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1
Introduction

1.1 Repeated Measurements

This book describes, discusses, and demonstrates a variety of statistical
methods for the analysis of repeated measurements. The term “repeated
measurements” refers broadly to data in which the response of each exper-
imental unit or subject is observed on multiple occasions or under multiple
conditions. Although the response variable could itself be either univariate
or multivariate, we restrict consideration to univariate response variables
measured at multiple occasions for each subject. The term “multiple” will
usually mean “more than two,” since the topic of paired measurements is
addressed in many other books.

The term “longitudinal data” is also often used to describe repeated mea-
surements data. Some authors use this term when referring to data in which
the repeated measurements factor is time. In this usage, longitudinal data
could be viewed as a special case of repeated measurements data. Other au-
thors make an alternative distinction and use the term “longitudinal data”
to refer to data collected over an extended period of time, often under un-
controlled conditions. The term “repeated measurements” is then used to
describe data collected over a relatively short time period, frequently un-
der experimental conditions. Using this definition, repeated measurements
data can be regarded as a special case of longitudinal data. In this book,
we will use the term “repeated measurements” in the broad sense to refer
to the situation in which multiple measurements of the response variable
are obtained from each experimental unit.
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Research in many areas of application frequently involves study designs
in which repeated measurements are obtained. Studies in which the re-
sponse variable is measured at multiple points in time from each subject
are one important and commonly used application. In other applications,
the response from each experimental unit is measured under multiple con-
ditions rather than at multiple time points.

In some settings in which repeated measurements data are obtained, the
independent experimental units are not individual subjects. For example,
in a toxicological study, the experimental units might be litters; responses
are then obtained from the multiple newborns in each litter. In a genetic
study, experimental units might be defined by families; responses are then
obtained from the members of each family.

1.2 Advantages and Disadvantages of Repeated
Measurements Designs

A key strength of studies in which repeated measurements are obtained
from each subject is that this is the only type of design in which it is pos-
sible to obtain information concerning individual patterns of change. This
type of design also economizes on subjects. For example, when studying
the effects of a treatment over time, it is usually desirable to observe the
same subjects repeatedly rather than to observe different subjects at each
specified time point. Another advantage is that subjects can serve as their
own controls in that the outcome variable can be measured under both
control and experimental conditions for each subject. Because between-
subjects sources of variability can be excluded from the experimental error,
repeated measurements designs often provide more efficient estimators of
relevant parameters than cross-sectional designs with the same number and
pattern of measurements. A final consideration is that data can often be
collected more reliably in a study in which the same subjects are followed
repeatedly than in a cross-sectional study.

There are two main difficulties in the analysis of data from repeated mea-
sures studies. First, the analysis is complicated by the dependence among
repeated observations made on the same experimental unit. Second, the
investigator often cannot control the circumstances for obtaining measure-
ments, so that the data may be unbalanced or partially incomplete. For
example, in a longitudinal study, the response from a subject may be miss-
ing at one or more of the time points due to factors that are unrelated to the
outcome of interest. In toxicology or genetic studies, litter or family sizes
are variable rather than fixed; hence, the number of repeated measures is
not constant across experimental units.

Although many approaches to the analysis of repeated measures data
have been studied, most are restricted to the setting in which the response
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TABLE 1.1. General layout for repeated measurements

Time Missing
Subject Point Indicator Response Covariates

1 1 δ11 y11 x111 · · · x11p

...
...

...
...

. . .
...

j δ1j y1j x1j1 · · · x1jp

...
...

...
...

. . .
...

t1 δ1t1 y1t1 x1t11 · · · x1t1p

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

i 1 δi1 yi1 xi11 · · · xi1p

...
...

...
...

. . .
...

j δij yij xij1 · · · xijp

...
...

...
...

. . .
...

ti δiti
yiti

xiti1 · · · xitip

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

n 1 δn1 yn1 xn11 · · · xn1p

...
...

...
...

. . .
...

j δnj ynj xnj1 · · · xnjp

...
...

...
...

