formula
vp(a) = (a,((poB)a)p), peX, acl, 3)

defines a smooth mapping
op:U = Ly,

We also defer the proof of this lemma.

Because ¢, (e) = (e, p) and mpop, = id, Lemma 10.1 is a direct consequence
of Lemma 10.3 (and the mappings ¢, are mappings (1)).

If ¢ = ((p o B")a)""'p, then pg(a) = (a,p) and hence (a,p) € Lq, i,
(e,p) € a~'L,. Therefore, L, = aL,, i.e., ¢ = ap. This means that the action

GxX =X, (ap)—rap (4)

on U x X is given by
ap=((poBH)a)'p,
which dlrectly implies that this action is smooth (on U and therefore on the
whole group G).
Moreover, we see that for and a = B(t1 X + - -+ +tmXm) € U, the formula
Lo =3 0 rropyXm

holds for the mapping L,:p + ap. In particular, this shows that L, € G.
Because the neighborhood U generates a connected group G, this inclusion
also holds for any element a € G. Therefore, the formula
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L(a)=La, a€g,

assigns a mapping _
L:G—>G
(which is obviously homomorphic).

For a = exp t)?i, we have L, = ¢ Xi By definition, this means that the
monomorphism IG — aX induced by action (4) is given by X — X (on
the base vectors and therefore everywhere), i.e., it coincides with the initial
isomorphism IG — g. Therefore, first, all vector fields X € g are complete,
and, second, _

L(exptX) = o *
for each such field. Because all diffeomorphisms cpf ,t € R, X € g, generate
the group G by assumption, this implies that the homomorphism L is an
epimorphism (and therefore generates the isomorphism A: G/K — G, where
K =KerL). _

IfexptX € K for all t € R, then X = id; this is possible only if X = 0.
Therefore, [K = 0, and K is hence a discrete invariant subgroup of the group
G. In particular, the subgroup K is closed, and the quotient group G/K is
therefore a Lie group acting smoothly on X (and locally isomorphic to the
Lie group Q-) Because the isomorphism )\ transports the smoothness from G /K
to G, we obtain a smoothness on the group G that satisfies the conditions of
Theorem 10.1.

Exercise 10.2. Show that the smoothness on G in Theorem 10.1 is unique.

To complete the proof of Theorem 10.1, it remains to prove Lemmas 10.2
and 10.3 (as already noted, Lemma 10.3 implies Lemma 10.1).

Lemma 10.4. For any complete vector fields X1,...,Xr € 8 and for any
point p € X, the formula

yo(t) = (exptr Xy - - - - exptp X, (@ 0+ 0 ¢} )p)s (5)
where t = (t1,...,tx) € R¥, defines a smooth mapping p: R* - L,. ‘

Proof. Because the submanifold £, is conservative, it suffices to prove that
Y5(t) € Ly for all t € RF. ’ :

We first let k = 1. In this case, 7, is a curve t — (B(t), ¢(t)), Where
B(t) = exptX, p(t) = ©¥ (p), and X = Xi, passing through the point (e,p)
for t = 0. Moreover, Y,(t) = (B(t), p(t)), where B(t) = Xp) and $(t) = Xo(t),
and therefore 4,(t) € Do) for any ¢ € R. This means that v, is an integral
curve of the distribution D. Therefore, ¥,(t) € L, for allt € R.

We suppose that Lemma 10.4 is already proved for the fields X, ..., Xk-1,
k> 1, and let _ o

a=expt1 X3+ - exptr—1Xk—1,

Xi—
g=(ppt o -0t )p.
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Then (a,q) € L, and therefore al, = L,. On the other hand, applying the
just proved case where k = 1 to the field X}, and the point g, we obtain

(exp tx Xk, 91" (q)) € Lo-
Therefore, v, (t) € L,. O
Proof (of Lemma 10.3). Mapping (5) constructed for basis (2) (for k = m)
is connected with mapping (3) by
fyngopoﬁox_l on U,
where x: g — R™ is the coordinate isomorphism corresponding to basis (2).0

We note that Lemma 10.2 is used in this proof. Therefore, everything is
reduced to the proof of this lemma, for which we need the following elementary
algebraic assertion.

