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Normal-Theory Methods

e Univariate methods reduce the repeated

measures from each subject to a single number

This loss of information may not be desirable

e We now consider alternative methods for

normally-distributed responses v;;

These utilize the multivariate nature of a

subject’s observations

e The following methods will be studied:

Unstructured multivariate approach

Multivariate analysis of variance
e Profile analysis

e Growth curve analysis
Repeated measures ANOVA

Mixed linear models



The Multivariate Normal Distribution
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e Let x = (x1,...,2,)" be a p-component random

vector having a multivariate normal distribution

with mean vector u = (u1, ...

covariance matrix

Y —

(011

\ Opl

7:“’]9)/ and p X p

0'1p

Opp

\

/

e This can be written as x ~ N, (u, 3)

e Now consider a sample of n such vectors,

r1 = (1‘117 .

. ,ZClp)/, ce

, Ty = (T, -

 Tp)

e These data can be summarized in the n X p data

matrix

((x11

\ Lnl

ZClp

\

xnp /
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Parameter Estimation

The maximum likelihood estimate of p is

n=71t=(T1,...,Tp), where T, = > " x;;/n

The maximum likelihood estimate of Y is

~ 1
S = A
n

where A is a p X p matrix with elements

Ak = 3 i (Zij — Tj)(Tap — Tp)

In matrix notation,

n n
A= Z(:EZ —T)(z; — ) = szx; —nTT
i=1 i=1

An unbiased estimator of X is given by

1
n—1

S = A
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The Wishart Distribution

Let 2z1,..., 2, be independent random vectors,

with z; ~ N, (0, )
Let A=>" %2z (apx p matrix)

A has the (central) Wishart distribution with
parameters n and X

A~W,(n,X)

The density of A is given by

|A|(n=P=1/2 exp(—Ltr(X71A))
2np/2 p(p=1)/4 S/ 2 TP T((n+1—14)/2)

for A positive definite and 0 otherwise, where

[(z) = [ v le “du

Note that A does not have a density if n < p
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Wishart Matrices

Let x1,...,x, be independent N, (u,>) random

variables

The sample covariance matrix is given by

n

> (@ =) (2 — T

1=1

1
n—1

g —

The Wishart matrix A = (n—1)S ~ W,(n—1, %)
Two important properties of Wishart matrices:

1. The sample mean vector = and the
Wishart matrix A computed from the

same sample are independent

2. If Aq,..., A are independent Wishart
matrices with A;, ~ W,(nn, %), then
> he1 An ~ Wy(n,X), where n =37, _, np
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The Generalized T? Statistic
Let © ~ N,(u,X)

Let nW be a p X p matrix, independent of x,
such that nW ~ W, (n, %)

Then T? = 2’W 'z has the generalized T
distribution with noncentrality parameter

6 = 'S and degrees of freedom p and n

2 2
1=~ Tp,n,5

The distribution of T2 is related to that of the

ratio of independent y? random variables:

n—p+1
np

F = T?
has the F), ,,_p41,s distribution

Ifpp=0,F ~Fpp_pi1



One-Sample Test of Hy: = g

e Let x1,...,x, be a random sample from

Np(,u, E)

e Suppose we wish to test Hy: = ug

e We will use the following results:
L. vn(Z — po) ~ Np(vn(p — po), %)

2. The sample covariance matrix S is

independent of =

3. (n—1)S ~W,(n—1,%)

e In this case, the generalized T? statistic is
72 = (Vn(@ — o)) S™H(Vn(T — o))

=n(T — 0)'S™ (T — o)

39
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One-Sample Test of Hy: = g

The statistic

(n—l)—p—|—1T2_

L Y O

has the F), ,,_, s distribution, where

0 =n(u— po) S~ (1 — o)

If Hy is true, F' ~ F
This test can only be used when n > p

T? can also be derived as the likelihood ratio

test of Hy

The null distribution of 72 is approximately
valid even if the distribution of z1,...,z,, is

not normal (Anderson, 1984, p. 163)
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One-Sample Test of Hy: Cu =0

Let x1,...,x, be a random sample from

Np(:ua Z)

Suppose we wish to test Hy: Cu = 0, where

C' is a ¢ X p matrix of rank ¢ (¢ < p)
Let Zi:CQZi, forz':l,...,’n,

21,..., 2y are independent random vectors

from the N.(Cu, CXC") distribution
2= %= 2 Cri = CF
Z ~ N.(Cp, +CEC”)

