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Analysis of Repeated Measurements

Using Linear Mixed Models

e Consider the situation in which a normally-
distributed outcome variable is measured

repeatedly for each subject

e (lassical methodology is based on:

e univariate repeated measures ANOVA

e multivariate linear models with general

covariance structure

e In practice, however, longitudinal studies are

characterized by:

e variation among individuals with respect to

the number and timing of observations
e missing data

e time-dependent covariates
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Analysis of Repeated Measurements

Using Linear Mixed Models

e Such features make standard multivariate

procedures difficult (or impossible) to apply

e An alternative approach based on the linear

mixed model:

e views the analysis of repeated measurements
as a univariate regression analysis of

responses with correlated errors

e accommodates the complexities of typical

longitudinal data sets

e permits specification of models determined
by subject matter considerations, rather than

by limitations of the statistical methodology

e allows explicit modelling and analysis of

between- and within-individual variation
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Usual Linear Model

e y=X0G+c¢€
e y is a nx 1 vector of independent observations
e Jis ap x 1 vector of unknown parameters
e X is an X p model matrix

e cis an x 1 vector of independent errors

¢; has mean 0 and constant variance o2
e The focus is to model the mean of y in terms of
the unknown parameters (3, which are estimated

using ordinary least squares

e Straightforward generalizations include:

2

e Weighted least squares: ¢; has variance o;

e Generalized least squares: € has mean 0 and

covariance matrix >
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Linear Mixed Model

o y=XpB+Zv+e¢
e y is a n x 1 vector of observations

e X and Z are given n X p and n X ¢ matrices,

respectively
e Jis a p x 1 vector of unknown parameters

e v and € are unobservable random vectors of

dimensions ¢ X 1 and n X 1, respectively
e £(v) =0, Var(y) = B
e E(e) =0, Var(e) =W

e v and € are assumed to be uncorrelated

e In this case, both the mean and variance of y

can be modelled

o V=Var(y) =2ZBZ'+W
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Linear Mixed Model

e The elements of B and W are known functions of

an unknown parameter vector 0 = (01,...,0,,)

e The parameter space for the model is taken to be

{(B3,0):0 € Q}, where  is the set of 8 values for
which W (hence V') is positive definite

e When W = ¢°] and Z = 0, the mixed model

reduces to the standard linear model

e Other special cases include:
e Multiple regression with AR(1) errors

v=0,Q={(c%p:0°>0,]p| <1}

e Mixed and random ANOVA models

(variance-components models)
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Parameter Estimation

Estimation of the random effects (variance

components) has been a longstanding problem

Common practice for balanced ANOVA was to

equate mean squares to their expectations

Henderson (1953, Biometrics) developed

analogous techniques for unbalanced data

Maximum likelihood estimation of the fixed
effects and variance components was not used

widely, due to computational difficulties

Requires the numerical solution of a

constrained nonlinear optimization problem

Harville (1977, JASA) reviewed previous
work, unified the methodology, and described
iterative ML algorithms
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Parameter Estimation

e In addition to computational difficulties, MLEs

of variance components are biased downward

e Patterson and Thompson (1971, Biometrika)
proposed the alternative REML approach

e applies ML technique to likelihood function
associated with a set of “error contrasts”

rather than to that associated with y

e accounts for the loss of degrees of freedom

resulting from estimation of the fixed effects

e gives less biased estimates of the variance

components

e yields the standard ANOVA-based estimates
in balanced random and mixed ANOVA

models (unlike maximum likelihood)
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Example

e Consider the estimation of o2 in the usual linear
model y = X[ + ¢
e y is the n x 1 data vector

e X is a n X p model matrix of rank p

e ¢ ~ N(0,0%I,)

e The MLE of o2 is

and the UMVUE is
6_\2 _ (y o XB),(y _ XB)
n—p
where 8 = (X' X)"1 X'y

Y

e The bias of the MLE is

which is negative and worsens as p increases
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Error Contrasts
Definition:

e A linear combination a’y is an error contrast if

E(a'y) = 0 for any £, i.e., if a’X = 0,
Example:
o Let S =1, — Px, where Py = X(X'X)"1X’
e E(Sy)=(I, — Px)X8=X8—-X3=0
e FEach element of Sy is an error contrast
e While Sisn X n, itsrankisn —p

e Thus, there are some redundancies among the

elements of Sy

Question:

e How many essentially different error contrasts

can be included in a single set?
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Linearly Independent Error Contrasts

Definition: The error contrasts ajy,...,a)y are

linearly independent if a1, ..., ax are linearly

independent vectors

Theorem: Any set of error contrasts contains at

most n — p linearly independent error contrasts

Let A be a nx (n—p) matrix such that A’A=1,,_,

and AA" =1, — Px.

Theorem: w = A’y is a vector of n — p linearly

independent error contrasts

(It is not the only such vector, however)
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REML Estimation
e The REML approach applies ML to w = A’y

e Under the assumed model:

y~ N, (XB,V), where V = ZBZ'+ W

w ~ N,_,(0, A’V A)

Question:

Would 6 obtained by maximizing f,, (w; 0) be
the same as that obtained by maximizing the
likelihood function associated with any other

vector of n—p linearly independent error contrasts?