Lemma 10.5. Let a Lie algebra g be generated by a set S. If S is closed
with respect to multiplication by numbers (i.e., tX € S for any X € S and
t € R) and if

edXy ¢ § for X,Y € S, (6)

then S linearly generates g.
Proof. Let S be the linear span of the set S. Because
t2d Xy _y
e
we have [X,Y] € S for any X,Y € S and therefore for any X,Y € S (because

of linearity). Therefore, S is a subalgebra of the Lie algebra g that contains
S, and then S =g. O

[X,Y] = (ad X)Y = lim

Proof (of Lemma 10.2). Lemma 10.2 is equivalent to the assertion that
the set S of all complete fields from g (which generates the Lie algebra g by
assumption) linearly generates g. Because this set is obviously closed with
respect to multiplication by numbers, it therefore suffices (by Lemma 10.5) to
prove that the set S satisfies condition (6).

Let X, Y € S,t€R, and let ,

B(t) = exp X exp tY exp(—X),
() = (o o0 oi)p.
Because B(t) = inty{exp t?), where a = exp X, and therefore
B(t) = expt(Ad a)Y =exptexd 5(-}7,

we have 3(0) = Z,, where Z = ¢4 XY’; we recall that Ad a = [(int,)) by defini-
tion. But because the inclusion (3(t), ¢(t)) € L, holds for any ¢ € R according
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to Lemma 10.4, we have (3(0), $(0)) € D(e,p) and therefore (Z,, $(0)) € Dee,p)s
i.e., ¢(0) = Z,. By the arbitrariness of the point p, this means that the flow
{off o Y 0 X} is generated by the vector field Z. Therefore, this field is

‘complete. Moreover, because (Ze, Zy) € De(e,p) for any point p € X, the field
Z belongs to g by the definition of the subspaces D(e,p)- Being a complete
field from g, the field Z liesin S. O

Therefore, Theorem 10.1 is completely proved. O

Remark 10.1. In proving Theorem 10.1, we showed that any subalgebra g
of the Lie algebra aX satisfying conditions 1 and 2 of Theorem 10.1 consists
of complete vector fields.

Theorem 10.1 is known as the Palais theorem.

§4. Kobayashi Theorem

Exercise 10.3. Let G be a group, and let Go be its invariant subgroup. Show
that if

1. thegroup Go is a Lie group and
2. all inner automorphisms

inte:z > aza”!, a,z€G

are smooth mappings on Go,

then there exists a unique smoothness on G with respect to which the group G is a
Lie group whose component of the identity is Go.

The proof of the following variant of the Palais theorem, which is known
as the Kobayashi theorem, is based on this assertion.

Theorem 10.2. Let G be a subgroup of the diffeomorphism group of a
manifold X, and let S be the set of all complete fields X € aX such that
X €G foranyteR. If S generates a finite-dimensional Lie subalgebra g in
the Lie algebra aX, then S = g, and the group G admits a unique smoothness
with respect to which it is a Lie group that acts smoothly and effectively on
the manifold X; moreover, the monomorphism X + X* corresponding to this
action is an isomorphism of the Lie algebra IG onto the subalgebra g.

Proof. Let Go be a subgroup of the group G generated by all diffeomor-
phisms of the form X, where t € R and X is an arbitrary (complete) field
from g. Because the Lie algebra g obviously satisfies conditions 1 and 2 of
Theorem 10.1, the group Gy admits the smoothness in this theorem (and
according to the assertion in Exercise 10.2, this smoothness is unique). Ac-
cording to Remark 10.1, all fields from g are complete; because they generate
one-parameter subgroups of the group G, we have g C S and therefore S = g.
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For any flow {¢X}, X € g, and any diffeomorphism ¢ € G, the diffeomor-
~ phism p~oy;¥ oy composes a complete flow and is contained in G. Therefore,
v~ LowX op € Go. Because diffeomorphisms of the form ¢ generate the sub-
group Go, this implies ¢~1Gop C Go, i-e., the subgroup Gy is invariant.