/1% ~ No(y/nCp, CEC")
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One-Sample Test of Hy: Cu =0

e The sample covariance matrix of z1,..., 2, is
given by
S, = Ly , —Z zZ)
2= ;(Zz z)(zi — Z)
;-

1=1

e S, =(CSC’ is independent of Z

e (n—1)5,=(n—1)CSC" ~W.(n—-1,CxC")



One-Sample Test of Hy: Cu =0

Therefore,
T? = (Viiz) ST (Viz)
=n(Cz) (CSC)~ 1 (C7)
has the T sz_l, 5 distribution with

noncentrality parameter

§ =n(Cp) (CZC)~H(Cp)

The statistic

(n—l)—c—|—1T2_ n—c

(n—1)c (n—1)c g

F =

has the F. ,_. s distribution

If Hy is true, F' ~ Fi .

This test can be used if n > ¢

43
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One-Sample Repeated Measures

Let y;; denote the response from subject ¢ at

time j, for:=1,...,n,5=1,...,t

The y; = (y;1,.--,yit) vectors are a random

sample from Ny(p, ), where = (p1, ..., pz)’
Suppose that we wish to test Hyo: u1 = -+ = g
Let y:} — Yij — Yi,j+1, for ] = 1, ,t— 1

The yf = (v}, ...,y ,_1) vectors are a

random sample from N;_1(p*, %), where

P = (1 — po, g2 — [y 1 — fit)’

Hy: ppq = - -+ = py 1s then equivalent to

Hy: " =(0,...,0)
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One-Sample Repeated Measures

The test of Hj can be carried out using the
T? statistic computed from the sample mean

vector and covariance matrix of the y;; values

Vng" ~ Nea(Vop', X%)
(n—1)8* ~Wy_1(n —1,3%)

—_ —1 —

5* — nlu*lz*—llu*

n—1)—(t—-1)+1

h—Di-1 ©

o

. on—t+1 5
“monu-1’

has the F;_j 41 distribution if Hy is true




Matrix Formulation

y: = Cy;, where C' is the (¢ — 1) X ¢t matrix

y: ~ N1 (Cp, CXC") and

T2 = n(CF) (CSC')~

The value of T2 is invariant with respect to

the specific choice of C; another choice is

r—1 1 0
C— -1 0 1
.—1 0 O

(1 —1 0
0 1 -1
. 0 0 0

0
0

H(Cy)

0 09
0 0
0 1)
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Other types of hypotheses of the general form

Hy: Cpp =0 can also be tested
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Example

e Deal et al. (1979) measured ventilation
volumes (1/min) of eight subjects under six

different temperatures of inspired dry air

Temperature (°C)
Subject —10 25 37 50 65 80

1 745 815 83.6 686 73.1 794
7.5 84.6 70.6 &87.3 73.0 75.0
68.9 71.6 559 61.9 60.5 61.8
57.0 61.3 H4.1 59.2 56.6 5H8E.8
783 84.9 64.0 62.2 60.1 787
54.0 62.8 63.0 580 056.0 5H1.5
725 683 67.8 715 65.0 67.7
80.8 899 &83.2 83.0 &85.7 79.6

O~ O O = W o

e Is ventilation volume affected by temperature?

Reference
Deal, E. C., McFadden, E. R., Ingram, R. H. et al. (1979).
Role of respiratory heat exchange in production of exercise-

induced asthma. J Appl Physiol 46, 467—475.
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Data from Example

90 —

........
‘‘‘‘‘‘‘‘‘

60 —

® 11ean

50

| — — — —
—-10 0 10 20 30 40 50 60 70 &0
Temperature (°C)



SAS Statements for Example

data a;

input subject

cards;
1 74.5 81.
2 75.5 84.
3 63.9 71.
4 57.0 61.
5 78.3 84.
6 54.0 62.
7 72.5 68.
8 80.8 89.
proc glm;

O© W 0 © W o O U1

83.
70.
5b.
54.
64 .
63.
67.
83.

N 00 ©O O~ O OO0 O

vvl-vv6;

68.6 73.1
87.3 73.0
61.9 60.5
59.2 b6.6
62.2 60.1
58.0 56.0
71.5 65.0
83.0 85.7

model vvli-vve= /

nouni;

repeated ventvol / nou;

79.
75.
61.
58.
78.
51.
67.
79.

