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Methods Based on

Generalized Linear Model Methodology

• Normal-theory methods may be inappropriate

• WLS and randomization model (CMH) methods

have shortcomings

• WLS allows only categorical covariates

• CMH useful only in one-sample problems

• Neither can be used in the general repeated

measures setting

• In the case of one response per subject:

• Classical linear models useful for normally-

distributed outcomes with constant variance

• Generalized linear models useful for both

categorical and continuous response variables

• Extensions of GLM methodology to the

repeated measurements setting are now available
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Univariate Generalized Linear Models

• Generalized linear models extend classical linear

models for independent normally-distributed

random variables with constant variance

• The term “generalized linear model” was first

introduced in a landmark paper by Nelder and

Wedderburn (1972, JRSS A)

• Wedderburn (1974, Biometrika) extended the

applicability by introducing quasi-likelihood

• A wide range of different problems of statistical

modeling and inference were put in an elegant

unifying framework:

• Analysis of variance

• Analysis of covariance

• Regression models for normal, binary, Poisson

outcomes, etc.
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Generalized Linear Models

• The unifying theory of generalized linear

models has impacted the way such statistical

methods are taught

• has provided greater insight into connections

between various statistical procedures

• has led to considerable further research

• McCullagh and Nelder (1989) provide a

comprehensive account of the theory and

applications of generalized linear models

• Dobson (1990) serves as an excellent

introduction to the subject
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A Simple Example

• Let Yi be a random response variable and let xi

denote an explanatory variable

• In the Gaussian linear model, we assume that

Yi = β0 + β1xi + σεi,

where ε1, . . . , εn are i.i.d. N(0, 1)

• An equivalent way of writing the model

is as Yi ∼ N(µi, σ
2), where Y1, . . . , Yn are

independent and µi = β0 + β1xi

• The objectives of this model are to:

• use the explanatory variable to characterize

the variation in the mean of the response

distribution across observational units

• learn about the relationship between the

explanatory variable and the response variable
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A Simple Example (continued)

• Frequently, interest lies in formulating

regression models for responses that have other

continuous or discrete distributions

• While the objective is to model the mean, it

often must be modeled indirectly via the use of

a transformation

• In the case of a single explanatory variable, the

model might be of the form g(µi) = β0 + β1xi

• The error distribution must also be generalized,

usually in a way which complements the choice

of the transformation g

• This leads to a very broad class of regression

models
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Components of a GLM

Generalized linear models have three components:

1. random component

identifies the response variable Y

assumes a specific probability distribution for Y

2. systematic component

specifies the explanatory variables used as

predictors in the model

3. link function

describes the functional relationship between

the systematic component and the expected

value (mean) of the random component

The GLM relates a function of the mean to

the explanatory variables through a prediction

equation having linear form
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The Random Component

• Let Y1, . . . , Yn be independent random variables

from the distribution

f(y; θ, φ) = exp
{yθ − b(θ)

a(φ)
+ c(y, φ)

}
,

for some specific functions a(·), b(·), and c(·)

If φ is known, this is an exponential-family

model with canonical parameter θ

It may or may not be a two-parameter

exponential family if φ is unknown

• Many common discrete and continuous

distributions are members of this general family

e.g., normal, gamma, binomial, Poisson

• Let l(θ, φ; y) denote the log-likelihood function

considered as a function of θ and φ:

l(θ, φ; y) = log
(
f(y; θ, φ)

)
=

yθ − b(θ)
a(φ)

+ c(y, φ)
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The Score Function

• It is convenient to find the mean and variance

of Y using properties of the score function

U =
∂

∂θ

[
l(θ, φ; y)

]

• To find the moments of U , we use the fact

that
∂

∂θ

[
log

(
f(y; θ, φ)

)]

=
1

f(y; θ, φ)
∂

∂θ

[
f(y; θ, φ)

] (1)

• Taking the expectation of both sides of (1)

yields
∫

∂

∂θ

[
log

(
f(y; θ, φ)

)]
f(y; θ, φ)dy

=
∫

∂

∂θ

[
f(y; θ, φ)

]
dy

(2)
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The Score Function

• Under certain regularity conditions, the right-

hand side of (2) is

∫
∂

∂θ

[
f(y; θ, φ)

]
dy =

∂

∂θ

[∫
f(y; θ, φ)dy

]

=
∂

∂θ

[
1
]

= 0,

since
∫

f(y; θ, φ)dy = 1

• Therefore, E(U) = 0

• Differentiating both sides of (2) with respect

to θ gives

∂

∂θ

[∫
∂

∂θ

[
log

(
f(y; θ, φ)

)]
f(y; θ, φ)dy

]

=
∂

∂θ

[∫
∂

∂θ

[
f(y; θ, φ)

]
dy

] (3)
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The Score Function

• Provided that the order of differentiation and

integration can be interchanged, the right-hand

side of (3) is

∂2

∂θ2

[∫
f(y; θ, φ)dy

]
= 0

and the left-hand side is
∫

∂

∂θ

[
∂

∂θ

[
log

(
f(y; θ, φ)

)]
f(y; θ, φ)

]
dy

=
∫ {

∂2

∂θ2

[
log

(
f(y; θ, φ)

)]
f(y; θ, φ)

+
∂

∂θ

[
log

(
f(y; θ, φ)

)] ∂

∂θ

[
f(y; θ, φ)

]}
dy

(4)

• From (1),

∂

∂θ

[
f(y; θ, φ)

]
= f(y; θ, φ)

∂

∂θ

[
log

(
f(y; θ, φ)

)]
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The Score Function

• The second term of (4) then simplifies to

∂

∂θ

[
log

(
f(y; θ, φ)

)]
f(y; θ, φ)

∂

∂θ

[
log

(
f(y; θ, φ)

)]

=
(

∂

∂θ

[
log

(
f(y; θ, φ)

)])2

f(y; θ, φ)

• Therefore, equation (3) becomes
∫

∂2

∂θ2

[
log

(
f(y; θ, φ)

)]
f(y; θ, φ)dy

+
∫ (

∂

∂θ

[
log

(
f(y; θ, φ)

)])2

f(y; θ, φ)dy = 0

or

E
[

∂2

∂θ2

[
log

(
f(y; θ, φ)

)]]

+ E
[(

∂

∂θ

[
log

(
f(y; θ, φ)

