
At the time of the birth of general relativity (GR), experi-
mental confirmation was almost a side issue. Einstein did
calculate observable effects of general relativity, such as the
deflection of light, which were tested, but compared to the
inner consistency and elegance of the theory, he regarded
such empirical questions as almost peripheral. But today,
experimental gravitation is a major component of the field,
characterized by continuing efforts to test the theory’s pre-
dictions, to search for gravitational imprints of high-energy
particle interactions, and to detect gravitational waves from
astronomical sources.

The modern history of experimental relativity can be
divided roughly into four periods: Genesis, Hibernation, a
Golden Era, and the Quest for Strong Gravity. The Genesis
(1887–1919) comprises the period of the two great experi-
ments that were the foundation of relativistic physics – the
Michelson–Morley experiment and the Eötvös experiment –
and the two immediate confirmations of GR – the deflection
of light and the perihelion advance of Mercury. Following
this was a period of Hibernation (1920–1960) during which
relatively few experiments were performed to test GR, and at
the same time the field itself became sterile and stagnant,
relegated to the backwaters of physics and astronomy.

But beginning around 1960, astronomical discoveries
(quasars, pulsars, cosmic background radiation) and new
experiments pushed GR to the forefront. Experimental
gravitation experienced a Golden Era (1960–1980) during
which a systematic, worldwide effort took place to under-
stand the observable predictions of GR, to compare and
contrast them with the predictions of alternative theories 
of gravity, and to perform new experiments to test 

them. The period began with an experiment to confirm the
gravitational frequency shift of light (1960) and ended with
the reported decrease in the orbital period of the binary pul-
sar at a rate consistent with the general relativity prediction
of gravity-wave energy loss (1979). The results all sup-
ported GR, and most alternative theories of gravity fell by
the wayside (for a popular review, see Will 1993a).

Since 1980, the field has moved toward what might be
termed a Quest for Strong Gravity. The principal figure of
merit that distinguishes strong from weak gravity is the
quantity � � GM/Rc2, where G is the Newtonian gravita-
tional constant, M is the characteristic mass scale of the
phenomenon, R is the characteristic distance scale, and c is
the speed of light. Near the event horizon of a non-rotating
black hole, or for the expanding Universe, � � 0.5; for neu-
tron stars, � � 0.2. These are the regimes of strong gravity.
For the solar system, � �10�5; this is the regime of weak
gravity. Figure 1 displays these regimes and various phe-
nomena of interest. Notice that the strong-gravity regime
(near the diagonal line corresponding to � � 0.5) encom-
passes Planck-scale physics where quantum gravity and
grand unification of the interactions are important, all the
way to the observable universe.

Until the discovery of the binary pulsar, the empirical
foundation of general relativity rested on tests in the weak-
field regime. In Chapter 15, Kenneth Nordtvedt Jr. surveys
experimental tests of general relativity primarily from the
point of view of Solar System and laboratory experiments.
While most of these focus on weak-gravity effects, some
can be viewed as strong-gravity tests, primarily experi-
ments to search for the relics of Planck-scale physics in
fundamental interactions, as might show up in tests of the
equivalence principle.
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Today, much of the focus has shifted to experiments
which can probe the effects of strong gravitational fields
(see Figure 1). At one extreme are the strong gravitational
fields associated with Planck-scale physics. Will unification
of the forces, or quantization of gravity at this scale leave
observable effects accessible by experiment, even those 
that themselves are performed under weak-field conditions?
Dramatically improved tests of the equivalence principle or
of the “inverse square law” are being designed, to search
for or to bound the imprinted effects of Planck-scale phe-
nomena (see Chapter 15). At the other extreme are the
strong fields associated with compact objects such as black
holes or neutron stars or with the universe as a whole.
Astrophysical observations and gravitational-wave detectors
are being planned to explore and test GR in the strong-field,
highly dynamical regime associated with the formation and
dynamics of these objects.

In this chapter, we shall focus on tests of general relativ-
ity involving strong gravity and gravitational radiation.

