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Weighted Least Squares Analysis of

Repeated Categorical Data

• The first general approach to the analysis of

repeated categorical outcomes

• Makes no assumptions concerning the time

dependence

• Inherently nonparametric; based only on the

multinomial sampling model

• Useful when:

• Response has only a few possible outcomes

• All covariates are categorical

• Number of measurement times is small

• Sample sizes are large

• Can accommodate randomly missing data



307

The Multinomial Distribution

• Consider a sequence of n independent trials

• On each trial, one of c mutually exclusive and

exhaustive events E1, . . . , Ec occurs

• πi = Pr(Ei) is constant across trials

0 < πi < 1,
∑c

i=1 πi = 1

• The probability that E1 occurs x1 times, . . .,

Ec occurs xc times is given by

f(x1, . . . , xc) =
n!

x1!x2! · · · xc!
πx1

1 πx2
2 · · · πxc

c ,

where xi ≥ 0 and
∑c

i=1 xi = n

• The random vector x = (x1, . . . , xc)′ has the

Mc(n, π) distribution with parameters n and

π = (π1, . . . , πc)′
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Moments of the Multinomial Distribution

• E(xi) = nπi, for i = 1, . . . , c

• Var(xi) = nπi(1− πi), for i = 1, . . . , c

• Cov(xi, xj) = −nπiπj , for i 6= j = 1, . . . , c

• The variance-covariance matrix of the vector

x = (x1, . . . , xc)′ is given by




nπ1(1− π1) −nπ1π2 . . . −nπ1πc

−nπ1π2 nπ2(1− π2) . . . −nπ2πc

...
...

...
...

−nπ1πc −nπ2πc . . . nπc(1− πc)




• This variance-covariance matrix can be

written as n(Dπ−ππ′), where Dπ is a diagonal

matrix with the vector π = (π1, . . . , πc)′ on the

main diagonal
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Parameter Estimates

• The maximum likelihood estimators of

π1, . . . , πc are given by pi = xi/n

• E(pi) = πi, Var(pi) = πi(1− πi)/n

• Cov(pi, pj) = −πiπj/n

• p = (p1, . . . , pc)′ is an unbiased estimator of

π = (π1, . . . , πc)′

• The variance-covariance matrix of p is:

1
n




π1(1− π1) −π1π2 . . . −π1πc

−π1π2 π2(1− π2) . . . −π2πc

...
...

...
...

−π1πc −π2πc . . . πc(1− πc)




=
1
n

(Dπ − ππ′)
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Large-Sample Distribution Theory

• As n → ∞, the asymptotic distribution of
√

n(p− π) is Nc(0, Dπ − ππ′)

• A consistent estimator of Var(p) is

Vp =
1
n




p1(1− p1) −p1p2 . . . −p1pc

−p1p2 p2(1− p2) . . . −p2pc

...
...

...
...

−p1pc −p2pc . . . pc(1− pc)




=
1
n

(Dp − pp′)

• p = (p1, . . . , pc)′ has an approximate

multivariate normal distribution with mean

vector π and variance-covariance matrix Vp

p ≈ Nc(π, Vp)
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Linear Models Using

Weighted Least Squares

• A generalization of ordinary least squares that

permits observations to be correlated and have

nonconstant variance

• Let y = (y1, . . . , yn)′ be an n × 1 vector of

observations

• Suppose that y ∼ Nn(Xβ, V )

X is an n× p design (model) matrix (p ≤ n)

β is a p× 1 vector of parameters

V is the n× n variance-covariance matrix of y

• The linear model is y = Xβ + ε, where

ε ∼ Nn(0, V )
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Weighted Least Squares

Basic idea:

Transform the observations y = (y1, . . . , yn)′ to

other variables y∗ which satisfy the assumptions

of the linear model

y∗ = X∗β + ε∗, where ε∗ ∼ Nn(0, I)

• A unique nonsingular symmetric matrix V 1/2

exists such that V 1/2V 1/2 = V

• Multiplying both sides of the equation

y = Xβ + ε

by V −1/2 yields

V −1/2y = V −1/2Xβ + V −1/2ε
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Weighted Least Squares

• Thus, we have y∗ = X∗β + ε∗, where

y∗ = V −1/2y

X∗ = V −1/2X

ε∗ = V −1/2ε

E(ε∗) = E(V −1/2ε) = V −1/2E(ε) = 0,

Var(ε∗) = Var(V −1/2ε)

= V −1/2Var(ε)V −1/2′

= V −1/2V V −1/2

= V −1/2(V 1/2V 1/2)V −1/2

= I

• β̂ = b, the least squares estimator of β, is

found by minimizing the error sum of squares



314

Parameter Estimation

SSE =
n∑

i=1

e∗i
2

= (y∗ −X∗b)′(y∗ −X∗b)

= (V −1/2y − V −1/2Xb)′(V −1/2y − V −1/2Xb)

= [V −1/2(y −Xb)]′[V −1/2(y −Xb)]

= (y −Xb)′V −1/2′V −1/2(y −Xb)

= (y −Xb)′V −1(y −Xb)

= (y′ − b′X ′)V −1(y −Xb)

= y′V −1y − 2b′X ′V −1y + b′X ′V −1Xb

∂SSE
∂b

= −2X ′V −1y + 2X ′V −1Xb

∂SSE
∂b

= 0 =⇒ X ′V −1Xb = X ′V −1y
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Parameter Estimation

• If X is of full rank, b = (X ′V −1X)−1(X ′V −1y)

• Since b is a linear function of y, b is normally-

distributed with mean and variance given by:

E(b) = (X ′V −1X)−1X ′V −1E(y)

= (X ′V −1X)−1X ′V −1Xβ

= β

Var(b) = Var[(X ′V −1X)−1X ′V −1y]

= (X ′V −1X)−1X ′V −1Var(y)

× [(X ′V −1X)−1X ′V −1]′

= (X ′V −1X)−1X ′V −1V

× V −1X(X ′V −1X)−1

= (X ′V −1X)−1(X ′V −1X)(X ′V −1X)−1

= (X ′V −1X)−1
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Sums of Squares

SST = y∗′y∗

= (V −1/2y)′V −1/2y

= y′V −1/2V −1/2y

= y′V −1y

SSE = y′V −1y − 2b′X ′V −1y + b′X ′V −1Xb

= y′V −1y − b′X ′V −1y − b′X ′V −1y

+ b′X ′V −1Xb

= y′V −1y − b′X ′V −1y

− b′(X ′V −1y −X ′V −1Xb)

= y′V −1y − b′X ′V −1y − b′ ×
(X ′V −1y −X ′V −1X(X ′V −1X)−1X ′V −1y)

= y′V −1y − b′X ′V −1y

− b′(X ′V −1y −X ′V −1y)

= y′V −1y − b′X ′V −1y
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Sums of Squares

• Since X ′V −1y = X ′V −1Xb,

SSE = y′V −1y − b′X ′V −1Xb

= y′V −1y − (Xb)′V −1Xb

= SST− SSR

where SSR is the regression sum of squares

• For theoretical purposes, it is useful to express SSE

as a quadratic form in y:

SSE = y′V −1y − b′X ′V −1y

= y′V −1y − [(X ′V −1X)−1(X ′V −1y)]′X ′V −1y

= y′V −1y − y′V −1X(X ′V −1X)−1X ′V −1y

= y′Ly

where L = V −1 − V −1X(X ′V −1X)−1X ′V −1

• It can be shown that the rank of L is n− p



318

Hypothesis Tests

• The fit of the model can be tested using the

minimum value of SSE

W = min SSE = y′V −1y − (Xb)′V −1Xb

• If the model fits, then W has a chi-square

distribution with n− p degrees of freedom

i.e., under H0: E(y) = Xβ, W ∼ χ2
n−p

• If the model fits, additional hypotheses of the

form H0: Cβ = 0 may be tested, where C is a

c× p coefficient matrix

• The Wald statistic

WC = (Cb)′[C(X ′V −1X)−1C ′]−1Cb

has a χ2
c distribution if H0 is true
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Predicted Values and Residuals

• ŷ = (ŷ1, . . . , ŷn)′ = Xb = X(X ′V −1X)−1X ′V −1y

E(ŷ) = E(Xb) = Xβ

Var(ŷ) = Var(Xb) = XVar(b)X ′

= X(X ′V −1X)−1X ′

• r = y − ŷ = y −X(X ′V −1X)−1X ′V −1y

E(r) = E(y − ŷ) = Xβ −Xβ = 0

Var(r) = Var[(I −X(X ′V −1X)−1X ′V −1)y]

= (I −X(X ′V −1X)−1X ′V −1)V

× (I − V −1X(X ′V −1X)−1X ′)

= (V −X(X ′V −1X)−1X ′)

× (I − V −1X(X ′V −1X)−1X ′)

= V −X(X ′V −1X)−1X ′



320

Nonlinear Response Functions

• We start from the assumption that the

underlying vector of multinomial proportions

is approximately normal: p ≈ Nct(π, Vp)

• For linear response functions f(p) = Ap,

f(p) ≈ Nu(Aπ, Vf ), where Vf = AVpA
′

• In many applications, the response functions

of interest are nonlinear functions of p

marginal logits for binary responses

generalized logits for polytomous responses

cumulative logits for ordinal responses

• Nonlinear response functions also arise when

there are missing data
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Univariate Taylor Series Approximations

• Let X be a random variable with known mean

and variance

E(X) = µ, Var(X) = E[(X − µ)2] = σ2

• Let Y = g(X), where the function g(x) has

first and second derivatives

• Suppose that exact calculation of E(Y ) and

Var(Y ) is difficult

• We will expand g(X) in a Taylor series

about µ and use this series representation to

approximate E(Y ) and Var(Y )
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Univariate Taylor Series Approximations