)])2]
= 0
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The Score Function

• In terms of the score function

U =
∂

∂θ

[
l(θ, φ; y)

]
,

we have E(U ′) + E(U2) = 0, where ′ denotes

differentiation with respect to θ

• Thus,

E(U) = 0

Var(U) = E(U2)− [E(U)]2 = E(U2)

= −E(U ′)

• The variance of U is called the information
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Mean and Variance of Y

• l(θ, φ; y) =
yθ − b(θ)

a(φ)
+ c(y, φ)

• U =
∂

∂θ

[
l(θ, φ; y)

]
=

y − b′(θ)
a(φ)

• E(Y ) = a(φ)E(U) + b′(θ) = b′(θ)

(since E(U) = 0)

• U ′ =
∂

∂θ

[y − b′(θ)
a(φ)

]
=
−b′′(θ)
a(φ)

• Since E(U2) = −E(U ′),

E
[(Y − b′(θ)

a(φ)

)2
]

=
b′′(θ)
a(φ)

and Var(Y ) = b′′(θ)a(φ)

• Note that the variance of Y is a product

of two functions
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Example: The Normal Distribution

• If Y ∼ N(µ, σ2),

f(y) =
1√

2πσ2
exp{−(y − µ)2/(2σ2)}

= exp
{
− 1

2σ2

(
y2 − 2yµ + µ2

)− 1
2

log(2πσ2)
}

= exp
{yµ− µ2/2

σ2
− 1

2

( y2

σ2
+ log(2πσ2)

)}

• In this case, θ = µ, φ = σ2, b(θ) = θ2/2,

and a(φ) = φ

• E(Y ) = b′(θ) = θ = µ

• Var(Y ) = b′′(θ)a(φ) = 1× φ = σ2

• The variance function is V (µ) = 1 and the

dispersion parameter is φ = σ2
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Example: The Poisson Distribution

• If Y ∼ P (µ),

f(y) = µy exp(−µ)/y!

= exp
{
y log(µ)− µ− log(y!)

}

= exp
{
y log(µ)− exp

(
log(µ)

)− log(y!)
}

• In this case, θ = log(µ), a(φ) ≡ 1, and

b(θ) = eθ

• E(Y ) = b′(θ) = eθ = µ

• Var(Y ) = b′′(θ)a(φ) = eθ = µ

• The variance function is V (µ) = µ and the

dispersion parameter is φ = 1



553

Example: The Binomial Distribution

• If Y ∼ B(n, p), then f(y) =
(

n

y

)
py(1− p)n−y

= exp
{

log
(

n

y

)
+ y log(p) + (n− y) log(1− p)

}

= exp
{

y log
( p

1− p

)
+ n log(1− p) + log

(
n

y

)}

• In this case, θ = log
(
p/(1− p)

)
and a(φ) ≡ 1

• Since n log(1− p) = −n log
( 1

1− p

)

= −n log
(
1 +

p

1− p

)
,

b(θ) = n log
(
1 + exp(θ)

)

• E(Y ) = b′(θ) = neθ/(1 + eθ) = np

• Var(Y ) = b′′(θ)a(φ) = neθ/(1 + eθ)2 = np(1− p)
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Systematic Component

• The systematic component of a GLM specifies

the explanatory variables

• These enter linearly as predictors on the right

hand side of the model equation

• Suppose that each Yi has an associated p × 1

vector of covariates xi = (xi1, . . . , xip)′

• The linear combination ηi = β0+β1xi1+· · ·+βpxip

is called the linear predictor

• Some {xj} may be based on others in the model,

e.g.,

• x3 = x1x2 allows for interaction between x1

and x2 in their effects on Y

• x3 = x2
1 allows for a curvilinear effect of x1
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Link Function

• The link between the random and systematic

components specifies how µ = E(Y ) relates to

the explanatory variables in the linear predictor

• One can model the mean µ directly, or model a

function g(µ) of the mean

• The model formula specifies that

g(µ) = β0 + β1x1 + · · ·βpxp

• The function g(·) is called the link function

• g(·) is a monotonic differentiable function

• The link function g(·) relates the linear

predictor ηi to the expected value µi of Yi

• Link functions that map the parameter space for

the mean to the real line are preferred in order

to avoid numerical difficulties in estimation
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Types of Link Functions

Identity link:

• The simplest link function has the form g(µ) = µ

• This models the mean directly

• The identity link specifies a linear model for the

mean response: µ = β0 + β1x1 + · · ·βpxp

• This is the form of an ordinary regression model

for a continuous response

Other links permit the mean to be nonlinearly

related to the predictors:

• g(µ) = log(µ) models the log of the mean

Appropriate when µ cannot be negative

A GLM with this link is called a loglinear model

• g(µ) = log(µ/(1− µ)) is called the logit link

Appropriate when µ is between 0 and 1

A GLM using this link is called a logit model
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Natural Parameters and Canonical Links

• Each probability distribution for the random

component has one special function of the mean

that is called its natural parameter

Normal: the mean itself

Poisson: the log of the mean

Bernoulli: logit of the success probability

• The link function that uses the natural

parameter as g(µ) is called the canonical link

Normal: g(µ) = µ

Poisson: g(µ) = log(µ)

Bernoulli: g(µ) = log
(
µ/(1− µ)

)

• Although other links are possible, the canonical

links are most common in practice

• Use of the canonical link function leads to

inference for β based solely on sufficient statistics
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Sufficient Statistics and Canonical Links

• Let Y1, . . . , Yn be indep. random variables with

f(yi; θi, φ) = exp
{yiθi − b(θi)

a(φ)
+ c(yi, φ)

}

• The log-likelihood for Y1, . . . , Yn is

l =
n∑

i=1

l(θi, φ; yi)

=
1

a(φ)

n∑

i=1

yiθi − 1
a(φ)

n∑

i=1

b(θi) +
n∑

i=1

c(yi, φ)

• If θi = ηi = g(µi) = x′iβ, the first term of l is

1
a(φ)

n∑

i=1

yix
′
iβ

• Let X = (x1, . . . , xn)′ denote the n× p matrix

of covariate values from all n subjects and let

Y = (Y1, . . . , Yn)′
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Sufficient Statistics and Canonical Links

• The p× 1 vector X ′Y with jth component
∑n

i=1 xijYi is a sufficient statistic for β

• η = θ is called the canonical link function

• The canonical links lead to desirable statistical

properties, particularly in small samples

• However, there is usually no a priori reason

why the systematic effects in a model should

be additive on the scale given by that link

• While it is convenient if effects are additive on

the canonical link scale, quality of fit should

be the primary model selection criterion.

