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Randomization Model Methods for

One-Sample Repeated Measures

• For categorical response variables, the WLS

approach is often inapplicable

• sample size may be too small

• number of time points may be too large

• For continuous response variables:

• the normality assumption may not be valid

• the unstructured multivariate approach often

has low power

• repeated measures ANOVA requires

restrictive covariance assumptions

• choice of alternative covariance structure may

not be obvious

• An alternative methodology is based on

the randomization model and the multiple

hypergeometric distribution



464

Advantages

• Useful for assessing strength of association

between a response and a repeated measures

factor in a relatively assumption-free context

• Applies to categorical or continuous outcomes

• Applicable when sample sizes are too small to

warrant the use of large-sample methods

sample size requirements for asymptotic tests

apply to across-strata totals, rather than to

within-strata totals

• Easily accommodates missing data

(if missing completely at random)

• Does not require random sampling of subjects

from some underlying probabilistic framework
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Disadvantages

• Provides hypothesis testing procedures only

Estimation of parameters and construction of

confidence intervals is not generally possible

• Not useful for modeling

cannot assess influences of multiple factors

• Limited to one-sample problems

• The scope of inference is restricted to the

actual subjects under study

rather than to some broad population which

the subjects might conceptually represent

• Tests may be insensitive to alternatives in

which associations vary in direction across

strata (subjects)
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Randomization Model Methods for

One-Sample Repeated Measures

• Based on the use of Cochran–Mantel–Haenszel

statistics

• Landis et al. (1978)

• Landis et al. (1988)

• Crowder and Hand (1990, Section 8.6)

• The methodology will be developed as follows:

a. The hypergeometric distribution

b. Large-sample tests of randomness for a single

2× 2 table and for sets of 2× 2 tables

c. Repeated measures with a binary outcome

d. The multiple hypergeometric distribution

e. Large-sample tests of randomness for a single

r × c table and for sets of r × c tables

f. Repeated measures with general outcomes
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The Hypergeometric Distribution

• Consider a population of n objects, of which

n.1 are of type 1 and n− n.1 are of type 2

• Suppose that a sample of size n1. is selected

from this population (without replacement)

• Let X denote the number of type 1 objects in

the sample

• These data can be displayed in the following

2× 2 table:

Sampled Type 1 Type 2 Total

Yes X n1.–X n1.

No n.1–X n–n1.–n.1+X n–n1.

Total n.1 n–n.1 n

• We write X ∼ H(n, n1., n.1)



468

The Hypergeometric Distribution

• The distribution of X ∼ H(n, n1., n.1) is given by

h(x) = Pr(X = x), where:

h(x) =
(

n.1

x

)(
n− n.1

n1. − x

)/(
n

n1.

)

=

n.1!
x!(n.1 − x)!

(n− n.1)!
(n1. − x)!(n− n.1 − n1. + x)!

n!
n1.!(n− n1.)!

=
n.1! (n− n.1)! n1.! (n− n1.)!

n! x!(n.1 − x)!(n1. − x)!(n− n.1 − n1. + x)!

for max(0, n1. + n.1 − n) ≤ x ≤ min(n1., n.1)

• It can be shown that

E(X) =
n1.n.1

n
,

Var(X) =
n1.(n− n1.)n.1(n− n.1)

n2(n− 1)
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Test of Randomness for a 2× 2 Table

• Consider a sample of n observations classified

with respect to two dichotomous variables

• The resulting frequencies can be displayed in a

2× 2 contingency table:

Column VariableRow
Variable Level 1 Level 2 Total

Level 1 n11 n12 n1.

Level 2 n21 n22 n2.

Total n.1 n.2 n

• If the row and column marginal totals are

fixed (either by design or by conditioning),

n11 ∼ H(n, n1., n.1)
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Test of Randomness for a 2× 2 Table

• Under the null hypothesis of randomness,

h(n11) =
n1.!n2.! n.1! n.2!

n! n11! n12!n21! n22!
,

for max(0, n1. + n.1 − n) ≤ n11 ≤ min(n1., n.1)

• Under the null hypothesis of randomness,

E(n11) =
n1.n.1

n

Var(n11) =
n1.n2.n.1n.2

n2(n− 1)

• A large-sample test of randomness is based on

the statistic

Q =

(
n11 − E(n11)

)2

Var(n11)
,

which has an asymptotic χ2
1 distribution
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Test of Randomness for s 2× 2 Tables

• Consider a set of s independent 2 × 2 tables,

with the counts in the hth table denoted by:

Column Variable

Row Variable Level 1 Level 2 Total

Level 1 nh11 nh12 nh1.

Level 2 nh21 nh22 nh2.

