HENK BARENDREGT

DISCRIMINATING CODED LAMBDA TERMS

Abstract. A coding for a (type-free) lambda term M is a lambda term
TM7 in normal form such that M (and its parts) can be reconstructed from
M7 in a lambda definable way. Kleene (1936) defined a coding "M and a
self-interpreter EX € A° such that:

VM e N° EXTME = M. (1)

(Kleene did it for the Al-calculus, but the result is valid also for the AK-calculus.)
In this style one can construct a discriminator AKX € A° such that:

KrpKrnK — true (= dzyz) fM=N,
VM,N €A ATTM N { false (= Azy.y) else. @)
The terms EX and AX are complicated. EX appears also in Church 1941 under
the name form. They depend on the lambda definability of functions on the
integers dealing with coded syntactic properties. Inspired by a construction of
P. de Bruin (see Barendregt 1991) a different coding "M 7 and an efficient self-

interpreter E € A° was constructed by Mogensen (1992) such that even
VM EeEAE" M= M. (3)

This construction does not represent syntax via an encoding as numbers, but
directly as lambda terms. This results in a much less complex E. Mogensen’s
construction was simplified even further in Bohm et al. 1994. In this paper we
construct a simple discriminator A € A® such that:

true if M=o N,
false else.

YM,N € \° ATMV N = { 4)

Note that in (1) and (4) the statement is only about closed lambda terms, while
that in (2) and (3) is about all lambda terms. Moreover in (2) syntactic equality
on terms is considered literary, while in (4) we can deal in an easy way with the
better notion of equality modulo a change of names for bound variables. It will

become clear why this is so.
This paper first appeared in From Universal Morphisms to Megabyles—a

Baayen Space Odyssey, printed at CWI, Amsterdam.

1. INTRODUCTION

The most important notations for the type-free lambda calculus will be given
here. Background can be found in Barendregt 1984.

DEFINITION 1.1. Variables and terms of the lambda calculus are defined by
the following abstract syntax.
var = a|var
term = var |term term | A var term
275

C. Anthony Anderson and M. Zelény (eds.), Logic, Meaning and Computation, 275-285.
© 2001 Kluwer Academic Publishers. Printed in the Netherlands.

276 HENK BARENDREGT

NOTATION.
(i) M,N,...,P,Q,... range over A-terms. The letters z,y,2,... range
over variables. Note that the variables are {a,a’,a”,...,a(™,.. .}.

(ii) A is the set of lambda terms. FV(M) is the set of free variables of M.
The set of closed terms is A° = {M € A|FV(M) = 0}.

(iii) The relation = denotes syntactic equality; the relation =, denotes
syntactic equality up to a change of names of the bound variables. For
example

AZ.T =4 AY.Y Z AT.T.

(iv) The relation = denotes B-convertibility, axiomatized by
(Az.M)N = M([z := N].
Here [z := n| denotes substitution of N for the free occurrences of z. E.g.,
(z(Az.z))[z = a] = a(Az.x).

(v} IN is the set of natural numbers. For n € IN the terms ¢, = Afzx.f"x,
where f°z = z and f"*lx = f(f"z), denote the so called Church numerals.
Note that the c,, are distinct normal forms; hence

Ch=Cp = n=m
by the Church-Rosser theorem.

A lambda term can be seen as an executable: the redexes want to be
evaluated. In this sense a normal form is not executable anymore. For a
lambda term M its code "M is a normal form such that M is reconstructible
from M. Kleene (1936) defined a code "M ™ essentially as follows.

DeFiNITION 1.2
(i) By induction on the structure of M we define #M.

#@™) = <0,n>,
#(PQ) = <1,<#(P),#(Q)>>,
#(M\z.P) = <2,<$#(x),#(P)>>.

Here < —, — > denotes a recursive pairing function on IN with the recursive
projections (—)o, (—)1:
(< g, N1 >)i = N;.

(ii) The map "—"K : A—>A is defined by
'_M—IK =CxM-
Note that for all M € A the term "M ¥ is in normal form. Moreover,

MK =rN" K o5 =N,

DISCRIMINATING CODED LAMBDA TERMS 277

PROPOSITION 1.3. There is no lambda term Q such that for all M € A

one has
QM ="MK,

Proof. Suppose @ exists. Then for | = Az.x one has

Rk _ _
Q) ="1IN" = Call) = Cop <l gl

But also
QN = QI =" = ¢) = o (@) #(x)>>-

Hence < 1, < #(1), #(1) >>=< 2, < #(z), #(z) >>, a contradiction. —

In spite of this fact that the ‘quote’ @ does not exists, the inverse ‘evalu-
ation’ E can be constructed.