• The first three terms are

g(X) = g(µ) + g′(µ)(X − µ) +
1
2
g′′(µ)(X − µ)2

• The approximation for the mean of Y is

E(Y ) .= E
[
g(µ) + g′(µ)(X − µ) +

1
2
g′′(µ)(X − µ)2

]

= g(µ) +
1
2
g′′(µ)Var(X)

• Using the linear term only, E(Y ) .= g(µ)

• The approximation for the variance of Y is

Var(Y ) = E
[(

g(X)− E[g(X)]
)2

]

.= E
[(

g(µ) + g′(µ)(X − µ)− g(µ)
)2

]

= E
[(

g′(µ)(X − µ)
)2

]

=
(
g′(µ)

)2 E
[
(X − µ)2

]

=
(
g′(µ)

)2 Var(X)
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The δ Method

• Let Xn be a random variable such that the

asymptotic distribution of
√

n(Xn − µ) is

N
(
0, σ2(µ)

)

• Let g(x) be a function that can be

differentiated at x=µ so that it has the

following expansion as x → µ:

g(x) = g(µ) + g′(µ)(x− µ) + o(|x− µ|)

• Then the asymptotic distribution of
√

n
(
g(Xn)− g(µ)

)
is N

(
0, σ2(µ)

(
g′(µ)

)2
)

Definition of o(|x− µ|)
If xn is any sequence such that xn → µ and if

an = g(xn)− g(µ)− g′(µ)(xn − µ),

bn = xn − µ,

then for any ε > 0, there exists n(ε) such that
if n > n(ε), then |an| < ε|bn|
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Multivariate Taylor Series Approximations

• Let X = (X1, . . . , Xn)′ be a random vector with

known mean vector and covariance matrix

E(X) = µ, Var(X) = Σ

• Let Y = g(X1, . . . , Xn), where g(x1, . . . , xn)

is a continuous function with first and second

partial derivatives

• Expand g(X) in a Taylor series about µ:

g(x) = g(µ) +
n∑

i=1

∂g

∂µi
(xi − µi)

+
1
2

n∑

i=1

n∑

j=1

∂2g

∂µi∂µj
(xi − µi)(xj − µj),

where
∂g

∂µi
=

∂g

∂xi

∣∣∣
x=µ

,

∂2g

∂µi∂µj
=

∂2g

∂xi∂xj

∣∣∣
x=µ
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Multivariate Taylor Series Approximations

• Let g(1)(µ) =
( ∂g

∂µ1
, . . . ,

∂g

∂µn

)
be the row vector

of first partial derivatives

• y = g(x1, . . . , xn) .= g(µ) +
(
g(1)(µ)

)
(x− µ)

• The approximate mean and variance of Y are

E(Y ) .= E[g(µ)] +
(
g(1)(µ)

)
E(X − µ)

= g(µ)

Var(Y ) = E
[(

g(X)− E[g(X)]
)2

]

.= E
[(

g(µ) +
(
g(1)(µ)

)
(X − µ)− g(µ)

)2
]

= E
[((

g(1)(µ)
)
(X − µ)

)2]

= E
[(

g(1)(µ)
)
(X − µ)(X − µ)′

(
g(1)(µ)

)′]

=
(
g(1)(µ)

)
E

[
(X − µ)(X − µ)′

](
g(1)(µ)

)′

=
(
g(1)(µ)

)
Σ

(
g(1)(µ)

)′
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Taylor Series Approximations for

Multiple Functions of a Random Vector

• Let X = (X1, . . . , Xn)′ be a random vector

with known mean vector and covariance matrix

E(X) = µ, Var(X) = Σ

• Let Y = (Y1, . . . , Ym)′, where

Yi = gi(X1, . . . , Xn),

for i = 1, . . . , m

• From the results for a univariate function of a

random vector:

E(Yi)
.= gi(µ)

Var(Yi)
.=

(
g
(1)
i (µ)

)
Σ

(
g
(1)
i (µ)

)′

• We would now like to approximate Cov(Yi, Yj)
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Taylor Series Approximations for

Multiple Functions of a Random Vector

Cov(Yi, Yj) = E
[(

Yi − E(Yi)
)(

Yj − E(Yj)
)]

.= E
[
[g(1)

i (µ)](X − µ)[g(1)
j (µ)](X − µ)

]

= E
[
[g(1)

i (µ)](X − µ)(X − µ)′[g(1)
j (µ)]′

]

= [g(1)
i (µ)]E

[
(X − µ)(X − µ)′

]
[g(1)

j (µ)]′

= [g(1)
i (µ)]Σ[g(1)

j (µ)]′
]

• Now let
( ∂g

∂µ

)
denote the m× n matrix

whose ith row is g
(1)
i (µ)

• The (i, j) element of
( ∂g

∂µ

)
is

∂gi

∂xj

∣∣∣
x=µ

• The approximate mean and covariance matrix of

Y are:
E(Y ) .= g(µ)

Var(Y ) .=
( ∂g

∂µ

)
Σ

( ∂g

∂µ

)′



328

The Multivariate δ Method

• Let Xn be a p-dimensional random variable such

that the asymptotic distribution of
√

n(Xn − µ)

is Np

(
0, Σ(µ)

)

• Let g(Xn) =
(
g1(Xn), . . . , gu(Xn)

)′ be a function

with the following expansions as Xn → µ:

gi(x) = gi(µ) +
p∑

j=1

(xj − µj)
∂gi

∂xj

∣∣∣
x=µ

+o(‖x− µ‖)

• Let
∂g

∂µ
be the u × p matrix whose (i, j) entry is

∂gi

∂xj

∣∣∣
x=µ

• Then the asymptotic distribution of
√

n
(
g(Xn)− g(µ)

)
is

Nu

(
0,

( ∂g

∂µ

)
Σ(µ)

( ∂g

∂µ

)′)
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Variances of Linear Functions

• Let x(n×1) have mean µ and covariance matrix Σ

• Let y(m×1) = f(x) = A(m×n)x

=




a11 . . . a1n
...

...
am1 . . . amn







x1
...

xn




=




∑n
j=1 a1jxj

...∑n
j=1 amjxj


 =




f1(x)
...

fm(x)




• ∂f1

∂x
= (a11, . . . , a1n), . . . ,

∂fm

∂x
=(am1, . . . , amn),

and

(∂f

∂x

)
=




∂f1

∂x
...

∂fm

∂x




= A

• Therefore, Var(y) =
(∂f

∂x

)
Σ

(∂f

∂x

)′
= AΣ A′
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Variance Approximations for

Logarithmic Functions

• Let x be a n × 1 vector with mean µ and

covariance matrix Σ

• Let y(n×1) = f(x) = log x

i.e., y1 = f1(x) = log(x1)
...

yn = fn(x) = log(xn)

• The partial derivatives are given by:

∂f1

∂x
= (1/x1, 0, . . . , 0)

∂f2

∂x
= (0, 1/x2, 0, . . . , 0)

...
∂fn

∂x
= (0, . . . , 0, 1/xn)
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Variance Approximations for

Logarithmic Functions

∂f

∂x
=




∂f1

∂x
∂f2

∂x
...

∂fn

∂x




=




1/x1 0 · · · 0
0 1/x2 · · · 0
...

...
. . . 0

0 0 · · · 1/xn




∂f

∂x

∣∣∣
x=µ

=




1/µ1 0 · · · 0
0 1/µ2 · · · 0
...

...
. . . 0

0 0 · · · 1/µn




= D−1
µ ,

Var(y) .=
(∂f

∂x

∣∣∣
x=µ

)
Σ

(∂f

∂x

∣∣∣
x=µ

)′

= D−1
µ Σ D−1

µ
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Variance Approximations for

Exponential Functions

• Let x be a n × 1 vector with mean µ and

covariance matrix Σ

• Let y(n×1) = f(x) = exp(x)

i.e., y1 = f1(x) = ex1

...

yn = fn(x) = exn

• The partial derivatives are given by:

∂f1

∂x
= (ex1 , 0, . . . , 0)

∂f2

∂x
= (0, ex2 , 0, . . . , 0)

...
∂fn

∂x
= (0, . . . , 0, exn)
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Variance Approximations for

Exponential Functions

∂f

∂x
=




∂f1

∂x
∂f2

∂x
...

∂fn

∂x




=




ex1 0 · · · 0
0 ex2 · · · 0
...

...
. . . 0

0 0 · · · exn




∂f

∂x

∣∣∣
x=µ

=




eµ1 0 · · · 0
0 eµ2 · · · 0
...

...
. . . 0

0 0 · · · eµn




= Deµ ,

Var(y) .=
(∂f

∂x

∣∣∣
x=µ

)
Σ

(∂f

∂x

∣∣∣
x=µ

)′

= Deµ ΣDeµ
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Variance Approximations for

Compound Functions

• Two types of compound functions are

commonly used:

f(p) = A2 log(A1p)

g(p) = exp
(
A2 log(A1p)

)
= exp

(
f(p)

)

• We wish to approximate Vf = Var
(
f(p)

)
and

Vg = Var
(
g(p)

)

• First, let f1(p) = A1p

Vf1 = Var
(
f1(p)

)
= A1 Vp A′1

• Now, let f2(p) = log
(
f1(p)

)
= log(A1p)

Vf2 = Var
(
f2(p)

)
= Var

(
log

(
f1(p)

))

.= D−1
f1

Vf1D
−1
f1

= D−1
f1

A1VpA
′
1D

−1
f1
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Variance Approximations for

Compound Functions

• Finally, let f(p) = A2f2(p) = A2 log(A1p)

Vf = Var
(
f(p)

)

= Var
(
A2f2(p)

)

= A2Vf2A
′
2

.= A2D
−1
f1

A1VpA
′
1D

−1
f1

A′2

• Now, let g(p) = exp
(
f(p)

)
= exp

(
A2 log(A1p)

)

Vg = Var
(
g(p)

)

= Var
(
exp(f(p))

)

.= Def VfDef

= Def A2D
−1
f1

A1VpA
′
1D

−1
f1

A′2Def
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One-Sample Repeated Measures

• The data are as follows:

Time Point

Subject 1 . . . j . . . t

1 y11 . . . y1j . . . y1t

...
...