Total nh.1 nh.2 nh

• We wish to test the null hypothesis

H0: no association between the row and

column variable in any of the s tables

• If the row and column marginal totals in

each table are fixed, the nh11 are independent

hypergeometric random variables

nh11 ∼ H(nh, nh1., nh.1)



472

Test of Randomness for s 2× 2 Tables

• If H0 is true,

E(nh11) =
nh1.nh.1

nh

Var(nh11) =
nh1.nh2.nh.1nh.2

n2
h(nh − 1)

• Now let X =
∑s

h=1 nh11

E(X) =
s∑

h=1

E(nh11) =
s∑

h=1

nh1.nh.1

nh

Var(X) =
s∑

h=1

Var(nh11) =
s∑

h=1

nh1.nh2.nh.1nh.2

n2
h(nh − 1)

• H0 can then be tested using the statistic

Q =
(X − E(X))2

Var(X)
,

which has an asymptotic null χ2
1 distribution
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Test of Randomness for s 2× 2 Tables

• Commonly known as the Mantel-Haenszel test

• The asymptotic null distribution is valid when:

• s is small, if the {nh} are large

• s is large, even if the {nh} are small

• Q is large when nh11 − E(nh11) is consistently

positive or consistently negative across strata

• If nh11 − E(nh11) is positive in some strata and

negative in others, the MH test will have low

power for detecting an overall association

• A continuity correction is sometimes used

• (|X − E(X)| − 0.5)2 for the numerator of Q

• Recommended only when all nh = 2
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Application to Repeated Measures

• Suppose that a dichotomous outcome is measured

at t = 2 time points for each of n subjects

e.g. yij takes on the values + or −,

for i = 1, . . . , n, j = 1, 2

• The data from subject i can be displayed in a

2× 2 contingency table:

Response Category

Time + − Total

1 ni11 ni12 1
2 ni21 ni22 1

Total ni.1 ni.2 2

• Note that in each table, two of the nijk values

will be equal to 0 and two will be equal to 1

• In fact, there are only four possible tables
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Application to Repeated Measures

No. of
Type of Table Subjects E(ni11) Var(ni11)

Response
Time + − Total

1 1 0 1 a 1 0
2 1 0 1

Total 2 0 2
Response

Time + − Total
1 1 0 1 b 1/2 1/4
2 0 1 1

Total 1 1 2
Response

Time + − Total
1 0 1 1 c 1/2 1/4
2 1 0 1

Total 1 1 2
Response

Time + − Total
1 0 1 1 d 0 0
2 0 1 1

Total 0 2 2
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Application to Repeated Measures

X =
n∑

i=1

ni11

= (a× 1) + (b× 1) + (c× 0) + (d× 0)

= a + b

E(X) =
n∑

i=1

E(ni11)

=
(
a× 1

)
+

(
b× 1

2

)
+

(
c× 1

2

)
+

(
d× 0

)

= a +
b + c

2

Var(X) =
n∑

i=1

Var(ni11)

=
(
a× 0

)
+

(
b× 1

4

)
+

(
c× 1

4

)
+

(
d× 0

)

=
b + c

4
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Application to Repeated Measures

• Finally, we have

Q =

(
X − E(X)

)2

Var(X)

=

(
a + b−

(
a +

b + c

2

))2

b + c

4

=
(b− c)2

b + c

• In terms of the summary 2× 2 table:

Time 2

Time 1 + − Total

+ a b a + b
− c d c + d

Total a + c b + d n

the test based on the statistic Q is equivalent

to McNemar’s test
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Sample Size Considerations

• For the general case of s 2 × 2 tables, Mantel

and Fleiss (1980) proposed a validity criterion

for the Mantel-Haenszel statistic Q

• The minimum and maximum possible values of

nh11 are:

Lh = max(0, nh11−nh22), Uh = min(nh1., nh.1)

• Provided that each of the two quantities

s∑

h=1

E(nh11)−
s∑

h=1

Lh,
s∑

h=1

Uh −
s∑

h=1

E(nh11)

exceeds 5, the χ2
1 distribution should adequately

approximate the exact distribution of Q

• In the repeated measures setting, this

requirement simplifies to b + c ≥ 10
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Example

• Although insulin pump therapy improves

control of blood glucose levels in diabetic

patients, side effects have been reported

• The following data on the occurrence of

diabetic ketoacidosis (DKA) were obtained:

Occurrence of DKA

Time Period 1 Time Period 2 No. of
(Before Pump) (Pump Therapy) Patients

No No 128
No Yes 7
Yes No 19
Yes Yes 7

Total 161

Reference

Mecklenburg, R. S. et al. (1984). Acute complications

associated with insulin pump therapy: report of experience

with 161 patients. JAMA 252, 3265–3269.
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SAS Statements

data a;
input (dka1 dka2 count)

($char3. +1 $char3. 4.);
cards;
No No 128
No Yes 7
Yes No 19
Yes Yes 7
;
data b; set a;
keep id time dka discord;
retain id 0;
do i=1 to count;
id=id+1;
discord=(dka1 ne dka2);
time=1; dka=dka1; output;
time=2; dka=dka2; output;
end;
proc freq;
tables id*time*dka / noprint cmh;
title1 ’All Data’;
data c; set b; if discord=1;
proc freq;
tables id*time*dka / noprint cmh;
title1 ’Discordant Pairs Only’;
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Multiple Hypergeometric Distribution

• Consider a population of n objects, of which

n.1 are of type 1, . . ., n.t are of type t

• Suppose that s successive random samples

of size n1., . . . , ns. are selected from this

population (without replacement)

• Let Xij denote the number of elements of

type j in sample i, for i = 1, . . . , s, j = 1, . . . , t

• The probability that the ith sample contains

xij elements of type j is given by

f({xij}) =

s∏

i=1

ni.!
t∏

j=1

n.j !

n!
s∏

i=1

t∏

j=1

xij !