O N 01 N 00 00 O
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The nouni option omits separate analyses for

each dependent variable

The nou option omits repeated measures

ANOVA
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Example

e In a dental study, the height of the ramus bone
(mm) was measured in 20 boys at ages 8, 8%, 9,

and 9% years

e Two questions:
e Does bone height change with age?

Not of great interest (and answer is obvious)

e Is the relationship between age and bone

height linear?

Test of nonlinearity can be carried out using
orthogonal polynomial coeflicients, since the

measurements are equally spaced

Reference

Elston, R. C. and Grizzle, J. E. (1962).
Estimation of time-response curves and their
confidence bands. Biometrics 18, 148-159.



Data from Example

Age (years)

Subject 8 82 9 92
1 47.8 488  49.0  49.7
2 46.4 473 477 484
3 46.3  46.8  47.8 485
4 45.1 453  46.1 472
5 476 485 489  49.3
6 525 53.2  53.3  53.7
7 51.2  53.0 543 545
8 49.8 500  50.3  52.7
9 48.1  50.8 523 544

10 45.0  47.0 473  49.3
11 512 514  51.6 519
12 485 492  53.0 555
13 521 52.8  53.7  55.0
14 48.2 489 493 498
15 49.6 504 512 518
16 50.7  51.7 527 533
17 472 AT7T 484 495
18 53.3  54.6 551  55.3
19 46.2 475 481 484
20 46.3 476  51.3 518

ol
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Data from Example

............

.........

R D LI

59 I

Height

(mm)

16 i

44

e mean height

8.

| | l
O ” 90 9.5

Age (years)
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Orthogonal Polynomial Coefficients

No. of
Points  Order
3 Linear —1 0 1
Quadratic 1 —2 1
4 Linear -3 -1 1 3
Quadratic 1 -1 -1 1
Cubic —1 3 -3 1
5 Linear —2 -1 0 1 2
Quadratic 2 -1 -2 -1 2
Cubic —1 2 0 -2 1
Quartic 1 —4 6 —4 1
§ Linear -5 -3 -1 1 3 5
Quadratic 5 -1 —4 —4 -1 5
Cubic -5 7 4 —4 -7 5
Quartic 1 -3 2 2 -3 1
Quintic —1 5 —10 10 -5 1

A more extensive tabulation is given in:

Pearson and Hartley, 1966, Biometrika Tables for
Statistictans, Volume I, pp. 236245
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SAS Statements for Example

data a;

input subject h80 h385 h90 h95;
cards;

1 47.8 48.8 49.0 49.7

2 46.4 47.3 47.7 48.
3 46.3 46.8 47.8 48.5

w
~
(IS

18 563.3 54.6 55.1 55.3
19 46.2 47.5 48.1 48.
20 46.3 47.6 51.3 51.8

o
N

proc glm;
model h80 h85 h90 h95= / nouni;
repeated height polynomial / nou summary;
manova h=intercept m=( 1 -1 -1 1,
-1 3 -3 1);

The m option of the manova statement tests for
nonlinearity



56

Testing for Nonlinearity

Orthogonal polynomial coefficients for unequally
spaced time points are not tabulated

(but can be generated)

Another approach is the method of divided
differences (Hills, 1968)

Suppose that measurements are obtained at time

points x1,...,T¢

1
Letdj: ,fOI’jZl,...,t—l
Lj+1 = &y

The test of nonlinearity is Hy: Cu = 0, where C' is
the (t — 2) x t matrix

(—dy d1+do  —ds O --- 0 0 0 )
0 —dy dso+ds—ds--- 0 0

. 0 0 0 o --- —dt_g dt—2 +dt—1 _dt—l /
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Testing for Nonlinearity

If the measurements in the previous example

had been obtained at ages 8, 8.5, 9, and 10,

1 1
tT85-8 7 7T 9-85 7
1
ds = =1
T 10-9
and
—2 4 -2 0
O —
[ 0 —2 3 —1]
If the time points x1,...,x; are equally spaced,
thendlz---:dt_lzland
(—1 2 —1 0o --- 0 0 0
c=| P LT CLD
. 0 0 0 0 —1 2 —1

This approach can be generalized to test the

adequacy of higher-order polynomials
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Comments on the One-Sample

Unstructured Multivariate Approach

Positive:

e Assumes only multivariate normality
e Covariance structure is not specified

e Analogous to the univariate paired-t test

Negative:

e Uses up df in estimating covariance parameters
e Has low power when denominator df is small

e Can only be used when the number of linearly
independent components of the hypothesis is

less than the number of subjects

e.g., in order to test homogeneity, n >t

e Can not be easily adapted for situations in

which there are missing data
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Unstructured Multivariate Approach

