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Methods Based on
Generalized Linear Model Methodology

e Normal-theory methods may be inappropriate

e WLS and randomization model (CMH) methods

have shortcomings
e WLS allows only categorical covariates
e CMH useful only in one-sample problems

e Neither can be used in the general repeated

measures setting

e In the case of one response per subject:

e (lassical linear models useful for normally-

distributed outcomes with constant variance

e Generalized linear models useful for both

categorical and continuous response variables

e Extensions of GLM methodology to the

repeated measurements setting are now available
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Univariate Generalized Linear Models

Generalized linear models extend classical linear
models for independent normally-distributed

random variables with constant variance

The term “generalized linear model” was first

introduced in a landmark paper by Nelder and

Wedderburn (1972, JRSS A)

Wedderburn (1974, Biometrika) extended the
applicability by introducing quasi-likelihood

A wide range of different problems of statistical
modeling and inference were put in an elegant

unifying framework:
e Analysis of variance
e Analysis of covariance

e Regression models for normal, binary, Poisson

outcomes, etc.
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Generalized Linear Models

e The unifying theory of generalized linear
models has impacted the way such statistical
methods are taught
e has provided greater insight into connections

between various statistical procedures

e has led to considerable further research

e McCullagh and Nelder (1989) provide a
comprehensive account of the theory and

applications of generalized linear models

e Dobson (1990) serves as an excellent

introduction to the subject

References
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McCullagh, P. and Nelder, J.A. (1989). Generalized Linear
Models. London: Chapman and Hall.
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A Simple Example

Let Y; be a random response variable and let x;

denote an explanatory variable

In the Gaussian linear model, we assume that
Y = Bo + brxi + o€,

where €1,...,¢, are i.i.d. N(0,1)

An equivalent way of writing the model
is as Y; ~ N(p;,0%), where Y7,...,Y,, are
independent and p; = Gy + B1x;

The objectives of this model are to:

e use the explanatory variable to characterize
the variation in the mean of the response

distribution across observational units

e learn about the relationship between the

explanatory variable and the response variable
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A Simple Example (continued)

Frequently, interest lies in formulating
regression models for responses that have other

continuous or discrete distributions

While the objective is to model the mean, it
often must be modeled indirectly via the use of

a transformation

In the case of a single explanatory variable, the

model might be of the form g(u;) = Gy + frxi

The error distribution must also be generalized,
usually in a way which complements the choice

of the transformation g

This leads to a very broad class of regression

models
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Components of a GLM

Generalized linear models have three components:

1. random component
identifies the response variable Y

assumes a specific probability distribution for Y

2. systematic component

specifies the explanatory variables used as

predictors in the model

3. link function
describes the functional relationship between
the systematic component and the expected

value (mean) of the random component

The GLM relates a function of the mean to
the explanatory variables through a prediction

equation having linear form
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The Random Component

e Let Y7,...,Y,, be independent random variables
from the distribution
y6 — b(0)
fy:0,9) = eXp{
:0.0) (o)

for some specific functions a(-), b(-), and ¢(+)

+ c(y, ¢)},

If ¢ is known, this is an exponential-family

model with canonical parameter 6

It may or may not be a two-parameter

exponential family if ¢ is unknown

e Many common discrete and continuous

distributions are members of this general family

e.g., normal, gamma, binomial, Poisson

o Let I(0, ¢;y) denote the log-likelihood function

considered as a function of # and ¢:

10, 9;y) =log(f(y;0,0)) = yea—(qi?)(ﬁ) + c(y, ¢)
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The Score Function

e It is convenient to find the mean and variance

of Y using properties of the score function

0

U = 55|16, 6:9)

e To find the moments of U, we use the fact

that
% {log(f(y; 0, ¢))}
R (1)
= Twaaoal 09

e Taking the expectation of both sides of (1)

yields

/ % {log(f(% v, (b))] f(y; 0, ¢)dy

~ [ 55lrw0.0)]ay

(2)
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The Score Function

e Under certain regularity conditions, the right-

hand side of (2) is

/%[f(y; 0, gb)}dy: % :/f(y;ﬂ,qb)dy]

since [ f(y: 0, @)dy = 1
e Therefore, E(U) =0

e Differentiating both sides of (2) with respect

to 6 gives

% U % g (1 (y:6,)) ] 7 (430, ¢)dy]

— il [ Lo 0]
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The Score Function

e Provided that the order of differentiation and
integration can be interchanged, the right-hand

side of (3) is

892[/fy,9¢dy] —0

and the left-hand side is

/ % l% 105 (1 (4:0,9)) | £ (430, ¢>] W

_ /{ 5; [1og(f(y; 0, aﬁ))} f(y;0,0) (4)

e % {log(f(% 0, qb))} % [f(y’ & Qb)} }dy

e From (1),

0

" {f(y,e M F(y: 6, ¢) g {log(f(y;e,qb))}
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The Score Function

e The second term of (4) then simplifies to

0

=0 [log(f(y;ﬁ,cb))} f(y;:0,0) = o [log(f(y;&qﬁ))}

( O fros(f(u:0. ¢))D2f(y; 0,6)

e Therefore, equation (3) becomes

82
962

" /<f§9 {log(f(% 0, ¢))D2f(y; 0, d)dy —

log (£(y: 0. 9))| F(y:6, @)y

or
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The Score Function

e In terms of the score function

0

V=20

10,69,

we have E(U’) + E(U?) = 0, where ' denotes

differentiation with respect to 6

e Thus,

e The variance of U is called the information
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Mean and Variance of Y

yd — b(0)

e [(0,0;y) = (@) + c(y, @)
" U—Q{Z(e b )} _y= Y0
“a YT (o)

e E(Y)=10a(op)EWU)+V(0)="0(0)

(since E(U) = 0)

o U/

o ry—bO)7 —b'(0)
:ae{ a() }_

o Since E(U?) = —E(U"),

(]

and Var(Y) =b"(0)a(¢)

e Note that the variance of Y is a product

of two functions
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Example: The Normal Distribution

o If Y ~ N(u,o?),

0) = =5 expl =y 1)?/ (20}
— exp{ % y — 2y + [ ) — %10g(2ﬂ'0’2)}
— exp{ L ,u _ (gz + log(2mo ))}

e In thiscase, § = u, ¢ = o2, b(l) = 6?/2,
and a(¢) = ¢

o Var(Y) = b"(0)a(¢) =1 x ¢ = o

e The variance function is V() = 1 and the

dispersion parameter is ¢ = o2
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Example: The Poisson Distribution

f(y) = p¥ exp(=p)/y!
= exp{ylog(u) — 1 —log(y!) }

= exp{ylog(u) — exp(log(p)) — log(y!)}

In this case, 8 = log(u), a(¢) = 1, and
b(0) = e’

Var(Y) = b"(0)a(¢) = ¢’ =

The variance function is V(u) = p and the

dispersion parameter is ¢ = 1



553

Example: The Binomial Distribution

Y ~ Bonp), then f) = (7)p"(1 -

T P
— exp{ylog(lp%p) +nlog(l — p) + log (Z) }

e In this case, § =log(p/(1 —p)) and a(¢) = 1

1
e Since nlog(l —p) = —nlog<1—>
— P
p

= —nlog(l + —),
1—p

b(0) = nlog(1 + exp(9))
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Systematic Component

The systematic component of a GLM specifies

the explanatory variables

These enter linearly as predictors on the right

hand side of the model equation

Suppose that each Y; has an associated p x 1

vector of covariates x; = (z;1,...,%ip)

The linear combination 1; = Bo+G1i1+ - -+ BpTip

is called the linear predictor

Some {z;} may be based on others in the model,
e.g.,
e 13 — x1x2 allows for interaction between x4

and xo 1n their effects on Y

o 13 = 7 allows for a curvilinear effect of x;
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Link Function

The link between the random and systematic
components specifies how u = E(Y') relates to

the explanatory variables in the linear predictor

One can model the mean p directly, or model a

function g(u) of the mean

The model formula specifies that

g(,u) = Bo + Brr1 + - '6}93719

The function g(-) is called the link function

e ¢g(-) is a monotonic differentiable function

The link function g(-) relates the linear

predictor n; to the expected value p; of Y;

Link functions that map the parameter space for
the mean to the real line are preferred in order

to avoid numerical difficulties in estimation
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Types of Link Functions

Identity link:

e The simplest link function has the form g(u) = p
e This models the mean directly

e The identity link specifies a linear model for the

mean response: p = Bg + B1x1 + - Bpxy

e This is the form of an ordinary regression model

for a continuous response

Other links permait the mean to be nonlinearly

related to the predictors:

e g() =log(p) models the log of the mean
Appropriate when 1 cannot be negative

A GLM with this link is called a loglinear model

o g(p) =log(p/(1 —p)) is called the logit link
Appropriate when p is between 0 and 1
A GLM using this link is called a logit model



D57

Natural Parameters and Canonical Links

Each probability distribution for the random
component has one special function of the mean

that is called its natural parameter

Normal: the mean itself
Poisson: the log of the mean

Bernoulli: logit of the success probability

The link function that uses the natural
parameter as g(u) is called the canonical link
Normal: g(u) = p

Poisson: g(u) = log(u)
Bernoulli: g(p) = log(p/(1 — 1))

Although other links are possible, the canonical

links are most common in practice

Use of the canonical link function leads to

inference for § based solely on sufficient statistics
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Sufficient Statistics and Canonical Links

e Let Y7,....,Y,, be indep. random variables with
yifi — b(6;)
i;0i,¢) = i
f(yi3 0:, ) eXp{ OB c(y ¢)}

e The log-likelihood for Y7,...,Y,, is
i=1

1 — 1
a(®) ;%9@ — m Zb(ei) + Zc(yi,@

o If 0, =n; = g(u;) = 20, the first term of [ is

1 —
@;yz‘%ﬁ

o Let X = (z1,...,2,)" denote the n x p matrix

of covariate values from all n subjects and let

Y =(N,....,Y,)
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Sufficient Statistics and Canonical Links

e The p x 1 vector XY with jth component

> o x;;Y; is a sufficient statistic for 3
e 17 = 6 is called the canonical link function

e The canonical links lead to desirable statistical

properties, particularly in small samples

e However, there is usually no a priori reason
why the systematic effects in a model should

be additive on the scale given by that link

e While it is convenient if effects are additive on
the canonical link scale, quality of fit should

be the primary model selection criterion.