. . .
...

tn δntn yntn xntn1 · · · xntnp

variable is normally distributed and the data are balanced and complete.
Although the development of methods for the analysis of repeated measures
categorical data has received substantially less attention in the past, this
has more recently become an important and active area of research. Still,
the methodology is not nearly as well-developed as for continuous, normally
distributed outcomes. The practical application of methods for repeated
categorical outcomes also lags behind that for normal-theory methods due
to the lack of readily accessible software.

1.3 Notation for Repeated Measurements

The notation used to describe methods for the analysis of repeated mea-
surements varies considerably in the statistical literature. Table 1.1 shows
the general layout for repeated measurements that will be used in this book.
Let n denote the number of independent experimental units (subjects) from
which repeated measurements are obtained, let ti denote the number of
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measurements from subject i, and let yij be the response from subject i at
time point (or occasion) j for j = 1, . . . , ti and i = 1, . . . , n. In addition,
let p denote the number of covariates, and let xij = (xij1, . . . , xijp)′ de-
note the vector of covariates associated with yij . In general, the values of
the covariates may vary across the repeated measurements from a subject;
such occasion-specific variables are called time-dependent or within-subject
covariates. Because there may be missing values of yij and/or missing com-
ponents in the vector xij , it is convenient to define indicator variables

δij =
{ 1 if yij and xij are observed,

0 otherwise.

One special case of the general layout shown in Table 1.1 is when repeated
measurements are obtained (or scheduled to be obtained) at a common set
of t measurement occasions for all subjects. In this case, t1 = · · · = tn = t.

An important and commonly occurring situation is when repeated mea-
surements are obtained from s subpopulations (groups) of subjects at a
common set of t time points (or measurement occasions). In this case, let
nh be the number of subjects in group h for h = 1, . . . , s. In terms of the
general notation, n =

∑s
h=1 nh. The s groups may be defined by the s levels

of a single covariate. In other situations, the groups may be defined by the
cross-classification of the levels of several categorical covariates. In terms
of the general layout shown in Table 1.1, the s groups can be described
in terms of p = s − 1 time-independent (or between-subject) categorical
covariates. Although data of this type can be displayed using the general
layout of Table 1.1, it may be more convenient to present the data as shown
in Table 1.2. In this case, instead of letting yij denote the response at time j
from subject i, we let yhij denote the response at time j from subject i in
group h for j = 1, . . . , t, i = 1, . . . , nh, and h = 1, . . . , s.

The final special case we will consider is the situation where repeated
measurements are obtained (or scheduled to be obtained) at t time points
from n subjects from a single population. In this case, the data can be
displayed in an n× t matrix, as shown in Table 1.3. Here, yij denotes the
jth measurement from the ith subject for j = 1, . . . , t, i = 1, . . . , n. The
corresponding missing value indicators are defined by

δij =
{ 1 if yij is observed,

0 otherwise.

1.4 Missing Data

As was mentioned in Section 1.2, the occurrence of missing data is com-
mon in studies where repeated measurements are obtained. Although this
book does not focus specifically on the analysis of incomplete repeated
measurements, many of the methods described in subsequent chapters can
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TABLE 1.2. Layout for the special case of multiple samples

Time Point
Group Subject 1 . . . j . . . t

1 1 y111 . . . y11j . . . y11t

...
...

. . .
...

. . .
...

i y1i1 . . . y1ij . . . y1it

...
...

. . .
...

. . .
...

n1 y1n11 . . . y1n1j . . . y1n1t

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

h 1 yh11 . . . yh1j . . . yh1t

...
...

. . .
...

. . .
...

i yhi1 . . . yhij . . . yhit

...
...

. . .
...

. . .
...

nh yhnh1 . . . yhnhj . . . yhnht

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

s 1 ys11 . . . ys1j . . . ys1t

...
...

. . .
...

. . .
...

i ysi1 . . . ysij . . . ysit

...
...

. . .
...