• Fortunately, the canonical links are usually

quite sensible on scientific grounds
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Justification of Canonical Links

Normally-distributed responses:

• The identity link is plausible since both η and

µ can take any value on the real line

Poisson counts:

• Since µ > 0, the identity link is less attractive

(since η = x′iβ may be negative)

• Models for counts based on independence lead

naturally to multiplicative effects

• This is expressed by the log link η = log(µ)

Binary responses:

• Since 0 < µ < 1, the link should map the

interval (0,1) to the real line

• The logit function satisfies this requirement

and also leads to odds ratio interpretations
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Overview of Parameter Estimation

• The maximum likelihood estimates of the

parameter vector β can be obtained by

iterative weighted least squares

• The dependent variable is z rather than

y, where z is a linearized form of the link

function applied to y

• The weights are functions of the fitted

values µ̂

• The process is iterative because both the

adjusted dependent variable z and the

weight W depend on the fitted values, for

which only current estimates are available
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Parameter Estimation

• The log-likelihood for independent responses

Y1, . . . , Yn is

l =
n∑

i=1

li =
n∑

i=1

[
yiθi − b(θi)

a(φ)
+ c(yi, φ)

]

• Under certain regularity conditions, the global

maximum of l is the solution of
∂l

∂βj
= 0

• By the chain rule,
∂li
∂βj

=
∂li
∂θi

∂θi

∂µi

∂µi

∂ηi

∂ηi

∂βj

• First,
∂li
∂θi

=
yi − b′(θi)

a(φ)
=

yi − µi

a(φ)

• Since µi = b′(θi),

∂µi

∂θi
= b′′(θi) =

Var(Yi)
a(φ)

= V (µi)
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Parameter Estimation

• Since ηi =
∑p

j=1 xijβj ,
∂ηi

∂βj
= xij

• Therefore,

∂li
∂βj

=
yi − µi

a(φ)
a(φ)

Var(Yi)
∂µi

∂ηi
xij

=
(yi − µi)xij

Var(Yi)
∂µi

∂ηi

• Thus, the ML estimate of β = (β1, . . . , βp)′ is

the solution of the equations

Uj =
n∑

i=1

(yi − µi) xij

Var(Yi)
∂µi

∂ηi
= 0,

for j = 1, . . . , p

• In general, these equations are nonlinear and

must be solved numerically using iterative

methods
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ML Estimation using the

Newton-Raphson Method

• The multidimensional analog of Newton’s

method requires the p× p matrix of second

derivatives
∂2l

∂βj∂βk

• The mth approximation to β̂ is then given by

b(m) = b(m−1) −
[ ∂2l

∂βj∂βk

]−1

β=b(m−1)
× U (m−1)

•
[ ∂2l

∂βj∂βk

]
β=b(m−1)

is the matrix of second

derivatives of l evaluated at the estimate of β

from the (m− 1)st iteration

• U (m−1) is the vector of first derivatives of

l evaluated at the estimate of β from the

(m− 1)st iteration
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Score Function and Information Matrix

• Let Y1, . . . , Yn be independent random

variables whose probability distributions

depend on parameters θ1, . . . , θp, where p ≤ n

• Let li(θ; yi) denote the log-likelihood function

of Yi, where θ = (θ1, . . . , θp)′

• The log-likelihood function of Y1, . . . , Yn is

l(θ, y) =
∑n

i=1 li(θ; yi), where y = (y1, . . . , yn)′

• The total score with respect to θj is defined as

Uj =
∂l(θ; y)

∂θj
=

n∑

i=1

∂li(θ; yi)
∂θj

• By the same argument as for the univariate

case, E
[∂li(θ; yi)

∂θj

]
= 0 and so E(Uj) = 0
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Score Function and Information Matrix

• The information matrix I is defined as the

variance-covariance matrix of U = (U1, . . . , Up)′

• I = E
[
(U − E(U))(U − E(U))′

]
= E[UU ′] has

elements

Ijk = E[UjUk] = E
[ ∂li
∂θj

∂li
∂θk

]

• By an argument analogous to that used in the

univariate case

E
[ ∂li
∂θj

∂li
∂θk

]
= E

[
− ∂2li

∂θj∂θk

]

• Thus, the elements of the information matrix

are also given by

Ijk = E
[
− ∂2l

∂θj∂θk

]
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ML Estimation using the Method of Scoring

• An alternative to Newton-Raphson involves

replacing the matrix of second derivatives by

the matrix of expected values E
[ ∂2l

∂βj∂βk

]

• Since E
[ ∂2l

∂βj∂βk

]
= −E

[ ∂l

∂βj

∂l

∂βk

]
= −I, an

alternative iterative procedure is given by

b(m) = b(m−1) +
[I(m−1)

]−1
U (m−1),

where I(m−1) denotes the information matrix

evaluated at b(m−1)

• Multiplication of both sides of the above

equation by I(m−1) gives

I(m−1)b(m) = I(m−1)b(m−1) + U (m−1)
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ML Estimation using the Method of Scoring

• For generalized linear models, the (j, k)th

element of I is

Ijk = E
[

∂li
∂βj

∂li
∂βk

]

= E
[
(Yi − µi)xij

Var(Yi)
∂µi

∂ηi

(Yi − µi)xik

Var(Yi)
∂µi

∂ηi

]

= E
[
(Yi − µi)2 xij xik

[Var(Yi)]2
(∂µi

∂ηi

)2
]

=
xij xik

Var(Yi)

(∂µi

∂ηi

)2

• Thus, I = X ′WX, where W is the n× n

diagonal matrix with elements

wii =
1

Var(Yi)

(∂µi

∂ηi

)2
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ML Estimation using the Method of Scoring

• The iterative procedure can now be written as

X ′WXb(m) = X ′WXb(m−1) + U (m−1)

• The jth row of the p× n matrix X ′W is

(x1jw11, . . . , xnjwnn) =

(
x1j

Var(Y1)

(∂µ1

∂η1

)2

, . . . ,
xnj

Var(Yn)