e Fortunately, the canonical links are usually

quite sensible on scientific grounds
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Justification of Canonical Links

Normally-distributed responses:

e The identity link is plausible since both 1 and

1+ can take any value on the real line

Poisson counts:
e Since u > 0, the identity link is less attractive

(since n = z8 may be negative)

e Models for counts based on independence lead

naturally to multiplicative effects

e This is expressed by the log link n = log(u)

Binary responses:

e Since 0 < u < 1, the link should map the

interval (0,1) to the real line

e The logit function satisfies this requirement

and also leads to odds ratio interpretations
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Overview of Parameter Estimation

The maximum likelihood estimates of the
parameter vector 3 can be obtained by

iterative weighted least squares

The dependent variable is z rather than
y, where z is a linearized form of the link

function applied to y

The weights are functions of the fitted

values 1

The process is iterative because both the
adjusted dependent variable z and the

weight W depend on the fitted values, for

which only current estimates are available
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Parameter Estimation

The log-likelihood for independent responses
Yl, c ooy Yn 1S

- Z_; - Z_; [yigiaz;;(ei) +¢(yi; 9)

Under certain regularity conditions, the global

Ol

maximum of [/ is the solution of —— =0

o6,

oB;  00; du; On; 0B;

By the chain rule,

Ol i — 0'(0; i — M
First, _ 7 ( ):y H

00; a(9) a(9)

Since Mg = b’(@z),
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Parameter Estimation

on;

X — = T
—1 ’Ljﬁj? 8/83 1]

e Since n; = )7

e Therefore,

Oli _ yi—pi a(¢) O .
0p; a(¢) Var(Y;) on

_ (yi — Mz‘)i’?ij Opt;
Var(Y;) On;

e Thus, the ML estimate of 8 = (£1,...,08,) is

the solution of the equations

— ) :lrw o
Uj = =0
Z Var(Y; on; ’

for g =1,...,p
e In general, these equations are nonlinear and

must be solved numerically using iterative

methods
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ML Estimation using the
Newton-Raphson Method

The multidimensional analog of Newton’s

method requires the p X p matrix of second
021
0800k

derivatives

The mth approximation to B\ is then given by
0?1 }—1

< U(m—l)
03,008

p(m) — p(m=1) _ [
B=b(m—1)

is the matrix of second

021
bﬁj Ok } B=b(m—1)

derivatives of [ evaluated at the estimate of 3

from the (m — 1)st iteration

U(m=1) is the vector of first derivatives of
[ evaluated at the estimate of 8 from the

(m — 1)st iteration
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Score Function and Information Matrix

e Let Y7,...,Y,, be independent random
variables whose probability distributions

depend on parameters 0y, ...,0,, where p <n

e Let [;(0;y;) denote the log-likelihood function
of Y;, where 0 = (01,...,0,)

e The log-likelihood function of Y;,...,Y,, is
1(0,y) = > i1 Li(0;y:), where y = (y1,...,yn)’

e The total score with respect to 6, is defined as

OlB;y)  ~— OLi(6;y;)

Ui= e, = 06,

1=1

e By the same argument as for the univariate
ol;(0;yi)
00

case, E[ } = 0 and so E(U;) =0
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Score Function and Information Matrix

e The information matrix 7 is defined as the

variance-covariance matrix of U = (Uy,...,U,)’

e 7T =E[(U—EU))(U - E(U))] = E[UU] has

elements

ol; 0l; }

J

e By an argument analogous to that used in the

univariate case

: : 27,
< 25: 38:] = =l ag,00,

e Thus, the elements of the information matrix

are also given by

021 }

7. =FE|—
7k { 0 ,;00),
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ML Estimation using the Method of Scoring

e An alternative to Newton-Raphson involves

replacing the matrix of second derivatives by
0?1 }
0B;0Bk

the matrix of expected values E{

921 ol ol
aﬁjaﬁk} B _E{aﬁj aﬁlj

alternative iterative procedure is given by

e Since E{ = —7, an

p(m) = p(m—1) 4 [7en=1) I r(m=1),

where Z(m=1) denotes the information matrix

evaluated at p(m—1)

e Multiplication of both sides of the above

equation by Z(m~1) gives

Tm=1)p(m) _ 7(m=1)p(m=1) 4 r7(m—1)
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ML Estimation using the Method of Scoring

e For generalized linear models, the (j, k)th

element of 7 is

 Ol; Ol
T =E
. aﬂk]
— F _(Y"' — 14i) Lij Opi (Ys — i) i Oy
Var(Y;) On;  Var(Y;)  On;

= (@)

- ey ()

e Thus, 7 = X'WX, where W is the n x n

diagonal matrix with elements

O
Hi = Varl( Y;) (31;71)
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ML Estimation using the Method of Scoring
e The iterative procedure can now be written as

e The jth row of the p x n matrix X'W is

(xljwll, ce ,wnjwnn) —

L1 Ol T O \ 2
(Var(Yl) (0/7;1) ' Var(Y,) (87771) )

and the jth component of U is

— 1) ng Opt;
U =
Z Var(Y, on;

e Now let v denote the n X 1 vector with 2th
on;
O

component (y; — ;)
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ML Estimation using the Method of Scoring
e U1 can now be written as X' Wolm—1

and the iterative procedure becomes

X'wxv™ = x'wxpm—1 L x'Wwelm—b

= X'Wz

e The n x 1 vector z has elements

on;
8,&1 ,

i = wgb(m_l) + (yz — Mz‘)

on;
Ol

(m—1)

where p; and are evaluated at b

e Provided that X'W X has rank p, the vector

of parameter estimates is given by

b = (X'WX) 1 X'W2
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Comments

Normal equations are of the same form as for a

linear model fitted using weighted least squares

However, since z and W depend on b, the

solution must be obtained iteratively

The adjusted dependent variable z; can be

written as

~ ~ 377@‘

1

where the derivative of the link is evaluated at 1

The first-order approximation to g(y) is

o(y) ~ g(1) + (y — w)g' () = 0 + (y — mg—g

Thus z; is a linearized form of the link function

applied to the data
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ML Estimation for Canonical Links
e When the canonical link
p
ni =0; = Zfﬁz‘jﬁj = z;0
j=1

is used, then

Ouwi O OV (0:)

e In this case,

0l _ (Ys — i) T4 (5/%)
863' Var(Yz) 877@'

_(yi_ﬂi)wij I
-~ Var(y;) b (6:)

(yi — Mz‘) Lij
a(g)

since Var(Y;) = b"(60;)a(¢)
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ML Estimation for Canonical Links

Ol — (y; — i) Lij
Thus, Uj = — = :
7 0B ; a(¢)

The (4, k) component of the matrix of second

derivatives is

82l _ & Lij (‘Mi
0308k 2 a(o) (6‘5k)

1=1

Since these components do not depend on the

observations {Y;},

2l
0508k

2

E{ 0-1 ]
0; 0Bk

Thus, the Newton-Raphson and Fisher scoring

algorithms are identical
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Quasi-Likelihood

Most statisticians agree on the importance of

the likelihood function in statistical inference

In order to construct a likelihood function,
we must know (or postulate) probability

distributions for random variables

In some cases, there may be no theory
available on the specific random mechanism

by which the data were generated

In other situations, the appropriate theoretical

probability distribution may be inadequate

Another possibility is that the underlying
theoretical model may be too complicated to
permit parameter estimation and statistical

inference
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Quasi-Likelihood

e However, we may still have substantial

information about the data, such as:

e type of response (discrete, continuous, non-

negative, symmetric, skewed, etc.)

e whether or not the observations are

statistically independent

e how the variability of the response changes

with the average response

e the likely nature of the relationship
between the mean response and one or

more covariates

e In such situations, quasi-likelihood is a method
for statistical inference when it is not possible

to construct a likelihood function
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Quasi-Likelihood

Let Y = (Y1,...,Y,)" be a vector of

independent random variables with mean

vector p = (1, ..., fbn)’

Let 8= (B1,...,0p)" be a vector of unknown

parameters (p < n)

We will assume that the parameters of
interest, 3, relate to the dependence of 1 on

covariates x

This will be denoted by the notation that Y;

has mean p;(0)

We will also assume that Var(Y;) = ¢ V (i),
where V() is a known function and ¢ is a

possibly unknown scale parameter
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Quasi-Likelihood
e Thus, Var(Y) = ¢ V (), where

V(N) — diag{v(ﬂl)a SR V(:un)}

e It is important to note that:

e ¢ is assumed constant for all subjects and

does not depend on (3

e Var(Y;) depends only on p;
(mathematically necessary, but also
physically sensible)

e It would be permissible to have
Var(Y;) = ¢ Vi(us)

i.e., a possibly different functional

relationship for each observation
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Construction of Quasi-Likelihood Function

e Consider the random variable U; =

e U, has the following properties in common

with a log-likelihood derivative:

ey B =) 1
Var(U;) = E(U;") = (o V (1:)]? N oV (i)’

U\ _ | =0 V() — (Vi — pi)o V' (1s)
E(am) = E[ 6V (1))

1
— oV = —Var(U;)

e Most first-order asymptotic theory connected
with likelihood functions is founded on the

above three properties
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Construction of Quasi-Likelihood Function

e Thus, it should not be surprising that the

integral

N A T

if it exists, should behave like a log-likelihood

function for u;

e We refer to QQ(u;vy;) as the quasi-likelihood
for u; based on data y;

(more correctly, as the log quasi-likelihood)

e Since the components of Y are independent,

the quasi-likelihood for the complete data is

Qs y) = ZQ(M’L’S%’)



Example: The Normal Distribution

o If Y ~ N(u,0?), then V(p) =1 and ¢ = o2

e In this case, U =

Y —p

o2

e The quasi-likelihood function is

Qu,y) = /y

0

7

T
72

y—t

— dt

(y — p)?

