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LOGIC, TRUTH AND NUMBER:
THE ELEMENTARY GENESIS OF ARITHMETIC

Abstract. Following Paul Gilmore’s LK-style natural deduction based set
theories, we present a first order logic of type-free abstraction which employs
“¢ruth value gaps” to maintain consistency. By adjoining LK bivalence axioms
governing the definitions of numeric concepts, we deduce arithmetic from a com-
bination of first order logic + type-free abstraction.

0. FIRST-ORDER NUMBER-THEORETIC LOGICISM
0.1. Truth and Number

Crispin Wright (71983) articulates a position he calls “number-theoretic logi-
cism [1]”, the claim that arithmetic is derivable from logic in the strong sense
that:

it is possible to so define arithmetic concepts in terms of logical ones
so that every statement of number-theory has a content preserving
transcription in terms of a purely logical vocabulary, and every axiom
or theorem of number theory can be so transcribed into a theorem of
logic. (page 137)

Several authors (Wright 1983, Boolos 1993, Demopoulos and Bell
1993) have reconstructed Frege’s Grundlagen program so that the required
derivations of Peano’s postulates are obtained from a consistent fragment of
the Grundlagen system based upon Frege’s principle of equality for the nat-
ural numbers, referred to as “Hume’s principle” in Boolos 1993. However, it
is commonly agreed that the reconstruction fails to logicize number-theory
in the required sense due to the apparently extra-logical nature of Hume’s
principle.

This paper demonstrates the truth of number-theoretic logicism by de-
riving first-order Peano Arithmetic from a purely logical first-order theory.
Although the present program is not a reconstruction of Frege’s, it deploys
some of Frege’s central insights concerning the role of definition in the de-
velopment of arithmetic and the role of the bound variable of “set”, or more
neutrally, “relational”, abstraction in the formalization of mathematical def-
inition. By bringing together techniques from several branches of modern
logic, notably analytic proof theory, recursion theory, the lambda calculus,
programming language semantics and truth theory, we are able to deploy
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relational abstraction in a first-order setting in such a way that the arith-
metic of the natural numbers is derived as a consequence of instances of the
principle of bivalence applied to the definition of arithmetical concepts.

The idea that the mathematical practice of defining concepts can be an-
alyzed in terms of the operation of relational abstraction and the cognate
logical device of the bound variable of abstraction is a theme which unifies
the logicist programs of Frege and Russell. The analysis of mathematical
definition as relational abstraction is central to the logicist derivations of
mathematics because definition was one of the twin pillars upon which the
derivation was to be based; mathematics was to be formally derived from
the definition of mathematical concepts and logical laws by logical inference
alone. Relational abstraction and conversion were to effect the introduction
and elimination, respectively, of definitions in the process of deduction, so
that classical truth-preserving inferences could be applied to the conceptual
contents of those definitions. Although logicism is now commonly regarded of
at most historical interest, the theme of assimilating mathematical definition
to the device of the bound variable of abstraction has continued, through the
foundational programs of Church (1941), Curry (1930), Fitch (1948) and
Gilmore (1980, 1986) on into the contemporary analysis of mathematical
reasoning in computer languages.

Schiitte (1960) showed that second-order Peano Arithmetic may be inter-
preted in second-order logic based upon typed relational abstraction and a
single descriptive function symbol. However, it is commonly believed that
there is no corresponding derivation of first-order Peano Arithmetic from a
purely logical first-order theory based on abstraction. This is a point that
could be of moment within the debate over number theoretic logicism, as
some philosophers view the existential commitment incurred by second-order
quantification on par with the posit of extra-logical set existence principles.
The insufficiency of first-order logic to yield a “purely logical” derivation of
arithmetic would be taken by most philosophers to be characteristic of the
family of first-order languages for which Tarski defined his notion of truth on
a relational structure: it is a triviality that these languages admit of finite
models in the absence of descriptive vocabulary and extra-logical axioms.
However, my notion of a “first-order language” is more liberal than the now
proprietary sense in which that term applies to the Tarskian family of lan-
guages. By “a first-order theory” I simply mean a logical theory which does
not quantify over any objects other than individuals. It is, after all, the re-
sources of second-order quantification that are commonly credited with the
successful derivation of the induction scheme from the classical logicist defini-
tion of the set of natural numbers as the intersection of all zero-successor sets.
And, as mentioned, it is the existential commitment of such quantification
that purports to undercut that success.