(∂µn

∂ηn

)2
)

and the jth component of U is

Uj =
n∑

i=1

(yi − µi)xij

Var(Yi)
∂µi

∂ηi

• Now let v denote the n× 1 vector with ith

component (yi − µi)
∂ηi

∂µi
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ML Estimation using the Method of Scoring

• U (m−1) can now be written as X ′Wv(m−1)

and the iterative procedure becomes

X ′WXb(m) = X ′WXb(m−1) + X ′Wv(m−1)

= X ′Wz

• The n× 1 vector z has elements

zi = x′ib
(m−1) + (yi − µi)

∂ηi

∂µi
,

where µi and
∂ηi

∂µi
are evaluated at b(m−1)

• Provided that X ′WX has rank p, the vector

of parameter estimates is given by

b(m) = (X ′WX)−1X ′Wz
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Comments

• Normal equations are of the same form as for a

linear model fitted using weighted least squares

• However, since z and W depend on b, the

solution must be obtained iteratively

• The adjusted dependent variable zi can be

written as

η̂i + (yi − µ̂i)
∂ηi

∂µi
,

where the derivative of the link is evaluated at µ̂

• The first-order approximation to g(y) is

g(y) ≈ g(µ) + (y − µ)g′(µ) = η + (y − µ)
∂η

∂µ

• Thus zi is a linearized form of the link function

applied to the data
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ML Estimation for Canonical Links

• When the canonical link

ηi = θi =
p∑

j=1

xijβj = x′iβ

is used, then

∂µi

∂ηi
=

∂µi

∂θi
=

∂b′(θi)
∂θi

= b′′(θi)

• In this case,

∂li
∂βj

=
(yi − µi)xij

Var(Yi)

(∂µi

∂ηi

)

=
(yi − µi)xij

Var(Yi)
b′′(θi)

=
(yi − µi)xij

a(φ)
,

since Var(Yi) = b′′(θi)a(φ)
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ML Estimation for Canonical Links

• Thus, Uj =
∂l

∂βj
=

n∑

i=1

(yi − µi)xij

a(φ)
,

• The (j, k) component of the matrix of second

derivatives is

∂2l

∂βj∂βk
= −

n∑

i=1

xij

a(φ)

( ∂µi

∂βk

)

• Since these components do not depend on the

observations {Yi},

∂2l

∂βj∂βk
= E

[ ∂2l

∂βj∂βk

]

• Thus, the Newton-Raphson and Fisher scoring

algorithms are identical
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Quasi-Likelihood

• Most statisticians agree on the importance of

the likelihood function in statistical inference

• In order to construct a likelihood function,

we must know (or postulate) probability

distributions for random variables

• In some cases, there may be no theory

available on the specific random mechanism

by which the data were generated

• In other situations, the appropriate theoretical

probability distribution may be inadequate

• Another possibility is that the underlying

theoretical model may be too complicated to

permit parameter estimation and statistical

inference
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Quasi-Likelihood

• However, we may still have substantial

information about the data, such as:

• type of response (discrete, continuous, non-

negative, symmetric, skewed, etc.)

• whether or not the observations are

statistically independent

• how the variability of the response changes

with the average response

• the likely nature of the relationship

between the mean response and one or

more covariates

• In such situations, quasi-likelihood is a method

for statistical inference when it is not possible

to construct a likelihood function
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Quasi-Likelihood

• Let Y = (Y1, . . . , Yn)′ be a vector of

independent random variables with mean

vector µ = (µ1, . . . , µn)′

• Let β = (β1, . . . , βp)′ be a vector of unknown

parameters (p ≤ n)

• We will assume that the parameters of

interest, β, relate to the dependence of µ on

covariates x

• This will be denoted by the notation that Yi

has mean µi(β)

• We will also assume that Var(Yi) = φV (µi),

where V (·) is a known function and φ is a

possibly unknown scale parameter
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Quasi-Likelihood

• Thus, Var(Y ) = φV (µ), where

V (µ) = diag{V (µ1), . . . , V (µn)}

• It is important to note that:

• φ is assumed constant for all subjects and

does not depend on β

• Var(Yi) depends only on µi

(mathematically necessary, but also

physically sensible)

• It would be permissible to have

Var(Yi) = φ Vi(µi)

i.e., a possibly different functional

relationship for each observation
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Construction of Quasi-Likelihood Function

• Consider the random variable Ui =
Yi − µi

φV (µi)

• Ui has the following properties in common

with a log-likelihood derivative:

E(Ui) = 0,

Var(Ui) = E(U2
i ) =

E[(Yi − µi)2]
[φV (µi)]2

=
1

φV (µi)
,

E
(∂Ui

∂µi

)
= E

[−φV (µi)− (Yi − µi)φV ′(µi)
[φV (µi)]2

]

= − 1
φV (µi)

= −Var(Ui)

• Most first-order asymptotic theory connected

with likelihood functions is founded on the

above three properties
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Construction of Quasi-Likelihood Function

• Thus, it should not be surprising that the

integral

Q(µi; yi) =
∫ µi

yi

yi − t

φ V (t)
dt,

if it exists, should behave like a log-likelihood

function for µi

• We refer to Q(µi; yi) as the quasi-likelihood

for µi based on data yi

(more correctly, as the log quasi-likelihood)

• Since the components of Y are independent,

the quasi-likelihood for the complete data is

Q(µ; y) =
n∑

i=1

Q(µi; yi)
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Example: The Normal Distribution

• If Y ∼ N(µ, σ2), then V (µ) = 1 and φ = σ2

• In this case, U =
Y − µ

σ2

• The quasi-likelihood function is

Q(µ, y) =
∫ µ

y

y − t

σ2
dt

=
1
σ2

[
yt− t2

2

]µ

y

=
1
σ2

[
yµ− µ2

2
− y2 +

y2

2

]

=
1

2σ2

[
2yµ− µ2 − y2

]

= − (y − µ)2

2σ2

• This is equivalent to the log likelihood for

N(µ, σ2)
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Example: The Poisson Distribution

• If Y ∼ P (µ), then V (µ) = µ and φ ≡ 1

• In this case, U =
Y − µ

µ

• The quasi-likelihood function is

Q(µ, y) =
∫ µ

y

y − t

t
dt

=
∫ µ

y

(y

t
− 1

)
dt

=
[
y log(t)− t

]µ

y

= y log(µ)− µ− y log(y) + y

• In comparison, the log likelihood for P (µ) is

y log(µ)− µ− log(y!)
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Example: The Bernoulli Distribution