. . .
...

. . .
...

i yi1 . . . yij . . . yit

...
...

. . .
...

. . .
...

n yn1 . . . ynj . . . ynt

• yij is a categorical response variable with c

possible outcomes

• These data correspond to a sample of size

n from a multinomial distribution with ct

potential outcomes
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Example

• 46 subjects were treated with each of three

drugs (A, B, and C)

• The response to each drug was recorded as

favorable (F) or unfavorable (U)

• We wish to test if the drugs have similar

response profiles

• Since the response is dichotomous, the null

hypothesis can be written as

H0 : πA = πB = πC ,

where πX=Pr(favorable response with drug X)

Reference
Grizzle, J. E., Starmer, C. F., and Koch, G. G.
(1969). Analysis of categorical data by linear
models. Biometrics 25, 489–504.
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Drug Response Data

Drug Drug
Subject A B C Subject A B C

1 F F U 24 U F U
2 U U U 25 F F U
3 U U F 26 U U U
4 F F U 27 F U U
5 U U U 28 U U F
6 F F U 29 U U U
7 F F F 30 F F U
8 F F U 31 F F F
9 F U U 32 F U F

10 U U F 33 F F U
11 F F U 34 U F F
12 U F U 35 U F U
13 F F F 36 F F U
14 F F U 37 F F U
15 U F F 38 F F F
16 F U F 39 F U U
17 U U U 40 U U F
18 F F U 41 F F U
19 F U U 42 U U U
20 U U F 43 U U F
21 F F F 44 F F U
22 F F U 45 F F F
23 F F U 46 U F U
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Multinomial Structure of the Example

• There are c = 2 possible outcomes at each of

t = 3 time points

• Thus, there are ct = 23 = 8 potential response

profiles

• The observed data can be displayed as follows:

DrugResponse
Profile A B C Frequency

1 F F F 6
2 F F U 16
3 F U F 2
4 F U U 4
5 U F F 2
6 U F U 4
7 U U F 6
8 U U U 6

Total 46
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WLS Approach

• The underlying multinomial probability vector

will be denoted by π = (π1, . . . , πct)′

• The corresponding vector of sample

proportions p is an unbiased estimator of the

probability vector π

• A consistent estimator of the variance-

covariance matrix of p is given by the ct × ct

matrix

Vp =
1
n

(Dp − pp′)

• Since the elements of π (and p) are linearly

dependent, we must restrict consideration to a

set of linearly independent functions f(p)
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Models for Linear Functions

of the Response Proportions

• Consider models of the form f(p) = Xβ

f(p) = Ap, where A is a u× ct matrix of rank u

X is an u× v model matrix

β is a v × 1 vector of unknown parameters

• p ≈ Nct(π, Vp)

• f(p) = Ap ≈ Nu(Aπ, Vf ), where Vf = AVpA
′

has rank u

• Using the vector of observed functions f(p)

and the consistent estimator of its covariance

matrix Vf , linear models of the form

f(p) = Xβ

can be fit using weighted least squares
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Application to the Example

• The 8 × 1 vector of proportions p is defined as

follows:

DrugResponse Component
Profile A B C of p

1 F F F p1

2 F F U p2

3 F U F p3

4 F U U p4

5 U F F p5

6 U F U p6

7 U U F p7

8 U U U p8

• Let A be the 3× 8 matrix given by

A =




1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0



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Application to the Example

• The transformation f(p) = Ap defines the

response functions

f(p) = (pA, pB , pC)′,

where pX is the observed proportion with a

favorable response to drug X

• A consistent estimator of the 3 × 3 covariance

matrix of f(p) is given by

Vf = AVpA
′ =

1
n

A(Dp − pp′)A′

• Note that the elements of Vf are consistent

estimates of




Var(pA) Cov(pA, pB) Cov(pA, pC)
Cov(pA, pB) Var(pB) Cov(pB , pC)
Cov(pA, pC) Cov(pB , pC) Var(pC)



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Model Fitting and

Test of Marginal Homogeneity

The null hypothesis is H0: πA = πB = πC

Method 1:

• Fit the model f(p) = X1β, where X1 = I3

a saturated model with 0 df for lack-of-fit

• Test marginal homogeneity as H0: Cβ = 0,

where

C =

 1 −1 0

1 0 −1




• If H0 is rejected, pairwise comparisons between

drugs can be tested using:

H0 C
πA = πB ( 1 −1 0 )
πA = πC ( 1 0 −1 )
πB = πC ( 0 1 −1 )
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SAS Statements for Method 1

data a;

input subject a $ b $ c $;

cards;

1 F F U

2 U U U

...

45 F F F

46 U F U

;

proc catmod;

response 1 1 1 1 0 0 0 0,

1 1 0 0 1 1 0 0,

1 0 1 0 1 0 1 0;

model a*b*c=(1 0 0,

0 1 0,

0 0 1) / noprofile;

contrast ’A=B=C’ all_parms 1 -1 0,

all_parms 1 0 -1;

contrast ’A=B’ all_parms 1 -1 0;

contrast ’A=C’ all_parms 1 0 -1;

contrast ’B=C’ all_parms 0 1 -1;
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Model Fitting and

Test of Marginal Homogeneity

Method 2:

• Fit the model f(p) = X2β, where

X2 =




1 1 0
1 0 1
1 −1 −1




This model includes an overall intercept and

two parameters for drug differences

πA = µ + α1

πB = µ + α2

πC = µ− α1 − α2

“sum-to-zero” parameterization

• Test marginal homogeneity as H0: Cβ = 0,

where

C =

 0 1 0

0 0 1



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Model Fitting and

Test of Marginal Homogeneity

Method 2 (continued):

• If H0 is rejected, pairwise comparisons between

drugs can be tested using:

H0 C
πA = πB ( 0 1 −1 )
πA = πC ( 0 2 1 )
πB = πC ( 0 1 2 )

Method 3:

• Fit the model f(p) = X3β, where

X ′
3 = ( 1 1 1 )

• Marginal homogeneity is tested by the lack-of-fit

statistic

• Pairwise drug comparisons can not be tested
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SAS Statements for Method 2

proc catmod;
response marginals;
model a*b*c=_response_ / noprofile;
repeated drug 3;
contrast ’A=B’ all_parms 0 1 -1;
contrast ’A=C’ all_parms 0 2 1;
contrast ’B=C’ all_parms 0 1 2;

• For a k-level dependent variable,
response marginals computes the first k − 1
independent marginal proportions

• The response effect indicates that variation
among the repeated measures will be modelled

• The repeated statement specifies:

1. the names of the repeated measures effect(s)

2. the number of levels of the effects(s)

3. the effects to be included in the model

This statement could have been written:
repeated drug 3 / response =drug;



350

SAS Statements for Method 3

proc catmod;

response marginals;

model a*b*c=(1,

1,

1) / noprofile;

• When the model matrix is specified

explicitly, the default ANOVA table

contains effects labelled

MODEL:MEAN

RESIDUAL

• The MODEL:MEAN effect tests the

significance of all sources of variation other

than an overall intercept

• In this example, the only effect is the

overall intercept
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Reduced Model

• At α=.05, the marginal homogeneity hypothesis

H0: πA=πB=πC is rejected (p = .037)

• The pairwise comparisons indicate that drug C

differs from drugs A and B

• A reduced model, which includes an overall

intercept and an incremental effect for drug C,

can be fit as follows:

proc catmod;

response marginals;

model a*b*c=(1 0,

1 0,

1 1)

(1=’Intercept’,

2=’Drug C Effect’) / noprofile;

• Tests that the labelled parameters are equal to

zero will be included in the ANOVA table
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Example

• In a longitudinal study of health effects of

air pollution, 1019 children were examined

annually at ages 9, 10, 11, and 12

• At each examination, the response variable

was the presence or absence of wheezing

• The questions of interest include:

• Does the prevalence of wheezing change

with age?

• Is there a quantifiable trend in the age-

specific prevalence rates?

References

Agresti, A. (1990). Categorical Data Analysis. New York: John

Wiley and Sons, p. 408.

Ware, J. H., Lipsitz, S., and Speizer, F. E. (1988). Issues in the

analysis of repeated categorical outcomes. Statist Med 7, 95–107.
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Respiratory Illness Data

Wheeze (1=present, 2=absent) No. of
Age 9 Age 10 Age 11 Age 12 Children

1 1 1 1 94
1 1 1 2 30
1 1 2 1 15
1 1 2 2 28
1 2 1 1 14
1 2 1 2 9
1 2 2 1 12
1 2 2 2 63
2 1 1 1 19
2 1 1 2 15
2 1 2 1 10
2 1 2 2 44
2 2 1 1 17
2 2 1 2 42
2 2 2 1 35
2 2 2 2 572

Total 1019
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Response Functions

• c=2 outcomes, t=4 time points, ct=24=16

response profiles

• Let p denote the 16 × 1 vector of proportions

corresponding to the multi-way cross-

classification of response at the four ages

(ordered as shown)

• Let Px denote the marginal prevalence of

wheezing at age x, for x = 9, . . . , 12

• The response functions of interest are given by

f(p) = (P9, P10, P11, P12)′ = Ap, where A is

the 4× 16 matrix




1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0



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Model 1

• Test H0: Π9 = Π10 = Π11 = Π12

• Instead of one observation per child, there is

one observation per combination of response

categories

• In this situation, the weight statement is used

data a;
input w9 w10 w11 w12 count;
cards;
1 1 1 1 94
1 1 1 2 30

...
2 2 2 1 35
2 2 2 2 572
;

proc catmod; weight count;
response marginals;
model w9*w10*w11*w12=_response_

/ noprofile;
repeated age 4;
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Model 2