These tests mainly involve black holes, neutron stars, and
cosmology, and make essential use of gravitational radia-
tion as a carrier of information about strong gravity. Even
though the gravitational waves that bathe the Earth are
extraordinarily weak (and are themselves describable by
the weak-field limit of general relativity), they often carry
the imprints of strong-gravity phenomena occurring near
black holes, neutron stars, or from the early Universe.

We begin (Section 1) by defining the distinction between
strong and weak gravity, and providing (Section 2) an intro-
duction to the general relativistic description of systems
involving compact relativistic objects and gravitational radi-
ation. In Section 3 we focus on tests of gravitational theory
using stellar binary systems of compact objects, the most
famous of these being the binary pulsar PSR 1913�16.
Section 4 focuses on the likely direct detection of gravita-
tional radiation by Earth-based antennae in the first decade
of the twenty-first century, and the possible tests of gravita-
tional theory that could emerge. In Section 5 we briefly
discuss other tests of strong gravity.

We use the standard “geometrized” units of general rela-
tivity textbooks (Misner et al. 1973), in which Newton’s
gravitational constant G and the speed of light c are unity. In
these units, mass and energy have units of length, with the
basic scale of length set by the solar mass: ML �1.476 km,
and velocities are dimensionless, representing fractions of
the speed of light. In the few places where indices are used,
Greek indices will run over the four spacetime dimensions,
{0, 1, 2, 3}, with the 0 denoting time; while Roman indices
will run only over spatial indices {1, 2, 3}.

Rather than provide complete references to work done 
in this field, we will refer the reader where possible to the
appropriate review articles and monographs, specifically 
to Theory and Experiment in Gravitational Physics (Will
1993b), hereafter referred to as TEGP. References to TEGP
will be by chapter or section, e.g. “TEGP 8.9”.

1 STRONG-FIELD SYSTEMS IN GENERAL
RELATIVITY

1.1 Defining weak and strong gravity

In the Solar System, gravity is weak, in the sense that the
Newtonian gravitational potential

(1)

is much smaller than unity (recall G � c � 1) every-
where. So, too, are the quantities v2 and p/�, where v is a
typical velocity of bodies in the Solar System, and where 
p and � are typical pressure and density, respectively, inside
Solar System bodies. In fact U � v2 � p/� � � . Throughout
the Solar System, the metric of spacetime deviates only

U(x, t) � �  �(x�, t)�x � x� ��1d3x�
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Figure 1 Strong v. weak gravity. Representative phenomena in
gravitational physics are indicated by filled circles; other illus-
trative phenomena where gravitation plays little role are shown
by filled squares and italics. Phenomena above the diagonal
line are unobservable, because they take place inside black
holes. Phenomena close to the diagonal line are in the strong-
gravity regime.



slightly from its flat-spacetime Minkowski form �	� �
diag(�1,1,1,1). By expanding the metric about this form 
in powers of the small parameter �, one can obtain the
Newtonian limit of general relativity at lowest order, and
the first “post-Newtonian”, or “1PN”, corrections to
Newtonian gravity. The metric in such an expansion takes
the schematic form

(2)

where the first terms beyond the Minkowski metric and the
Newtonian potential at O(�2) in g00, O(�3/2) in g0i, and O(�)
in gij, respectively, are the post-Newtonian terms. It turns
out that, in a wide range of alternative theories of gravity,
these post-Newtonian terms vary from one theory to the
next only in the values of certain numerical coefficients. 
By inserting arbitrary dimensionless parameters in place 
of the numerical coefficients, one obtains a parametrized
framework that encompasses many theories at once, and is a
powerful tool for analyzing Solar System experiments. This
“parametrized post-Newtonian” framework is described in
more detail in Chapter 15; see also TEGP 4.

In strong-field systems, this simple 1PN approximation
is no longer appropriate, for several reasons:

• The system may contain strongly relativistic objects, such
as neutron stars or black holes, near and inside which � � 1,
and the post-Newtonian approximation breaks down.
Nevertheless, under some circumstances, the orbital motion
may be such that the interbody potential and orbital veloci-
ties still satisfy U � v2 ��1 so that a kind of post-
Newtonian approximation for the orbital motion might
work; however, the strong-field internal gravity of the bod-
ies could (especially in alternative theories of gravity) leave
imprints on the orbital motion.