Exercise 10.4. Show that condition 2 of Exercise 10.3 holds for the invariant
subgroup Go.

Therefore, there exists a unique smoothness on G with respect to which
the group G is a Lie group whose component of the identity is Go. An obvious
verification shows that this smoothness satisfies all conditions of Theorem
10.2. 1

§5. Affine Automorphism Group

We apply the obtained general theorems to groups that arise in differential
geometry.

Proposition 10.1. The group AfX of affine automorphisms of an ar-
birary connected affine connection space X admits a natural smoothness with
respect to which it is a Lie group acting smoothly on X. In the case where the
space X is géodesically complete, the Lie algebra of the group Aff X is the Lie
algebra aff X of affine fields.

Proof. According to Proposition 8.2, the group Aff X satisfies the condition
of Theorem 10.2. If the space X is geodesically complete, then according to
Proposition 8.3, the corresponding Lie algebra g coincides with the algebra
aff X. O

§6. Automorphism Group of a Symmetric Space

Corollary 10.1. The group Aut X of automorphisms of an arbitrary sym-
metric space X is a Lie group with the Lie algebra 9X.

Proof. According to Proposition 6.1, the group Aut A" coincides with the
group Aff X', and the Lie algebra 0X coincides with the Lie algebra aff X. In
addition, according to the assertion in Exercise 5.1, the space X is geodesically
complete. [J

Exercise 10.5. Let 8:R — X be a curve in a punctured symmetric space X
that passes through a point po for ¢ = 0. Prove that the following assertions are
equivalent:

1. The curve B is a morphism of symmetric spaces (where R is considered as a

symmetric space with the multiplication s - t = 2s — t; see Exercise 5.6).
2. The curve 3 is an integral curve of a certain derivation X € sX.
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3. For the flow {p{} induced by the field X, we have

<p§t = Sg(t) © Spo, tER. )

4. The curve f is a geodesic of the canonical connection.
5. Parallel translations along the curve g3 are differentials of the mappings ¢:.

§7. Translation Group of a Symmetric Space

Proposition 10.2. The translation group Trans X of an arbitrary sym-
metric space X is a connected subgroup of the Lie group Aut X. Its algebra
Lie trans X is the subalgebra of the Lie algebra dX generated by all fields
X esX.

(Compare this with Proposition 9.3.)

Proof. The subalgebra g of the Lie algebra 02X generated by all fields X €
sX satisfies conditions 1 and 2 of Theorem 10.1, and the corresponding group
G is therefore a connected Lie group acting smoothly on X. In this case,
according to (7), the group G is generated by all possible transformations
of the form sg) © spy, Where po is a distinguished point of the punctured
symmetric space X and §:R — X is an arbitrary geodesic of the space &
passing through the point po for t = 0. Therefore, G C Trans X.

To prove the converse inclusion, for any point p € X, we consider the
set W), of all points ¢ € X for which s;o0s, € G. If pop € Wp and U is
an arbitrary normal neighborhood of the point pg, then the transformation
54 0 Sp, belongs to G because any point ¢ € U has the form (). Moreover,
Spo © Sp € G by assumption. Therefore, sq 0 5, = 8p 0 8p, 0 8p, 08¢ € G and
hence U C W,. Therefore, an arbitrary normal neighborhood of each point
from W, is contained in Wj,, which directly implies (compare with the proof of
Proposition 8.3) that the set W, is open and closed in X'. Because the set W),
is not empty (because p € W},) and the space X is connected by assumption,
this proves that W, = X, i.e., sq 0 s, € G for any point ¢ € X, and therefore
Trans X C G.

Therefore, Trans X = G, which obviously proves Proposition 10.2. O

We note that the Lie algebra trans X' is obviously symmetric and is the
minimal symmetric Lie algebra with the socle sX.
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