• Test linear and nonlinear components of the

age effect

• Since the observations are equally spaced,

orthogonal polynomial coefficients can be used

proc catmod; weight count;

response marginals;

model w9*w10*w11*w12=(1 -3 1 -1,

1 -1 -1 3,

1 1 -1 -3,

1 3 1 1)

(1=’Intercept’,

2 3 4=’Age’,

2=’ Linear’,

3=’ Quadratic’,

4=’ Cubic’,

3 4=’ Nonlinear’) / noprofile;

• Note that tests of multiple df effects can be

specified in the model statement
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Model 3

• Fit the linear model Πx = α + β(x− 9)

proc catmod; weight count;

response marginals;

model w9*w10*w11*w12=(1 0,

1 1,

1 2,

1 3)

(1=’Intercept’,

2=’Linear Age’)

/ noprofile p;

• The p option prints observed and predicted

response functions

• Standard errors of the observed and

predicted response functions are also printed
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Results

• This model provides a good fit to the observed

data

W = .54 with 2 df, p = .762

• The predicted prevalence (± SE) at age 9 is

.263± .013

• The linear effect of age is highly significant

Wage = 12.31, p < .001

• The probability of wheezing is estimated to

decrease by .0161± .0046 per year of age
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Example

• In a longitudinal study of health effects of air

pollution, 1019 children were examined annually

at ages 9, 10, 11, and 12

• At each examination, the response variable was

the presence or absence of wheezing

• The previous model was Πx = α + β(x − 9),

where Πx = marginal prob. of wheezing at age x

• It may also be of interest to analyze these data

on the logit scale

• age effects are multiplicative

(instead of additive)

• predicted probabilities are constrained to (0,1)

• parameters have odds ratio interpretations
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Response Functions

• c = 2 outcomes, t = 4 time points, ct = 24 = 16

response profiles

• The marginal logit response functions can be

defined as f(p) = A2 log(A1p), where p is the

16 × 1 vector of multinomial proportions, A1 is

the 8× 16 matrix




1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1




,

and A2 =




1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 −1



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Logit Model

• The model is Lx = α + β(x− 9), where

Lx = log
(
Πx/(1−Πx)

)

proc catmod; weight count;
response 1 -1 0 0 0 0 0 0,

0 0 1 -1 0 0 0 0,
0 0 0 0 1 -1 0 0,
0 0 0 0 0 0 1 -1

log
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0,
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1,
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0,
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1,
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0,
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1,
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0,
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1;
model w9*w10*w11*w12=(1 0,

1 1,
1 2,
1 3)

(1=’Intercept’,
2=’Linear Age’) / noprofile p;
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Interpretation of Logit Model

• The model provides a good fit to the observed

data (W = .67 with 2 df, p = .72)

• The age effect is highly significant

(Wage = 11.77, p < .001)

• The predicted model is L̂x = α̂ + β̂(x − 9),

where α̂ = −1.0276 and β̂ = −.0879

• The log-odds in favor of wheezing are

estimated to decrease by .0879 per year

• The estimated odds ratio is e−.0879 = .916

• The odds of wheezing are 0.916 times as great

at age x than at age x− 1

• The odds against wheezing are 1.092 (1/.916)

times as high at age x than at age x− 1
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Polytomous Response Variables

• When the response is dichotomous:

There is one response function per time point

The test of marginal homogeneity has t− 1 df

• If yij has c possible outcomes, there are at most

c − 1 linearly independent response functions per

time point

Test of marginal homogeneity has (c− 1)(t− 1) df

• For nominal response variables, the natural linear

response functions are marginal proportions

• For ordinal response variables, cumulative

marginal proportions and mean scores can also

be considered
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Example

• In the Iowa 65+ Rural Health Survey, 1926

elderly individuals were followed over a six-

year period

• Each individual was surveyed at years 0, 3,

and 6

• One of the variables of interest was the

number of friends reported

An ordinal categorical response:

no friends

1–2 friends

3 or more friends

• We wish to determine if the distribution of the

number of reported friends is changing over

time
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Subject Classification, by No. of Friends

Year 0 Year 3 Year 6 Count
0 0 0 31
0 0 1–2 22
0 0 3+ 54
0 1–2 0 15
0 1–2 1–2 25
0 1–2 3+ 50
0 3+ 0 22
0 3+ 1–2 20
0 3+ 3+ 139

1–2 0 0 11
1–2 0 1–2 13
1–2 0 3+ 30
1–2 1–2 0 12
1–2 1–2 1–2 64
1–2 1–2 3+ 82
1–2 3+ 0 13
1–2 3+ 1–2 44
1–2 3+ 3+ 189
3+ 0 0 9
3+ 0 1–2 21
3+ 0 3+ 44
3+ 1–2 0 18
3+ 1–2 1–2 55
3+ 1–2 3+ 121
3+ 3+ 0 31
3+ 3+ 1–2 85
3+ 3+ 3+ 706

Total 1926
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Models for Marginal Proportions

• c = 3, t = 3, ct = 33 = 27 response profiles

• Let p denote the 27 × 1 vector of proportions

corresponding to the multi-way cross-

classification of response at the three time

points (ordered as shown)

• Let pij denote the marginal proportion of

subjects at year i in response category j

i = 0, 3, 6, j = 0, 1{–2}, 3{+}

• Linearly independent response functions are

given by

f(p) = (p00, p01, p30, p31, p60, p61)′
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Models for Marginal Proportions

• In matrix notation, f(p) = Ap, where A is the

6× 27 matrix



1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0
1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0




• In PROC CATMOD, these response functions

can be defined by:

response
1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0,
1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0,
0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0,
1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0,
0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0;

or more simply by:

response marginals;
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Model 1: Analysis of Marginal Proportions

• For each of the marginal responses of interest

[Pr(no friends), Pr(1–2 friends)], the model

includes an intercept, and two parameters for

linear and nonlinear time effects

• Since the measurements were equally spaced

(0, 3, 6 years), orthogonal polynomial

coefficients will be used in the model matrix

• The SAS statements creating the data file are:

data a;
input (n0 n3 n6 count)
($char3. +1 $char3. +1 $char3. 4.);
cards;
0 0 0 31

. . .
3+ 3+ 3+ 706
;
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CATMOD Statements for Model 1

proc catmod; weight count;

response marginals;

model n0*n3*n6=(1 -1 1 0 0 0,

0 0 0 1 -1 1,

1 0 -2 0 0 0,

0 0 0 1 0 -2,

1 1 1 0 0 0,

0 0 0 1 1 1)

(1=’Pr(0): Intercept’,

2=’ Linear’,

3=’ Quadratic’,

2 3=’ Overall’,

4=’Pr(1-2): Intercept’,

5=’ Linear’,

6=’ Quadratic’,

5 6=’ Overall’,

2 5=’Both: Linear’,

3 6=’ Quadratic’,

2 3 5 6=’Homogeneity’) / noprofile;
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Alternate Form of Model 1

The same results can be obtained using

CATMOD’s default repeated measures capabilities

Advantage: model matrix need not be specified

Disadvantage: contrasts must be specified

proc catmod; weight count;
response marginals;
model n0*n3*n6=_response_ / noprofile;
repeated time 3;
contrast ’0: L’ all_parms 0 0 2 0 1 0;
contrast ’ Q’ all_parms 0 0 0 0 1 0;
contrast ’ L&Q’ all_parms 0 0 1 0 0 0,

all_parms 0 0 0 0 1 0;
contrast ’1-2: L’ all_parms 0 0 0 2 0 1;
contrast ’ Q’ all_parms 0 0 0 0 0 1;
contrast ’ L&Q’ all_parms 0 0 0 1 0 0,

all_parms 0 0 0 0 0 1;
contrast ’Both: L’ all_parms 0 0 2 0 1 0,

all_parms 0 0 0 2 0 1;
contrast ’ Q’ all_parms 0 0 0 0 1 0,

all_parms 0 0 0 0 0 1;
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Mean Score Response Functions

• Applicable for discrete numeric or ordinal

response variables

• Examples:

• Number of times married (0, 1, . . .)

• Litter size (0, 1, . . .)

• Pain severity (none, mild, moderate, severe)

• If “reasonable” scores can be assigned to the

levels of the response, we can analyze the

change in the mean over time (rather than the

change in the entire distribution)

• We now have a single response function per

time point

• The hypothesis of homogeneity of means over

time has t− 1 df
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Formulation of Marginal Mean Scores

• Consider an ordinal or discrete numeric

response variable with c categories

• Let aj denote the score assigned to the jth

level of the response, for j = 1, . . . , c

• Let f1(p) = A1p denote the ct × 1 vector of

marginal proportions

p is the ct×1 vector of multinomial proportions

A1 is a ct× ct matrix

• Let f2(p) = A2

(
f1(p)

)
denote the t × 1 vector

of marginal mean scores, where A2 is the t× ct

matrix



a1 · · · ac 0 · · · 0 · · · 0 · · · 0
0 · · · 0 a1 · · · ac

...
...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 · · · 0 0 · · · 0 · · · a1 · · · ac



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Direct Product Notation

• f2(p) = A2

(
f1(p)

)
, where

A2 = It ⊗ (a1, . . . , ac)

• In general, the direct (Kronecker) product of a

p × q matrix A and a m × n matrix B is given

by

A⊗B =




a11B . . . a1qB
...