• X = (X11, . . . , Xst)′ ∼ H
(
n, {ni.}, {n.j}

)
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Multiple Hypergeometric Distribution

• It can be shown that

E(Xij) =
ni.n.j

n

Var(Xij) =
ni.(n− ni.)n.j(n− n.j)

n2(n− 1)

Cov(Xij , Xij′) =
−ni.(n− ni.)n.jn.j′

n2(n− 1)

Cov(Xij , Xi′j) =
−ni.ni′.n.j(n− n.j)

n2(n− 1)

Cov(Xij , Xi′j′) =
ni.ni′.n.jn.j′

n2(n− 1)

• A general expression for the variances and

covariances is

Cov(Xij , Xi′j′) =
ni.(δii′n− ni′.)n.j(δjj′n− n.j′)

n2(n− 1)
,

where δij = 1 if i = j, 0 otherwise
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Test of Randomness for an r × c Table

• Consider a sample of N observations classified

with respect to two categorical variables

• The resulting frequencies can be displayed in

an r × c contingency table

Column VariableRow
Variable 1 · · · j · · · c Total

1 n11 · · · n1j · · · n1c n1.

...
...

...
...

...
i ni1 · · · nij · · · nic ni.

...
...

...
...

...
r nr1 · · · nrj · · · nrc nr.

Total n.1 · · · n.j · · · n.c N

• If the row and column marginal totals are

fixed (either by design or by conditioning),

{nij} ∼ H
(
N, {ni.}, {n.j}

)
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Test of Randomness for an r × c Table

• Let n = (n11, . . . , n1c, . . . , nr1, . . . , nrc)′ denote

the rc× 1 vector of observed frequencies

• Let p∗. = (p1., . . . , pr.)′ denote the r × 1 vector

of row marginal proportions, where pi. = ni./N

• Let p.∗ = (p.1, . . . , p.c)′ denote the c×1 vector of

column marginal proportions, where p.j = n.j/N

• Let m = E(n), where

m = (m11, . . . , m1c, . . . ,mr1, . . . , mrc)′

and

mij = E(nij) =
ni.n.j

N
= Npi.p.j

• Using matrix notation, E(n) = N(p∗. ⊗ p.∗)
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Test of Randomness for an r × c Table

• Let Σ denote the rc × rc variance-covariance

matrix of n

• The elements of Σ are given by

Cov(nij , ni′j′) =
ni.(δii′N − ni′.)n.j(δjj′N − n.j′)

N2(N − 1)

=
N2

N − 1
pi.(δii′ − pi′.)p.j(δjj′ − p.j′)

where δij = 1 if i = j, 0 otherwise

• Using matrix notation,

Σ =
N2

N − 1
(Dp∗.

− p∗.p′∗.)⊗ (Dp.∗ − p.∗p′.∗)

where Dp∗. and Dp.∗ are diagonal matrices with

the elements of p∗. and p.∗ on the main diagonal
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Test of Randomness for an r × c Table

• The asymptotic distribution of N−1/2(n −m)

is Nrc

(
0,

1
N

Σ
)

• If the sample size N is large, n ≈ Nrc(m,Σ)

• Let A = (Ir−1, 0r−1)⊗ (Ic−1, 0c−1)

Iu is the u× u identity matrix

0u is a u× 1 vector of 0’s

A is a (r − 1)(c− 1)× rc matrix

• Let G = A(n−m) denote the (r− 1)(c− 1)× 1

vector of differences between the observed

and expected frequencies (under the null

hypothesis of randomness)

The linear transformation matrix A eliminates

the last row and last column
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Test of Randomness for an r × c Table

• Under the null hypothesis of randomness,

E(G) = 0(r−1)(c−1)

Var(G) = AΣA′

• Since G ≈ N(r−1)(c−1)(0, AΣA′) under H0,

Q = G′(AΣA′)−1G

is the large-sample quadratic form statistic for

testing H0

• If H0 is true, Q ≈ χ2
(r−1)(c−1)

• It can be shown that

Q =
N − 1

N
X2,

where X2 is the Pearson chi-square statistic
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Test of Randomness for s r × c Tables

• Consider a set of s independent r × c tables,

with the counts in the hth table denoted by:

Column VariableRow
Variable 1 · · · c Total

1 nh11 · · · nh1c nh1.
...

...
...

...
r nhr1 · · · nhrc nhr.

Total nh.1 · · · nh.c Nh

• We wish to test the null hypothesis

H0: no association between the row and

column variable in any of the s tables

• If the row and column marginals in each table

are fixed, nh = (nh11, . . . , nhrc)′ are independent

multiple hypergeometric random variables

nh ∼ H
(
Nh, {nhi.}, {nh.j}

)
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Test of Randomness for s r × c Tables

• If H0 is true, E(nhij) = (nhi.nh.j)/Nh and

Cov(nhij , nhi′j′) =

nhi.(δii′Nh − nhi′.)nh.j(δjj′Nh − nh.j′)
N2

h(Nh − 1)

• Let ph∗. = (ph1., . . . , phr.)′ denote the r×1 vector

of row marginal proportions in the hth table,

where phi. = nhi./Nh, for i = 1, . . . , r

• Let ph.∗ = (ph.1, . . . , ph.c)′ denote the c× 1 vector

of column marginal proportions in the hth table,

where ph.j = nh.j/Nh, for j = 1, . . . , c

• Using matrix notation,

mh = E(nh) = Nh(ph∗. ⊗ ph.∗)

Σh =
N2

h

Nh − 1
(Dph∗.