Theorem:
Let u = C'y be any vector of n — p linearly
independent error contrasts. The likelihood

function associated with w is a scalar multiple of

fw(w;0) that does not depend on 6
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REML Estimation

e The log-likelihood function Lg(0;y) associated
with any vector of n—p linearly independent error

contrasts is (apart from an additive constant)

1 ~ ~
-3 [log V]+log X'V X|+(y—XB)'V ™ (y—XB)

where f = (X'V1X)"1X'V 1y

e In comparison, the log-likelihood function for y is

1 1 ~

Lr(0:y) = =5 log [V| = Sy = XPB)'V ™!y — XP)

e The only difference is that L (0;y) has the
additional term —3 log | X'V ~1X|

e 0 is a REML estimate of 0 if Lr(0;y) attains its

maximum value at 0 = 6
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REML Estimation

In the simple Gauss-Markov linear model, the

REML equations have a unique solution which

coincides with the UMVUE

AN AN

o _ (- XB)(y—XB)
REML — n—p

In balanced mixed and random ANOVA models,
the REML equations have an explicit unique
solution coinciding with the ANOVA estimate

In general, however, the problem of obtaining a
REML estimate of 6 requires iterative methods
of maximizing the nonlinear function Ly (8;y)

subject to the constraint 6 € (2

Algorithms such as Newton-Raphson and the

method of scoring can be used
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Mixed Model for Repeated Measurements

The general model for longitudinal data is

yi = Xif + Zivi + €, 1=1,...,n

y; is the t; X 1 vector of responses for subject ¢
X, is a t; X b design matrix for subject 1
(3 is a b x 1 vector of regression coefficients

v; is a g X 1 vector of random effects for subject i

e the v; vectors are independent N (0, B)
Z; is a t; X g design matrix for the random effects

€; is a t; X 1 vector of within-subject errors

e the ¢; vectors are independent N (0, W;)

v; and €; are independent
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Mixed Model for Repeated Measurements

Y1, - --,Yn are independent Ny (X;0,V;), where

V; = Z,BZ, + W,

The matrices X;, Z;, and W, are subject specific

This model is very general, since:
subjects can have varying numbers of observations

observation times can differ among subjects

The within-subject covariance matrix W; depends

on ¢ only through its dimension ¢;

unknown parameters in W; do not depend on ¢

A wide variety of covariance structures for +; and

¢; can be considered
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Comments

e The general mixed model for repeated measures

has been studied by several authors

e While essentially similar, the various approaches

differ in terms of:
e motivation and notation
e assumptions concerning the random effects

e cstimation method

e Some of the main references are:
e Laird and Ware (1982, Biometrics)
e Jennrich and Schluchter (1986, Biometrics)
e Laird, Lange, and Stram (1987, JASA)
e Diggle (1988, Biometrics)
e Lindstrom and Bates (1988, JASA)

e Jones and Boadi-Boateng (1991, Biometrics)
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Laird and Ware (1982)

e Two-stage random-effects model:

1. For each subject, y; = X;08 + Z;v; + €;
€1,...,€, are independent N (0, W;)

(8 and ~; are considered to be fixed

2. Y1,...,7n are independent N (0, B)

v; and €; are assumed independent

e Conditional independence model if W; = 0?1,

1

e Laird and Ware discuss Bayesian and non-

Bayesian formulations of the model

e The EM algorithm is used to obtain ML and

REML parameter estimates

e (unobservable random parameters are

estimated, not missing data)
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Jennrich and Schluchter (1986)

Overview of the Paper:

e Considers the problem of how to analyze

unbalanced or incomplete repeated measures

e Uses a general linear model for expected
responses and arbitrary structural models for

the within-subject covariances

e Describes Newton-Raphson and Fisher scoring

algorithms for obtaining ML estimates

e Describes a generalized EM (GEM) algorithm
for computing REML estimates

e the likelihood is increased (rather than

maximized) at each M step

e Gives an example in which several models are fit

to a set of growth data
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Jennrich and Schluchter (1986)

e The model is y; = X8 + ¢;, where €1,...,¢€, are

independent N, (0, 3;)

e X, = X,;(0), where 0 is a vector of ¢ unknown

covariance parameters

e Motivation:

e Although estimation of (3 is of primary
interest, efficiency may be improved by

modelling >; parsimoniously

e This is especially important when sample

sizes are small and the data are unbalanced

e The ability to model X; allows examination of

alternative covariance structures

o X, = Z;BZ! + W, yields the mixed model as a

special case
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Incomplete Data Model

e Useful when a fixed number ¢t of measurements

are to be obtained from each subject, but not all

responses are observed

e Each 3; is a submatrix of a ¢t xt matrix % = X(0)

e Some possible incomplete data models for >:

Structure q Description
Independent 1 Y =02l
observations

Compound 2 ¥ =0l + oil4l]
symmetry

Random effects 14+g(g+1)/2

(g effects)

First-order
autoregressive

Toeplitz
(banded)

Unstructured

L(t+1)/2

Y = ZBZ' 4+ 0%l

Z(txg) 18 known

O-ijZHkia
k= li—jl+1

2 = 2ji
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Comments on Computational Algorithms

e Newton-Raphson uses the score vector and
Hessian matrix to iteratively compute new

estimates of 8 and 6 from current values

e Fisher scoring replaces the Hessian matrix by

its expectation

e often more robust to poor starting values

than Newton-Raphson

e The hybrid EM scoring algorithm:
e is restricted to the incomplete data model

e has the advantage of being able to fit
covariance matrices with large numbers of

parameters, e.g., large unstructured >
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Computation of Standard Errors

e Standard error estimates can be computed

from the inverse of the:
e Fisher information matrix (Fisher scoring)

e Fmpirical information matrix (NR)

e The standard error estimates from the
empirical information matrix are preferable

when the data are incomplete

e Although the hybrid EM algorithm does not
produce standard errors for the elements of
6, these can be obtained by taking a single
Newton-Raphson or Fisher scoring step after