202

e This is equivalent to the log likelihood for

N(p,0?)

580



Example: The Poisson Distribution
o IfY ~ P(u), then V() =p and ¢ =1

Y —p
]

e In this case, U =

e The quasi-likelihood function is

/—dt
:/y (%—1)dt

7

= {y log(t) — t}

Yy

= ylog(p) — p —ylog(y) +y

081

e In comparison, the log likelihood for P(u) is

ylog(p) — p — log(y!)
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Example: The Bernoulli Distribution
o If Y ~ B(1,p), then p = p, V(u) = pu(1 — )
and ¢ =1

Y —p
p(1—p)

e In this case, U =

e The quasi-likelihood function is
p
y—1
Qp,y) = / dt

, t(1—1)

p _
— / ERE 1} dt

, Lt 1t

— [y log(t) — (y — 1) log(1 — t)}

p

Yy

= ylog(f%p) +log(1 —p) — f(y)

e In comparison, the log likelihood for B(1,p) is

1
ylog(L> + log(1 — p) + log ( )
1—p y
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QL Estimating Equations

e If we treat the quasi-likelihood function as if it
were a “true” log likelihood, the estimate of 3;

satisfies the equation

0Q (113 y)

O p—
0P

. - 0Q (i3 yi)
-3 05

1=1

- 3 Sl (9

i Ot
= szi) (527)



QL Estimating Equations

e In terms of matrices and vectors, let
Yinx1) = Y15 Un)’

N(nxl) — (/~L17 <. 7,un),
O
D(nxp) = (%)7

O
0P,

where the (7, j) component of D is

e The QL estimating equation is U (B) = 0,

where

U(B) =DV~ y—u)/¢

e U(p) is called the quasi-score function

584
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QL Estimating Equations

The covariance matrix of U(/3), which is also

oU(B)
0B

the negative expected value of is

IT=DV-D/$

For QL functions, the matrix 7 plays the same
role as the Fisher information for ordinary

likelihood functions

In particular, the asymptotic covariance

matrix of 3 is

Var(f) =Z7' = ¢(D'V"'D)~}

Consistency, asymptotic normality, and

optimality are discussed by McCullagh (1983)



586

QL Estimation of

e Beginning with an arbitrary estimate 5(®)
sufficiently close to 3, the sequence of
parameter estimates generated by the Newton-

Raphson method with Fisher scoring is

p(m) — p(m=1) [Z(m—l)rl(](m—l)
_ plm=1) | {[gb(D’v—lD)—l}
< D'V y - w)/) |
— b(m—l) _I_ (Dlv—lD)—lDlv—l(y L Iu)7

where 1, D and V are evaluated at p(™m—1

e An important property of the estimation
procedure is that it does not depend on the

value of ¢
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QL Estimation of ¢

In the above respects, the quasi-likelihood

behaves just like an ordinary log likelihood
The one exception is in the estimation of ¢

The conventional estimator of ¢ is a moment
estimator based on the residual vector y — 1,
namely

n

(yz’ — /77;)2 X2
=1

1
- V(pi) — n—p

¢ =

1

X? is the generalized Pearson statistic
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Comparison Between Quasi-Likelihood

and Generalized Linear Models

The random component of a GLM assumes a

specific distribution for the response Y;

Quasi-likelihood assumes only a form for the
functional relationship between the mean and

the variance

The QL estimating equations for (3 are

quvm (gg;) 0, 7=1,...,p

The likelihood equations for generalized linear

models are

n

; Var(Y;) : (am)—O, j=1,....p
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Comparison Between Quasi-Likelihood

and Generalized Linear Models

e Since
Ow; _ Op; On; 3#1‘33”
o8; O 93;  Omy

and

V&I’(Y;) — ¢ V(:u%)a

the QL estimating equations have the same

form as the GLM likelihood equations

e However, QL estimators make only second-
moment assumptions about the distribution

of {Y;}, rather than full distributional

assumptions

e (QQuasi-likelihood can also be motivated in

terms of least squares
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Characteristics of Methods Based on
Generalized Linear Model Methodology

Useful for discrete and continuous outcomes
e normal, Poisson, binomial & gamma responses

e ceneralizations for ordered categorical data

No. of repeated measurements per experimental

unit need not be constant

Measurement times need not be the same across

subjects

Covariates may be discrete or continuous, time-

independent or time-dependent
Missing data (MCAR) can be accommodated

Three types of extensions:
e Marginal models
e Random effects models

e Transition models
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Marginal Models

e The marginal expectation p;; = E(y;;) is
modelled as a function of explanatory variables

e marginal expectation: the average response
over the subpopulation that shares a

common value of the covariate vector

e Associations among repeated observations are

modelled separately

e The assumptions are as follows:
_ ;o
a. g(pij) = z;; 0, where xi;, = (Tij1,. .., Tijp)

b. Var(yi;) = ¢ V(i)
e |/ is a known variance function

® ¢ is a possibly unknown scale parameter

c. The covariance between y;; and y;;/ 1S a
known function of p;;, 15/, and a vector

of unknown parameters «
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Random Effects Models

Heterogeneity between individuals is accounted

for by subject-specific random effects

These are assumed to account for all of the

within-subject correlation present in the data

Conditional on the values of the random effects,

the responses are assumed to be independent

The assumptions are as follows:

a. g(E(yij | b)) = x};8 + 2i;b;
e b, is a vector of subject-specific effects

e 2;; is a vector of covariates

b. yi1,...,Yi, are independent given b;, for

eachi=1,...,n

c. bi,...,b, are i.i.d. with density f
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Transition Models

Yi1, - - -, Yit, are correlated because y;; is explicitly

influenced by past values y;1,...,¥; j—1

The past outcomes are treated as additional

predictor variables

Conditional expectation of current response,

given past responses, is assumed to follow a GLM

The linear predictor includes:
e original covariates

e additional covariates which are known

functions of past responses
The model is
Q(E(yij | Yits - - 7y’i,j_1)> — x;j

S
D ity )
r=1
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Comparison of the Three Approaches

e In the linear model case, the three approaches
can be formulated to have regression coefficients
with the same interpretation
(coefficients from random effects and transition

models can have marginal interpretations)

e Categorical outcome variables, however, require

nonlinear link functions

e In this case, the three approaches give different

interpretations for the regression coeflicients

Transition Model:

e Expresses the conditional mean of y;; as a

function of covariates and of past responses

e Difficult to formulate models so that  has the
same meaning for different assumptions about

the time dependence
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Comparison of the Three Approaches

Random Effects Model:

e A “subject-specific” (“cluster-specific”) approach

e Heterogeneity among individuals is explicitly

modelled using individual-specific effects

e Regression coeflicients have interpretations in

terms of the influence of covariates on both:
e an individual’s response

e the average response of the population

Marginal Model:

e A “population-averaged” approach

e Appropriate when inferences about the

population average are the focus

e Scientific objectives are to characterize and

contrast populations of subjects
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Comparison of the Three Approaches

Marginal models model the effects of covariates

on the marginal expectations

(A model for the association among observations

from each subject must also be specified)

Random effects and transition models model the
covariate effects and within-subject associations

through a single equation

In a clinical trial, marginal models are likely to

be most appropriate

(since the average difference between control

and treatment is generally most important)

In addition, software for fitting marginal models

is more widely available
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The GEE Method

GEE: generalized estimating equations

(Liang & Zeger, 1986; Zeger & Liang, 1986)

An extension of quasi-likelihood to longitudinal

data analysis

The method is semi-parametric in that the
estimating equations are derived without full
specification of the joint distribution of a

subject’s observations

Instead, we specify only the:

e likelihood for the (univariate) marginal

distributions

e “working” covariance matrix for the vector of

repeated measurements from each subject

Often referred to now as GEE1

(to distinguish it from more recent extensions)
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The GEE Method

The GEEs have consistent and asymptotically
normal solutions, even with misspecification of

the time dependence

The method avoids the need for multivariate
distributions by only assuming a functional
form for the marginal distribution at each

time point

The covariance structure is treated as a

nuisance

It relies on the independence across subjects
to estimate consistently the variance of the
regression coefficients (even when the assumed

correlation is incorrect)
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Advantages of GEE

e Feasible in many situations where maximum
likelihood approaches are not, since the full
multivariate distribution of the response

vector 1s not required

e For example, five binary responses per
subject gives a multinomial distribution

with 2° — 1 = 31 independent parameters

e With GEE, only the five marginal
probabilities and at most 5 x 4/2 = 10

correlations are estimated

e Efficiency loss relative to maximum likelihood

is often minimal

e Continuous and categorical independent

variables can be handled (unlike WLS)
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Outline of the GEE Method

a. Relate the marginal response p;; = E(y;;) to a

linear combination of the covariates:

/

g (Hz‘j ) = Lj
e y;; is the response for subject i at time j

® v;; = (Tij1,...,%ijp) 1is the corresponding

p X 1 vector of covariates

o 3= (01,...,0y) is a px1 vector of unknown

parameters

e g(-) is the link function

b. Describe the variance of y;; as a function of the

mearn:

Var(y;) = V(piz) ¢
° V() is the variance function

e ¢ is a possibly unknown scale parameter



Link and Variance Functions

e Normally-distributed response:

g(pij) = g,
V(i) = 1,
Var(y;;) = ¢

e Binary response:
g(piz) =log(pi; /(1 — pi)),
Vipij) = pig (1 = pij),

b=1

e Poisson response:
9(pij) = log(fuij),
V(kij) = pig,

b=1

601
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Outline of the GEE Method

c. Choose the form of a t; x t; ‘working’ correlation

matrix Rz(Oé> for each Y; — <yi17 ce ayitiy

e The (j,5') element of R;(«) is the known,
hypothesized, or estimated correlation

between y;; and y;;

e This working correlation matrix may depend
on a vector of unknown parameters «, which

is the same for all subjects

e Although this correlation matrix can differ
from subject to subject, we commonly use
a working correlation matrix R(«) that
approximates the average dependence among

repeated observations over subjects
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Comments on “Working” Correlation Models

e We should choose the form of R to be

consistent with the empirical correlations

e R is called a working correlation matrix
because with non-normal responses, the actual
correlation among a subject’s outcomes may

depend on the mean values, and hence on z;,[3

e The GEE method yields consistent estimates of
the regression coefficients and their variances,
even with misspecification of the structure of

the covariance matrix

e In addition, the loss of efficiency from an
incorrect choice of R is inconsequential when

the number of subjects is large
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“Working” Correlation Models

Independence: R =1

e When n >> t, the correlation influence is often
small enough so that ordinary least-squares

regression coefficients are nearly efficient

e However, correlation may have a substantial

effect on the estimated variances

e These considerations suggest the independence

working model with R =1

e Solving the GEE is the same as fitting the

usual regression models for independent data

e Hence, one can use available software to obtain

parameter estimates
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“Working” Correlation Models

Completely-specified: R = Ry

e Choosing Ry close to the true (unknown)

correlation gives increased efficiency

e Unfortunately, the choice is usually not obvious

Ezxchangeable: Rjj = o

e This is the correlation structure assumed in a

random effects model

AR-1: Rjj/ = Oz'j_j/|

e for normally-distributed y;;, the correlation
structure of the continuous time analogue of

the first-order autoregressive process
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“Working” Correlation Models

Stationary m-dependent:

R.. — alti=tyrlif it —ti| <m
7 0 if|tj—tj/|>m’

where ¢; 1s the jth observation time

Unspecified: R;; = o
e In this case, there are t(t — 1)/2 parameters to

be estimated

e Most efficient, but useful only when there are

relatively few observation times

e In addition, the occurrence of missing data

complicates estimation of R

e The estimate obtained using nonmissing data

is not guaranteed to be positive definite
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Choosing a Working Correlation Matrix

e Nature of the problem may suggest a structure:

e Repeated measurements over time

e Autoregressive, unstructured

e Individuals within families (clustered data)

e Eixchangeable

e When the number of experimental units is large
and the cluster sizes are small, the choice of R

often has little impact on the estimation of 3

e Independence model may suffice

e When there are many repeated measurements
per experimental unit, modeling the correlation

structure may result in increased efficiency

e Consideration of alternative working correlation

structures may be useful
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Generalized Estimating Equation

A; is a t; x t; diagonal matrix with V' (u,,) as

the jth diagonal element

R;(«) is the t; x t; “working” correlation

matrix for the ¢th subject

The working covariance matrix for

Yi = (Y1, - .- Yit;)' 18

Vila) = ¢ A} Ri(a) 4}

1

The GEE estimate of (3 is the solution of

n

U() =3 () @] (i = ) = 0y,

where & is a consistent estimate of o and 0, 1S

the p x 1 vector (0,...,0)
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Solving the GEE

e Iterate between quasi-likelihood methods
for estimating ( and a robust method for

estimating o as a function of (3

1. Given current estimates of R;(«) and ¢,
calculate an updated estimate of 3 using

iteratively reweighted least squares

2. Given the estimate of 3, calculate

standardized residuals

_ Yij — ﬁz'j
Vil

Tij
JJ

3. Use the residuals r;; to consistently

estimate o

4. Repeat steps 1.-3. until convergence
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Robust Variance Estimate

e One approach to estimating the variance-
covariance matrix of 3 would be to use the

inverse of the Fisher information matrix:
Var(g) = My 1,

where

and V; = V(@)

e This is called the “model-based” estimator of

AN

Var(()

e Will not provide a consistent estimator of

Var((3) unless the underlying model is correct

e Royall (1986)
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Robust Variance Estimate

e Liang and Zeger (1986) recommend the

estimator
Var(B3) = My My MY,

where M, is given by

Zﬁ;(%fg)/ Vit (s — 1) (ye — i)' Vi (%ﬁg)

e This estimator was defined by Royall (1986)
e known as the “robust” or “information
sandwich” estimator
e a consistent estimator of Var(g) even if R;(«)

is not the true correlation matrix of y;

e If the true correlation structure is correctly
modeled, then the robust variance estimator

reduces to the model-based estimator
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Example

e A randomized, double-blind clinical trial of
a new source of botulinum toxin Type A in

75 patients with spasmodic torticollis
e sponsored by an English company
e conducted and first analyzed in Germany

e considered for purchase by a U.S. company

e Patients previously untreated with botulinum

toxin were randomized to one of four groups:
e placebo (n = 20)

e 250 units of botulinum toxin A (n = 19)

e 500 units of botulinum toxin A (n = 18)

e 1000 units of botulinum toxin A (n = 18)

e Following a single injection, patients were

evaluated at weeks 2, 4, and 8
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Example (continued)

e One of the primary outcome variables was a

clinical global rating (CGR)
e l=symptom free or mild symptoms

e O=moderate or severe symptoms

e (Covariates of interest include:
e treatment group (0, 250, 500, 1000 units)
e age (range: 26-82 years, mean: 47 years)
e sex (39 males, 36 females)

o week (2, 4, 8)

e With six exceptions, the data are complete:

e two patients (both in the 500 unit group)

have no follow-up data
e one patient (1000 unit) missing at week 2
e one patient (1000 unit) missing at week 4

e two patients (both placebo) missing at week 8
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Clinical GGlobal Ratings

(0=poor, 1=good)
ID Group Age Sex Wk.2 Wk. 4 Wk. 8

1 Plac. 82 F 0 0 0
2 500 41 F 0 0 0
3 250 62 F 0 0 1
4 1000 63 M 0 0 1
5 500 40 M 1 1 1
6 250 43 F 1 1 1
7 1000 56 F 0 0 0
8 Plac. 48 F 0 0 0
9 1000 34 F 0 1 1
10 500 35 M 0 0 0
11 Plac. 27 M 0 0 0
12 250 39 F 1 1 1
13 1000 54 M 0 0 0
14 500 52 F . . .
15 Plac. 48 M 0 0 0
16 250 5 M 0 0 0
17 1000 79 M 1 0 0
18 250 42 M 0 0 0
19 Plac. 36 M 0 0




Clinical Global Ratings (continued)
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ID

(0=poor, 1=good)

Group Age Sex Wk.2 Wk.4 Wk. 8

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

500
1000

Plac.

250
500
1000
500

Plac.

250
250

Plac.

1000
500
1000
250

Plac.

250
1000
500

26
60
48
50
29
44
41
50
03
45
42
63
47
36
29
54
44
%)
34
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Clinical Global Ratings (continued)
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ID

(0=poor, 1=good)

Group Age Sex Wk.2 Wk.4 Wk. 8

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
95
56
57

Plac.
Plac.

250
500
1000
250
500

Plac.

1000
250
500

1000

Plac.

500
250
1000

Plac.

250

Plac.

52
48
o8
D7
43
46
33
39
03
51
72
41
36
53
50
64
49
29
ol
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Clinical Global Ratings (continued)
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ID

(0=poor, 1=good)

Group Age Sex Wk.2 Wk.4 Wk. 8

o8
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

1000
500
250

Plac.

250
1000

Plac.

500
500
1000

Plac.

500
1000
250

Plac.
Plac.

250
500

46
53
42
30
46
49
33
66
37
36
49
35
37
39
46
03
59
%)

S EH """ EEEdHEE
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Analysis Issues

Type of model (marginal, transitional, etc.):

e Marginal models appropriate when inferences
about average response in subpopulation sharing

common covariate vector value are the focus

e Reasonable considering the goals of a clinical
trial (since average difference between

treatments is generally most important)

Type of working correlation structure:

e Unspecified model is appropriate
e only three time points, so only 3 parameters

e data are nearly complete

e Independence and exchangeable working

correlation structures can also be considered

Response variable:

e Logit of the probability of a good response

e Binomial variance function
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Notation

n = 75 subjects (clusters)
t; = 3 observations per subject

Y;; is the response from the ith subject at the
jth time point, for ¢ =1,...,75, 5 =1,...,3

B { 1 if CGR is “good”
Y10 if CGR is “poor”

z;; = (Tij1,-..,%ijp) 18 a p x 1 vector of

covariates for subject ¢ at time j

The regression model is

Hij /
log (24— = a5,
o8 L — g5 Fisl?

where p;; = E(Y;;) and 8= (61,...,0p) is a

p X 1 vector of unknown parameters



Lij1

Lij4

Lij6

Tij8

Lij,10

Lij 12

Lij14=—Tij4 Lij8

Lij17—=Lij4 Ti59

Lij3 Lij8

Lij,15=Lij5 Li;8

Lij,18 =55 Lij9

Covariates
1 Lij2 = age Lij3 — {
{ 1 250 units { 1
. Lij5 =
0 otherwise 0
al
1 1000 units
. XTij7 = 9
0 otherwise 2
\ 4
{ 1 ifyj=2 { 1
. Lij9 —
0 otherwise 0
Lij2 Lij8 Lij11 = Lij2 Lij9

Lij,13 — Li53 Li59
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if male

if female

500 units

otherwise

placebo
250 units
500 units
1000 units

if j =3

otherwise

Li5,16 —=Lij6 Li;8

Li5,19—=Lij6 Lij9
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SAS Data Step Statements

data a; infile ’example.dat’;

input subject dose age sex wk2 wk4d wkS8;
dose=int (dose/250+0.001) ;
dosesg=dose*dose;

dosecu=dosexdosesq;

dose2=(dose=1);

dose3=(dose=2) ;

dosed4=(dose=4) ;

male=(sex=1);

week=2; rating=wk2; week4=0; week8=0;
output;

week=4; rating=wk4; week4=1; week8=0;
output;

week=8; rating=wk8; week4=0; week8=1;
output;

data a; set a;

aged=age*(week=4); age8=age*(week=8);
maled=male* (week=4) ; male8=male*(week=8);
dose24=dose2* (week=4) ;

dose28=dose2* (week=8) ;

dose34=dose3* (week=4) ;

dose38=dose3* (week=8) ;

dosed4=dosedx* (week=4) ;

dose48=dosed* (week=8) ;
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Model 1