• If Y ∼ B(1, p), then µ = p, V (µ) = µ(1 − µ)

and φ ≡ 1

• In this case, U =
Y − p

p(1− p)

• The quasi-likelihood function is

Q(p, y) =
∫ p

y

y − t

t(1− t)
dt

=
∫ p

y

[y

t
+

y − 1
1− t

]
dt

=
[
y log(t)− (y − 1) log(1− t)

]p

y

= y log
( p

1− p

)
+ log(1− p)− f(y)

• In comparison, the log likelihood for B(1, p) is

y log
( p

1− p

)
+ log(1− p) + log

(
1
y

)
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QL Estimating Equations

• If we treat the quasi-likelihood function as if it

were a “true” log likelihood, the estimate of βj

satisfies the equation

0 =
∂Q(µ; y)

∂βj

=
n∑

i=1

∂Q(µi; yi)
∂βj

=
n∑

i=1

∂Q(µi; yi)
∂µi

(∂µi

∂βj

)

=
n∑

i=1

yi − µi

φV (µi)

(∂µi

∂βj

)
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QL Estimating Equations

• In terms of matrices and vectors, let

y(n×1) = (y1, . . . , yn)′

µ(n×1) = (µ1, . . . , µn)′

V(n×n) = diag{V (µ1), . . . , V (µn)}

D(n×p) =
(∂µ

∂β

)
,

where the (i, j) component of D is
∂µi

∂βj

• The QL estimating equation is U(β̂) = 0,

where

U(β) = D′V −1(y − µ)/φ

• U(β) is called the quasi-score function
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QL Estimating Equations

• The covariance matrix of U(β), which is also

the negative expected value of
∂U(β)

∂β
, is

I = D′V −1D/φ

• For QL functions, the matrix I plays the same

role as the Fisher information for ordinary

likelihood functions

• In particular, the asymptotic covariance

matrix of β̂ is

Var(β̂) = I−1 = φ(D′V −1D)−1

• Consistency, asymptotic normality, and

optimality are discussed by McCullagh (1983)
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QL Estimation of β

• Beginning with an arbitrary estimate b(0)

sufficiently close to β, the sequence of

parameter estimates generated by the Newton-

Raphson method with Fisher scoring is

b(m) = b(m−1) +
[I(m−1)

]−1
U (m−1)

= b(m−1) +
{[

φ(D′V −1D)−1
]

× [
D′V −1(y − µ)/φ

]}

= b(m−1) + (D′V −1D)−1D′V −1(y − µ),

where µ, D and V are evaluated at µ(m−1)

• An important property of the estimation

procedure is that it does not depend on the

value of φ
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QL Estimation of φ

• In the above respects, the quasi-likelihood

behaves just like an ordinary log likelihood

• The one exception is in the estimation of φ

• The conventional estimator of φ is a moment

estimator based on the residual vector y − µ̂,

namely

φ̂ =
1

n− p

n∑

i=1

(yi − µ̂i)2

V (µ̂i)
=

X2

n− p

• X2 is the generalized Pearson statistic
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Comparison Between Quasi-Likelihood

and Generalized Linear Models

• The random component of a GLM assumes a

specific distribution for the response Yi

• Quasi-likelihood assumes only a form for the

functional relationship between the mean and

the variance

• The QL estimating equations for β are

n∑

i=1

yi − µi

φV (µi)

(∂µi

∂βj

)
= 0, j = 1, . . . , p

• The likelihood equations for generalized linear

models are

n∑

i=1

(yi − µi)xij

Var(Yi)

(∂µi

∂ηi

)
= 0, j = 1, . . . , p
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Comparison Between Quasi-Likelihood

and Generalized Linear Models

• Since
∂µi

∂βj
=

∂µi

∂ηi

∂ηi

∂βj
=

∂µi

∂ηi
xij ,

and

Var(Yi) = φV (µi),

the QL estimating equations have the same

form as the GLM likelihood equations

• However, QL estimators make only second-

moment assumptions about the distribution

of {Yi}, rather than full distributional

assumptions

• Quasi-likelihood can also be motivated in

terms of least squares
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Characteristics of Methods Based on

Generalized Linear Model Methodology

• Useful for discrete and continuous outcomes

• normal, Poisson, binomial & gamma responses

• generalizations for ordered categorical data

• No. of repeated measurements per experimental

unit need not be constant

• Measurement times need not be the same across

subjects

• Covariates may be discrete or continuous, time-

independent or time-dependent

• Missing data (MCAR) can be accommodated

• Three types of extensions:

• Marginal models

• Random effects models

• Transition models
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Marginal Models

• The marginal expectation µij = E(yij) is

modelled as a function of explanatory variables

• marginal expectation: the average response
over the subpopulation that shares a
common value of the covariate vector

• Associations among repeated observations are

modelled separately

• The assumptions are as follows:

a. g(µij) = x′ijβ, where x′ij = (xij1, . . . , xijp)

b. Var(yij) = φ V (µij)

• V is a known variance function

• φ is a possibly unknown scale parameter

c. The covariance between yij and yij′ is a

known function of µij , µij′ , and a vector

of unknown parameters α
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Random Effects Models

• Heterogeneity between individuals is accounted

for by subject-specific random effects

• These are assumed to account for all of the

within-subject correlation present in the data

• Conditional on the values of the random effects,

the responses are assumed to be independent

• The assumptions are as follows:

a. g
(
E(yij | bi)

)
= x′ijβ + z′ijbi

• bi is a vector of subject-specific effects

• zij is a vector of covariates

b. yi1, . . . , yiti are independent given bi, for

each i = 1, . . . , n

c. b1, . . . , bn are i.i.d. with density f
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Transition Models

• yi1, . . . , yiti
are correlated because yij is explicitly

influenced by past values yi1, . . . , yi,j−1

• The past outcomes are treated as additional

predictor variables

• Conditional expectation of current response,

given past responses, is assumed to follow a GLM

• The linear predictor includes:

• original covariates

• additional covariates which are known

functions of past responses

• The model is

g
(
E(yij | yi1, . . . , yi,j−1)