convergence
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Comparison of Computational Algorithms

e NR algorithm has a quadratic convergence rate
and generally converges in a small number of

iterations (but with a higher cost per iteration)

e Hybrid EM algorithm has lowest cost/iteration,

but may require a large number of iterations

e Fisher scoring algorithm is intermediate in

terms of cost/iteration and number of iterations

(cost /iteration often not much less than NR;

can require a much higher number of iterations)

e When ¢ is small, Newton-Raphson is preferred:
e not restricted to the incomplete data model

e convergence is generally clean and fast

e With large ¢, as when fitting an unstructured
covariance matrix to more than 10 time points,

only the EM scoring algorithm is feasible
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Laird, Lange, and Stram (1987)

e Study the use of the EM algorithm for ML and
REML estimation in the model y; = X;6+72;v;+¢€;

e Consider two models:
1. Incomplete Data (Jennrich & Schluchter, 1986)

e EM algorithm requires iterative M step

within each iteration (or use of GEM)

e covariates for both observed and missing
observations must be specified (choice

affects rate, but not point, of convergence)

2. Random Effects (Laird and Ware, 1982)

e total data set consists of observed data plus

unobservable random parameters

e there is no missing data in the traditional

statistical sense
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Laird, Lange, and Stram (1987)

e Show that the random effects model is more
general and includes the incomplete data model

as a special case

e avoids specification of covariates for missing

observations

e climinates need for GEM or iterations within

each M step (in a broad class of models)

e Provide computing formulas for ML and REML

estimation using the EM algorithm

e Discuss the choice of starting values for the EM

iterations (and give several possibilities)

e Give two methods of speeding convergence of

the EM algorithm
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Diggle (1988)

e Model is y; = X3 + ¢;, where ¢; ~ N(0,3;) and

Y =721 +v°J 4+ 0*R(t;)

e J is a square matrix with elements of 1

o 1, = (757;1, e ,tmi)/ is vector of measurement
times for subject 1
e R(t) is a symmetric matrix with (k,[)th

element exp(—a|ty — t;|¢), where ¢c= 1 or 2

e Thus, the within-subject covariance structure

has four parameters: 72, v?, 2, and «

e Parameters are estimated using MLL and REML

e Empirical semi-variogram of residuals is used to

suggest an appropriate correlation structure
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Lindstrom and Bates (1988)

e Consider the special case with W; = o1

e Develop efficient implementations of NR and EM

algorithms for ML estimation

e Make four improvements to Jennrich and
Schluchter’s (1986) ML algorithm to speed

convergence and improve behavior

e Compare NR, EM, and EM with Aitken’s

acceleration in fitting 3 models to 2 data sets:
e 11 subjects, average of 28 observations/subject

e 74 subjects, average of 11 observations/subject

e Conclude that NR is generally preferable,
based on number of iterations and average

time /iteration
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Jones and Boadi-Boateng (1991)

e They consider the model y; = X;08 + Z;v; + €
when each subject is observed at different and

unequally spaced time points

e Observations within subjects are assumed to be
either uncorrelated or to have a continuous-time

AR-1 structure

e An alternative method of estimation is proposed:
e state space representation of the model is used
e likelihood is calculated using the Kalman filter

e ML estimates are obtained using a nonlinear

optimization program

e Advantage is that likelihood can be calculated

recursively without using large (¢; x t;) matrices
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Example

A study conducted in two groups of children

(16 boys and 11 girls)

At ages 8, 10, 12, and 14, the distance (mm)
from the center of the pituitary gland to the

pteryomaxillary fissure was measured

Let yp;; denote the response at time j for the
1th subject in group h, where h = 1 for boys
and h = 2 for girls

Jennrich and Schluchter (1986) use maximum

likelihood to fit eight models to these data

Reference

Potthoff, R. F. and Roy, S. N. (1964). A generalized
multivariate analysis of variance model useful especially for

growth curve problems. Biometrika 51, 313-326.
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Group ID Age8 Agel1l0 Age 12 Age 14
Boys 1 26.0 25.0 29.0 31.0
2 21.5 22.5 23.0 26.5
3 23.0 22.5 24.0 27.5
4 25.5 27.5 26.5 27.0
5 20.0 23.5 22.5 26.0
6 24.5 25.5 27.0 28.5
7 22.0 22.0 24.5 26.5
8 24.0 21.5 24.5 25.5
9 23.0 20.5 31.0 26.0
10 27.5 28.0 31.0 31.5
11 23.0 23.0 23.5 25.0
12 21.5 23.5 24.0 28.0
13 17.0 24.5 26.0 29.5
14 22.5 25.5 25.5 26.0
15 23.0 24.5 26.0 30.0
16 22.0 21.5 23.5 25.0
Mean 22.9 23.8 25.7 27.95
Girls 1 21.0 20.0 21.5 23.0
2 21.0 21.5 24.0 25.5
3 20.5 24.0 24.5 26.0
4 23.5 24.5 25.0 26.5
5 21.5 23.0 22.5 23.5
6 20.0 21.0 21.0 22.5
7 21.5 22.5 23.0 25.0
8 23.0 23.0 23.5 24.0
9 20.0 21.0 22.0 21.5
10 16.5 19.0 19.0 19.5
11 24.5 25.0 28.0 28.0
Mean 21.2 22.2 23.1 24.1
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Mean Dental Measurements

30 —

20 —

_ _0
Distance -7 -
(mm) _ -7
& -
20 —
e Boys
o Girls
15 | | |
8 10 12 14

Age (years)
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Potential Models
. “Classical” multivariate methods