The first-order language L in which this derivation of arithmetic takes
place fails to belong to the Tarskian language family by virtue of the type-
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free conception of predication that underlies it. Because within the long
shadow cast by the Tarskian tradition, the concept of a first-order language
requires more than the abstinence from quantification over non-individuals.
It also requires allegiance to a type-theoretic restriction on the grammar of
predication that mirrors a semantic regimentation of the types of objects
that can stand in the satisfaction relation. A first-order Tarskian language
types syntactic combination so that the semantic function performed by the
category of formulas, viz., to be predicated of, or satisfied by, an individual,
cannot be performed by the category of singular terms. Singular terms, or
rather the individuals they denote, bear identity conditions and existential
witness, but they cannot be predicated of, or satisfied by, other individuals.

From the perspective of categorial grammar, a Tarskian first-order lan-
guage thus assigns two quite distinct semantic tasks or functions to its two
syntactic categories singular term and formula. The semantic value of a sin-
gular term is a first level individual, where the logical characteristic of a first
level individual is its ability to bear identity conditions and serve existential
witness, but not to be predicated of other individuals. The distinctive logical
role of singular terms is realized primarily through the logic of identity and
quantification. In contrast, the semantic value of a formula is a set, or char-
acteristic function, of first level individuals (or tuples thereof). The semantic
role of a formula is to bear satisfaction conditions, to be satisfied by first
level individuals. By stratifying predication, Tarskian languages ensure that
the entities that the logic of identity and quantification treat of are distinct
from the entities that can bear recursively defined satisfaction conditions.

In the present essay, we interpret first-order Peano Arithmetic in a first-
order language, L, designed to express type-free relational abstraction. Al-
though L’s surface syntax indeed stratifies syntactic combination, distinguish-
ing between the syntactic categories of term and formaula in the manner of
Tarskian languages, this superficial stratification masks the intended inter-
pretation of I, whereupon abstraction terms denote relations and “c” ex-
presses the relation of satisfaction or membership holding between relations
and ordered pairs of first level individuals. Our semantic intentions might
be more faithfully represented by using the syntactic combination of singular
terms to indicate predication, in the fashion of applicative grammars, viz.,
Azy. R(z,y)(a,b). Hence, the abstraction terms of L play simultaneously the
distinctive semantic roles of Tarskian singular term and formulas: they bear
identity conditions and existential witness, but also embed the meta-theoretic
satisfaction relation, that is, they are general predicates of individuals.

It is easy to see that the simultaneous deployment of these two logical
roles induces numerical existence principles unavailable on the Tarskian con-
ception. For example, by applying the indescernibility of identicals, we see
that 0 =4 {x : x # z} is provably distinct from 1 =g4¢ {x : © = 0}, since
the latter has a property not shared by the former, namely being satisfied by
some object, i.e., having a member. 2 =4 {z : ¢ = 1} is provably distinct
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from 0 for the same reason, but also from 1, since it has a property not shared
by the latter, namely being satisfied by 1. In this way, the logic of identity
combines with type-free abstraction to generate the domain of natural num-
bers under the encoding of 0 by the empty set and the successor function by
the operation of passing from an object to its singleton set. It is crucial to
the generation of the sequence

0, {0}, {{0}}, {{{0}}} -

that the satisfaction relation we embed in L is type-free in the sense that
complex singular terms can satisfy other complex singular terms, since every
successor term in the sequence is satisfied by its predecessor.

0.2. The grounding of semantics and the semantics of grounding

Church’s early hope was to marry type-free functional abstraction with full
quantificational logic. In the sixties Paul Gilmore showed that type-free re-
lational abstraction may be consistently combined with first-order quantifi-
cation theory if one is willing to give up the principle of excluded middle and
work with the notion of a “partial relation”. In effect, Gilmore was taking a
leaf from the recursion theorists’ book; a decade or so later, this leaf would
bloom in the philosophical community in the form of theories of a partial
truth predicate.