. . .
...

ns ysns1 . . . ysnsj . . . ysnst

TABLE 1.3. Layout for the one-sample case

Time Point
Subject 1 . . . j . . . t

1 y11 . . . y1j . . . y1t

...
...

. . .
...

. . .
...

i yi1 . . . yij . . . yit

...
...

. . .
...

. . .
...

n yn1 . . . ynj . . . ynt
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be used when the data are incomplete. The mechanism that results in
missing data must, however, be considered when selecting an appropriate
method of analysis. Little and Rubin (1987) and Schafer (1997) provide
comprehensive treatments of the analysis of incomplete data. Laird (1988),
Gornbein et al. (1992), Heyting et al. (1992), Little (1995), and Kenward
and Molenberghs (1999) provide reviews focused specifically on repeated
measurements.

In particular, Little and Rubin (1987) have described missing-data mech-
anisms as follows:

1. Missing completely at random (MCAR): if the probability of observ-
ing the response is independent of both the observed and unobserved
outcome values;

2. Missing at random (MAR): if the probability of observing the re-
sponse depends on the observed outcome values but is independent
of the unobserved outcome values;

3. Nonignorable: if the probability of observing the response depends on
the unobserved outcome values.

The nonignorable missing-data mechanism is also called informative or non-
random.

With specific reference to repeated measurements, consider a study in
which the outcome variable of interest is scheduled to be measured at a fixed
number of occasions (visits) for each subject. The missing-data mechanism
is MCAR if subjects miss their visits totally at random. A MAR missing-
data mechanism would result if the probability of missing a visit is directly
related to prior observed responses. An example of a nonrandom (nonig-
norable) missing-data mechanism would be if, in addition to prior observed
responses affecting whether the response at a specific subsequent visit is
missing, subjects would be more or less likely to miss a visit based on the
unobserved value of their response at that specific visit.

In their discussion of missing data in repeated measurements, Diggle
and Kenward (1994) refer to MCAR as the completely random dropout
(CRD) mechanism. They propose the term “random dropout” (RD) for
the MAR mechanism. The situation in which the missing-data mechanism
is nonignorable is called the informative dropout (ID) mechanism.

The preceding characterizations of missing-data mechanisms refer only
to the response variable and do not address the effect of covariates on the
missing-data mechanism. For example, it may be important to consider the
influence of a fully observed covariate on the probability of response. Little
and Rubin (1987) have classified the mechanisms that govern missing data
when the influence of a covariate is taken into account. If the probability of
response is independent of the covariate and of the observed and unobserved
responses, then the missing-data mechanism is said to be MCAR. If the
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probability of response depends on the covariate but is independent of
the unobserved responses, then the missing-data mechanism is said to be
MAR provided that we have conditioned on the value of the covariate.
If the probability of response depends on the unobserved responses with a
possible (but not necessary) dependence on the covariate, then the missing-
data mechanism is said to be nonignorable.

Suppose that the probability of observing a response depends on the
value of the covariate but not on the observed and unobserved responses.
For example, suppose that the probability of dropping out of a study varies
according to the value of a covariate. Little and Rubin (1987) classify this
mechanism as MAR due to the dependence on the covariate. There are,
however, differing opinions on the classification of the missing-data mech-
anism in this situation. Diggle and Kenward (1994), among others, have
classified this mechanism as MCAR provided that one conditions on the
covariate in the analysis. Little (1995) suggests using the term covariate
dependent dropout to describe this situation (provided that one conditions
on all of the necessary covariates) and reserves the term MCAR only for a
dropout that is independent of the covariate and observed and unobserved
responses.

If the missing-data mechanism is MCAR, most standard approaches to
analysis will be valid, and the issue of interest is simply the difficulty in
implementing an analysis when the data are incomplete. In particular, anal-
yses that omit experimental units with missing data (“complete case” anal-
yses) are valid, although they may be inefficient. If the missing-data mech-
anism is MAR, then the nonresponse mechanism is said to be ignorable. In
this case, likelihood-based inferences are still valid. Moment-based analysis
methods, however, are biased when the missing-data mechanism is MAR.
Although MAR is a weaker assumption than MCAR, nonignorable missing-
data mechanisms are certainly much more common than either MCAR or
MAR mechanisms.