• The evolution of the system may be affected by the emis-
sion of gravitational radiation. The 1PN approximation
does not contain the effects of gravitational radiation
back-reaction. In the expression for the metric given in
eqns (2), radiation back-reaction effects do not occur until
O(�7/2) in g00, O(�3) in g0i, and O(�5/2) in gij. Consequently,
in order to describe such systems, one must carry out a
solution of the equations substantially beyond 1PN order,
sufficient to incorporate the leading radiation damping
terms at 2.5PN order.

• The system may be highly relativistic in its orbital
motion, so that U � v2 � 1 even for the interbody field
and orbital velocity. Systems like this include the late
stage of the inspiral of binary systems of neutron stars or
black holes, driven by gravitational radiation damping,

prior to a merger and collapse to a final stationary state.
Binary inspiral is one of the leading candidate sources for
detection by a worldwide network of laser interferometric
gravitational-wave observatories nearing completion. A
proper description of such systems requires not only
equations for the motion of the binary carried to extraor-
dinarily high PN orders (at least 3.5PN), but also requires
equations for the far-zone gravitational waveform mea-
sured at the detector, that are equally accurate to high PN
orders beyond the leading “quadrupole” approximation.

Of course, some systems cannot be properly described
by any post-Newtonian approximation because their behav-
ior is fundamentally controlled by strong gravity. These
include the imploding cores of supernovae, the final merger
of two compact objects, the quasinormal-mode vibrations
of neutron stars and black holes, the structure of rapidly
rotating neutron stars, and so on. Phenomena such as these
must be analyzed using different techniques. Chief among
these is the full solution of Einstein’s equations via numeri-
cal methods. This field of “numerical relativity” is a rapidly
growing and evolving branch of gravitational physics,
whose description is beyond the scope of this article (see,
e.g., the articles in Marck and Lasota 1997).

1.2 Compact bodies and the strong equivalence
principle

When dealing with the motion and gravitational-wave
generation by orbiting bodies, one finds a remarkable sim-
plification within general relativity. As long as the bodies
are sufficiently well separated that one can ignore tidal
interactions and other effects that depend upon the finite
extent of the bodies (such as their quadrupole and higher
multipole moments), then all aspects of their orbital behav-
ior and gravitational-wave generation can be characterized
by just two parameters: mass and angular momentum.
Whether their internal structure is highly relativistic, as in
black holes or neutron stars, or non-relativistic as in the
Earth and Sun, only the mass and angular momentum are
needed. Furthermore, both quantities are measurable in
principle by examining the external gravitational field of the
bodies, and make no reference whatsoever to their interiors.

Damour (1987) calls this the “effacement” of the bodies’
internal structure. It is a consequence of the strong equiva-
lence principle (SEP), which is satisfied by general relativ-
ity, but is violated by almost all other gravitational theories,
including scalar–tensor gravity (Brans–Dicke theory and its
generalizations). SEP states that (i) all bodies fall in an
external gravitational field with the same acceleration
(modulo tidal interactions), (ii) the outcome of any local
test experiment is independent of the velocity of the (freely
falling) apparatus, and (iii) the outcome of any local test

gij � �ij � O(�)

g0i � O(�3/2)

g00 ��1 � 2U(x, t) � O(�2)
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experiment is independent of where and when in the
Universe it is performed. The term “bodies” here includes
everything from laboratory-sized objects to black holes;
and the term “experiments” includes everything from elec-
tromagnetic experiments to measurements of Newton’s G.