− ph∗.p′h∗.)⊗(Dph.∗ − ph.∗p′h.∗)
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Test of Randomness for s r × c Tables

• Let A = (Ir−1, 0r−1)⊗ (Ic−1, 0c−1)

Iu is the u× u identity matrix

0u is a u× 1 vector of 0’s

A is a (r − 1)(c− 1)× rc matrix

• Let Gh = A(nh−mh) denote the (r−1)(c−1)×1

vector of differences between the observed and

expected frequencies (under the null hypothesis

of randomness) in the hth table

• Let G =
∑s

h=1 Gh

• Since the s tables are independent,

E(G) =
s∑

h=1

E(Gh) = 0(r−1)(c−1),

Var(G) = VG =
s∑

h=1

Var(Gh) =
s∑

h=1

AΣhA′
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CMH General Association Statistic

• Since G ≈ N(r−1)(c−1)(0, VG) under H0,

the large-sample quadratic form statistic for

testing H0 is QG = G′V −1
G G

the Cochran/Mantel-Haenszel/Birch statistic

• If H0 is true, QG ≈ χ2
(r−1)(c−1)

• The asymptotic distribution of QG is linked to

the total sample size N =
∑s

h=1 Nh, rather

than to the stratum-specific sample sizes

• QG can be used when the row and column

variables are nominal

The null hypothesis is tested in terms of

(r − 1)(c− 1) linearly independent functions of

the observed counts
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CMH General Association Statistic

• If the CMH statistic QG is significant, then there

is an association between the row and column

variables in at least one of the s strata

• However, the power of QG is directed towards

average partial association alternatives

If certain observed frequencies consistently exceed

(or are exceeded by) their corresponding expected

frequencies, then these quantities reinforce one

another when combined across strata

• QG has low power for detecting associations

which are not consistent across strata

• If r = c = 2, QG is the Mantel-Haenszel test

• If s = 1, then QG = (1− 1/N)X2
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CMH Mean Score Statistic

• Consider a set of s independent r × c tables,

with the counts in the hth table denoted by:

Column VariableRow
Variable 1 · · · c Total

1 nh11 · · · nh1c nh1.
...

...
...

...
r nhr1 · · · nhrc nhr.

Total nh.1 · · · nh.c Nh

• Suppose that the column variable is ordinal

and that appropriate scores bh1, . . . , bhc can be

assigned to the levels

• In this case, we may wish to test

H0: no association between the row and
column variable in any of the s tables

versus the alternative that the r mean scores

differ, on average, across tables
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CMH Mean Score Statistic

• Under H0, and conditional on the row and column

marginals in each table, nh = (nh11, . . . , nhrc)′

are independent multiple hypergeometric random

variables

nh ∼ H
(
Nh, {nhi.}, {nh.j}

)

• If H0 is true, mh = E(nh) = Nh(ph∗. ⊗ ph.∗) and

Σh = Var(nh) =

N2
h

Nh − 1
(Dph∗.

− ph∗.p′h∗.)⊗ (Dph.∗ − ph.∗p′h.∗)

where

ph∗. = (ph1., . . . , phr.)′, with phi. = nhi./Nh

ph.∗ = (ph.1, . . . , ph.c)′, with ph.j = nh.j/Nh

and Dph∗.
and Dph.∗ are diagonal matrices with

the elements of ph∗. and ph.∗ on the main diagonal
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CMH Mean Score Statistic

• Let Ah = (Ir−1, 0r−1)⊗ (bh1, . . . , bhc)

Iu is the u× u identity matrix

0u is a u× 1 vector of 0’s

Ah is a (r − 1)× rc matrix

• Let Mh = Ah(nh −mh) denote the (r − 1)× 1

vector of differences between the observed

and expected mean scores (under the null

hypothesis of randomness) in the hth table

• Let M =
∑s

h=1 Mh

• Since the s tables are independent,

E(M) =
s∑

h=1

E(Mh) = 0(r−1),

Var(M) = VM =
s∑

h=1

Var(Mh) =
s∑

h=1

AhΣhA′h
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CMH Mean Score Statistic

• Since M ≈ N(r−1)(0, VM ) under H0, the large-

sample quadratic form statistic for testing H0

is QM = M ′V −1
M M

• If H0 is true, QM ≈ χ2
(r−1)

• The null hypothesis is tested in terms of (r−1)

linearly independent functions of the observed

mean scores

• QM is directed at location-shift alternatives

the extent to which the mean scores in certain

rows consistently exceed (or are exceeded by)

the mean scores in other rows

• If s = 1 and rank scores are used, QM is

equivalent to the Kruskal-Wallis test
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CMH Correlation Statistic

• Consider a set of s independent r × c tables,

with the counts in the hth table denoted by:

Column VariableRow
Variable 1 · · · c Total

1 nh11 · · · nh1c nh1.
...

...
...

...
r nhr1 · · · nhrc nhr.