...
ap1B . . . apqB




• A ⊗ B is a pm × qn matrix consisting of

all possible products of an element of A

multiplied by an element of B

• This definition is sometimes referred to as the

right direct product
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Choice of Scores

• Whenever possible, choose scores based on

substantive considerations

• Different choices of scores lead to different

assumed spacings between categories

• Types of scores include:

1. Natural scores

numeric value of the categorical variable

midpoint or median of class interval

2. Binary partition scores

aj = 0 for j < d, aj = 1 for j ≥ d

dichotomizes the response variable

3. Rank scores

4. Integer scores (aj = j)
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Model 2: Analysis of Mean Scores

• One choice of scores for the response categories

0, 1–2, 3+ is a1=0, a2=1.5, a3=4

• The following SAS statements use the default

model matrix and test for linear and nonlinear

time effects using contrast statements

proc catmod; weight count;
response
1.5 4 0 0 0 0,
0 0 1.5 4 0 0,
0 0 0 0 1.5 4 *

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0,
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1,
0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0,
0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1,
0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0,
0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1;
model n0*n3*n6=_response_ / noprofile;
repeated time 3;
contrast ’Linear’ all_parms 0 2 1;
contrast ’Quadratic’ all_parms 0 0 1;
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Linear and Quadratic Contrasts

• In terms of the default “sum-to-zero”

parameterization, we have:

Orthogonal Coefficients

Year Parameterization Linear Quadratic

0 µ + α1 −1 1
3 µ + α2 0 −2
6 µ− α1 − α2 1 1

• The test of linearity is:

0 = −(µ + α1) + 0(µ + α2) + (µ− α1 − α2)

= −2α1 − α2

• The test of nonlinearity is:

0 = (µ + α1)− 2(µ + α2) + (µ− α1 − α2)

= −3α2
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Alternate Method for Model 2

• If the response variable is numeric, the

statement

response means;

computes marginal mean scores

• First, create numeric variables:

data b; set a;

s0=1.5*(n0>’ 0 ’)+2.5*(n0=’3+ ’);

s3=1.5*(n3>’ 0 ’)+2.5*(n3=’3+ ’);

s6=1.5*(n6>’ 0 ’)+2.5*(n6=’3+ ’);

• Model 2 can be then be fit as follows:

proc catmod; weight count;

response means;

model s0*s3*s6=_response_ / noprofile;

repeated time 3;

contrast ’Linear’ all_parms 0 2 1;

contrast ’Quadratic’ all_parms 0 0 1;
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Model 3: Reduced Mean Score Model

• The nonlinear time effect is nonsignificant

(Wnonlinearity = .42, df = 1, p = .51)

• Thus, we may wish to fit the reduced model

µx = α + βx, where µx is the marginal mean

at year x

proc catmod; weight count;

response means;

model s0*s3*s6=(1 0,

1 3,

1 6)

(1=’Intercept’,

2=’Linear Time’)

/ noprofile p;

• The resulting model is µ̂x = 2.629 + .0978x

The average number of friends is estimated to

increase by .0978 per year
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Multi-Sample Problems

Time Point
Group Subject 1 . . . j . . . t

1 1 y111 . . . y11j . . . y11t

...
...

. . .
...

. . .
...

i y1i1 . . . y1ij . . . y1it

...
...

. . .
...

. . .
...

n1 y1n11 . . . y1n1j . . . y1n1t
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

h 1 yh11 . . . yh1j . . . yh1t

...
...

. . .
...

. . .
...

i yhi1 . . . yhij . . . yhit

...
...

. . .
...

. . .
...

nh yhnh1 . . . yhnhj . . . yhnht
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

s 1 ys11 . . . ys1j . . . ys1t

...
...

. . .
...

. . .
...

i ysi1 . . . ysij . . . ysit

...
...

. . .
...

. . .
...

ns ysns1 . . . ysnsj . . . ysnst

• yhij is categorical with c possible outcomes
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Multinomial Structure

• The data correspond to s independent

multinomial samples of size nh (h = 1, . . . , s)

• The probability vector πh for each of these

independent multinomial distributions has

r = ct potential outcomes (response profiles)

If “missing” is a possible outcome, r = (c+1)t−1

• Let ph denote the r × 1 vector of sample

proportions in the hth subpopulation

• ph is an unbiased estimator of πh

• The variance-covariance matrix of ph can be

consistently estimated by

Vph
=

1
nh

(Dph
− php′h)
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Multinomial Structure

• Now let p = (p1, . . . , ps)′ denote the sr × 1

vector of observed proportions from all

s subpopulations

• p is an unbiased estimator of π = (π1, . . . , πs)′

• Var(p) can be consistently estimated by the

block diagonal matrix

Vp =




Vp1 0 · · · 0
0 Vp2 · · · 0
...

...
. . .

...
0 0 · · · Vps




• Vp is a sr × sr matrix

• Since the elements of πh (and ph) are linearly

dependent, Vp is a singular covariance matrix
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Model Fitting Using WLS

• Consider models of the form f(p) = Xβ

• f(p) is a u× 1 vector of response functions

(defined in terms of a sequence of linear,

exponential, and logarithmic operations)

• X is a u× v model matrix of rank v ≤ u

• β is a v × 1 vector of unknown parameters

• Since p ≈ Nsr(π, Vp), f(p) ≈ Nu(f(π), Vf ), where

Vf is the Taylor series estimate of Var(f(p))

• Vf is assumed to have rank u

• The WLS estimate of β is

β̂ = (X ′V −1
f X)−1(X ′V −1

f f(p))
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Model Fitting Using WLS

• The goodness of fit of the model can be tested

using the statistic

W =
(
f(p)−Xβ̂

)′
V −1

f

(
f(p)−Xβ̂

)

• If the model X fits, then W ≈ χ2
u−v

• Additional hypotheses of the form H0: Cβ = 0

may then be tested

• C is a c× v coefficient matrix

• Since β̂ ≈ Nv

(
β, (X ′V −1

f X)−1
)
,

Cβ̂ ≈ Nc

(
Cβ, C(X ′V −1

f X)−1C ′
)

• The Wald statistic

WC = (Cβ̂)′[C(X ′V −1
f X)−1C ′]−1Cβ̂

is approximately χ2
c if H0 is true
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Example

• The Iowa 65+ Rural Health Study

sponsored by National Institute on Aging as part

of the Established Populations for Epidemiologic

Study of the Elderly (EPESE) project

• Cohort of elderly individuals was followed over a

six-year period

• At each of three surveys (years 0, 3, 6), extensive

demographic and social support data were

obtained from each respondent

• One variable of interest was church attendance

Yes: subject is a regular church attender

No: subject does not regularly attend

Missing: subject did not answer this question

or did not participate in this survey
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Example (continued)

• Data were obtained from 3085 individuals

• 1935 females, 1150 males

• There were a substantial number of missing values

• most occur at the end of a sequence of

nonmissing responses

• due largely to deaths or losses to follow-up

• Questions to be answered:

• Do church attendance rates differ between

females and males?

• Are attendance rates changing over time?

• Are the observed patterns of change the same

for females and males?

• Thus, interest focuses on modeling the marginal

probability of regular church attendance as a

function of gender and survey year.
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Church Attendance Data

Regular Attender at: Frequency
Year 0 Year 3 Year 6 Female Male Total
Missing No Missing 3 2 5
Missing No No 1 3 4
Missing No Yes 1 1 2
Missing Yes Missing 2 2 4
Missing Yes Yes 2 0 2

No Missing Missing 101 122 223
No Missing No 11 5 16
No Missing Yes 3 2 5
No No Missing 71 86 157
No No No 158 143 301
No No Yes 30 18 48
No Yes Missing 14 5 19
No Yes No 22 21 43
No Yes Yes 33 15 48
Yes Missing Missing 195 125 320
Yes Missing No 4 0 4
Yes Missing Yes 18 9 27
Yes No Missing 28 16 44
Yes No No 51 26 77
Yes No Yes 25 12 37
Yes Yes Missing 170 110 280
Yes Yes No 88 36 124
Yes Yes Yes 904 391 1295
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Complete Data

• We first analyze the data from 1973 individuals

who responded at all three surveys:

Regular Church Attender
Gender Year 0 Year 3 Year 6 Count
Females No No No 158

No No Yes 30
No Yes No 22
No Yes Yes 33
Yes No No 51
Yes No Yes 25
Yes Yes No 88
Yes Yes Yes 904

Total 1311

Males No No No 143
No No Yes 18
No Yes No 21
No Yes Yes 15
Yes No No 26
Yes No Yes 12
Yes Yes No 36
Yes Yes Yes 391

Total 662
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Analysis of Marginal Proportions

• Let ph denote the underlying 8 × 1 proportion

vector in subpopulation h

(h = 1 for females, h = 2 for males)

• In each subpopulation, let f(ph) denote the

3× 1 vector of marginal proportions:

f(ph) = (ph0, ph3, ph6)′,

where phj is the marginal proportion of

subjects in group h who regularly attend

church at year j

• f(ph) = Aph, where

A =




0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1



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Analysis of Marginal Proportions

• In this example,

f(p1) =




0.815
0.799
0.757


 , f(p2) =




0.702
0.699
0.659




• Now let f(p) be the 6× 1 vector

 f(p1)

f(p2)




• The estimated covariance matrix of f(p) is the

6× 6 matrix

Vf =

Vf1 0

0 Vf2


 ,

where Vfh
is the estimated covariance matrix

of f(ph)

• We can now use weighted least squares to fit

models of the form f(p) = Xβ
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Analysis Strategy

• We will first fit a saturated model with separate

parameters for females and males

• The model is f(p) = X1β, where X1 is a 6 × 6

design matrix and

β = (βFI , βFL, βFQ, βMI , βML, βMQ)′

• βGI , βGL, βGQ are the intercept, linear time

effect, and quadratic time effect for gender G

• Since the surveys were equally spaced,

orthogonal polynomial coefficients will be

used for the time effects

• Based on results of hypothesis tests concerning

the parameters of the saturated model, we will

then fit an appropriate reduced model
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SAS Statements for