. Models with fixed effects for group and time,

and arbitrary covariance structures, as in

Jennrich and Schluchter (1986)
. Random intercept model
® E(ynij) = ani + Bnj, where ap; ~ N(ap,0})

e Equivalent to the fixed effects linear model

with compound symmetry covariance structure

. Random intercept and slope model

e E(Ynij) = ani + Bni j, where
(o) == ((5)- (o %)
Bhi O Oap Oj
e Appealing due to its simplicity, but much

more flexible than the random intercept model
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Creation of SAS Data Set

data a;

keep 1d sex age distance;

input sex id d8 d10 di12 di4;

if sex=2 then id=id+16;

age=8; distance=dS8; output;
age=10; distance=d10; output;
age=12; distance=dl2; output;
age=14; distance=dl14; output;
cards;

1 1 26.0 25.0 29.0 31.0

1 16 22.0 21.5 23.5 25.0
2 1 21.0 20.0 21.5 23.0

2 11 24.5 25.0 28.0 28.0

data b; set a;

m08=(sex=1 & age=38);

m10=(sex=1 & age=10);
ml12=(sex=1 & age=12);
ml4=(sex=1 & age=14);
f08=(sex=2 & age=8);

f10=(sex=2 & age=10);
f12=(sex=2 & age=12);
f14=(sex=2 & age=14);
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Model 1

e A separate mean for each (h,7): Yni; = Bnj+e€nij

and a common unstructured Wy,

proc mixed method=ml;
class 1d;
model distance=m08 ml10 ml2 mil4
f08 f10 f12 f14 / noint s;
repeated / type=un subject=id r;

e The s option of the model statement prints the

estimates of the fixed effects

e Options of the repeated statement:

e type=un specifies unstructured covariance

matrix for within-subject errors
e subject=id subject identifier is required

e r prints the first block of the W},; matrix of

within-subject errors
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Alternate Parameterization of Model 1

e The previous parameterization was chosen to

match Jennrich and Schluchter (1986)
e A factorial model could also be considered

e In this case, the covariates must be specified in

the class statement

proc mixed method=ml;

class 1id age sex;

model distance=age sex age*sex / s;
repeated / type=un subject=id r;

e A “corner-point” parameterization is used
for class variables, with the highest category

serving as reference

e Although the two models are equivalent,
the tests of the fixed effects are interpreted
differently
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Model 2

Linear relationship between distance and age,

with separate lines for boys and girls:

Ynij = oy + Buti + €nij,

where t;=8,10,12,14 for j=1,2,3,4, respectively

Wi is unstructured (as in Model 1)

proc mixed method=ml;

class 1d sex;

model distance=sex age*sex / noint s;
repeated / type=un subject=id r;

Equivalent to Potthoff-Roy growth curve
model with G = S

LR test comparing Model 2 to Model 1 is

419.48—-416.51=2.97, df=18—14=4, p=.56

Relationship appears to be linear for each sex
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Alternate Parameterizations of Model 2

Model 2 was parameterized with a separate

intercept and slope for each sex

One alternative is a model with an intercept, a

sex increment, and separate slopes for each sex:

proc mixed method=ml;
class 1d sex;
model distance=sex age*sex / s;

repeated / type=un subject=id r;

The INTERCEPT is now the intercept for females

The SEX effect is now the increment (for males)

to the overall intercept (intercept for females)

In this case, a test of the intercept difference is

automatically produced
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Alternate Parameterizations of Model 2
Another alternative is a model with an overall

intercept and slope, plus an intercept increment

and a slope increment:

proc mixed method=ml;

class 1id sex;

model distance=sex age age*sex / s;
repeated / type=un subject=id r;

The INTERCEPT effect is the intercept for females

The AGE effect is the slope for females

The SEX and AGExSEX effects are the intercept

and slope increments for males

Tests of the intercept difference and slope

difference are automatically produced
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Model 3
Linear relationship between distance and age,
with a common slope for boys and girls:

Ynij = oy, + Btj + €nij

Unstructured Wp; (as in Models 1 and 2)

proc mixed method=ml;

class id sex;

model distance=sex age / noint s;
repeated / type=un subject=id r;

LR test comparing Model 3 to Model 2 is

426.15—419.48=6.68, df=14—13=1, p=.01

Slopes for boys and girls differ significantly

Models 4-8 will use the same model for the
means as Model 2 and will examine the

adequacy of restricted covariance structures
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Model 4

® Ynij = Qn + Pntj + €nij

e Banded covariance matrix with 4 x 4 blocks

(01 02 O3 04)
0o 01 02 03
03 0Oz 01 05
\ 04 93 92 (91 /

proc mixed method=ml;

class 1d sex;

model distance=sex age*sex / noint s;
repeated / type=toep subject=id r;

e LR test comparing Model 4 to Model 2 is

424.64 —419.48=5.17, df=14—-8=6, p=.40

e The banded covariance structure provides
an adequate fit relative to the unstructured

covariance matrix
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Model 5

Yhij = Oh + Ontj + €nij

First-order autoregressive covariance structure

with W;5 = 0'2,0|Z_=7|

proc mixed method=ml;

class 1d sex;

model distance=sex age*sex / noint s;
repeated / type=ar(l) subject=id r;

The estimated covariance parameters are

o2 = 4.89099772, » = 0.6071465

LR test comparing Model 5 to Model 2 is

440.68 —419.48=21.2, df=14—6=8, p=.007

The AR(1) structure does not provide an
adequate fit
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Model 6

e Random coefficients model ypi; = ap;+bnitj+eni;
e (ap;,bn;)" are independent Ng((ah,ﬁh)’,B)

e ¢;;; are independent N(0,0?)