)
= x′ijβ

+
s∑

r=1

fr(yi1, . . . , yi,j−1;α1, . . . , αs)
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Comparison of the Three Approaches

• In the linear model case, the three approaches

can be formulated to have regression coefficients

with the same interpretation

(coefficients from random effects and transition

models can have marginal interpretations)

• Categorical outcome variables, however, require

nonlinear link functions

• In this case, the three approaches give different

interpretations for the regression coefficients

Transition Model:

• Expresses the conditional mean of yij as a

function of covariates and of past responses

• Difficult to formulate models so that β has the

same meaning for different assumptions about

the time dependence
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Comparison of the Three Approaches

Random Effects Model:

• A “subject-specific” (“cluster-specific”) approach

• Heterogeneity among individuals is explicitly

modelled using individual-specific effects

• Regression coefficients have interpretations in

terms of the influence of covariates on both:

• an individual’s response

• the average response of the population

Marginal Model:

• A “population-averaged” approach

• Appropriate when inferences about the

population average are the focus

• Scientific objectives are to characterize and

contrast populations of subjects
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Comparison of the Three Approaches

• Marginal models model the effects of covariates

on the marginal expectations

(A model for the association among observations

from each subject must also be specified)

• Random effects and transition models model the

covariate effects and within-subject associations

through a single equation

• In a clinical trial, marginal models are likely to

be most appropriate

(since the average difference between control

and treatment is generally most important)

• In addition, software for fitting marginal models

is more widely available
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The GEE Method

• GEE: generalized estimating equations

(Liang & Zeger, 1986; Zeger & Liang, 1986)

• An extension of quasi-likelihood to longitudinal

data analysis

• The method is semi-parametric in that the

estimating equations are derived without full

specification of the joint distribution of a

subject’s observations

• Instead, we specify only the:

• likelihood for the (univariate) marginal

distributions

• “working” covariance matrix for the vector of

repeated measurements from each subject

• Often referred to now as GEE1

(to distinguish it from more recent extensions)
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The GEE Method

• The GEEs have consistent and asymptotically

normal solutions, even with misspecification of

the time dependence

• The method avoids the need for multivariate

distributions by only assuming a functional

form for the marginal distribution at each

time point

• The covariance structure is treated as a

nuisance

• It relies on the independence across subjects

to estimate consistently the variance of the

regression coefficients (even when the assumed

correlation is incorrect)
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Advantages of GEE

• Feasible in many situations where maximum

likelihood approaches are not, since the full

multivariate distribution of the response

vector is not required

• For example, five binary responses per

subject gives a multinomial distribution

with 25 − 1 = 31 independent parameters

• With GEE, only the five marginal

probabilities and at most 5× 4/2 = 10

correlations are estimated

• Efficiency loss relative to maximum likelihood

is often minimal

• Continuous and categorical independent

variables can be handled (unlike WLS)
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Outline of the GEE Method

a. Relate the marginal response µij = E(yij) to a

linear combination of the covariates:

g(µij) = x′ij β

• yij is the response for subject i at time j

• xij = (xij1, . . . , xijp)′ is the corresponding

p× 1 vector of covariates

• β = (β1, . . . , βp)′ is a p×1 vector of unknown

parameters

• g(·) is the link function

b. Describe the variance of yij as a function of the

mean:

Var(yij) = V (µij)φ

• V (·) is the variance function

• φ is a possibly unknown scale parameter
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Link and Variance Functions

• Normally-distributed response:

g(µij) = µij ,

V (µij) = 1,

Var(yij) = φ

• Binary response:

g(µij) = log
(
µij/(1− µij)

)
,

V (µij) = µij(1− µij),

φ ≡ 1

• Poisson response:

g(µij) = log(µij),

V (µij) = µij ,

φ ≡ 1
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Outline of the GEE Method

c. Choose the form of a ti× ti ‘working’ correlation

matrix Ri(α) for each yi = (yi1, . . . , yiti)
′

• The (j, j′) element of Ri(α) is the known,

hypothesized, or estimated correlation

between yij and yij′

• This working correlation matrix may depend

on a vector of unknown parameters α, which

is the same for all subjects

• Although this correlation matrix can differ

from subject to subject, we commonly use

a working correlation matrix R(α) that

approximates the average dependence among

repeated observations over subjects
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Comments on “Working” Correlation Models

• We should choose the form of R to be

consistent with the empirical correlations

• R is called a working correlation matrix

because with non-normal responses, the actual

correlation among a subject’s outcomes may

depend on the mean values, and hence on x′ijβ

• The GEE method yields consistent estimates of

the regression coefficients and their variances,

even with misspecification of the structure of

the covariance matrix

• In addition, the loss of efficiency from an

incorrect choice of R is inconsequential when

the number of subjects is large
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“Working” Correlation Models

Independence: R = I

• When n >> t, the correlation influence is often

small enough so that ordinary least-squares

regression coefficients are nearly efficient

• However, correlation may have a substantial

effect on the estimated variances

• These considerations suggest the independence

working model with R = I

• Solving the GEE is the same as fitting the

usual regression models for independent data

• Hence, one can use available software to obtain

parameter estimates
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“Working” Correlation Models

Completely-specified: R = R0

• Choosing R0 close to the true (unknown)

correlation gives increased efficiency

• Unfortunately, the choice is usually not obvious

Exchangeable: Rjj′ = α

• This is the correlation structure assumed in a

random effects model

AR-1: Rjj′ = α|j−j′|

• for normally-distributed yij , the correlation

structure of the continuous time analogue of

the first-order autoregressive process
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“Working” Correlation Models

Stationary m-dependent:

Rjj′ =
{

α|tj−tj′ | if |tj − tj′ | ≤ m
0 if |tj − tj′ | > m

,

where tj is the jth observation time

Unspecified: Rjj′ = αjj′

• In this case, there are t(t− 1)/2 parameters to

be estimated

• Most efficient, but useful only when there are

relatively few observation times

• In addition, the occurrence of missing data

complicates estimation of R

• The estimate obtained using nonmissing data

is not guaranteed to be positive definite
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Choosing a Working Correlation Matrix

• Nature of the problem may suggest a structure:

• Repeated measurements over time

• Autoregressive, unstructured

• Individuals within families (clustered data)