Age, sex, dose (3 parameters), week (2 parameters),
wk. 4 & 8 incremental effects of age (2 parameters),

sex (2 parameters), and dose (6 parameters)
e 18 regression parameters (including intercept)

e Focus is on assessing differential effects of age,

sex, and dose at weeks 2, 4, and 8
e The SAS statements are:

proc genmod data=a;

class subject;

model rating=age age4d age8 male male4 male8
dose2 dose3d dose4 dose24 dose28 dose34
dose38 dosed44d dosed8 weekd week8 / dist=bin;
repeated subject=subject
/ type=unstr corrw covb sorted;

make ’geeemppest’ out=estimate;

make ’geercov’ out=cov noprint;

make ’classlevels’ out=junkl noprint;

make ’parminfo’ out=junk2 noprint;

make ’modfit’ out=junk3 noprint;

make ’geencov’ out=junk4 noprint;
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Model 1 (continued)

e Wald tests of the joint significance of sets of

parameters can be computed using PROC IML

proc iml; use estimate;
read all var{estimate}

where (parm ne "Scale") into estimate;
use cov; read all into cov; n=nrow(cov);
do i=2 to n; iml=i-1; do j=1 to iml;
cov[i,jl=covl[j,il; end; end;
col={"Chi-square" "df" "p-value"};
print "Age X Week Interaction";
x=estimate[3:4,1]; print x;
var=cov[3:4,3:4]; print var;
df=nrow(x); g=x‘*inv(var)*x;
pvalue=1-probchi(q,df);
result=q :: df :: pvalue;
print result [colname=col format=7.3];
print "Sex X Week Interaction'";
x=estimate[6:7,1]; print x;
var=cov[6:7,6:7]; print var;
df=nrow(x); g=x‘*inv(var)*x;
pvalue=1-probchi(q,df);
result=q :: df :: pvalue;
print result [colname=col format=7.3];

quit;
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Results from Model 1

e Wald tests of the interaction effects are:

Effect Chi-square df p-value
Age x Week 0.36 2 0.8
Sex x Week 0.12 2 0.9
Dose x Week 5.00 6 0.5
All Interactions 5.98 10 0.8

e The results obtained from the independence
and exchangeable working correlation structures

were similar

e Since model 1 has a large number of parameters
relative to the number of observations, separate
models with main effects and only one of the

interaction effects were also considered

e In each of these models, there was also no

evidence of interactions with week
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Model 2

Age, sex, dose (3 parameters), week (2 parameters)

e Eight regression parameters (with intercept)

e T'wo parameterizations are used:
e Indicator variables for dose

e Linear, quadratic, and cubic dose

e The SAS statements are:

proc genmod data=a;
class subject;
model rating=age male dose2 dose3 dosed
weekd4 week8 / dist=bin;
repeated subject=subject
/ type=unstr corrw covb sorted;

proc genmod data=a;
class subject;
model rating=age male dose dosesq dosecu
weekd week8 / dist=bin;
repeated subject=subject
/ type=unstr corrw covb sorted;
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Model 2 (continued)

e Multiple degree of freedom contrasts were also

tested using PROC IML

e Wald tests of interest:

Effect Chi-square df p-value
Age 3.45 1 0.06
Sex 2.31 1 0.13
Age and Sex 6.58 2 0.04
Dose 9.88 3 0.02
250 vs placebo 1.62 1 0.20
500 vs placebo 6.60 1 0.01
1000 vs placebo 6.86 1 0.01
Nonlinear dose 3.05 2 0.22
Week 0.56 2 0.76

e Similar results were obtained from independence

and exchangeable working correlation structures

e Since the week effect is nonsignificant, these two

terms will first be omitted
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Model 3

Age, sex, three dose parameters

e Six regression parameters (with intercept)

e Two parameterizations are used:
e Indicator variables for dose

e Linear, quadratic, and cubic dose

e The SAS statements are:

proc genmod data=a;
class subject;
model rating=age male
dose2 dose3 dose4 / dist=bin;
repeated subject=subject
/ type=unstr corrw covb sorted;

proc genmod data=a;
class subject;
model rating=age male
dose dosesq dosecu / dist=bin;
repeated subject=subject
/ type=unstr corrw covb sorted;
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Model 3 (continued)

e Multiple df contrasts were also tested

e The results from this model are:

Wald Tests

Effect Chi-square df p-value
Age 3.42 1 0.06
Sex 2.44 1 0.12
Age and Sex 6.69 2 0.03
Dose 9.80 3 0.02

250 vs placebo 1.48 1 0.22

500 vs placebo 6.36 1 0.01
1000 vs placebo 6.80 1 0.01
Nonlinear dose 2.82 2 0.24

Regression Coefficient

Covariate Estimate S.E. Odds Ratio
Age —0.03 0.02 0.97
Male gender —0.66 0.42 0.52
250 units 0.88 0.73 2.42
500 units 1.88 0.74 6.53
1000 units 1.91 0.73 6.77
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Model 4

Age, sex, linear dose

proc genmod data=a; class subject;
model rating=age male dose / dist=bin;
repeated subject=subject

/ type=unstr corrw covb sorted;
make ’geeemppest’ out=estimate;
make ’geercov’ out=cov noprint;
make ’classlevels’ out=junkl noprint;
make ’parminfo’ out=junk2 noprint;
make ’modfit’ out=junk3 noprint;
make ’geencov’ out=junk4 noprint;

proc iml,;
use estimate; read all var{estimate}
where(parm "= "Scale") into estimate;

use cov; read all into cov; n=nrow(cov);
do i=2 to n; iml=i-1; do j=1 to iml;
covl[i,jl=covl[j,i]; end; end;
col={"Chi-square" "df" "p-value"};
print "Age and Sex";
x=estimate[2:3,1]; print x;
var=cov[2:3,2:3]; print var;
df=nrow(x); g=x‘*inv(var)*x;
pvalue=1-probchi(q,df) ;

result=q :: df :: pvalue;

print result [colname=col format=7.3];
quit;
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Results from Model 4

Wald Tests
Effect Chi-square df  p-value
Age 3.83 1 0.050
Sex 2.62 1 0.105
Age and Sex 7.22 2 0.027
Linear dose™* 9.30 1 0.002

Regression Coefficient

Covariate Estimate S.E. Odds Ratio
Age —0.03 0.02 0.97
Male gender —0.70 0.43 0.50
Linear dose* 0.44 0.14 1.55

>I<O:placebo, 1=250 units, 2=500 units, 4=1000 units

e Odds of a good response:
e decrease as age increases
e lower for males than females

e increase as dose increases
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Comments on the Analysis

e In model 3, the test of nonlinearity of the dose

effect is not significant

e chi-square=2.82 with 2 df, p=0.24

e However, parameter estimates of the effects for

the two highest doses (500, 1000 units) are:
e nearly identical
e twice as large as those for the 250 unit dose

(1.88 and 1.91, respectively, versus 0.88)

e Thus, the model with indicator effects for

dosage may be most appropriate

e The results that follow are based on model 3

parameterized with indicator dosage effects
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Effect of Working Correlation Structure

Regression Coefficient

Working
Covariate Correlation Est. S.E. P
Age Unspecified  —0.0285 0.0154 —1.85
Exchangeable —0.0281 0.0152 —1.85
Independence —0.0285 0.0153 —1.86
Male sex Unspecified —0.6627 0.4239 —1.56
Exchangeable —0.6707 0.4244 —1.58
Independence —0.7221 0.4262 —1.69
250 units Unspecified 0.8819 0.7254 1.22
Exchangeable 0.9022 0.7322 1.23
Independence 0.9850 0.7325 1.34
500 units Unspecified 1.8757 0.7440 2.52
Exchangeable 1.8465 0.7492  2.46
Independence 1.9294 0.7508  2.57
1000 units Unspecified 1.9122 0.7334 2.61
Exchangeable 1.9026 0.7402  2.57
Independence 1.9614 0.7393  2.65




640

Working Correlation Matrices from

Model with Age, Sex, and Dose Indicators

e Unspecified working correlation structure:

1.00 0.61 0.39
0.61 1.00 0.41
0.39 0.41 1.00

e L[xchangeable working correlation structure:

1.00 0.54 0.54
0.54 1.00 0.54
0.04 0.54 1.00

e Independence working correlation structure:

1.00 0.00 0.00
0.00 1.00 0.00
0.00 0.00 1.00
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Comparison with Univariate Analyses

Regression Coefficient

Covariate  Model Est. S.E. z
Age GEE —0.029 0.015 —1.85
Week 2 —0.034 0.025 —1.37
Week 4 —0.020 0.024 —-0.81
Week 8 —0.034 0.025 —1.33
Male sex GEE —0.663 0.425 —1.56
Week 2 —0.824 0.551 —1.50
Week 4 —0.737 0.547 —1.35
Week 8 —0.650 0.567 —1.15
250 units GEE 0.882 0.725 1.22
Week 2 0.893 0.819 1.09
Week 4 1.359 0.906 1.50
Week & 0.708 0.953 0.74
500 units GEE 1.876 0.744 2.52
Week 2 1.300 0.824 1.58
Week 4 2.314 0.910 2.54
Week & 2.220 0.918 2.42
1000 units GEE 1.912 0.733 2.61
Week 2 1.379 0.842 1.64
Week 4 2.348 0.918 2.56
Week & 2.187 0.921 2.37
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Comment

e Disadvantages of Wald statistics for testing
hypotheses about individual parameters or

sets of parameters
e Dependent on the measurement scale

e Require estimation of the covariance matrix

(unstable if number of clusters is small and

cluster size is large)

e With n=75 and t;=3, their performance may

be satisfactory

e Rotnitzky and Jewell (1990, Biometrika)
discuss the use of ‘working’ score and

likelihood ratio tests

e these are not yet implemented in standard

software packages
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Assessing the Adequacy of the
Working Correlation Matrix

e Inferences regarding the regression coefficients (3

can be made using the:

1. robust variance estimator M, A My 1
e consistent even if R(«) is misspecified

e may be inefficient

2. naive (model-based) variance estimator M’

e assumes that R(«) is correctly specified

e Consider testing the hypothesis that the first ¢

components of § are equal to specified values

e Rotnitzky and Jewell (1990, Biometrika) show
that if variance estimation is based on M ', the

Wald statistic is asymptotically equal to

c1 X1 +coXg + - Cqu
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Assessing the Adequacy of the
Working Correlation Matrix

c1 > cg > --- > ¢cq > 0 are the eigenvalues of a

O
op

() is a function of ( ), V;, and A;

X1,...,X, are independent x7 random variables

Examination of the weights c¢; provides

information on:

e how close the working correlation matrix

R(«) is to the true correlation structure

e the effect of a particular choice of V; on

inference about the components of (3

The asymptotic mean and variance of the Wald

statistic are ) c; and 2 ¢5, respectively
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Assessing the Adequacy of the
Working Correlation Matrix

If V; is close to Cov(y;), then ¢, = ) ¢;/q and
Co =) c?/ g will both approximately equal 1

Points close to (1,1) in a plot of ¢; versus ¢
for different choices of R(«) indicate reasonable

choices of the working correlation structure

Note that ¢; and ¢; can be computed without

computation of the individual eigenvalues

e gqc, = trace(Q), ¢ca = trace(Q?)

Probability statements about ¢; and ¢y would,

however, require the null distribution of @

Hadgu et al. (1997, Statistics in Medicine) and
Hadgu (1998, J Biopharm Statist) demonstrate
the use of this approach
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Studies of the Properties of GEE
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Properties of GEE (for Categorical Data)

e Lipsitz, Laird, and Harrington (1991) simulated

binary data with n = 100, ¢t = 2, p = 1 and seven

correlation structures

Parameter estimates biased slightly upward
Bias increased as the correlation increased

Confidence interval coverage probabilities

were close to nominal 95%

Additional simulations with n = 40 led to

convergence problems

e Emrich and Piedmonte (1992) simulated binary
data with n = 20, ¢t = 64, p = 4, and four

correlation structures

Parameter estimates were unbiased
Type I error rates were inflated (from 5%)
e to as high as 8% for individual parameters

e to as much as 17% for joint tests
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Properties of GEE (for Categorical Data)

e Lipsitz et al. (1994) simulated binary data
with n = 15,30,45, t = 3, p = 4 and three

exchangeable correlation structures
e Type I error rates were close to nominal 5%

e Confidence interval coverage probabilities

were close to nominal 95%

e Li (1994) simulated binary data with n = 25, 50,
100, 200, t = 3, p =1, 2,3 and four correlation

structures

e Test sizes and confidence interval coverages

were close to nominal levels

e GEE with unspecified correlation structure

had convergence problems with n = 25

e Properties of WLS estimates and confidence
intervals were similar to those from GEE

(even when n = 25)
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Properties of GEE (for Continuous Data)

e Paik (1988) investigated the small sample
properties for correlated gamma data in a

limited study

e { =4, p=1: point estimates and confidence

intervals perform satisfactorily if n > 30

e { =4, p=4: point estimates and confidence

intervals perform satisfactorily if n > 50

e Park (1993) simulated multivariate normal data
(t = 4) with p = 3, n = 30, 50, and missing data
probabilities of 0.1, 0.2, and 0.3

e For n = 30, confidence interval coverage

probabilities are less than nominal levels

e For n = 50, coverage probabilities are close to

nominal levels

e GEE estimators are more sensitive to missing

data than the MLEs
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Computer Software

Programs for GEEL:

e Karim and Zeger (1988) SAS macro

e requires PROC IML

e Lipsitz and Harrington (1990)

e Davis (1993) FORTRAN program
e runs on any type of computer

e not as user-friendly

e Carey (1994) S-PLUS program

e available from STATLIB

e SUDAAN Release 7 (MULTILOG procedure)

e SAS (version 6.12) GENMOD procedure
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Cautions Concerning the Use of GEE

e GEE is semiparametric (not nonparametric)

e correct specification of marginal mean and

variance are required

e Missing data cannot depend upon observed or

unobserved responses

e A moderate to large number of independent

experimental units (n) is required

e Bias & efficiency for finite samples may depend on
e Number of experimental units (n)
e Distribution of cluster sizes

e Magnitudes of the correlations among repeated

measurements

e Number and type of covariates
e.g., cluster level (time-independent) and/or

observation level (time-dependent)
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A Caution with Time-Dependent Covariates

e Pepe and Anderson (1994). Commun Statist
Simul Comput, 23, 939-951

e When there are time-dependent covariates, B

may not always be a consistent estimator of 3

e In this case, one must either:
1. use a diagonal working covariance matrix
2. verify that the marginal expectation
E(yi;|zi;) is equal to the partly-conditional

expectation E(y’&J |QZZ'1, ce ,.”]37;752.)

e Note that when covariates are time-independent,

the second condition is trivially satisfied

e Pepe and Anderson (1994) describe some
general classes of correlation structures for

which condition 2. does and does not hold
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Alternative GEE Estimation Procedures

The second step of the GEE iteration procedure

uses the Pearson residuals

_ Yij — ﬁij
Vil

Tz'j
JJ

Although this choice may be most appropriate
for continuous, normally-distributed outcomes,

it may not be best for categorical responses

In univariate generalized linear models, other

types of residuals have been considered:
e Anscombe residual

e Deviance residual

Modifying the GEE estimation procedure to
use a type of residual more appropriate to the

response variable might lead to better properties
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Anscombe Residuals

Anscombe (1953) proposed defining a residual

using a function A(y) instead of y

The function A is chosen to make the distribution

of A(y) more normal, and is given by
e
V1/3(p)

Then for Poisson outcomes,

2/3 ~2/3
1A

A _ 2 T Hj
Tij = ~1/6
Fij
For binary outcomes, = [t (1—t)"13dt

This can be computed using algorithms for the

incomplete beta function [ ( : 3)
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Deviance Residuals

e In univariate generalized linear models,
the deviance is often used as a measure of

discrepancy

e The deviance residual is the signed square root
of the contribution of each observation to the

likelihood ratio statistic

e For Poisson outcomes, the deviance residual is

D

rij = sign(yij — ﬂz‘j)\/ 2(yij log(yiz/ 1ij) — Yij + Hij)

e For binary outcomes,
TP _ —\/2|10g(1—%w)| lf yz’j :0
’ V2| In(7;;)] if yi; =1

where 7;; is the predicted probability at the

current value of (3
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Comparisons of GEE Estimation Procedures

e The three approaches were compared in a model
for generating correlated categorical responses

with arbitrary covariance structure

e The specific case considered was:
e Two groups (p = 1 dichotomous covariate)
e Three time points (t = 3)
® ypi; is the dichotomous (0,1) response at
time j for subject ¢ in group h, for h =1, 2,
1=1,...,ny,and 3 =1,2,3

e The model was
logit(y145) = 61 + B3 7,
logit(y2ij) = B1 + B2 + (B3 + B4)J,
with (81, Ba, 85, 81) = (0.1,0.2,0.2,0.0)

(A linear logistic model with separate intercepts

and a common slope)
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Comparisons of GEE Estimation Procedures

e Three correlation structures were considered:
e common AR-1 with p = 0.5

e exchangeable (p = 0.5) in group 1,
AR-1 (p = 0.5) in group 2

)
e exchangeable (p = 0.1) in group 1,
AR-1 (p = 0.5) in group 2

e Model parameters were estimated using GEE

with the unstructured working correlation model

e Sample sizes of 25, 50, and 100 observations per

group were studied

e 2000 replications were carried out for each

combination of the model parameters

e The results were summarized in terms of bias,
root mean square error, confidence interval

coverage, and test size (for Hy: 84 = 0)
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Alternative GEE Estimation: Binary Outcome
Bias versus Sample Size
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Alternative GEE Estimation: Binary Outcome
Root Mean Square Error versus Sample Size

© Pearson residual

W O &

0.8 - > Anscombe residual

O Deviance residual

0.6 5
)
RMSE -
B
_ (o]
0.4 B .
B
_ B 5
(o] = B
B
0.2 - B g E
(&)

B

! ! ! ! ! ! ! ! |

T 1
25 50 100 25 50 100 25 50 100 25 50 100

Param. 1 Param. 2 Param.3 Param. 4




660

Alternative GEE Estimation: Binary Outcome
C.I. Coverage versus Sample Size
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Alternative GEE Estimation: Binary Outcome
Test Size versus Sample Size
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Power Comparisons

The powers of the three estimation methods

were also compared

The hypothesis of parallelism (Hy: 84 = 0) was
tested at the alternatives 54, = 0.1,0.3,0.5,0.7

The true correlation model was:
e exchangeable (p = 0.1) in group 1
e AR-1 (p =0.5) in group 2

Model parameters were estimated using the

unstructured working correlation model

Sample sizes of 25, 50, and 100 observations

per group were studied

2000 replications were carried out for each

combination of the factors studied
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Alternative GEE Estimation: Binary Outcome
Power of Test for Parallelism versus
Treatment Difference
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> Anscombe residual
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Summary of Results