The Two-Sample Problem

e Repeated measurements at ¢ time points are

obtained from two independent groups of subjects

Time Point

Group Subject 1 i t
1 1 Y111 Y11 Y11t
v Yi1i1 Y1ij Y1it
ni Yini1 Ylnij Yinqt
2 1 Y211 Y215 Y21t
( Y2i1 Y2ij Y2it
n2 y2n2 1 y2n23 y2n2t
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Unstructured Multivariate Approach

The Two-Sample Problem

y1; ~ Ni(u, %), for i =1,...,n1, where

y1i = (Y1i1, - - -, Y1ie) and g1 = (p11, .-+, 1)’

Yai ~ Ni(uo, ), for i =1,...,ny, where

Y2; = (927:17 “e 7927;75)' and Ho = (,u21, e nuzt)'

/

ninsa

ny + ng

We wish to test Hy: 1 = o

1

yp ~ Ny (Mh, —E), for h=1,2, and

np

_ _ 1 1
Y1 — Yo ~ Ny (Ml — W2, (— + —)E)
nq no

_ ninsg
) ~ (| ().
(y1 y2) t(\/n1+n2 H1— U2 )
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Unstructured Multivariate Approach
The Two-Sample Problem

e The pooled estimator of the covariance matrix

Y. is given by

S:(n1—1)51+(n2—1)52
n1—|—n2—2 7
where
= S e ) — T
h—nh_li:1 Yni — Y )\Yhi — Yp,

is the sample covariance matrix in group h

o (nh — 1)Sh ~ Wt(nh — 1, E)

e (N —1)S1+ (no—1)Sy ~ Wi(ng +ng —2,%)

e Therefore, (ny +no —2)S ~ Wy(ng +nqe — 2, %)
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Unstructured Multivariate Approach
The Two-Sample Problem

ning ,_ N\ —1 (— _
o 77 = — S — has the
"1 -+ 1o (yl yz) (91 92)
T¢ 1, +n, 2. distribution with noncentrality
parameter
nin- ' ~—1
= — > —
1 + 1o (,LL1 ,uz) (,ul ,LL2)
o I — (n1+n2—2)—t+1T2

(?7,1 + No — Q)t

(n1+n2—2)t

has the I}, 4n,—t—1,5 distribution

o If Ho:piy = o is true, F' ~ Fy  4ny—t—1

e Note that this test assumes 1 = X5
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Tests of Other Hypotheses

e Suppose we wish to test Hy: C(uy — pz) = 0,

where C' is a ¢ X t matrix of rank ¢ (¢ < t)
o Let z;;, = Cyp;, for h =1,2

: _ 1 1
® Since §; — Yy ~ Ny (Ml — M2, (’n_1 + n_2)z)7

ni —|— no
nina

51—52NNC(C(M1—M2>7( )CZC/)

o Let S,;, = (CS;,C’ denote the sample
covariance matrix of the z; vectors from
group h and let

(n1 —1)S:1 + (ne —1)S,9
n1 + no — 2

S, =

denote the pooled covariance matrix

° (77,1 + N9 — 2)Sz ~ Wc(nl + ng — 2, CZC’)
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Tests of Other Hypotheses

e Therefore,

nin- L L -1 . .
T? = — 'c’(CSsc’ C —
n1 + 1 (yl y2) ( ) (yl 3/2)
has the T, ., _, s distribution with

noncentrality parameter

n1mn2z Il n—1
= — c'(cxc C —
T (h1 — p2)'C'( )" C(p — p2)
o I — (n1+n2—2)—c+1T2

(n1 +ng — 2)c

ny+ng—c—1,_,
(n1 +ng — 2)c

has the F. 5, 4n,—c—1,5 distribution

o If Hy: Cpy = Clug is true, F' ~ Fe p 4ny—c—1
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Hypothesis of Parallelism

e A weaker, and often more realistic, hypothesis is
that the p-profiles in the two groups are parallel
i.e., the puq and po profiles differ only by a
constant vertical shift

e This hypothesis can be expressed as:

Ho: p1a — 11 = po2 — Ho1,
H13 — 12 = H23 — U292,

M1t — H1,t—1 = M2t — H2,t—1

oras Hy:C(uy — p2) = 0, where C' is the

(t — 1) X t matrix

ooooooooooooooooooooooooooooooooo
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Example