THEOREM 1.4 (Kleene, 1936). There exists an EX € A° such that for all
M € X° one has
EXTME = M.

Proof. See Kleene 1936 or Barendregt 1984, Theorem 8.1.16. —

The self-interpreter E can work only for closed terms M (or terms having at
most a fixed finite set of free variables). The reason is that if

EXTMK = M,

then
FV(M) C FV(EXTMK) = FV(EF).

Therefore if EX is closed, then the M have to be closed as well. This causes
one difficulty in the construction of EX. The closed terms do not form a
context-free language. Kleene solved this problem by constructing E first for
the set of combinatory terms C° built from the basis {K, S} using application
only; then the real self-interpreter can be obtained by translations between
A° and C°.

A different construction of a self-interpreter was given by a former student
of mine, using ideas from denotational semantics. The equations for the self-
interpreter are those of the semantic interpretation and the F plays the role
of a valuation (environment).

THEOREM 1.5 (P. de Bruin). There ezists an Eg € A° such that for all M €
A and all F € A one has

Eo" MF = Mlzy,...,@n = Fzy7,..., Frz,] (5)

(stmultaneous substitution), where {z1,...,zn} = FV(M).

278 HENK BARENDREGT

Proof. By the representability of computable functions and the fixedpoint
theorem there is a term Eg € A° such that

E) ' ¥F = Fz7K,
Eo"PQEF = (Eo"P ¥ F)(Ei"Q Y F),
Eo Az.PXF = Az.(Eo" P Frony),

where Firpoy) = Fy with
Firz7 = g,

F,ry? = Fry, ify#aw

Note that F. can be written as GFx, with G closed. By induction on the
structure of M € A one can show that the statement holds. -

COROLLARY 1.6. There ezists an E4? € A° such that for all M € A° one has
ETM K = M.
Proof (P. de Bruin). We can take
E*® = dm.Egml.
Indeed, for closed terms M it follows from (5) that

ECrMI =E," M = M. 4

2. REPRESENTING DATA TYPES

After seeing the method of P. de Bruin, an improved version of it was given
by Mogensen (1992) by representing data types directly (i.e., not using the
natural numbers) in the lambda calculus as done in, e.g., Béhm and Berar-
ducci 1985. This approach was improved later by Bohm et al. (1994) by
constructing a new representation of data types into the type-free lambda
calculus. This new representation will be treated in a slightly modified form
in this section.

DEFINITION 2.1. Write

(My, ..., M.} = hzzM,...M,,
U = Az;...2..7,
true = U3

false = U3

DISCRIMINATING CODED LAMBDA TERMS 279
Note that

(MlayM’n)U? = M’ia
true PQ = P,
false PQ = Q.

In particular we have (M) = Az.zM and () = Az.x = |. Now we define the
notion of lists inspired by the language LISP (McCarthy et al. 1961).

DEFINITION 2.2.

(i) Write

nil = (),

cons = Azy.{z,y),

car = (U}),

car = (U3),

null, = (U3, U2 false, true).
(ii) Define

[] = ()
[M1,...,Mn41] = consMi[M,,..., M,

So for example
[My, M2, Ms] = (M, (M3, (M3, ()))).

(In Barendregt 1984 this term is written as [Mi, M2, M3,l]. At the time of
writing that book we did not yet see the usefulness of terminating a list with
a special constructor.) Note that

car(cons PQ)) = P,
cdr(cons PQ) = @,
null,nil = true,
nulls{ consPQ) = false.

PROPOSITION 2.3. There exist lambda definable functions (); such that for
1<i<n onehas
([My,...,M,))i = M;.

Proof. Take

(I)y = carl,
(l)i+l = (cdrl)i. -

2 Springer
http://www.springer.com/978-1-4020-0141-3

Logic, Meaning and Computation
Essays in Memory of Alonzo Church
Anderson, C.A,; Zelény, M. (Eds.)
2001, X, 627 p., Hardcover

ISBEMN: 278-1-4020-0141-3