proc mixed method=ml;

class 1d sex;

model distance=sex age*sex / noint s;

random intercept age / g subject=id type=un;

e random statement defines random effects

constituting the v vector in the mixed model
e g option prints estimated covariance matrix of ~

e LR test comparing Model 6 to Model 2 is

427.81 — 419.48=8.33, df=14 —8=6, p=.14

e Only o2 is significantly different from zero



247

Comments on Model 6

e Note that Model 6 did not require use of the

repeated statement

e This model could have equivalently been fit

using the statements:

proc mixed method=ml;
class 1id sex;
model distance=sex agex*sex / noint s;
random intercept age

/ g subject=id type=un;
repeated / type=simple

subject=1d r;

e Although the covariance parameter information
is reported somewhat differently, the results

are otherwise unchanged
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Random Intercept and Slope Model

Although often used, this model has a potential

shortcoming, in that the covariance matrix of

Yni = (Ynil,---,Ynik) is nonstationary

For equally-spaced time points 3 = 1,2,.. .,

general expressions are:
Var(ypi;) = 02 + 2joas + j2ag + o?
Cov(yij, yij:) = 0o + (j + j')oap + ji' 05

If 005 > —0%, then Var(yp;;) will increase

monotonically over time

In terms of the correlation coeflicient

Oaf
Y
0003

this condition is

p>——=
Oq
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Random Intercept and Slope Model

e For arbitrary time point j, the general

relationships are:

J > ——~ variances increase after time j
B
. Oap . . :
J < ——5 variances decrease up to time j
B
o o
where —%ﬁ can be replaced by —p —

e Only if 0,3 = —0.5(2j + 1)o are the jth and
(7 + 1)st variances equal
(in this case, all subsequent variances increase

over time and all previous variances decrease

over time)

e These consequences of the random intercept and

slope model do not appear to be widely known
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Random Intercept and Slope Model

The features observed in this example appear to
occur commonly:
® 0,3 18 negative

° ag is close to zero

The resulting estimated covariance matrix of

Yhi = (yhu, e ayhi4)/ 1S:

r4.6216 2.8891 2.8727 2.8563)
2.8891 4.6839 3.0464 3.1251
2.8727 3.0464 4.9363 3.3938
L 2.8563 3.1251 3.3938 5.3787 ,

In comparison, the pooled covariance matrix of
/ . . .
Yhi = (yhila e ,yhi4) is estimated as:

(5.4155 2.7168 3.9102 2.7102
2.7168 4.1848 2.9272 3.3172
3.9102 2.9272 6.4557 4.1307

(2.7102  3.3172 4.1307 4.9857 ,

While intuitively appealing, the random intercept

and slope model is not the best fitting one
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Model 7

e Random intercept model ypi; = an; + Ont; +€nij
e ay; are independent N (ay,,02)

e ¢p;; are independent N (0, 0?)

proc mixed method=ml;

class id sex;

model distance=sex age*sex / noint s;
random sex / g subject=id type=simple;
repeated / type=simple subject=id r;

e The type=simple option specifies the simple

covariance structure ¥ = o271

e LR test comparing Model 7 to Model 6 is

428.64 — 427.81=0.83, df=8—-6=2, p=.66

e LR test comparing Model 7 to Model 2 is

428.64 — 419.48=9.16, df=14—-6=8, p=.33
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Comments on Model 7

e The repeated statement is not required
(output not displayed)

proc mixed method=ml;
class id sex;
model distance=sex age*sex
/ noint s;
random sex
/ g subject=id type=simple;

e The intercept keyword could instead be
used in the random statement

proc mixed method=ml;
class id sex;
model distance=sex age*sex
/ noint s;
random intercept
/ g subject=id type=simple;

e This changes only the covariance parameter

portion of the output
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Model 7 (Alternate Formulation)
e The random intercept model is equivalent to
the model

Yhij = Op + Bptj + €nij,

where €,; = (€pi1,--.,€nia)" are independent
N4(0,3) and
( o? pa2 p02 pa2\
5 _ po? o? po? po?
| po? po? o?  po?
( po?  po? po? 0% )

has compound symmetry structure

proc mixed method=ml;

class i1d sex;

model distance=sex age*sex / noint s;
repeated / type=cs subject=id r;

e The type=cs option specifies compound

symmetry
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Model 8

e The only simpler model is yn;; = an+0Ont;+e€nij,

where €5,;; are independent N (0, 0?)

proc mixed method=ml;

class 1d sex;

model distance=sex agex*sex / noint s;
repeated / type=simple subject=id r;

e LR test comparing Model 8 to Model 7 is

A78.24 — 428.64=49.6, df=6—5=1, p<.001

e LR test comparing Model 8 to Model 2 is

478.24—419.48=58.8, df=14—5=9, p<.001

e While Models 2, 4, 6, and 7 all fit the data,
compound symmetry (Model 7) requires only

six parameters and is most parsimonious
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Choosing the “Best” Covariance Structure

The likelihood ratio (LR) test can be used when:

e two models are fit to the same data by ML or
REML

e one model is a constrained version of the other

Potential problems of using the LR test to

compare covariance models:

e you may be dealing with parameters on the

boundary of the parameter space

e the models being compared may not be nested

Two other model selection criteria are:
e Akaike’s (1973) Information Criterion (AIC)

e Schwarz’s (1978) Bayesian Information
Criterion (BIC)