Analysis of Complete Data

data church;
* gender: F=female, M=male;
* attend: M=missing, N=no, Y=yes;
input gender $ attend0 $ attend3 $

attend6 $ count;
cards;
F M N M 3
F M N N 1
F M N Y 1
F M Y M 2
F M Y Y 2

...
M Y N N 26
M Y N Y 12
M Y Y M 110
M Y Y N 36
M Y Y Y 391
;
data complete; set church;
if attend0=’M’ or attend3=’M’ or

attend6=’M’ then delete;
title2 ’Analysis of Complete Data’;
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Model 1: Saturated

proc catmod; weight count; population gender;
response 0 0 0 0 1 1 1 1,

0 0 1 1 0 0 1 1,
0 1 0 1 0 1 0 1;

model attend0*attend3*attend6=
(1 -1 1 0 0 0,
1 0 -2 0 0 0,
1 1 1 0 0 0,
0 0 0 1 -1 1,
0 0 0 1 0 -2,
0 0 0 1 1 1)

(1=’Females: Intercept’,
2=’ Linear’,
3=’ Quadratic’,

2 3=’ Lin & Quad’,
4=’Males: Intercept’,
5=’ Linear’,
6=’ Quadratic’,

5 6=’ Lin & Quad’,
2 5=’Both: Linear’,
3 6=’ Quadratic’,

2 3 5 6=’ Lin & Quad’) / noprofile;
contrast ’Sex Eq.’ all_parms 1 0 0 -1 0 0,

all_parms 0 1 0 0 -1 0,
all_parms 0 0 1 0 0 -1;

contrast ’Int Eq.’ all_parms 1 0 0 -1 0 0;
contrast ’Lin Eq.’ all_parms 0 1 0 0 -1 0;
contrast ’Quad Eq’ all_parms 0 0 1 0 0 -1;
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Results from Model 1

• Linear time effect is significant in females and

in males

• Nonlinear time effect is nearly significant in

females and in males

• The joint test of nonlinearity in females and

males is nearly significant

• The intercepts for females and males differ

significantly

• The linear time effects in females and males are

not significantly different

• The nonlinear time effects in females and males

are not significantly different
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Model 2: Reduced

• It seems sensible to fit a reduced model with

common linear and nonlinear time effects for

females and males

proc catmod; weight count;
population gender;
response 0 0 0 0 1 1 1 1,

0 0 1 1 0 0 1 1,
0 1 0 1 0 1 0 1;

model attend0*attend3*attend6=
(1 0 -1 1,
1 0 0 -2,
1 0 1 1,
0 1 -1 1,
0 1 0 -2,
0 1 1 1)

(1=’Intercept: Females’,
2=’ Males’,
3=’Linear Time’,
4=’Quadratic Time’)

/ noprofile p;
contrast ’Intercept Equality’

all_parms 1 -1 0 0;
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Summary of Analysis of Complete Data

• Model 2 provides a good fit to the observed data

• the residual chi-square is 0.87 with 2 df

• Each of the model parameters is significantly

different from zero

• intercept for females, intercept for males,

linear time effect, quadratic time effect

• Conclusions:

• probability of regular church attendance is

decreasing over time

• the change is nonlinear

(decrease from year 0 to year 3 is less than

the decrease from year 3 to year 6)

• at each time point, females are more likely

than males to regularly attend church

• the estimated difference between females and

males is 0.7905− 0.6865 = 0.104
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Reparameterization of Model 2

• In order to produce results that are more

easily interpretable, Model 2 will be re-fit on

the natural time scale (years)

• (instead of using orthogonal polynomials)

model attend0*attend3*attend6=

(1 0 0 0,

1 0 3 9,

1 0 6 36,

0 1 0 0,

0 1 3 9,

0 1 6 36)

(1=’Intercept: Females’,

2=’ Males’,

3=’Linear Time’,

4=’Quadratic Time’)

/ noprofile p;

contrast ’Intercept Equality’

all_parms 1 -1 0 0;

• All other statements are unchanged
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Comments

• Both parameterizations give the same:

• lack of fit statistic

• test of the quadratic time effect

• predicted values

• The parameter estimates differ, as do the tests

of all other effects

• In particular, the reparameterized test of the

linear time effect is nonsignificant (due to

correlation with the quadratic time effect)

• The time effect parameters are both negative

when orthogonal polynomial coefficients are used

• On the natural time scale, the linear time

parameter is positive
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Analysis of Marginal Logits

• Let f∗(ph) denote the 3× 1 vector of marginal

logits in group h

• f∗(ph) = A2 log(A1ph), where

A1 =




0 0 0 0 1 1 1 1
1 1 1 1 0 0 0 0
0 0 1 1 0 0 1 1
1 1 0 0 1 1 0 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0




,

A2 =




1 −1 0 0 0 0
0 0 1 −1 0 0
0 0 0 0 1 −1




• The response statement is replaced with:
response 1 -1 0 0 0 0,

0 0 1 -1 0 0,
0 0 0 0 1 -1

log 0 0 0 0 1 1 1 1,
1 1 1 1 0 0 0 0,
0 0 1 1 0 0 1 1,
1 1 0 0 1 1 0 0,
0 1 0 1 0 1 0 1,
1 0 1 0 1 0 1 0;
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Summary of Analysis of Marginal Logits

• The model with

• separate intercepts for females and males

• common linear and quadratic time effects

provides an adequate fit (p = 0.29)

• Each of the model parameters is significantly

different from zero

• At each time point, the odds of regularly

attending church are estimated to be

e1.3241−0.7911 = e0.533 = 1.7 times higher for

females than for males

• The fit of the marginal logit model is not quite

as good as the fit of the corresponding model on

the marginal probability scale

• logit scale: residual chi-square = 2.47

• probability scale: residual chi-square = 0.87
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Observed and Predicted Probabilities of

Church Attendance

0 3 6

Year

0.5

0.6

0.7

0.8
◦

◦

◦

× ×

×

..............................................................................................................................................................................................................................................................................................................................................................................................................................................................

..............................................................................................................................................................................................................................................................................................................................................................................................................................................................

............................................

.........................................................................................
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Observed

◦ Females

× Males

Predicted

.........

Probability scale

Logit scale
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Missing Data

• Data collected in longitudinal studies are often

incomplete

• Generally, some of the individuals who are

intended to be followed over time will fail

to provide information at one or more of the

scheduled follow-up times

• An observation may be missing:

• by design

• at random

• due to characteristics of the subject

• Most of the standard methods of analysis

require complete data

• In a longitudinal study, the analysis of

complete cases can lead to a substantial

reduction in sample size
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Ratio Estimation for Proportions

• Consider a one-sample repeated measures study

with a categorical response

• n subjects

• t time points

• yij is a categorical response variable with

c possible outcomes, for i = 1, . . . , n and

j = 1, . . . , t

• If there are no missing data, there are ct

potential response profiles

• If “missing” is also considered to be a category

of response, there are c + 1 potential outcomes

at each time point

• In this case, the number of response profiles is

(c + 1)t − 1



419

Ratio Estimation for Proportions

• Let πjl denote the marginal probability of

response category l at time j, for j = 1, . . . , t,

l = 1, . . . , c

• πjl can be estimated by π̂jl, where

π̂jl =
no. of subjects in category l at time j

no. of subjects with a response at time j

• The tc× 1 vector

π̂ = (π̂11, . . . , π̂1c, . . . , π̂t1, . . . , π̂tc)′

can be calculated as

π̂ = exp
(
A2 log(A1p)

)

• p is the ((c+1)t-1)×1 vector of proportions

corresponding to the multi-way cross-

classification of response at the t time points
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Ratio Estimation for Proportions

• A1 is a t(c + 1)× ((c + 1)t − 1) matrix

Row Proportion of subjects with:

1 response category 1 at time 1

2 response category 2 at time 1
...

...

c response category c at time 1

c + 1 non-missing response at time 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(t-1)(c+1)+1 response category 1 at time t

(t-1)(c+1)+2 response category 2 at time t
...

...

(t-1)(c+1)+c response category c at time t

(t-1)(c+1)+c+1 non-missing response at time t

[= t(c + 1)]
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Ratio Estimation for Proportions

• A2 is the tc× t(c+1) matrix It⊗ [Ic,−1c], where

Ik is the k×k identity matrix and 1k is the k×1

vector (1, . . . , 1)′

• Since the elements of π̂ are linearly dependent,

additional transformations can then be used to

compute:

• marginal proportions

• marginal cumulative proportions

• marginal mean scores

• marginal logits

• In practice, the matrices A1 and A2 can often

be simplified (to compute only the specific

marginal proportions of interest)
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Example

• The Muscatine Coronary Risk Factor Study

A longitudinal study of coronary risk factors

in school children

• From 1971–1981, six biennial cross-sectional

school screens were completed

Data from 1977, 1979, and 1981 were reported

• Only children currently enrolled in school

were eligible to participate, and about 70%

of eligible children were screened

• Height and weight were measured on each

participating child, from which relative weight

was computed

(ratio of child’s weight to the median weight in

the sex-age-height group)
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Example

• The outcome of interest was dichotomous

(obese, not obese)

Children with relative weight greater than 110%

of the median weight were classified as obese

• In this example, we consider the cohort of males

who were 7–9 years old in 1977

• This group consists of 522 children

Only 225 children participated in all three

surveys (356 in 1977, 375 in 1979, 380 in 1981)

Reference

Woolson, R. F. and Clarke, W. R. (1984).
Analysis of categorical incomplete longitudinal
data. J. Roy. Statist. Soc A 147, 87–99.
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1977 Cohort of 7–9 Year Old Males

Classified as Obese in: No. of
1977 1979 1981 Children
Yes Yes Yes 20
Yes Yes No 7
Yes Yes Unk 11
Yes No Yes 9
Yes No No 8
Yes No Unk 1
Yes Unk Yes 3
Yes Unk No 1
Yes Unk Unk 7
No Yes Yes 8
No Yes No 8
No Yes Unk 3
No No Yes 15
No No No 150
No No Unk 38
No Unk Yes 6
No Unk No 16
No Unk Unk 45
Unk Yes Yes 13
Unk Yes No 3
Unk Yes Unk 4
Unk No Yes 2
Unk No No 42
Unk No Unk 33
Unk Unk Yes 14
Unk Unk No 55
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Definition of Response Functions