Gilmore (1980, 1986) presented his theory as a first-order Gentzen-style
sequent calculus, NaDSet I. The deductive rules of NaDSet I are precisely
those of an LK identity calculus with the addition of a pair of LK-style
introduction and elimination rules which formalize a very general notion of
relational abstraction. However, NaDSet I is based upon a proper subset of
the LK axiom sequents. While LK is based upon a complete set of “bivalence
axioms” (axiom sequents of the form A + A for any atomic sentence A), NaD-
Set I's bivalence axioms are restricted to those treating identity statements
and those of the form tec F tec¢ for non-complex individual constants ¢ only.
In effect, consistency is maintained in NaDSet I by the strategy of evaluat-
ing only grounded sentences, sentences whose truth conditions reduce, under
logical decomposition, to the truth conditions of simple sentences which are
evaluated on the basis on “non-semantic” or “non-definition-theoretic” facts
alone.

Bivalence axioms for identity statements provide a sufficient basis for a
NaDSet I derivation of the theory of zero and successor (using the familiar
set-theoretic encoding of those operations mentioned in the previous section).
However, the absence of bivalence axioms of the form ¢t € p - t € p govern-
ing free-object variables p undercuts a NaDSet I derivation of the scheme
of mathematical induction. In the first part of this paper, we show that,
although NaDSet I does not yield an induction scheme, it contains the re-
sources for inductive definition. In section 1, we set out the calculus G, a
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sub-logic of NaDSet I based on binary abstraction and bivalence axioms for
identity statements. The significance of binary abstraction is shown in sec-
tion 2, where it underwrites the definition of a variable binding “fixed-point”
operator fiz,, a relational version of the “paradoxical” Y combinator of the
lambda calculus, forming terms which compute the fixed-points of recur-
sive functionals. We are then able to derive LK-style deduction rules which
implement a relational version of the second recursion theorem in terms of
introduction and elimination conditions for the operator fiz,.

In section 4 we use fiz, to construct a set term w which represents the
set IN of natural numbers in the weak sense that w enumerates the set of
all numerals. In section 6, w figures in the construction of set terms t; that
represent arbitrary primitive recursive functions f : IN — IN in the strong
sense of enumerating the graph of f. Here, we use the second recursion the-
orem to simulate primitive recursion. Existential quantification is then used
to simulate unbounded search over IN, allowing G to enumerate the graphs
of all general recursive functions. G is thus “computationally complete”, but
lacks the resources to reason about the relations it computes. Specifically,
although w is infinite, G has no theorem to this effect. Similarly, G does not
yield the Peano axioms which recursively specify ¢ and ¢, the set terms that
represent the addition and multiplication relations over the natural numbers.

This limitation is entirely due to the failure of bivalence in G for atomic
sentences which feature those terms as predicates, and contrasts with the
semantic setting of section 3, where term models validate bivalence principles
for all primitive recursive terms, hence realizing the full theory of 0, S, +
and x. Thus, we pass successively in sections 5 and 7 to extensions G*
and GT* of G by adjoining bivalence axioms governing w and then ¢, and
tx. For example, G* is the extension of G obtained by adjoining as new
axioms all sequents of the form t e w - t ¢ w for arbitrary closed terms t.
As a result, G* yields “the axiom of infinity” —the statement that w is a
0-successor set—as a theorem, and G sustains relational versions of the
Peano axioms specifying the inductive definition of + and x.

The following foundational paradigm emerges: in the setting of a partial
classical logic which maintains unrestricted type-free abstraction by rejecting
excluded middle, the posit of bivalence axioms for a primitive recursive set
term can function logically as an existence postulate. This is seen graphically
in the simplicity of the derivation of the axiom of infinity for w in section 7.
Note that adjoining excluded middle axioms to G maintains logical purity:
G* and G are obtained from sub-logics of first-order logic by closure under
abstraction. And the language of these calculi is just the language L of G.
For these reasons, G* and G™* are referred to as logical extensions of G;
the terminology is chosen purposely to contrast with the standard notion of
an extra-logical extension of a logic.

Within this paradigm, progressively stronger logics are countenanced by
progressively extending the “classical fragment” of G through the addition of
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