Both penalize the log-likelihood for the number

of parameters and/or number of observations
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Akaike’s Information Criterion (AIC)

e As implemented in PROC MIXED, the AIC can
be used to compare models with the same fixed

effects, but different covariance structures

o AIC =/ —q
e / is the log likelihood

e ¢ is the effective number of covariance
parameters (those not estimated to be on a

boundary constraint)
e The model with the largest AIC is deemed best

e Most statistical references give the formula
AIC = =20 + 2p,
where p is the number of model parameters

Reference

Akaike, H. (1973). Information theory and an extension of the
maximum likelihood principle. Second International Symposium
on Information Theory. B.N. Petrov and F. Csaki (eds), 267—
281. Budapest: Akademiai Kiado.
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Bayesian Information Criterion (BIC)

e In PROC MIXED, BIC =/ — (q/2)log(n*)
e [ is the log likelihood and q is the effective

number of covariance parameters

e In version 6, n* =n for ML and n* =n —p

for REML, where p is the rank of X

e In version 7, n* is the number of “effective

subjects” as displayed in the dimensions table

e BIC has an increased penalty for overfitting
compared to AIC (and the two criteria may not

agree as to which covariance model is best)

e Most statistical references give the formula
BIC = -2/ + plog(n),
with p (n) the no. of parameters (observations)

Reference

Schwarz, G. (1978). Estimating the dimension of a model. Ann.
Statist., 6, 461-464.
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Comparison of Models using AIC and BIC

e Models 2 and 4-8 all fit a linear relationship
between distance and age, with separate lines

for boys and girls

e The alternative covariance structures can be

compared using AIC and BIC

Covariance Model AIC BIC

Unstructured —219.739  —233.149
Banded —216.322 —221.686
AR-1 —222.341 —225.023
Random coefficients —217.903 —223.267
Random intercept —216.320 —219.002
Simple —240.121  —241.462

e The “best” model by both criteria is the
random intercept model

(compound symmetry covariance structure)
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Example

e A randomized, double-blind, parallel group,
placebo-controlled study in patients with

postoperative pain

e Two active treatments and a placebo group

No. of

Group Description Patients
A Treatment 1 41
B Treatment 2 41
C Placebo 40

e Patients received a single dose of their assigned
treatment when they reported moderate to

severe postoperative pain

e The primary outcome variable was the amount
of rescue medication used (recorded at hourly

intervals for 24 hours after dosing)
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Mean Rescue Use, by Treatment Group
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Protocol-Specified Primary Efficacy Analysis

“Compare the three groups using a repeated
measures ANOVA for the amount of rescue
medication taken over the 24-hour interval, using

time as the repeated factor”

Comments:

e The protocol specified that the specific
comparisons of interest were A versus placebo,

B versus placebo, and A versus B

e A secondary analysis to be carried out after
combining the data over prespecified time

intervals was also specified

0—3 hours, 4-6 hours, 7—12 hours, 13—24 hours

e The choice of covariance structure was not

specified in the protocol
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Mean Rescue Use, by Treatment Group
(Collapsed Hourly Measurements)
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The Dilemma

With 24 repeated measurements per subject,
one is limited in the types of covariance

structures that can be considered

It is not possible to compare the adequacy of a
reduced covariance model relative to the “full”

(unstructured) model

a 24 x 24 covariance matrix, with 300 parameters

The company stated that they wrote an analysis
plan prior to breaking the blind, which specified

the use of an AR-1 covariance structure

The FDA considered several alternative

covariance models

The analysis results differed depending on the

covariance model selected
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Variances and Covariances, by Hour
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Potential Covariance Models

The covariance matrix of y; = (Y1, .., Yi24) 18

Vi=Z;BZ; + W;

e Sphericity (compound symmetry as special case)

B =0 and W; = W has 2 parameters (diagonal

elements are o2, off-diagonal elements are po?)

e AR-1 (2 parameters)

Vij = o2plid
e Random intercept + AR-1 (3 parameters)

2 |t— 2
V;J_O-pl j|+ae

e Random intercept and slope (4 parameters)

2
B = [ 7o Oaﬂ] . W; = diag(c?)

Oap O'%
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Analysis Results

e Preliminary models showed that the:
e the effect of time was nonlinear

e profiles for the treatment groups were parallel

e Thus, the final model included main effects for

treatment group, linear time, and quadratic time

Covariance Model

AR-1 + Rand. Int.
AR-1 Rand. Int. and Slope

Treatment effect 0.010 0.189 0.198
(p-value)

A — Placebo
Estimate —0.329 —0.339 —0.304
S.E. 0.138 0.243 0.229
p-value 0.018 0.163 0.185

B — Placebo
Estimate —0.399 —0.419 —0.395
S.E. 0.138 0.243 0.229

p-value 0.004 0.085 0.085
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Variances and Covariances, by Lag

4.0
| . Observed variances and covariances
e Predicted covariance structure from
20 AR(1) model
o
Cov. : -
| ? O T i
.04 4 S
— . .
°
* o
O-O_llllllrff??_?_*_,_f_’_’_’_’_f_’_’_?
0 5 10 15 20



276

Variances and Covariances, by Lag
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Variances and Covariances, by Lag
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Variances and Covariances, by Hour
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| random intercept and slope model
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Covariance Parameters from the

Random Intercept and Slope Model

o2 o,
b= [ i 26] ,  W; = diag(c?)
O-Otﬁ O-B

The parameter estimates are

5_ 2.93581 —0.06396
| —0.06396  0.00322

] . 02 =1.282

Since
G 0.06396
_ Tl — 19.84,
53 0.00322

the variances decrease from hour 1 to hour 20,

and then increase to hour 24

In general, this type of variance assumption is

not sensible for repeated measurements

It may, however, be reasonable in this example
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Example

e Jones & Boadi-Boateng (1991) analyze data from
a longitudinal study of 619 patients in 4 groups:

Sample  Kidney

Group Size Disease = Hypertensive
1 294 Yes Yes
2 193 Yes No
3 73 No Yes
4 149 No No

e The response variable is the reciprocal of serum

creatinine; this variable ranges from 0.028 to 2.5

e The explanatory variables are group and patient

age (which ranges from 18-84 years)

e The number of observations per patient ranges

from 1 to 22
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Example

e The spacing between observations ranges from

0.002 years (one day) to 22 years

e The median spacing between adjacent

observations on the same patient is 1 year

e The spacings among adjacent observations differ

among the four groups

The median spacings in groups 1-4 are 0.8, 2, 4,

and 3 years, respectively

e Jones and Boadi-Boateng fit a structural model

with separate lines for each of the four groups

Reference

Jones, R. H. and Boadi-Boateng, F. (1991). Unequally spaced
longitudinal data with AR(1) serial correlation. Biometrics 47,

161-175.



Creation of SAS Data Set

e The treatment group effect will be

282

parameterized using three indicator variables:

group2, group3, group4

data scr;
input id group age scr;

agesq=agex*age;
group2=(group=2) ;
group3=(group=3) ;
group4=(group=4) ;

cards;

1

N NN -

616
616
616
617
618
619

1

NN -

NS S A Y

35.
37.
24 .

27

32.
33.
33.
34.
61.
ATT
25.

27

765
990
997

441
30.

524
676
295
867

374
331

555

.182
.088
.429

1.111

—

e e e

.429

.429
.429
.429
.667
476

1.111
1.250
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Analysis Strategy

e As in Jones & Boadi-Boateng (1991), we’ll model

SCR™! (scr) as a function of group and age

e We'll examine alternative covariance structures

and consider incorporation of nonlinear age effects

e Models of the form
scr=age group2 group2*age group3
group3*age group4 group4*age;
will be used to fit an intercept and slope for
group 1, and incremental intercept and slope

parameters for groups 2—4

e Similarly, quadratic models of the form:

scr=age agesq group2 group2*age group2l*agesq
groupd group3*age group3d*agesq group4
group4x*age group4*agesq;

fit a quadratic polynomial for group 1 and
incremental intercept, slope, and quadratic

parameters for groups 2, 3, and 4
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“Naive” Approach

e If we ignore the fact that observations obtained
from the same subject are correlated, standard

linear model programs can be used

e The following PROC GLM statements fit the
quadratic model and test the significance of the

nonlinear terms:

proc glm;

model scr=age agesq group2 group2l*age
group2*agesq group3 group3d*age
group3*agesq group4 group4*age
group4*agesq;

contrast ’Quadratic Effects’ agesq 1,
group2*agesq 1, group3*agesq 1,
groupé4*agesq 1;

e The test of nonlinearity is highly significant
(F471573 = 10.25, p < 0001)

o Still, we’ll fit the linear model with a separate

intercept and slope for each group
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“Naive” Approach

e The SAS statements are:
proc glm;
model scr=age group2 group2l*age group3d
group3*age group4 group4*age;
e The parameter estimates are:

Parameter Estimate t  p-value S.e.

INTERCEPT 1.2138 31.44 0.0001 0.0386
AGE -0.0136 -15.91 0.0001 0.0008
GROUP2 0.3213 3.86 0.0001 0.0831
AGExGROUP2 -0.0024 -1.11 0.2668 0.0022
GROUP3 -0.2012 -2.06 0.0397 0.0977
AGExGROUP3 0.0137 6.54 0.0001 0.0021
GROUP4 -0.0469 -0.67 0.5002 0.0696
AGExGROUP4 0.0124 7.33 0.0001 0.0017

e In groups 1, 2 & 4, scr decreases as age increases
(the rate of decrease is greatest in group 2, while

the slope is nearly zero in group 4)

e The slope in group 3 is slightly greater than zero
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“Naive” Approach using PROC MIXED

The MIXED procedure can also be used to fit

this model; the statements are:

proc mixed noclprint;

class 1id;

model scr=age group2 group2l*age group3d
group3*age group4 group4*age / s;

repeated / type=simple subject=id;

The noclprint option suppresses the printing

of the levels of the class variable(s)

(it is not necessary to see the list of the 619

subject identifiers)

The s option of the model statement requests

that the solution for the fixed effects be printed

The type=simple option specifies the within-
subject covariance structure of independent

errors with common variance
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“Naive” Approach using PROC MIXED

e By default, PROC MIXED gives REML

estimates

e The estimate of the error variance is labelled
DIAG and is equal to 0.10693227

(identical to the error mean square from GLM)

e The solutions for the fixed effects are also

identical to those obtained from PROC GLM
e The REML —2 log likelihood is 1015.678

e If we fit the model with linear and quadratic
age effects, the REML —2 log likelihood
increases to 1042.203

e Using REML estimation, it is not possible
to compare the fit of two models using a

likelihood ratio test
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“Naive” Approach using PROC MIXED

Maximum Likelihood Estimation

The same models can also be fit by maximum

likelihood using the procedure statement:

proc mixed noclprint method=ml;