General relativity satisfies SEP because it contains one,
and only one, gravitational field, the spacetime metric g	�.
Consider the motion of a body in a binary system, whose
size is small compared to the binary separation. Surround
the body by a region that is large compared to the size of
the body, yet small compared to the separation. Because of
the general covariance of the theory, one can choose a
freely falling coordinate system which co-moves with the
body, whose spacetime metric takes the Minkowski form at
its outer boundary (ignoring tidal effects generated by the
companion). There is thus no evidence of the presence of
the companion body, and the structure of the chosen body
can be obtained using the field equations of GR in this
coordinate system. Far from the chosen body, the metric is
characterized by the mass and angular momentum (assum-
ing that one ignores quadrupole and higher multipole
moments of the body) as measured far from the body using
orbiting test particles and gyroscopes. These asymptotically
measured quantities are oblivious to the body’s internal
structure. A black hole of mass m and a planet of mass m
would produce identical spacetimes in this outer region.

The geometry of this region surrounding the one body
must be matched to the geometry provided by the compan-
ion body. Einstein’s equations provide consistency condi-
tions for this matching that yield constraints on the motion
of the bodies. These are the equations of motion. As a result
the motion of two planets of mass and angular momentum
m1, m2, J1 and J2 is identical to that of two black holes of
the same mass and angular momentum (again, ignoring
tidal effects).

This effacement does not occur in an alternative gravi-
tional theory like scalar–tensor gravity. There, in addition
to the spacetime metric, a scalar field � is generated by
the masses of the bodies, and controls the local value of the
gravitational coupling constant (i.e., G is a function of �).
Now, in the local frame surrounding one of the bodies in
our binary system, while the metric can still be made
Minkowskian far away, the scalar field will take on a value
�0 determined by the companion body. This can affect the
value of G inside the chosen body, alter its internal struc-
ture (specifically its gravitational binding energy), and
hence alter its mass. Effectively, each mass becomes several
functions mA(�) of the value of the scalar field at its loca-
tion, and several distinct masses come into play; inertial
mass, gravitational mass, “radiation” mass, and so on. The
precise nature of the functions will depend on the body,
specifically on its gravitational binding energy, and as a
result, the motion and gravitational radiation may depend

on the internal structure of each body. For compact bodies
such as neutron stars and black holes, these internal struc-
ture effects could be large; for example, the gravitational
binding energy of a neutron star can be 40% of its total
mass.

At 1PN order, the leading manifestation of this effect is
a violation of the equality of acceleration of massive bodies
such as the Earth and the Moon. This effect, known as the
Nordtvedt effect, has been tested by lunar laser ranging (see
Chapter 15 or TEGP 8 for further discussion).

This is how the study of orbiting systems containing
compact objects provides strong-field tests of general rela-
tivity. Even though the strong-field nature of the bodies is
effaced in GR, it is not in other theories, thus any result in
agreement with the predictions of GR constitutes a kind of
“null” test of strong-field gravity.

2 MOTION AND GRAVITATIONAL
RADIATION IN GENERAL RELATIVITY

2.1 Introduction

The motion of bodies and the generation of gravitational
radiation are long-standing problems that date back to the
first years following the publication of GR, when Einstein
calculated the gravitational radiation emitted by a labora-
tory-scale object using the linearized version of GR, and de
Sitter calculated N-body equations of motion for bodies in
the 1PN approximation to GR. It has at times been contro-
versial, with disputes over such issues as whether Einstein’s
equations alone imply equations of motion for bodies
(Einstein, Infeld, and Hoffman demonstrated explicitly that
they do, using a matching procedure similar to the one
described in Section 1.2), whether gravitational waves are
real or are artifacts of general covariance (Einstein waffled;
Bondi and colleagues proved their reality rigorously in the
1950s), or even over algebraic errors (Einstein erred by a
factor of two in his first radiation calculation; Eddington
found the mistake). Shortly after the discovery of the binary
pulsar PSR 1913 �16 in 1974, questions were raised about
the foundations of the “quadrupole formula” for gravita-
tional radiation damping (and in some quarters, even about
its quantitative validity). These questions were answered in
part by theoretical work designed to shore up the founda-
tions of the quadrupole approximation, and in part (perhaps
mostly) by the agreement between the predictions of the
quadrupole formula and the observed rate of damping of
the pulsar’s orbit (see Section 3.1). Damour (1987) gives 
a thorough review of this subject.

The problem of motion and radiation has received
renewed interest since 1990, with proposals for the construc-
tion of large-scale laser interferometric gravitational-wave
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