Total nh.1 · · · nh.c Nh

• Suppose that the row and column variables are

both ordinal

row scores: ah1, . . . , ahr

column scores: bh1, . . . , bhc

• In this case, we may wish to test H0 versus the

alternative that there is a consistent positive

(or negative) association between the row

scores and the column scores, across tables
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CMH Correlation Statistic

• Let Ah = (ah1, . . . , ahr)⊗ (bh1, . . . , bhc)

Ah is a row vector with rc components

• Let Ch = Ah(nh − mh) denote the difference

between the observed and expected association

scores (under the null hypothesis of randomness)

in the hth table

• Let C =
∑s

h=1 Ch

• Since the s tables are independent,

E(C) =
s∑

h=1

E(Ch) = 0,

Var(C) = VC =
s∑

h=1

Var(Ch) =
s∑

h=1

AhΣhA′h
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CMH Correlation Statistic

• Since C ≈ N(0, VC) under H0, the large-

sample quadratic form statistic for testing H0

is QC = C2/VC

• If H0 is true, QC ≈ χ2
1

• QC is directed at correlation alternatives

the extent to which there is a consistent

positive (or negative) linear association

between the row and column scores

• If s = 1, then QC = (N − 1)r2, where r is the

Pearson correlation coefficient between the row

and column scores
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Summary of CMH Statistics

• For s independent r × c tables, there are three

CMH statistics:

Variable TypeAlternative
Hypothesis Stat. df Row Column

General QG (r-1)(c-1) nominal nominal
assoc.

Mean score QM r − 1 nominal ordinal
differences

Linear QC 1 ordinal ordinal
assoc.

• In repeated measures applications,

QG tests marginal homogeneity across time

QM tests equality of means across time

QC tests for linear association between the

response and time



502

Application to Repeated Measures

• Suppose that a categorical variable with c

possible outcomes is measured at t time points

for each of n subjects

e.g. yij takes on the values 1, . . . , c,

for i = 1, . . . , n, j = 1, . . . , t

• We wish to test if the marginal distribution of

the response is the same at each of the t time

points

• Define the indicator variables

nijk =





1, if subject i is classified in
response category k at time j

0, otherwise

for i = 1, . . . , n, j = 1, . . . , t, k = 1, . . . , c
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Application to Repeated Measures

• The data from subject i can be displayed in a

t× c contingency table:

Response Category

Time 1 · · · c Total

1 ni11 · · · ni1c 1
...

...
...

...
t nit1 · · · nitc 1

Total ni.1 · · · ni.c t

• In each row of the table, one of the nijk values

will be equal to 1 and the remaining nijk

values will be equal to 0

• The column marginal total ni.k is the number

of times that subject i was classified in

response category k

0 ≤ ni.k ≤ t



504

Application to Repeated Measures

• Under the assumption that the column

marginal totals {ni.k} are fixed, the null

hypothesis of “no partial association” between

the row dimension (time) and the column

dimension (response) can be tested using QG

• In this context, there are n strata, one for

each subject

• The “no partial association” hypothesis is the

same as the “interchangeability” hypothesis of

Madansky (1963)

• This null hypothesis implies marginal

homogeneity in the distribution of the

response across the t time points
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Application to Repeated Measures

• Although the data in each table are sparse

(all counts will be 0 or 1), the asymptotic

distribution is linked to the total sample size

N =
∑s

h=1 Nh

• For repeated measurement designs, the CMH

statistic QG is equivalent to:

c t Method

2 2 McNemar’s test

2 > 2 Cochrans’s Q test

> 2 > 2 Birch’s Lagrange multiplier test

Madansky’s interchangeability test
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Score Options in SAS

Given the observed counts:

Column VariableRow
Variable 1 · · · c Total

1 nh11 · · · nh1c nh1.
...

...
...

...
r nhr1 · · · nhrc nhr.

Total nh.1 · · · nh.c Nh

SAS has four options for defining the row

scores ahi and the column scores bhj

1. SCORES=TABLE (the default)

if the row (column) variable is numeric, ahi

(bhj) is the observed level for category i (j)

if the row (column) variable is character,

ahi = 1, 2, . . . , r (bhj = 1, 2, . . . , c)
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Score Options in SAS

2. SCORES=RANK

ahi = Rahi =
i−1∑

k=1

nhk. +
nhi. + 1

2

bhj = Rbhj =
j−1∑

k=1

nh.k +
nh.j + 1

2

• These are the standard rank scores using

midranks for tied observations

• If s = 1 and r = 2, QM and QC are the

Mann-Whitney-Wilcoxon test

• If s = 1 and r > 2, QM is the Kruskal-

Wallis test

• If s > 1 and nhi. = 1, QM is Friedman’s

chi-square test
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Score Options in SAS

3. SCORES=RIDIT

ahi = Rahi/Nh, bhj = Rbhj/Nh

This definition differs from the ridit scores

ahi = (Rahi − .5)/Nh, bhj = (Rbhj − .5)/Nh

defined by other authors

4. SCORES=MODRIDIT

ahi =
2

∑i
k=1 nhk. − nhi. + 1

2(Nh + 1)
=

Rahi

Nh + 1

bhj =
2

∑j
k=1 nh.k − nh.j + 1

2(Nh + 1)
=

Rbhj

Nh + 1

also known as standardized midrank scores

yields van Elteren’s (1960) test for combining

Wilcoxon rank sum tests across a set of strata
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Row and Column Scores in

Repeated Measures Applications

• t× c contingency table for subject h:

Response Category
Time 1 · · · c Total

1 nh11 · · · nh1c 1
...

...
...