This gives identical estimates of the fixed effects

The estimate of the error variance from the
linear model (0.1063925) and the standard
errors of the fixed effects are slightly smaller

than the REML estimates

The likelihood ratio test statistic comparing the

linear and quadratic models is
946.6528 — 905.8743 = 40.78

with 4 df, which is highly significant (p < 0.001)
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Comments on Unstructured Correlation Model

e The most general type of within-subject
covariance structure is the unspecified one:

proc mixed noclprint;

class 1id;

model scr=age group2 group2l*age group3d
group3*age group4 group4*age / s;

repeated / type=un subject=id;

e Not useful with unequally spaced observations

e Since there are up to 22 observations/subject, this

fits a 22 x 22 within-subject covariance matrix

e Thus, the distance between adjacent observations

is not taken into account

e Even if a 22 x 22 covariance matrix was
reasonable, there are computational difficulties:
REML Estimation Iteration History
Iteration Evaluations Objective Criterion

0 1 -1882.654336
Unable to make hessian positive definite
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Jones and Boadi-Boateng Model

e Since the number & spacing of the repeated
measurements vary considerably across subjects,

a parsimonious covariance model is required

e JBB fit a model with:
e Separate lines for each of the 4 groups

e Subject-specific random effects for the

intercept and slope

e Within-subject covariance structure is
a continuous time AR(1) process with

observational error

e Eight fixed effects and six random effects

e Three of the random effects parameters are
from the 2 x 2 covariance matrix of the random

intercept and slope
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Jones and Boadi-Boateng Model

e The other three random effects are within-
subject parameters (o2, ¢, of)
e Correlation function is p(7) = e =7l where 7
is the time between two observations
e Additional observational error component o
allows observations very close together in time

to be different

e The SAS statements are:

proc mixed noclprint;

class 1id;

model scr=age group2 age*group2 group3d
agexgroup3 group4 agexgroup4 / s;

random intercept age / type=un

subject=1d g;
repeated / type=sp(exp) (age) local
subject=1d;

e The local option specifies the observational
error component



Results of JBB Analysis
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e 2x2 random effects covariance matrix is singular

e The estimated fixed effects are:

Group Parameter Estimate  p-value
1 intercept 1.406 < 0.001
slope —0.018 < 0.001

2 int. increment 0.084 0.417
slope increment 0.003 0.264

3 int. increment —0.359 0.002
slope increment 0.018 < 0.001

4 int. increment —0.178 0.039
slope increment 0.015 < 0.001

e In all four groups, the SCR reciprocal is

estimated to decrease as age increases

e Rate of decrease is greatest in group 1 and is

nearly zero in group 3

e Groups 1 and 2 are similar

e Intercept is greatest in group 2, followed by

groups 1, 4, and 3
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Effect of Choice of Covariance Structure

e Used the same structural model

(separate intercepts and slopes in each group)

e (Considered nine “reasonable” covariance models:

1.

ol

AR(1) with observational error
AR(1)
Compound symmetry

Random intercept and slope + AR(1) with

observational error
Random intercept and slope + AR(1)

Random intercept and slope + independent

within-subject errors

Random intercept + AR(1) with

observational error

. Random intercept + AR(1)

Random intercept + independent within-

subject errors
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Parameter Estimates from the Nine Models

. 9
0.2 1 .
7
| 4
0.0 -5~ B _N—
9
ESt.‘ 6 %
4
—0.2
2 8
. T
6
—0.4
. 6

| | | | | | |
Age Int. Age Int. Age Int. Age

Group 2 Group 3 Group 4

Parameter



297

Tests of Significance from the Nine Models
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Properties of Tests

e The properties of three types of test statistics

were compared:

UM Unstructured multivariate
approach using Wilks” A

MM (ML) Mixed model approach using
ML estimation

MM(REML) Mixed model approach using
REML estimation

e The case of two groups and four time points was

considered

e The model for the mean in group h at time j

was Unj = Bro + Bn1J, where

B20 = B1o + 0o, Bo1 = B11 + 01

e T'wo hypotheses were of interest:
e equality of groups Hy:09 =91 =0
e parallelism Hy:01 =0
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Properties of Tests

e Data were generated from 5 correlation models:
e AR-1 with p =0.3,0.7
e compound symmetry with p = 0.3,0.7

e unstructured

e The mixed model analyses were carried out

using four assumed correlation structures:
e independence

e AR-1

e compound symmetry

e unstructured

e Sample sizes of 15 and 25 observations/group

were considered
e Several values of (g, d1) were studied

e 1000 replications were carried out for each

combination of factors
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Test Size versus Sample Size
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Test of Equality of Group Effects

The unstructured multivariate approach tends

to have test sizes closest to the nominal 5% level

The mixed model approach tends to yield anti-

conservative tests

For a given assumed correlation structure,
sizes of REML tests are smaller (closer to the

nominal level) than those of ML tests

The unstructured multivariate approach is

robust to the true correlation structure

The performance of the mixed model tests
depends highly on the structures of the true and

assumed correlation models

The UM approach is preferred, even in a four-
parameter model with a 4 X 4 covariance matrix

and a sample size of only 30
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Test Size versus Sample Size

Test of Parallelism
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Test of Parallelism

The results for testing parallelism are somewhat

different from those for testing group effects

The test for parallelism is based on the
differences among adjacent responses, which
might be less sensitive to the correlation

structure than the responses themselves

The unstructured multivariate approach tends

to have test sizes closest to the nominal 5% level

The mixed model approach tends to yield anti-

conservative tests

For a given assumed correlation structure,
sizes of REML tests are smaller (closer to the

nominal level) than those of ML tests

The mixed model ML and REML tests

assuming independence are conservative
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Power (test of parallelism) vs. Trt. Difference
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(test of parallelism) vs. Trt. Difference
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