If the missing-data mechanism is nonignorable, both likelihood-based
and moment-based methods of analysis are biased. The development of
methods for the analysis of repeated measurements that are valid in the
case of nonignorable missingness is a difficult task.

Wu and Carroll (1988) discuss a special type of nonignorable missingness
that they call “informative dropout;” this special case has been studied
by several authors. In particular, Wu and Carroll (1988), Wu and Bai-
ley (1989), and Mori et al. (1992, 1994) propose methodology for estimat-
ing the rate of change of a continuous repeated outcome when the dropout
mechanism is informative. This approach has been extended to generalized
linear mixed models (Follmann and Wu, 1995) and to repeated count data
(Albert and Follmann, 2000).

Other authors have considered other types of models that adjust for
nonignorable missingness. These include the approaches of Stasny (1987),
Conaway (1992, 1993, 1994), Dawson and Lagakos (1993), Diggle and Ken-
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ward (1994), Follmann et al. (1994), Cook and Lawless (1997), Molenberghs
et al. (1997), and Albert (2000). Such methods for the analysis of repeated
measurements when the missing-data mechanism is nonignorable are not
yet available in standard statistical software packages.

As an alternative to parametrically modeling the dropout process, Ver-
beke et al. (2001) recommend the use of a sensitivity analysis based on
local influence (Cook, 1986) to examine the potential effects of nonran-
dom dropout. Rotnitzky et al. (1998) also propose a procedure for carrying
out a sensitivity analysis that examines how inferences concerning regres-
sion parameters change depending on assumptions about the nonresponse
mechanism. Kenward (1998) provides an example illustrating the use of
sensitivity analyses for repeated measurements. For normally distributed
endpoints, Brown (1990) proposes a “protective” estimator that also does
not require one to address the missingness model explicitly. Michiels and
Molenberghs (1997) extend Brown’s approach to repeated categorical out-
comes with nonrandom dropout.

1.5 Sample Size Estimation

This book describes methods for the analysis of data when the response
variable is measured repeatedly for each independent experimental unit.
Although the design of repeated measurements studies is equally important,
this is not, however, a focus of the following chapters.

One important issue in study design is estimating the sample size re-
quired to detect an effect of a given magnitude with specified power or
to estimate the power with which an effect of a given magnitude can be
detected using a specified sample size. When the outcome variable is mea-
sured once for each experimental unit, procedures for estimating sample
size and power are well-known and widely applied. The corresponding situ-
ation for repeated measurements data, however, is less well-developed. The
complexity is due both to the fact that repeated observations from the same
experimental unit are correlated and also that the repeated measurements
situation requires more assumptions and parameters to be specified.

Lefante (1990), Kirby et al. (1994), and Overall and Doyle (1994) con-
sider sample size estimation when the focus is on hypotheses characterized
in terms of a univariate summary statistic across the repeated measure-
ments. These approaches are relevant to the methods of analysis presented
in Chapter 2 of this book. Overall et al. (1998) compare the Kirby et al.
(1994) and Overall and Doyle (1994) approaches, and Ahn et al. (2001)
provide a computer program for sample size estimation.

Several sample size estimation methodologies are available when the re-
sponse at each time point is normally distributed. These approaches are
relevant to the methods of analysis discussed in Chapters 3–6 of this book.
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Bloch (1986) and Lui and Cumberland (1992) describe methods for sam-
ple size estimation based on the univariate split-plot analysis-of-variance
model. Vonesh and Schork (1986) and Rochon (1991) provide sample size
estimation procedures based on Hotelling’s T 2 statistic. Muller and Bar-
ton (1989) and Muller et al. (1992) consider sample size and power for the
full multivariate analysis-of-variance model. Diggle et al. (1994, pp. 29–
31) and Lindsey (2001) also discuss sample size estimation for normally
distributed outcome variables.