...
t nht1 · · · nhtc 1

Total nh.1 · · · nh.c t

• In this case, the scores are given by:

Scores ahi bhj

Table i j

Rank i Rbhj

Ridit i/t Rbhj/t

Modridit i/(t + 1) Rbhj/(t + 1)

• If there are no missing data, the results from

rank, ridit, and modridit scores will be identical
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Example

• 46 subjects were treated with each of three

drugs (A, B, and C)

• The response to each drug was recorded as

favorable (F) or unfavorable (U)

• The data from the ith subject can be

displayed in a 3× 2 contingency table:

Response
Drug F U Total

A ni11 ni12 1
B ni21 ni22 1
C ni31 ni32 1

Total ni.1 ni.2 3

• The CMH statistic QG can be used to test

H0: for each subject, the total number of

favorable responses (ni.1) is distributed

at random with respect to the three drugs
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SAS Statements

data a;
input subject a $ b $ c $;
cards;
1 F F U

...
46 U F U
;

data b; set a;
keep subject drug response;
drug=’A’; response=a; output;
drug=’B’; response=b; output;
drug=’C’; response=c; output;
proc freq;
tables subject*drug*response

/ noprint cmh;

• The results from this analysis are:

QG = 8.471, df = 2, p = .014

• We conclude that the response profiles of

the three drugs are different
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Example

• A study of the efficacy of steam inhalation in

the treatment of common cold symptoms

• Eligible subjects had colds of recent onset

(symptoms of nasal drainage, nasal congestion,

and sneezing for 3 days or less)

• 32 patients were given two 20-minute steam

inhalation treatments

• Severity of nasal drainage was self-assessed for
four days
0=no symptoms 2=moderate symptoms
1=mild symptoms 3=severe symptoms

• Does symptom severity improve following
treatment?

Reference

Macknin, M. L. et al. (1990). Effect of inhaling heated vapor

on symptoms of the common cold. JAMA 264, 989–991.
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Severity of Nasal Drainage

ID Day 1 Day 2 Day 3 Day 4
1 1 1 2 2
2 0 0 0 0
3 1 1 1 1
4 1 1 1 1
5 0 2 2 0
6 2 0 0 0
7 2 2 1 2
8 1 1 1 0
9 3 2 1 1

10 2 2 2 3
11 1 0 1 1
12 2 3 2 2
13 1 3 2 1
14 2 1 1 1
16 2 3 3 3
17 2 1 1 1
18 1 1 1 1
20 2 2 2 2
21 3 1 1 1
22 1 1 2 1
23 2 1 1 2
24 2 2 2 2
25 1 1 1 1
26 2 2 3 1
27 2 0 0 0
28 1 1 1 1
29 0 1 1 0
30 1 1 1 1
31 1 1 1 0
32 3 3 3 3
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Analysis Options

• Normal-theory methods

the response is not normally-distributed

• Weighted least squares approach

Since there are ct = 44 = 256 potential

response profiles, the sample size is too small

• Randomization model methods

QG with 9 df will have low power

Since the response is ordinal, mean symptom

scores across the four days can be compared

using QM with 3 df

QC can be used to test if there is a significant

association between time and response
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SAS Statements

• Compute QM and QC using the scores 1–4 for

the row variable (time) and both the actual

symptom scores (0–3) and rank scores for the

column variable (drainage severity)

data a;
input id d1-d4;
cards;
1 1 1 2 2

...
32 3 3 3 3
;
data b; set a;
day=1; drain=d1; output;
day=2; drain=d2; output;
day=3; drain=d3; output;
day=4; drain=d4; output;
proc freq;
tables id*day*drain

/ cmh noprint;
tables id*day*drain

/ cmh noprint scores=rank;
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Accommodation of Missing Data

Drug Response Data from 46 Subjects

• The observed responses from subject 1 were:

Drug A: F, Drug B: F, Drug C: U

• Now suppose that the drug B response was

missing

• One approach would be to exclude this subject

from the analysis

• In this case,

G =
46∑

h=2

Gh =

 3.667

3.667




Var(G) =
46∑

h=2

Var(Gh) =

 7.333 −3.667
−3.667 7.333




and QG = G′
(
Var(G)

)−1
G = 7.333
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Accommodation of Missing Data

• However, the exclusion of subject 1 does not

allow us to use the information that the response

to Drug A (C) was favorable (unfavorable)

• Alternatively, the data from subject 1 can be

displayed as follows:

Response

Drug F U Total

A 1 0 1
B 0 0 0
C 0 1 1

Total 1 1 2

• In this case,

n1 =




1
0
0
0
0
1




m1 =




.5

.5

.0

.0

.5

.5



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Accommodation of Missing Data

• The variance-covariance matrix of n1 is

Σ1 =




.25 −.25 .00 .00 −.25 .25
−.25 .25 .00 .00 .25 −.25

.00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00
−.25 .25 .00 .00 .25 −.25

.25 −.25 .00 .00 −.25 .25




• The components of QG from subject 1 are

G1 = A(n1 −m1)

=

 1 0 0 0 0 0

0 0 1 0 0 0







.5
−.5

.0

.0
−.5

.5




=

 .5

0




Var(G1) = AΣ1A
′ =


 .25 0

0 0



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Accommodation of Missing Data

• Using the partial data from subject 1,

G = G1 +
46∑

h=2

Gh

=

 .5

0


 +


 3.667

3.667




=

 4.167

3.667




Var(G) = Var(G1) +
46∑

h=2

Var(Gh)