• Let πx denote the marginal probability of being

classified as obese at year x, for x = 77, 79, 81

• πx is estimated by px, the observed proportion

classified as obese

• The response functions f(p) = (p77, p79, p81)′ can

be computed as f(p) = exp
(
A2 log(A1p)

)
, where

p is the 26× 1 vector of multinomial proportions,

A1 is the 6× 26 matrix



1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0
1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0
1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1




,

and A2 =




1 −1 0 0 0 0
0 0 1 −1 0 0
0 0 0 0 1 −1



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SAS Statements

data a;
* 1=obese, 2=not obese, 3=missing;
input o77 o79 o81 count;
cards;
1 1 1 20

...
3 3 2 55
;
proc catmod data=a; weight count;
response exp 1 -1 0 0 0 0,

0 0 1 -1 0 0,
0 0 0 0 1 -1

log
1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0,
1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0,
1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0,
1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0,
1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1;
model o77*o79*o81=(1 0,

1 2,
1 4)

(1=’Intercept’,
2=’Linear Age’)

/ noprofile p;
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Comments on the Example

• It is wise to check the components of the

response function vector

(PROC FREQ is often useful in this regard)

• The model provides a very good fit to the

observed data

W = 0.15, p = 0.70

(The 1 df residual tests non-linearity)

• The predicted model is

π̂x = 0.186 + 0.0120(x− 77)

(The marginal probability of obesity is

estimated to increase by 0.0120 per year)

How would the results differ if the analysis had

been carried out using only the data from the 225

children who participated in all three surveys?
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Analysis of Complete Data

• Model with linear age effect

data b; set a;
if o77 ne 3 & o79 ne 3 & o81 ne 3;
proc catmod; weight count;
response marginals;
model o77*o79*o81=(1 0,

1 2,
1 4)

(1=’Intercept’,
2=’Linear Age’) / noprofile;

The linear effect of age is not significant

• Model with only an intercept

proc catmod; weight count;
response marginals;
model o77*o79*o81=(1,

1,
1)

(1=’Intercept’) / noprofile;

• This model fits well to the complete data
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Church Attendance Example

Analysis of All Data

• Excluding subjects with incomplete data results

in a substantially reduced sample size

• To use all available data at each time point, the

marginal proportions are estimated as ratios of

sums of underlying multinomial proportions

• These are computed using a series of linear,

logarithmic, and exponential transformations

• This approach (and extensions) has been

discussed by:

• Stanish, Gillings & Koch (1978, Biometrics)

• Woolson and Clarke (1984, JRSS A)

• Landis et al. (1988, Statistics in Medicine)

• Park and Davis (1993, Biometrics)
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Analysis of All Data

• Let p′1 = (pf0, pf3, pf6) and p′2 = (pm0, pm3, pm6)

• In general, pi is computed as exp
(
A2 log(A1p

∗
i )

)
,

where

• p∗i is the vector of underlying multinomial

proportions in each subpopulation

• A1 has ct rows and as many columns as there

are observed response profiles

(a maximum of (c + 1)t − 1 columns)

• A2 is a (c− 1)t× ct matrix

• c is the number of possible outcomes of the

response (excluding the “missing” category)

• t is the number of time points

• In this example, c = 2, t = 3, A1 is 6 × 23 and

A2 is 3× 6
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Analysis of All Data

• It is convenient to define the rows of A1 as:

Row Proportion of subjects with:

1 response category 1 at time 1
...

...
c− 1 response category c− 1 at time 1

c non-missing response at time 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c(t–1)+1 response category 1 at time t
...

...
c(t–1)+(c–1) response category c− 1 at time t

c(t–1)+c non-missing response at time t

• With this defn. of A1, A2 = It ⊗ [I(c−1),−e(c−1)]

• Ik is the k × k identity matrix

• ek is the k × 1 vector (1, . . . , 1)′

• ⊗ denotes the Kronecker product
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Analysis of All Data

• In this example,

p′1 = (pf0, pf3, pf6), p′2 = (pm0, pm3, pm6)

A1 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1
1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1
0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
0 1 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1




A2 = I3 ⊗ (1,−1) =




1−1 0 0 0 0
0 0 1−1 0 0
0 0 0 0 1−1




• Rows 1, 3, and 5 of A1 compute the proportion

of individuals who regularly attended church at

years 0, 3, and 6, respectively

• Rows 2, 4, and 6 calculate the corresponding

proportions who responded to this question at

the three surveys
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Model 1: Saturated

proc catmod data=church; weight count;
population gender;
response exp 1 -1 0 0 0 0,

0 0 1 -1 0 0,
0 0 0 0 1 -1 log

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1,
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1,
0 0 0 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1,
1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1,
0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1,
0 1 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1;
model attend0*attend3*attend6=

(1 -1 1 0 0 0,
1 0 -2 0 0 0,
1 1 1 0 0 0,
0 0 0 1 -1 1,
0 0 0 1 0 -2,
0 0 0 1 1 1)

(1=’Females: Intercept’,
2=’ Linear’,
3=’ Quadratic’,

2 3=’ Lin & Quad’,
4=’Males: Intercept’,
5=’ Linear’,
6=’ Quadratic’,

5 6=’ Lin & Quad’,
2 5=’Both: Linear’,
3 6=’ Quadratic’,

2 3 5 6=’ Lin & Quad’) / noprofile;
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Model 2: Reduced

• In model 1, the time effects are not significantly

different from zero

• This suggests a model with separate intercepts

for females and males

proc catmod data=church; weight count;
population gender;
response exp 1 -1 0 0 0 0,

0 0 1 -1 0 0,
0 0 0 0 1 -1 log

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1,
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1,
0 0 0 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1,
1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1,
0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1,
0 1 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1;
model attend0*attend3*attend6=(1 0,

1 0,
1 0,
0 1,
0 1,
0 1)

(1=’Females: Intercept’,
2=’Males: Intercept’) / noprofile;

contrast ’Int. Equality’ all_parms 1 -1;
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Summary of Analysis of All Data

• Model 2 provides a good fit to the observed data

• residual chi-square is 6.0 with 4 df (p = 0.2)

• The two parameters of the model are both

statistically significant

• Conclusions:

• Females are more likely than males to

regularly attend church

• the estimated difference between females and

males is 0.7660− 0.6434 = 0.1226

• The estimated probability of regular church

attendance does not change over time

• Estimated sex difference is similar to the

estimate from the analysis of the complete data

• The conclusions concerning time trends differ
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Alternative Response Functions

• This methodology can be extended to more

complicated response functions

e.g., generalized logits or cumulative logits

• Simplest approach is to first compute the

marginal proportions

• In this case, usually necessary to calculate all

c proportions

(Instead of computing only the first c−1 linearly

independent marginal proportions)

• Thus, A1 has (c + 1)t rows and A2 is the

ct× (c + 1)t matrix It ⊗ [Ic,−ec]

• Additional matrix, exponential, and logarithmic

operations can then be applied to obtain the

response functions of interest
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Logit Response Functions

• Suppose we prefer to analyze the data on the

logit scale rather than on the probability scale

• Consider models l = Xβ, where l = (l1, l2)′ and

l1 =
(

log
( pf0

1−pf0

)
, log

( pf3

1−pf3

)
, log

( pf6

1−pf6

))

l2 =
(

log
( pm0

1−pm0

)
, log

( pm3

1−pm3

)
, log

( pm6

1−pm6

))

• l′i = B2 log(B1p
∗
i ), where B1 is




0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1
1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0
0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0




and B2 = I3 ⊗ (1,−1) =




1 −1 0 0 0 0
0 0 1 −1 0 0
0 0 0 0 1 −1



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A Test of the Missing Data Mechanism

• Fit a single model to complete & incomplete data

• Test if parameter estimates for complete data

are significantly different (individually & jointly)

from parameter estimates for incomplete data

• Proposed by Park and Davis (1993, Biometrics)

• The 12 × 1 vector of response functions is now

p = (p1, p2)′, where

p1 = (pf0c, pf3c, pf6c, pf0i, pf3i, pf6i)

p2 = (pm0c, pm3c, pm6c, pm0i, pm3i, pm6i)

• The third subscript is “c” for subjects with

complete data and “i” for subjects with one or

more missing responses

• pi = exp
(
A2 log(A1p

∗
i )

)
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A Test of the Missing Data Mechanism

A1 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 1 1 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 0 0
0 0 0 0 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 0 0
0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0
1 1 1 1 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0
0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0




• Subjects who responded to all three surveys:

• rows 1–3 compute proportion who attended

regularly at years 0, 3, and 6, respectively

• row 4 computes the proportion who responded

at all three surveys

• Subjects who had at least one missing response:

• rows 5–6 compute numerator (attend regularly)

and denominator (responded) for year 0

• rows 7–8 and 9–10 calculate the corresponding

quantities for year 3 and year 6
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A Test of the Missing Data Mechanism

A2 =




1 0 0 −1 0 0 0 0 0 0
0 1 0 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 0 1 −1 0 0
0 0 0 0 0 0 0 0 1 −1




• Rows 1–3 pertain to subjects who responded to

all three surveys

• difference between the log of the proportion

who attended church regularly at year i and

the log of the proportion who responded to all

three surveys, for i = 0, 3, 6, respectively

• Rows 4–6 pertain to subjects who had at least

one missing response

• difference between the log of the proportion

who attended church regularly at year i and

the log of the proportion who responded at

year i, for i = 0, 3, 6, respectively
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Model 1: Saturated