Sample size estimation when the response variable at each time point is
binary has also been studied; these approaches can be used in the situa-
tions discussed in Chapters 7–9 of this book. Lui (1991) and Shoukri and
Martin (1992) extend the univariate split-plot model to the binary case.
Lee and Dubin (1994) base their approach on the concept of the design
effect from sample survey methodology. Rochon (1989) and Lipsitz and
Fitzmaurice (1994) use weighted least squares procedures for sample size
estimation with binary repeated measurements.

Approaches for estimation of sample size and power based on extensions
of generalized linear model methodology to the repeated measurements
situation are also available. These methods are useful in conjunction with
the analysis approaches described in Chapter 9 of this book. Section 9.5.6
provides references and basic descriptions of the sample size estimation
methods proposed by Liu and Liang (1997), Shih (1997), Rochon (1998),
and Pan (2001b).

1.6 Outline of Topics

Many approaches to the analysis of repeated measurements have been pro-
posed and studied. In addition, numerous books have been published deal-
ing wholly or predominantly with the analysis of repeated measurements.
Table 1.4 provides a listing of books that I am aware of that have their fo-
cus on statistical methodology for repeated measurements. Useful tutorials
and articles reviewing methods for the analysis of repeated measurements
include the papers by Everitt (1995), Cnaan et al. (1997), Albert (1999),
and Omar et al. (1999). Diggle and Donnelly (1989) provide a selected bib-
liography on general methods for the analysis of repeated measurements.

Although I have found many of these other references to be quite useful,
this book has a somewhat different purpose. Because it is often difficult to
select, implement, and apply appropriate statistical methodology, I have
sought to provide a broad survey of traditional and modern methods for
the analysis of repeated measurements. Whereas some of the existing books
are reasonably comprehensive in their coverage, others are more narrowly
focused on specialized topics. This book is more comprehensive than many,
and is targeted at a lower mathematical level and focused more on ap-
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TABLE 1.4. Books focusing on methodology for repeated measurements

Crowder, M.J. and Hand, D.J. (1990). Analysis of Repeated Measures. Chap-
man and Hall, London.

Davidian, M. and Giltinan, D.M. (1995). Nonlinear Models for Repeated Mea-
surement Data. Chapman and Hall, London.

Diggle, P.J. (1990). Time Series: A Biostatistical Introduction. Oxford Uni-
versity Press, New York.

Diggle, P.J. et al. (1994, 2002). Analysis of Longitudinal Data. Oxford Uni-
versity Press, Oxford.

Dwyer, J.H. et al. (1992). Statistical Models for Longitudinal Studies of Health.
Oxford University Press, New York.

Fahrmeir, L. and Tutz, G. (2001). Multivariate Statistical Modelling Based on
Generalized Linear Models. Springer-Verlag, New York.

Girden, E.R. (1992). ANOVA: Repeated Measures. Sage Publications, New-
bury Park, CA.

Goldstein, H. (1979). The Design and Analysis of Longitudinal Studies: Their
Role in the Measurement of Change. Academic Press, New York.

Hagenaars, J.A. (1990). Categorical Longitudinal Data: Log-linear Panel,
Trend, and Cohort Analysis. Sage Publications, Newbury Park, CA.

Hand, D.J. and Crowder, M.J. (1996). Practical Longitudinal Data Analysis.
Chapman and Hall, London.

Hand, D.J. and Taylor, C.C. (1987). Multivariate Analysis of Variance and
Repeated Measures. Chapman and Hall, London.

Jones, R.H. (1993). Longitudinal Data with Serial Correlation: A State-Space
Approach. Chapman and Hall, London.

Kshirsagar, A.M. and Smith, W.B. (1995). Growth Curves. Marcel Dekker,
New York.

Lindsey, J.K. (1999). Models for Repeated Measurements. Oxford University
Press, New York.

McCulloch, C.E. and Searle, S.R. (2000). Generalized, Linear, and Mixed Mod-
els. John Wiley and Sons, New York.