There are no clear distinctions among methods

The properties of the GEE estimates, confidence
intervals, and test sizes are satisfactory even

when correlation structures differ among groups

In particular, test sizes were between 0.04 and

0.06 for all sample sizes considered

Estimation using deviance residuals gives lower

power than Pearson or Anscombe residuals

The conclusions based on simulations of Poisson

outcomes are similar

There is no compelling reason to consider use of

alternatives to Pearson residuals
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Other Developments and Extensions

e Lipsitz, Laird, and Harrington (1991) study using

the odds ratio as the measure of association

(instead of the Pearson correlation coefficient)

may be easier to interpret

pairwise odds ratios are not constrained by the
marginal probabilities

not constrained to be in the interval (—1,1)
approach applies only to binary outcomes

in a simulation study with n = 100, ¢t = 2, and
p = 1, the parameter estimates from the odds
ratio association model appeared to be slightly

more efficient

e Carey et al. (1993) ALR method

e Chaganty (1997) QLS method
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Other Developments and Extensions

Lipsitz, Fitzmaurice, Orav, and Laird (1994).
Biometrics, 50, 270-278

A one-step estimator to circumvent convergence
problems associated with the GEE estimation

algorithm was proposed

In a simulation study with a binary response,
n = 15,30,45, t = 3, and p = 4, the performance
of the one-step estimator was similar to that of

the fully iterated estimator

They recommend the one-step approach when
the sample size is small and the association

between binary responses is high

(In this case, the fully iterated GEE algorithm

often has convergence problems)
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Other Developments and Extensions

Robins, Rotnitzky, and Zhao (1995, JASA)
propose an extension of GEE that allows for
data to be MAR, rather than MCAR

Thus, the probability that y;; 1s missing may
depend on past values of the outcome and

covariates

However, correct specification of a model for the

probability of nonresponse is required

Rotnitzky and Wypij (1994, Biometrics)
propose a general approach for calculating the
asymptotic bias of GEE estimators calculated

from incomplete data

In an example, they show that use of the
exchangeable working correlation structure
can result in larger bias than the independence

working correlation model
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Subsequent Developments

Prentice (1988)

e Considered the special case of binary data

e Proposed GEE estimator of the vector a of

correlation parameters

e Improved efficiency vs. original GEE formulation

Zhao € Prentice (1990), Prentice & Zhao (1991),
Liang, Zeger € Qaqish (1992)

e Proposed alternative equation for simultaneous
estimation of regression parameters 8 and

covariance parameters «

e Requires modeling the third and fourth moments

of y;; (instead of just the mean and variance)

e This extension is now called GEE2 and the

original formulation is GEE1
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Distinctions Between GEE1 and GEE2

In GEE1, the regression parameters 3 are
considered to be orthogonal to association

parameters a (even though they are not)

GEE]1 thus gives consistent estimates of 3
even when association parameters are modeled

incorrectly

GEE2 gives consistent estimates of § and
« only when the marginal means and

associations are modeled correctly

In this case, GEE2 provides parameter
estimates which have high efficiency relative

to maximum likelihood
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Distinctions Between GEE1 and GEE2

e GEEL gives slightly less efficient estimates of

(3, but may give inefficient estimates of «

e GEE?2 sacrifices the appeal of requiring only

first and second moment assumptions

Conclusion:

e Use GEEI1 if regression parameters are the

primary focus
e Use GEE2 if:

e ecfficient estimation of association

parameters is of interest

e model for covariance structure is known to

be correctly specified
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Other Developments and Extensions

Hall (1994) and Hall & Severini (1998) propose
extended generalized estimating equations (EGEE)

Uses ideas from extended quasi-likelihood
e Nelder and Pregibon (1987, Biometrika)
e McCullagh and Nelder (1989)

Provides estimating equations for regression and

association parameters simultaneously

Makes only first and second moment assumptions

Estimates « efficiently (like GEE2)

e consistency of & requires correct covariance

specification

Does not require a correct covariance specification

for consistency of regression parameter estimates
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Summary
Recent extensions of generalized linear model

methodology are especially useful in the analysis

of repeated categorical and continuous outcomes

In many types of applications, marginal models
may be more appropriate than random effects

and transition models

e and software is more widely available

GEE1l (and EGEE) require weaker assumptions
than GEE2

e and GEE1 software is more widely available

GEEL estimators and test statistics generally

have satisfactory properties
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Comments on Random Effects Models

e More difficult to fit, since evaluation of the
likelihood (or even the first two moments)

requires numerical methods in most cases

e Mauritsen (1984) proposed a mixed effects

model known as the logistic binomial
e cases the computational burden

e available in the EGRET software package

e Conaway (1990, Biometrics) proposed a random
effects model for binary data based on the
complementary log-log link and a log-gamma

random effects distribution

e vields a closed form expression for the full
likelihood, thus simplifying likelihood analysis

e regression parameters, however, do not have

log odds ratio interpretations
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Comments on Random Effects Models

e One approach to avoiding numerical integration
is to approximate the integrands with simple

expansions whose integrals have closed forms
e Stiratelli, Laird, and Ware (1984, Biometrics)

e Breslow and Clayton (1993, JASA)

e These approximate techniques give effective
estimates of the fixed effects, but are biased
for estimating random effects and the random

effects variance matrix

e Waclawiw and Liang (1993, JASA) propose an
alternative strategy based on optimal estimating

equations

e Zeger and Karim (1991, JASA) describe a

Bayesian approach using Gibbs sampling
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Comments on Random Effects Models

e The SAS macro GLIMMIX fits generalized
linear mixed models using restricted pseudo
likelihood (REPL)

e Wolfinger and O’Connell (1993). J Statist
Comput Simul, 48, 233—243

e For the mixed effects logistic model, estimates of
fixed effects and variance components are biased

under some common conditions:

e moderate to large variance components, i.e.,

moderate to large within-cluster correlation

e small to moderate cluster sizes

e This was shown by Kuk (1995, JRSS B) and
Breslow and Lin (1995, Biometrika)

e These authors provide methods that reduce the

bias (but not yet implemented in GLIMMIX)
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Additional Developments

Version 7 of SAS contains an experimental
procedure, PROC NLMIXED, for fitting

nonlinear models with fixed and random effects

Estimation techniques are not the same as those

used in the NLINMIX and GLIMMIX macros

Parameters are estimated by maximizing an
approximation to the likelihood integrated over

the random effects

Different integral approximations are available,
including:
e adaptive Gaussian quadrature

e a first-order Taylor series approximation

A variety of alternative optimization techniques
are available to carry out the maximization

e the default is a dual quasi-Newton algorithm
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Methods for the Analysis of

Ordered Categorical Repeated Measurements

Three general approaches to the analysis of ordered

categorical repeated measurements:
1. CMH mean score and correlation tests

e Applicable only in the one-sample setting

e Landis et al. (1988, Statistics in Medicine)

2. Weighted least squares

e Polytomous logit, cumulative logit, and mean
score response functions for the one-sample

and multi-sample repeated measures settings

e Unless sample sizes are quite large, only mean

score models may be feasible

3. Methods based on extensions of generalized

linear model methodology
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Generalized Linear Model Methodology

e Extensions of GEE1 studied by:

e Stram, Wei, and Ware (1988, JASA)

e Liang, Zeger, and Qaqish (1992, JRSS B)

e Agresti, Lipsitz, and Lang (1992, JSCS)

e Kenward & Jones (1992, J Biopharm Statist)
e Miller, Davis and Landis (1993, Biometrics)

e Lipsitz, Kim, and Zhao (1994, Statist Med)

e Software:

e Shaw, Kenward et al. (1994) SAS macro
e Lipsitz, Kim, and Zhao (1994) SAS macro
e SUDAAN Release 7 (MULTILOG procedure)

e FORTRAN program for Stram-Wei-Ware
(Davis and Hall, 1996)
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Ordinal Response Considerations
e Polytomous response variables are often ordinal

e Advantageous to construct logits that:

e account for category ordering

e are less affected by the number or choice of
response categories
i.e., if a new category is formed by combining
adjacent categories of the old scale, the form

of the conclusions should be unaffected

e Unnecessary to restrict consideration to only

two response categories at a time

e Instead, logits can be formed by grouping

categories that are contiguous

e These considerations lead to models based on

cumulative response probabilities
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Cumulative Logits

Cumulative response probabilities are

v; = Pr(Y <j), 7=0,1,...,c

Thus, vo =m0, 1 =70 + 15, Ye = 1

Cumulative logits are

)\jzlog(ljj;‘l 1) j=1,...,c
i

Each cumulative logit uses all ¢ + 1 response

categories

A model for A; is similar to the ordinary logit

model for a binary response

(categories 0 to 5 — 1 form the first category

and categories j to ¢ form the second category)
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The Proportional Odds Model
Ni(x) =a; +2'8, forj=1,...,c

' = (x1,...,%,) is a vector of explanatory

variables

B =(p1,...,0Bp) is a vector of unknown

parameters

Relationship between x; and a dichotomized
response Y does not depend on j, the point of

dichotomization
Ordinality is an integral feature
Unnecessary to assign scores to the categories

Some authors consider: \;(x) = a; —2'f
(negative sign ensures that large values of z’(
lead to an increase in the probability of higher

numbered categories)
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Parameter Interpretation

e For individuals with covariate vectors z* and =,

the odds ratio for response below category j is

Pr(Y <j|z¥%)
Pr(Y > j | z*)
Pr(Y <j|x)
Pr(Y > j | x)

Ui(x",x) =

_ exp{Ai (@)
exp{; (@)

= exp{A;(2%) — A (@)

= exp{(a; +2*'B) — (a; + 2'3)}
= exp{z*'8 — 2/ 3}
= exp{(z" — x)'8}

e Note that ¥;(z*,z) does not depend on j
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Motivation

Suppose that the underlying continuous (and

perhaps unobservable) response variable is Z

The ordinal response Y is produced via cut-oft

points aq, ..., Q.