• Procedure invocation, defn. of response functions:

proc catmod data=church;
weight count;
population gender;
response exp

1 0 0 -1 0 0 0 0 0 0,
0 1 0 -1 0 0 0 0 0 0,
0 0 1 -1 0 0 0 0 0 0,
0 0 0 0 1 -1 0 0 0 0,
0 0 0 0 0 0 1 -1 0 0,
0 0 0 0 0 0 0 0 1 -1

log
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1,
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1,
0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1,
0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 1 1 0 1 1,
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 0 0,
0 0 0 0 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 0 0,
0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0,
1 1 1 1 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0,
0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0,
0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0;
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Model 1: Saturated (continued)

• MODEL statement:

model attend0*attend3*attend6=
(1 -1 1 0 0 0 0 0 0 0 0 0,
1 0 -2 0 0 0 0 0 0 0 0 0,
1 1 1 0 0 0 0 0 0 0 0 0,
0 0 0 0 0 0 1 -1 1 0 0 0,
0 0 0 0 0 0 1 0 -2 0 0 0,
0 0 0 0 0 0 1 1 1 0 0 0,
0 0 0 1 -1 1 0 0 0 0 0 0,
0 0 0 1 0 -2 0 0 0 0 0 0,
0 0 0 1 1 1 0 0 0 0 0 0,
0 0 0 0 0 0 0 0 0 1 -1 1,
0 0 0 0 0 0 0 0 0 1 0 -2,
0 0 0 0 0 0 0 0 0 1 1 1)

(1=’C: F-Int.’,
2=’ Lin.’,
3=’ Quad’,
4=’ M-Int.’,
5=’ Lin.’,
6=’ Quad’,
7=’IC: F-Int.’,
8=’ Lin.’,
9=’ Quad’,

10=’ M-Int.’,
11=’ Lin.’,
12=’ Quad’) / noprofile;
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Model 1: Saturated (continued)

• CONTRAST statements for testing equality

of parameters for subjects with complete and

incomplete data

contrast ’C=IC’

all_parms 1 0 0 0 0 0 -1 0 0 0 0 0,

all_parms 0 1 0 0 0 0 0 -1 0 0 0 0,

all_parms 0 0 1 0 0 0 0 0 -1 0 0 0,

all_parms 0 0 0 1 0 0 0 0 0 -1 0 0,

all_parms 0 0 0 0 1 0 0 0 0 0 -1 0,

all_parms 0 0 0 0 0 1 0 0 0 0 0 -1;

contrast ’C=IC: Int.’

all_parms 1 0 0 0 0 0 -1 0 0 0 0 0,

all_parms 0 0 0 1 0 0 0 0 0 -1 0 0;

contrast ’C=IC: L & Q’

all_parms 0 1 0 0 0 0 0 -1 0 0 0 0,

all_parms 0 0 1 0 0 0 0 0 -1 0 0 0,

all_parms 0 0 0 0 1 0 0 0 0 0 -1 0,

all_parms 0 0 0 0 0 1 0 0 0 0 0 -1;
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Results from Model 1

• Highly significant difference between complete

and incomplete cases

• chi-square= 82.7, df= 6, p < 0.001

• Time effects for complete and incomplete cases

are not significantly different

• chi-square= 1.58, df= 4, p = 0.8

• This motivates fitting a reduced model with:

• separate intercepts for complete and

incomplete females and males (4 parameters)

• common linear and quadratic time effects

for females (2 parameters) and for males

(2 parameters)

• The PROC, WEIGHT, POPULATION, and

RESPONSE statements are identical to those

from Model 1
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Model 2: Reduced

• MODEL statement:

model attend0*attend3*attend6=
(1 0 -1 1 0 0 0 0,
1 0 0 -2 0 0 0 0,
1 0 1 1 0 0 0 0,
0 1 -1 1 0 0 0 0,
0 1 0 -2 0 0 0 0,
0 1 1 1 0 0 0 0,
0 0 0 0 1 0 -1 1,
0 0 0 0 1 0 0 -2,
0 0 0 0 1 0 1 1,
0 0 0 0 0 1 -1 1,
0 0 0 0 0 1 0 -2,
0 0 0 0 0 1 1 1)

(1=’F: C Int.’,
2=’ IC Int.’,
3=’ Linear’,
4=’ Quadratic’,
5=’M: C Int.’,
6=’ IC Int.’,
7=’ Linear’,
8=’ Quadratic’) / noprofile;
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Model 2: Reduced (continued)

• CONTRAST statements:

contrast ’C=IC: Int. ’
all_parms 1 -1 0 0 0 0 0 0,
all_parms 0 0 0 0 1 -1 0 0;

contrast ’ F Int.’
all_parms 1 -1 0 0 0 0 0 0;

contrast ’ M Int.’
all_parms 0 0 0 0 1 -1 0 0;

contrast ’M=F: L & Q’
all_parms 0 0 1 0 0 0 -1 0,
all_parms 0 0 0 1 0 0 0 -1;

contrast ’ Lin.’
all_parms 0 0 1 0 0 0 -1 0;

contrast ’ Quad.’
all_parms 0 0 0 1 0 0 0 -1;

contrast ’Int.: M=F’
all_parms 1 0 0 0 -1 0 0 0,
all_parms 0 1 0 0 0 -1 0 0;

contrast ’C Int.: M=F’
all_parms 1 0 0 0 -1 0 0 0;

contrast ’IC Int.: M=F’
all_parms 0 1 0 0 0 -1 0 0;
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Results from Model 2

• Provides a good fit to the data

• residual chi-square is 1.58 with 4 df

• All tests comparing intercepts are statistically

significant

• complete versus incomplete cases

(joint, in females, in males)

• males versus females

(joint, in complete cases, in incomplete cases)

• The time effects in females and males are not

significantly different

• Motivates a further reduced model with:

• four intercepts

(complete and incomplete females and males)

• common linear and quadratic time effects

(2 parameters)
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Model 3: Further Reduced

• MODEL statement:

model attend0*attend3*attend6=

(1 0 0 0 -1 1,

1 0 0 0 0 -2,

1 0 0 0 1 1,

0 1 0 0 -1 1,

0 1 0 0 0 -2,

0 1 0 0 1 1,

0 0 1 0 -1 1,

0 0 1 0 0 -2,

0 0 1 0 1 1,

0 0 0 1 -1 1,

0 0 0 1 0 -2,

0 0 0 1 1 1)

(1=’F: C Int.’,

2=’ IC Int.’,

3=’M: C Int.’,

4=’ IC Int.’,

5=’Linear Time’,

6=’Quadratic Time’)

/ noprofile p;
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Model 3: Further Reduced

• CONTRAST statements:

contrast ’Int.: Equal.’
all_parms 1 0 0 -1 0 0,
all_parms 0 1 0 -1 0 0,
all_parms 0 0 1 -1 0 0;

contrast ’ F=M’
all_parms 1 0 -1 0 0 0,
all_parms 0 1 0 -1 0 0;

contrast ’ F=M:C’
all_parms 1 0 -1 0 0 0;

contrast ’ IC’
all_parms 0 1 0 -1 0 0;

contrast ’ C=IC’
all_parms 1 -1 0 0 0 0,
all_parms 0 0 1 -1 0 0;

contrast ’ C=IC:F’
all_parms 1 -1 0 0 0 0;

contrast ’ M’
all_parms 0 0 1 -1 0 0;

contrast ’ C F=IC M’
all_parms 1 0 0 -1 0 0;

contrast ’ IC F=C M’
all_parms 0 1 -1 0 0 0;
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Results of Model 3

• Provides a good fit to the data

• residual chi-square is 2.58 with 6 df

• Linear and nonlinear time effects are both

statistically significant

• The following tests comparing intercepts are

statistically significant

• joint equality (3 df)

• females versus males

(joint, in complete cases, in incomplete cases)

• complete versus incomplete

(joint, in females, in males)

• The only nonsignificant intercept comparison is

incomplete females versus complete males
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Model 4 (Final)

• In order to produce results that are more

easily interpretable, Model 3 will be re-fit on

the natural time scale (years)

• (instead of using orthogonal polynomials)

model attend0*attend3*attend6=

(1 0 0 0 0 0,

1 0 0 0 3 9,

1 0 0 0 6 36,

0 1 0 0 0 0,

0 1 0 0 3 9,

0 1 0 0 6 36,

0 0 1 0 0 0,

0 0 1 0 3 9,

0 0 1 0 6 36,

0 0 0 1 0 0,

0 0 0 1 3 9,

0 0 0 1 6 36)

• All other statements are unchanged
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Results of Model 4 (Final)

• The estimated intercepts are:

Subpopulation Estimate

Complete females 0.8128
Incomplete females 0.6710
Complete males 0.7089
Incomplete males 0.5426

• The profiles over time are parallel across the

four groups

• The estimated probability of regular attendance:

• decreases nonlinearly over time

• the decrease from year 0 to year 3 is greater

than the decrease from year 3 to year 6

• is highest for complete females, followed

by complete males, incomplete females,

incomplete males
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Summary of Approaches

Analysis of Complete Data Only

Parameter Estimate

Female intercept 0.8122
Male intercept 0.7081
Linear year 0.0009
Quadratic year −0.0016

Analysis of All Data

Parameter Estimate

Female intercept 0.7660
Male intercept 0.6434

Combined Analysis of Complete & Incomplete Data

Parameter Estimate

Complete female intercept 0.8128
Incomplete female intercept 0.6710
Complete male intercept 0.7089
Incomplete male intercept 0.5426
Linear year −0.0001
Quadratic year −0.0015
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Comments on the WLS Approach

• A flexible methodology that can handle a wide

variety of response functions and accommodate

missing data

(test of missing data mechanism is also possible)

• The main disadvantages are that the:

• Sample size must be large

• Number of time points must be small

• Covariates must be categorical and time-

independent

• Some key references:

• Koch et al. (1977, Biometrics)

• Stanish et al. (1978, Biometrics)

• Woolson and Clarke (1984, JRSS A)

• Landis et al. (1988, Statistics in Medicine)

• Park and Davis (1993, Biometrics)