A study conducted in two groups of children

(16 boys and 11 girls)

At ages 8, 10, 12, and 14, the distance
(mm) from the center of the pituitary to the

pteryomaxillary fissure was measured

Let pp = (16,8, 1v,105 Mo, 12, b,14)" and
Hg = (:ug,Sa Mg, 10, Hg,12, ,Ug,14),

Are the profiles for boys and girls the same?
Ho: pp = pg
Are the profiles for boys and girls parallel?
Ho: pp 10 — b8 = Hg,10 — Hg,8,
Mb,12 — Hb,10 = Hg,12 — Hg,10;
Mb 14 — Ub,12 = Hg,14 — Hg,12

Reference
Potthoff, R. F. and Roy, S. N. (1964). A generalized
multivariate analysis of variance model useful especially for

growth curve problems. Biometrika 51, 313-326.



Dental Measurements
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Group ID Age8 Agel1l0 Age 12 Age 14
Boys 1 26.0 25.0 29.0 31.0
2 21.5 22.5 23.0 26.5
3 23.0 22.5 24.0 27.5
4 25.5 27.5 26.5 27.0
5 20.0 23.5 22.5 26.0
6 24.5 25.5 27.0 28.5
7 22.0 22.0 24.5 26.5
8 24.0 21.5 24.5 25.5
9 23.0 20.5 31.0 26.0
10 27.5 28.0 31.0 31.5
11 23.0 23.0 23.5 25.0
12 21.5 23.5 24.0 28.0
13 17.0 24.5 26.0 29.5
14 22.5 25.5 25.5 26.0
15 23.0 24.5 26.0 30.0
16 22.0 21.5 23.5 25.0
Mean 22.9 23.8 25.7 27.95
Girls 1 21.0 20.0 21.5 23.0
2 21.0 21.5 24.0 25.5
3 20.5 24.0 24.5 26.0
4 23.5 24.5 25.0 26.5
5 21.5 23.0 22.5 23.5
6 20.0 21.0 21.0 22.5
7 21.5 22.5 23.0 25.0
8 23.0 23.0 23.5 24.0
9 20.0 21.0 22.0 21.5
10 16.5 19.0 19.0 19.5
11 24.5 25.0 28.0 28.0
Mean 21.2 22.2 23.1 24.1




Dental Measurements in Boys
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Dental Measurements in Girls
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Mean Dental Measurements
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SAS Statements
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e The variable sex is coded 1 for boys, 2 for girls

data a;

input sex id d8 d10 di12 di4;

cards;

1 1 26.0
1 2 21.5
1 3 23.0

2 9 20.0
2 10 16.5
2 11 24.5

proc glm;

25.
22.
22.

21

19.
25.

0 29.
23.
5 24.

o

.0 22.
19.
0 28.

o

o

o

31.
26.
27 .

21.
19.
28.

o

o

model d8 d10 d12 di4=sex / nouni;

manova h=sex;

manova h=sex m=(-1
0 -1
O O

1

0 O,
1 O,

-1 1);

e The first manova statement tests Ho: pp = g,

while the second tests parallelism
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Test of Equality of Covariance Matrices

e Bartlett’s modification of the likelihood ratio
test can be used to test Hp: 21 = Yo = -+ - = 3,

e Implemented in the SAS DISCRIM procedure

proc discrim pool=test:
class class-variable;
var list-of-variables;

e class-variable defines the s groups

e [ist-of-variables defines the t components of

the multivariate normal distribution

e The asymptotic distribution of the test criteria

used in PROC DISCRIM is X%s—l)t(t—l—l)/Q

e Parhizgari and Prakash (1989) implement an

improved approximation

e Although this test is unbiased, it is not robust

to non-normality
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What if Covariance Matrices are Unequal?

o If ¥ # X5, the significance level of the T2 test

of Hy: 11 = po depends on X7 and X

e If the difference between X1 and X5 is small,
or if the sample sizes n; and ny are large,

there is no practical effect

e Otherwise, the nominal significance level may

be distorted

e If ny = no = n/2, the null hypothesis can be

tested using a Tf(n_Q)/2 statistic

. 2 . o
(In comparison, Ty, 5 assuming ¥; = ¥)

o If ny < no, Hy: 11 = po can be tested using a

2 . .
1%, —1 statistic