The categories of Y are envisaged as

contiguous intervals on the continuous scale
Points of division «a; are assumed unknown
Therefore,

(0 1fZ§041

1 if a1 < Z < ay

c—1 a1 <2 <qa,

\ C if 7 > a,
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Motivation

e Suppose that Z has the logistic distribution

under some set of standard baseline conditions
Pr(Y < j) = Pr(Z < aj41)

eaj—i-l f _
= 1T emm’ or j=0,...,c—1

e Suppose that the effect of explanatory variables
is represented by a simple location shift of the

distribution of Z

i.e., Z+x'3 has the standard logistic distribution

e The common effect 3 for different 7 in the
proportional odds model can be motivated by
assuming that a regression model holds when

the response is measured more finely

Anderson and Philips (1981)



685

Motivation

e Under these assumptions,

Pr(Y <j—1)=Pr(Z < a,)

=Pr(Z+2'8<a;+2'P)

__exp(a; +2'f)
1 + exp(a; + 2'B)’

forj=1,...,c

e Therefore,

Pr(Y <j—-1)
) = 108y 570 )

exp(a; + 2'0)
1+ exp(a; + 2'0)
exp(a; +2'(3)
1+ exp(a; + 2'B)

= log
1

— O =+ xlﬁv

for g =1,...,c
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Comments on the Proportional Odds Model

e Since the ¢ response curves are constrained to
have the same shape, the model cannot be fit

using separate logit models for each cutpoint

e Not equivalent to a log-linear model

(unlike other logit models)

e Walker & Duncan (1967) and McCullagh (1980)
give Fisher scoring algorithms for iterative

calculation of MLEs of parameters

Similar to Newton-Raphson, except expected
(rather than observed) values are used in the

second derivative matrix

e It is not difficult to find examples of non-

proportional odds (Peterson & Harrell, 1990)

Therefore, the model may not be applicable
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Stram, Wei, and Ware (1988)

Applicable when ordered categorical responses

are obtained at a common set of time points

At each time point, the marginal distribution
of the response variable is modeled using the

proportional odds regression model

The model parameters are assumed to be
specific to each occasion and are estimated by

maximizing the occasion-specific likelihoods

The joint asymptotic distribution of the estimates
of the occasion-specific regression coefficients is
obtained without imposing any parametric model

of dependence on the repeated observations
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Stram, Wei, and Ware (1988)

e The vector of estimated regression coefficients is

asymptotically multivariate normal
e Covariance matrix can be estimated consistently

e Provides procedures to test hypotheses about:

e covariates at a single time point
(occasion-specific)
e a single covariate across time points

(parameter-specific)

and to estimate pooled effects of covariates

across time points

e The approach allows for both time-dependent

covariates and missing data

e missing values are assumed to be MCAR

(missing completely at random)
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Example

A comparison of the effects of varying dosages

of an anesthetic on post-surgical recovery

Sixty young children undergoing outpatient

surgery were randomized to one of four
dosages (15, 20, 25 and 30 mg/kg)
e 15 children per group

Recovery scores assigned upon admission to

recovery room and at minutes 5, 15, and 30

The response at each of the four time points
was an ordinal categorical variable ranging

from O (least favorable) to 6 (most favorable)

Two covariates in addition to dosage:
e patient age (months)

e duration of surgery (minutes)
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Model 1

e Covariate vector for subject ¢ at time j is:

S { 1 20 mg/kg dose
" 0 otherwise

_ { 1 25 mg/kg dose
Lij2 — .
0 otherwise

_ { 1 30 mg/kg dose
Lij3 = .
0 otherwise

T;;4 = age (months)

z;;5 = duration of surgery (minutes)

e Note that all covariates are time-independent

e Since Stram et al. use the parameterization
A\o(z) = g, — 23

at each time point, parameter estimates with
positive signs are associated with increased

probability of higher (more favorable) responses
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Results from Model 1

Regression Coefficient

Time Standard

Covariate Point Estimate Error  Est./S.E.
20mg/kg 1  —0.105 0799  —0.13
VS. 2 —0.249 0.758 —0.33
15 mg/kg 3 —0.558 0.724 —0.77
4 0.194 0.897 0.22
25 mg/kg 1 —0.634 0.770 —0.82
Vs. 2 —0.441 0.771 —0.57
15 mg/kg 3 —0.072 0.688 —0.10
4 —0.371 0.837 —0.44
30 mg/kg 1  —1.010 0751  —1.34
Vs. 2 —0.675 0.735 —0.92
15mg/ke 3 —0.701  0.708  —0.99
4 —0.465 0.884 —0.53
Age 1 —0.011 0.018 —0.61
(months) 2 —0.011 0.018 —0.61
3 —0.028 0.020 —1.45
4 —0.014 0.020 —0.70
Duration 1 —0.012 0.008 —1.40
of 2 —0.003 0.007 —0.41
Surgery 3 —0.008 0.007 —1.14
(minutes) 4  —0.018  0.009  —1.92
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Results from Model 1

e Nearly all of the estimated regression coeflicients

are negative

(indicating that the probability of a more
favorable outcome decreases as the dosage,
age of the patient, or duration of the surgical

procedure increases)

e There is no consistent evidence (across time)
of statistically significant effects due to dosage,

age, or duration of surgery

e The test statistics “Estimate/S.E.” are

approximately standard normal

e None are individually significant based on a

two-sided 5%-level test
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Time-Specific Hypothesis Tests

e The joint effect of all covariates is not

significantly different from zero

i.e., HOzﬁjl = .= 6j5 =0
(p-values at times 1-4 are 0.44, 0.91, 0.46,
and 0.31, respectively)

e The overall dosage effect is not significantly

different from zero

i.e., Hy: Bj1 = Bjo = Bj3 =0

(p-values at times 1-4 are 0.55, 0.82, 0.68,
and 0.86, respectively)

e The nonlinear components of the dosage

effect are not significantly different from zero
1e., Ho: Bj1 = Bj2 — Bj1, Bj1 = Bjs — Bj2
(p-values at times 1-4 are 0.95, 0.99, 0.63,
and 0.88, respectively)
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Model 2

e Dosage is used as a quantitative variable:
z;j1 = dosage (mg/kg)
T;jo = age (months)

r;;3 = duration of surgery (minutes)

e The parameter estimates are:

Regression Coefficient
Covariate Time Estimate S.E. Est./S.E.

Dosage 1 —0.070  0.049 —1.43
2 —0.044  0.047 —0.95

3 —0.033  0.046 —0.72

4 —0.037  0.056 —0.66

Age 1 —0.013 0.016 —0.81
2 —0.011  0.017 —0.62

3 —0.025 0.019 —1.32

4 —0.017  0.019 —0.93

Duration 1 —0.012  0.007 —1.57
of 2 —0.003  0.007 —0.45
Surgery 3 —0.008  0.007 —1.12
4 —0.017  0.009 —1.94
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Parameter-Specific Tests and Estimators

e No dosage effect
Hy: 811 = B21 = 831 = Ba1 = 0 p=0.72

e Equality of dosage effects

Hy: 811 = P21 = B31 = Bax p=0.83

e No age effect
Hy: B12 = a2 = 32 = Ba2 = 0 p = 0.58

e Equality of age effects

Ho: B12 = Paz = P32 = [a2 p=0.61

e No surgery duration effect
Ho: P13 = Pag = P33 = Ba3 =0 p =0.09

e Equality of surgery duration effects

Ho: P13 = (23 = B33 = (a3 p=0.12
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Pooled Estimators of Effects

Variable Estimate S.E. Est./S.E.
Dosage —0.0460 0.0424  —1.09
Age —0.0143 0.0162  —0.88

Surgery Duration —0.0091 0.0065 —1.40

e The odds of having a recovery score higher than

a given cutpoint are:

° 6_0'0460

= 0.955 times as high per 1 mg/kg

increase in dosage

e~ 0-0143 — (.986 times as high per 1 month

increase in age

e~ V-0091 — (.991 times as high per 1 minute

increase in surgery duration

e Although there is modest evidence of an effect
due to surgery duration, there is essentially no

evidence that dosage or age influence recovery
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GEE Approach

The Stram-Wei-Ware methodology:
1. models the data separately at each time point
2. combines the resulting estimates

This approach requires a common set of time

points for each experimental unit

The SAS GENMOD procedure now allows for
the analysis of repeated ordered categorical

outcome variables using the GEE approach

Using the GEE approach:

e The number of repeated measurements per

experimental unit need not be constant

e Measurement times need not be the same

across experimental units

The proportional odds model is used for the

marginal distribution

The “working” correlation matrix is the

independence model
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SAS Statements

e The statements on the following page:
e read in the original data set

(one observation for each subject)

e restructure the data set to have one

observation per time point

e fit a model with effects for:
e dosage (mg/kg)
e age (months)

e duration of surgery (minutes)

e Note that dosage is used both as a:

e class variable (in order to distinguish

duplicate subject identifiers across dosages)

e numeric variable (in the model statement)

e Also note that this model is analogous to the

Stram-Wei-Ware model 2
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SAS Statements

data a;

input dosage id age durat minO minb
minlb min30;

dose=dosage;

cards;

15 1 36 128 3 5 6 6

156 235 70 3 4 6 6

30 14 27 61 3 556

30 15 56 106 0 1 1 3

data b; set a;

time=0; score=min0; output;
time=b5; score=minb; output;

time=15; score=minlb; output;
time=30; score=min30; output;

proc genmod;

class dosage id,;

model score=dose age durat
/ dist=multinomial;

repeated subject=id(dosage)
/ type=ind;
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Comments

e The parameter estimates are similar to the
pooled estimators from the Stram-Wei-Ware

model (but are of opposite sign)

e The GEE approach would also allow one to

include time as a factor in the model:

proc genmod;
class dosage 1id;
model score=dose age durat time
/ dist=multinomial;
repeated subject=id(dosage)
/ type=ind;

e The odds of having a recovery score higher
than a given cutpoint are €?9946 = 1.1 times

as high per minute in the recovery room

e This effect is highly significant (p < 0.0001)

e Interactions between covariates and time could

also be investigated using this approach