=

 .25 0

0 0


 +


 7.333 −3.667
−3.667 7.333




=

 7.583 −3.667
−3.667 7.333




• Thus, QG = G′
(
Var(G)

)−1
G = 8.094
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Example

• The Muscatine Coronary Risk Factor Study

• A longitudinal study of coronary risk

factors in school children

• Dichotomous response (obese, not obese)

obtained at three cross-sectional surveys

• Results from a cohort of 522 males who were

7–9 years old in 1977 are summarized below:

All Data Complete Cases

Year n % Obese n % Obese

1977 356 18.8 225 19.6
1979 375 20.5 225 19.1
1981 380 23.7 225 23.1

• Is the marginal probability of obesity the same

at each of the three years?
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SAS Statements

data a;
input o77 o79 o81 count;
cards;
1 1 1 20

...
3 3 2 55
;
data b; set a;
keep id year obese complete; retain id 0;
if count>0 then do;
complete=(o77 ne 3)&(o79 ne 3)&(o81 ne 3);
if o77=3 then o77=.;
if o79=3 then o79=.;
if o81=3 then o81=.;
do i=1 to count; id=id+1;
year=77; obese=o77; output;
year=79; obese=o79; output;
year=81; obese=o81; output;
end; end;
proc freq;
tables id*year*obese / noprint cmh;
data c; set b; if complete=1;
proc freq;
tables id*year*obese / noprint cmh;
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Accommodation of Missing Data

Efficacy of Steam Inhalation

• The previous analysis excluded two subjects:

ID Day 1 Day 2 Day 3 Day 4

15 3 3 2
19 3 1 0

• Both subjects’ data support the hypothesis

that symptoms improve over time and can be

included in the computation of QM and QC

• First, the mean score statistic for the complete

cases is computed as follows (using the actual

symptom scores 0–3):

Ah =




1 0 0 0
0 1 0 0
0 0 1 0


⊗ ( 0 1 2 3 )

Mh = Ah(nh −mh)

for h = 1, . . . , 30
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Accommodation of Missing Data

• For the complete cases,

M =
30∑

h=1

Mh =




4.5
0.5
0.5




VM =
30∑

h=1

AhΣhA′h =




7.750 −2.583 −2.583
7.750 −2.583

7.750




QM = M ′V −1
M M = 4.935 (df=3, p=0.177)

• The observed tables for subjects 15 and 19 are:

Subject 15 Subject 19

Response Response
Day 0 1 2 3 Sum Day 0 1 2 3 Sum

1 0 0 0 0 0 1 0 0 0 1 1
2 0 0 0 1 1 2 0 0 0 0 0
3 0 0 0 1 1 3 0 1 0 0 1
4 0 0 1 0 1 4 1 0 0 0 1

Sum 0 0 1 2 3 Sum 1 1 0 1 3
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Accommodation of Missing Data

• The corresponding expected frequencies are:

Subject 15 Subject 19

Response Response
Day 0 1 2 3 Sum Day 0 1 2 3 Sum

1 0 0 0 0 0 1 1
3

1
3 0 1

3 1

2 0 0 1
3

2
3 1 2 0 0 0 0 0

3 0 0 1
3

2
3 1 3 1

3
1
3 0 1

3 1

4 0 0 1
3

2
3 1 4 1

3
1
3 0 1

3 1

Sum 0 0 1 2 3 Sum 1 1 0 1 3

• The contribution of subject 15 to QM is:

A15(n15 −m15) = ( 0 1
3

1
3 )′

A15Σ15A
′
15 =




0 0 0
0.222 −0.111

0.222



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Accommodation of Missing Data

• The contribution of subject 19 to QM is:

A19(n19 −m19) = ( 5
3 0 − 1

3 )′

A19Σ19A
′
19 =




1.556 0 −0.778
0 0

1.556




• With both complete and incomplete cases:

M =




4.5
0.5
0.5


 +




0
1
3
1
3


 +




5
3

0
− 1

3


 =




6.1667
0.8333
0.5000




VM =




7.750 −2.583 −2.583
7.750 −2.583

7.750


+




0 0 0
0.222 −0.111

0.222


+




1.556 0 −0.778
0 0

1.556




=




9.306 −2.583 −3.361
7.972 −2.694

9.528



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Accommodation of Missing Data

• The mean score statistic with complete and

incomplete cases is

QM = M ′V −1
M M = 7.441

with 3 df (p=0.059)

• The corresponding results using rank and ridit

scores are:

Complete Data All Data

Scores QM p QM p

Table 4.935 0.177 7.441 0.059
Rank 3.350 0.341 5.026 0.170
Ridit 3.350 0.341 5.497 0.139

Mod. Ridit 3.350 0.341 5.385 0.146

• Why are the results for the three types of rank

scores not equal when all data are used?
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Accommodation of Missing Data

• The two subjects with incomplete data can also

be used in computing QC

• First, the correlation statistic for the complete

cases is computed as follows (using the scores

1–4 for time and 0–3 for symptoms):

Ah = ( 1 2 3 4 )⊗ ( 0 1 2 3 ) is 1× 16

Ch = Ah(nh −mh) is a scalar

C =
30∑

h=1

Ch = −15

VC =
30∑

h=1

AhΣhA′h = 51.667

QC = C ′V −1
C C = (−15)2/51.667 = 4.355

• With respect to the χ2
1 distribution, p=0.037
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Accommodation of Missing Data