• Exchangeable

• When the number of experimental units is large

and the cluster sizes are small, the choice of R

often has little impact on the estimation of β

• Independence model may suffice

• When there are many repeated measurements

per experimental unit, modeling the correlation

structure may result in increased efficiency

• Consideration of alternative working correlation

structures may be useful
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Generalized Estimating Equation

• Ai is a ti × ti diagonal matrix with V (µij) as

the jth diagonal element

• Ri(α) is the ti × ti “working” correlation

matrix for the ith subject

• The working covariance matrix for

yi = (yi1, . . . , yiti)
′ is

Vi(α) = φA
1/2
i Ri(α) A

1/2
i

• The GEE estimate of β is the solution of

U(β) =
n∑

i=1

(∂µi

∂β

)′[
Vi(α̂)

]−1(yi − µi) = 0p,

where α̂ is a consistent estimate of α and 0p is

the p× 1 vector (0, . . . , 0)′
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Solving the GEE

• Iterate between quasi-likelihood methods

for estimating β and a robust method for

estimating α as a function of β

1. Given current estimates of Ri(α) and φ,

calculate an updated estimate of β using

iteratively reweighted least squares

2. Given the estimate of β, calculate

standardized residuals

rij =
yij − µ̂ij√

[Vi]jj

3. Use the residuals rij to consistently

estimate α

4. Repeat steps 1.–3. until convergence



610

Robust Variance Estimate

• One approach to estimating the variance-

covariance matrix of β̂ would be to use the

inverse of the Fisher information matrix:

Var(β̂) = M−1
0 ,

where

M0 =
n∑

i=1

(∂µ̂i

∂β

)′
V −1

i

(∂µ̂i

∂β

)

and Vi = Vi(α̂)

• This is called the “model-based” estimator of

Var(β̂)

• Will not provide a consistent estimator of

Var(β̂) unless the underlying model is correct

• Royall (1986)
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Robust Variance Estimate

• Liang and Zeger (1986) recommend the

estimator

Var(β̂) = M−1
0 M1 M−1

0 ,

where M1 is given by

n∑

i=1

(∂µ̂i

∂β

)′
V −1

i (yi − µ̂i) (yi − µ̂i)′ V −1
i

(∂µ̂i

∂β

)

• This estimator was defined by Royall (1986)

• known as the “robust” or “information

sandwich” estimator

• a consistent estimator of Var(β̂) even if Ri(α)

is not the true correlation matrix of yi

• If the true correlation structure is correctly

modeled, then the robust variance estimator

reduces to the model-based estimator
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Example

• A randomized, double-blind clinical trial of

a new source of botulinum toxin Type A in

75 patients with spasmodic torticollis

• sponsored by an English company

• conducted and first analyzed in Germany

• considered for purchase by a U.S. company

• Patients previously untreated with botulinum

toxin were randomized to one of four groups:

• placebo (n = 20)

• 250 units of botulinum toxin A (n = 19)

• 500 units of botulinum toxin A (n = 18)

• 1000 units of botulinum toxin A (n = 18)

• Following a single injection, patients were

evaluated at weeks 2, 4, and 8
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Example (continued)

• One of the primary outcome variables was a

clinical global rating (CGR)

• 1=symptom free or mild symptoms

• 0=moderate or severe symptoms

• Covariates of interest include:

• treatment group (0, 250, 500, 1000 units)

• age (range: 26-82 years, mean: 47 years)

• sex (39 males, 36 females)

• week (2, 4, 8)

• With six exceptions, the data are complete:

• two patients (both in the 500 unit group)

have no follow-up data

• one patient (1000 unit) missing at week 2

• one patient (1000 unit) missing at week 4

• two patients (both placebo) missing at week 8
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Clinical Global Ratings

(0=poor, 1=good)

ID Group Age Sex Wk. 2 Wk. 4 Wk. 8

1 Plac. 82 F 0 0 0
2 500 41 F 0 0 0
3 250 62 F 0 0 1
4 1000 63 M 0 0 1
5 500 40 M 1 1 1
6 250 43 F 1 1 1
7 1000 56 F 0 0 0
8 Plac. 48 F 0 0 0
9 1000 34 F 0 1 1
10 500 35 M 0 0 0
11 Plac. 27 M 0 0 0
12 250 39 F 1 1 1
13 1000 54 M 0 0 0
14 500 52 F . . .
15 Plac. 48 M 0 0 0
16 250 55 M 0 0 0
17 1000 79 M 1 0 0
18 250 42 M 0 0 0
19 Plac. 36 M 0 0 .
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Clinical Global Ratings (continued)

(0=poor, 1=good)

ID Group Age Sex Wk. 2 Wk. 4 Wk. 8

20 500 26 F 1 1 1
21 1000 60 F 1 1 1
22 Plac. 48 F 0 0 0
23 250 50 F 0 0 0
24 500 29 M 1 0 1
25 1000 44 F 0 1 0
26 500 41 F 0 0 0
27 Plac. 50 M 0 0 0
28 250 53 M 0 1 0
29 250 45 M 0 1 0
30 Plac. 42 M 0 0 0
31 1000 63 F 1 1 1
32 500 47 M 0 0 0
33 1000 36 F 1 1 0
34 250 29 F 1 0 0
35 Plac. 54 M 1 1 1
36 250 44 F 0 0 0
37 1000 55 M 0 0 0
38 500 34 F 1 1 1
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Clinical Global Ratings (continued)

(0=poor, 1=good)

ID Group Age Sex Wk. 2 Wk. 4 Wk. 8

39 Plac. 52 M 0 0 0
40 Plac. 48 M 0 0 0
41 250 58 M 0 0 0
42 500 57 F 0 0 0
43 1000 43 M 1 1 1
44 250 46 F 0 0 0
45 500 33 M 0 0 1
46 Plac. 39 F 0 0 0
47 1000 53 F 0 0 1
48 250 51 M 0 0 0
49 500 72 F 0 1 0
50 1000 41 F 0 . 1
51 Plac. 36 M 0 0 1
52 500 53 F 0 1 1
53 250 50 M 0 0 0
54 1000 64 M 0 0 0
55 Plac. 49 M 1 1 .
56 250 29 M 0 0 0
57 Plac. 51 M 0 0 0
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Clinical Global Ratings (continued)

(0=poor, 1=good)