Müller, H.G. (1988). Nonparametric Regression Analysis of Longitudinal Data.
Springer-Verlag, Berlin.

Nesselroade, J.R. and Baltes, P.B. (1980). Longitudinal Methodology in the
Study of Behavior and Development. Academic Press, New York.

Pan, J.X. and Fang, K.T. (2001). Growth Curve Models with Statistical Diag-
nostics. Springer-Verlag, New York.

Pickles, A. (1990). Longitudinal Data and the Analysis of Change. Oxford
University Press, New York.

Plewis, I. (1985). Analysing Change: Measurement and Explanation Using
Longitudinal Data. John Wiley and Sons, New York.

Verbeke, G. and Molenberghs, G. (1997). Linear Mixed Models in Practice.
Springer-Verlag, New York.

Verbeke, G. and Molenberghs, G. (2000). Linear Mixed Models for Longitudi-
nal Data. Springer-Verlag, New York.

Vonesh, E.F. and Chinchilli, V.M. (1996). Linear and Nonlinear Models for
the Analysis of Repeated Measurements. Marcel Dekker, New York.

von Eye, A. (1990). Statistical Methods in Longitudinal Research. Volumes I
and II. Academic Press, New York.
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plications than most. It is designed to be used both as a textbook in a
semester-length course and also as a useful reference for statisticians and
data analysts.

I have attempted to provide sufficient background material on the meth-
ods that are presented to ensure that students and readers will have a
good understanding of the methodology. At the same time, the focus is on
applying the approaches discussed to real data. Because of this, there are
numerous examples in each chapter as well as homework problems at the
end of each chapter.

The remaining chapters discuss methods for the analysis of repeated
measurements when the response variable is

• continuous and normally distributed;

• categorical;

• continuous and nonnormal.

Note that categorical outcome variables include dichotomous responses,
polytomous variables (more than two possible values, not necessarily or-
dered), ordered categorical responses, and count variables. For each type
of outcome variable, methods that can be used in the following settings are
discussed:

• one sample (p = 0);

• multiple samples (one categorical covariate);

• multiple samples (p categorical covariates);

• regression (quantitative covariates).

Chapter 2 first discusses some simple univariate approaches to the anal-
ysis of repeated measurements. These methods involve reducing the mul-
tiple measurements obtained from each subject to a single “derived vari-
able” or “summary statistic.” Chapters 3–6 discuss methods for normally
distributed response variables. These chapters cover both traditional and
modern approaches to the analysis of repeated measurements.

Chapter 7 then describes the weighted least squares approach for the
analysis of categorical response variables. Chapter 8 presents the random-
ization model approach for the analysis of one-sample repeated measure-
ments; this method can be applied both to categorical and continuous out-
come variables. Chapter 9 describes extensions of generalized linear model
methodology for the analysis of repeated measurements; these methods
also can be used for categorical and continuous outcome variables. Finally,
Chapter 10 discusses nonparametric methods for the analysis of repeated
measurements.
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1.7 Choosing the “Best” Method of Analysis

This book describes several methods for the analysis of repeated measure-
ments. Although some are old and others are more recent, I have found
all (with one exception to be mentioned later in this section) to be useful.
Here are some guidelines for selecting an appropriate statistical method for
a given application. Additional comments on the advantages and disadvan-
tages of the various methods are provided in each chapter.

Chapter 2 discusses methods that reduce the vector of multiple measure-
ments from each experimental unit to a single measurement. This approach
avoids the issue of correlation among the repeated measurements from a
subject and is often a useful preliminary or exploratory method of analysis.
In situations where the distribution of the outcome variable is unusual, or
where the sample size is too small or the number and pattern of repeated
measurements are too irregular to permit the use of other methods, the
univariate approach to the analysis of repeated measurements may be the
only feasible one.