• The contributions of subjects 15 and 19 are:

A15(n15 −m15) = −1 A15Σ15A
′
15 = 0.667

A19(n19 −m19) = −4.67 A19Σ19A
′
19 = 10.889

• With both complete and incomplete cases:

C = −15− 1− 4.667 = −20.667

VC = 51.667 + 0.667 + 10.889 = 63.222

QC = (−20.667)2/63.222 = 6.756 (p = 0.009)

• Corresponding results using rank & ridit scores:

Complete Data All Data

Scores QC p QC p

Table 4.355 0.037 6.756 0.009
Rank 2.682 0.101 3.748 0.053
Ridit 2.682 0.101 4.494 0.034

Mod. Ridit 2.682 0.101 4.299 0.038
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Relationship Between QC and Pearson’s r

• Each subject’s contribution to QC is related to

Pearson’s r between the row variable and the

column variable

• The three (time, severity) pairs for subject 15

are (2,3), (3,3), and (4,2)

r = −1/
√

4/3 = −0.866

• The (time, severity) pairs for subject 19 are

(1,3), (3,1), and (4,0)

r = −4.667/
√

21.778 = −1

• General results between QC and r:

Ah(nh −mh) = numerator of r

AhΣhA′h =
(

denominator of r√
nh − 1

)2
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Use of QM and QC for Continuous Data

• The randomization model tests were developed

for stratified two-way contingency tables

• QM & QC can also be used for continuous data

Procedure:

• Let c denote the total number of observed

values of the response

• Create a t×c contingency table for each subject

• there will be one count of 1 and c− 1 counts

of 0 in each of the t rows of the table

• QM tests if the mean scores across the t time

points are equal

• QC tests if there is a linear association between

time and response
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Example

• In a dental study, the height of the ramus

bone (mm) was measured in 20 boys at ages

8, 8 1
2 , 9, and 9 1

2 years

• Two questions:

• Does bone height change with age?

• Is the association linear?

• If the assumptions of normal-theory methods

are not justified, QM and QC can be used

• Since the response variable has 57 unique

values, each subject has an underlying 4× 57

contingency table

Reference

Elston, R. C. and Grizzle, J. E. (1962). Estimation of time-

response curves and their confidence bands. Biometrics 18,

148–159.
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Data from Example

Age (years)

Subject 8 8 1
2 9 9 1

2

1 47.8 48.8 49.0 49.7
2 46.4 47.3 47.7 48.4
3 46.3 46.8 47.8 48.5
4 45.1 45.3 46.1 47.2
5 47.6 48.5 48.9 49.3
6 52.5 53.2 53.3 53.7
7 51.2 53.0 54.3 54.5
8 49.8 50.0 50.3 52.7
9 48.1 50.8 52.3 54.4

10 45.0 47.0 47.3 49.3
11 51.2 51.4 51.6 51.9
12 48.5 49.2 53.0 55.5
13 52.1 52.8 53.7 55.0
14 48.2 48.9 49.3 49.8
15 49.6 50.4 51.2 51.8
16 50.7 51.7 52.7 53.3
17 47.2 47.7 48.4 49.5
18 53.3 54.6 55.1 55.3
19 46.2 47.5 48.1 48.4
20 46.3 47.6 51.3 51.8
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SAS Statements for Example

data a;

input subject h80 h85 h90 h95;

cards;

1 47.8 48.8 49.0 49.7

. . .

20 46.3 47.6 51.3 51.8

;

data b; set a;

keep subject age ramus;

age=8; ramus=h80; output;

age=8.5; ramus=h85; output;

age=9; ramus=h90; output;

age=9.5; ramus=h95; output;

proc freq;

tables subject*age*ramus / noprint cmh2;

• The cmh2 option requests QM and QC only

• QM=41.293, df=3, p < 0.001

• QC=41.290, df=1, p < 0.001
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Example

• Longitudinal study of 619 patients in 4 groups:

1. kidney disease, hypertensive (n = 294)

2. kidney disease, not hypertensive (n = 103)

3. no kidney disease, hypertensive (n = 73)

4. no kidney disease, not hypertensive (n = 149)

• Response variable is serum creatinine reciprocal

(SCR), which ranges from 0.028 to 2.5

• Repeated measures factor is age (18–84 years)

• No. of observations/patient ranges from 1–22

• If normal-theory methods are not appropriate,

QC can be used to test if there is a linear

association between age and SCR in each group

Reference

Jones, R. H. and Boadi-Boateng, F. (1991). Unequally spaced

longitudinal data with AR(1) serial correlation. Biometrics 47,

161–175.
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SAS Statements for Example

data a b c d; infile ’jbb.dat’;
input id group age scr;
if group=1 then output a;
if group=2 then output b;
if group=3 then output c;
if group=4 then output d;
proc freq data=a;
tables id*age*scr / noprint cmh1;
proc freq data=b;
tables id*age*scr / noprint cmh1;
proc freq data=c;
tables id*age*scr / noprint cmh1;
proc freq data=d;
tables id*age*scr / noprint cmh1;

Results

Group QC p-value

1 —a —
2 2.80 0.094
3 4.68 0.031
4 7.31 0.007

acannot be computed in group 1