When the outcome variable at each time point is continuous and ap-
proximately normally distributed, the methods described in Chapters 3,
4, and 6 should be considered. Although Chapter 5 describes the use of
classical repeated measures analysis of variance (ANOVA) for the analy-
sis of continuous, normally distributed repeated measurements, I do not
recommend the use of this methodology. I have included a short chapter
on repeated measures ANOVA only because this approach is still widely
used in some areas of application. Therefore, it is important to describe the
restrictive assumptions and shortcomings of this methodology.

Chapter 6 discusses the linear mixed model, the most recent approach
to the analysis of normally distributed repeated measurements. A natural
question is whether the older multivariate analysis methods described in
Chapters 3 and 4 are still necessary. First, the unstructured multivariate
analysis approaches based on Hotelling’s T 2 statistic, multivariate analysis
of variance, and growth curve analysis are valid methods of analysis when
repeated measurements are obtained at a fixed set of time points and there
are no missing data. Second, the classical methods described in Chapters 3
and 4 are often based on fewer assumptions than are considered in prac-
tical applications of linear mixed model methodology. Third, because the
unstructured multivariate analysis approaches are commonly used in some
areas of application, familiarity with them is desirable. A final comment
is that the simulation studies described in Section 6.5.3 indicate that the
unstructured multivariate test statistics may perform better in small and
moderate samples than the linear mixed model statistics. Thus, although
the methods of Chapter 6 are important, the unstructured multivariate
analysis approaches based on Hotelling’s T 2 statistic, multivariate analysis
of variance, and growth curve analysis are still often worthy of considera-
tion.
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When the outcome variable is categorical, the methods of Chapters 7–9
can be considered. Of these, the weighted least squares (WLS) methodology
of Chapter 7 and the methods based on extensions of generalized linear
model methodology (Chapter 9) are the most general approaches to the
analysis of repeated categorical outcomes. Although some might argue that
the methods of Chapter 9 are always to be preferred over the older WLS
approach, the methods of Chapter 7 are quite useful when the number of
repeated measurements is relatively small and all covariates are categorical.
In particular, the WLS approach can be used for analyzing a wide variety
of types of linear and nonlinear response functions and also provides a
lack-of-fit statistic for assessing the appropriateness of the chosen model.

The methods described in Chapter 9 can also be used to analyze contin-
uous repeated measurements when the marginal distribution at each time
point is a member of the exponential family of distributions, such as the
normal, gamma, and inverse Gaussian distributions. In particular, when
the response is approximately normally distributed, the methods in Chap-
ter 9 provide alternatives to the methods of Chapters 3–6 that may be
more robust to departures from assumptions. Wu et al. (2001) discuss the
relationships between the methods of Chapters 6 and 9 when the data are
normally distributed.

Section 9.8 describes methods appropriate for the analysis of ordered
categorical outcomes. These offer the advantage of being able to accom-
modate continuous covariates but require the restrictive proportional-odds
assumption. The WLS approach (Chapter 7) can fit more flexible models
to ordered categorical responses and also provides an overall goodness-of-fit
test. The disadvantages are that covariates must be categorical and that
the sample size must be quite large if any of (a) the number of levels of
the response variable, (b) the number of time points, or (c) the number of
levels of the cross-classification of the covariates is large.

Chapter 8 discusses the randomization model approach using Cochran–
Mantel–Haenszel (CMH) statistics. This methodology requires minimal as-
sumptions concerning the distribution of the response and can be used for
both continuous and categorical outcomes. In addition, CMH statistics are
applicable in situations where the sample size is too small to justify the use
of alternative approaches. The major shortcoming of this method is that it
is appropriate only for one-sample problems (i.e., when there are no covari-
ates). In addition, the randomization model approach provides procedures
for hypothesis testing only; it is not possible to estimate the parameters of
a model.

When the response variable is continuous but nonnormal, nonparametric
approaches (Chapter 10) may be the only reasonable option other than the
summary-statistic approach. In this case, the Chapter 10 approaches allow
one to consider the multivariate nature of the data rather than reducing the
multiple responses to a summary measure. The shortcomings include the
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lack of estimation procedures and the fact that the repeated measurements
nature of the data is not fully taken into account.
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