ID Group Age Sex Wk. 2 Wk. 4 Wk. 8

58 1000 46 M . 1 1
59 500 53 M . . .
60 250 42 F 1 1 1
61 Plac. 30 F 0 0 0
62 250 46 M 1 1 0
63 1000 49 M 0 0 0
64 Plac. 33 M 0 0 0
65 500 66 F 1 1 1
66 500 37 M 1 1 1
67 1000 36 F 1 1 0
68 Plac. 49 F 0 0 0
69 500 35 F 1 1 1
70 1000 37 F 1 1 1
71 250 39 F 1 0 0
72 Plac. 46 M 0 0 0
73 Plac. 53 F 1 0 0
74 250 59 M 0 0 0
75 500 55 M 0 1 0
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Analysis Issues

Type of model (marginal, transitional, etc.):

• Marginal models appropriate when inferences

about average response in subpopulation sharing

common covariate vector value are the focus

• Reasonable considering the goals of a clinical

trial (since average difference between

treatments is generally most important)

Type of working correlation structure:

• Unspecified model is appropriate

• only three time points, so only 3 parameters

• data are nearly complete

• Independence and exchangeable working

correlation structures can also be considered

Response variable:

• Logit of the probability of a good response

• Binomial variance function
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Notation

• n = 75 subjects (clusters)

• ti = 3 observations per subject

• Yij is the response from the ith subject at the

jth time point, for i = 1, . . . , 75, j = 1, . . . , 3

Yij =
{

1 if CGR is “good”
0 if CGR is “poor”

• xij = (xij1, . . . , xijp)′ is a p× 1 vector of

covariates for subject i at time j

• The regression model is

log
( µij

1− µij

)
= x′ijβ,

where µij = E(Yij) and β = (β1, . . . , βp)′ is a

p× 1 vector of unknown parameters
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Covariates

• xij1 = 1 xij2 = age xij3 =
{

1 if male
0 if female

• xij4 =
{

1 250 units
0 otherwise

xij5 =
{

1 500 units
0 otherwise

• xij6 =
{

1 1000 units
0 otherwise

xij7 =





0 placebo
1 250 units
2 500 units
4 1000 units

• xij8 =
{

1 if j = 2
0 otherwise

xij9 =
{

1 if j = 3
0 otherwise

• xij,10 = xij2 xij8 xij,11 = xij2 xij9

• xij,12 = xij3 xij8 xij,13 = xij3 xij9

• xij,14=xij4 xij8 xij,15=xij5 xij8 xij,16=xij6 xij8

• xij,17=xij4 xij9 xij,18=xij5 xij9 xij,19=xij6 xij9
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SAS Data Step Statements

data a; infile ’example.dat’;
input subject dose age sex wk2 wk4 wk8;
dose=int(dose/250+0.001);
dosesq=dose*dose;
dosecu=dose*dosesq;
dose2=(dose=1);
dose3=(dose=2);
dose4=(dose=4);
male=(sex=1);
week=2; rating=wk2; week4=0; week8=0;
output;
week=4; rating=wk4; week4=1; week8=0;
output;
week=8; rating=wk8; week4=0; week8=1;
output;
data a; set a;
age4=age*(week=4); age8=age*(week=8);
male4=male*(week=4); male8=male*(week=8);
dose24=dose2*(week=4);
dose28=dose2*(week=8);
dose34=dose3*(week=4);
dose38=dose3*(week=8);
dose44=dose4*(week=4);
dose48=dose4*(week=8);
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Model 1

Age, sex, dose (3 parameters), week (2 parameters),

wk. 4 & 8 incremental effects of age (2 parameters),

sex (2 parameters), and dose (6 parameters)

• 18 regression parameters (including intercept)

• Focus is on assessing differential effects of age,

sex, and dose at weeks 2, 4, and 8

• The SAS statements are:

proc genmod data=a;
class subject;
model rating=age age4 age8 male male4 male8
dose2 dose3 dose4 dose24 dose28 dose34
dose38 dose44 dose48 week4 week8 / dist=bin;

repeated subject=subject
/ type=unstr corrw covb sorted;

make ’geeemppest’ out=estimate;
make ’geercov’ out=cov noprint;
make ’classlevels’ out=junk1 noprint;
make ’parminfo’ out=junk2 noprint;
make ’modfit’ out=junk3 noprint;
make ’geencov’ out=junk4 noprint;
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Model 1 (continued)

• Wald tests of the joint significance of sets of

parameters can be computed using PROC IML

proc iml; use estimate;
read all var{estimate}

where(parm ne "Scale") into estimate;
use cov; read all into cov; n=nrow(cov);
do i=2 to n; im1=i-1; do j=1 to im1;
cov[i,j]=cov[j,i]; end; end;
col={"Chi-square" "df" "p-value"};
print "Age X Week Interaction";
x=estimate[3:4,1]; print x;
var=cov[3:4,3:4]; print var;
df=nrow(x); q=x‘*inv(var)*x;
pvalue=1-probchi(q,df);
result=q :: df :: pvalue;
print result [colname=col format=7.3];
print "Sex X Week Interaction";
x=estimate[6:7,1]; print x;
var=cov[6:7,6:7]; print var;
df=nrow(x); q=x‘*inv(var)*x;
pvalue=1-probchi(q,df);
result=q :: df :: pvalue;
print result [colname=col format=7.3];

...
quit;
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Results from Model 1

• Wald tests of the interaction effects are:

Effect Chi-square df p-value

Age × Week 0.36 2 0.8
Sex × Week 0.12 2 0.9
Dose × Week 5.00 6 0.5
All Interactions 5.98 10 0.8

• The results obtained from the independence

and exchangeable working correlation structures

were similar

• Since model 1 has a large number of parameters

relative to the number of observations, separate

models with main effects and only one of the

interaction effects were also considered

• In each of these models, there was also no

evidence of interactions with week
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Model 2

Age, sex, dose (3 parameters), week (2 parameters)

• Eight regression parameters (with intercept)

• Two parameterizations are used:

• Indicator variables for dose

• Linear, quadratic, and cubic dose

• The SAS statements are:

proc genmod data=a;
class subject;
model rating=age male dose2 dose3 dose4

week4 week8 / dist=bin;
repeated subject=subject

/ type=unstr corrw covb sorted;

proc genmod data=a;
class subject;
model rating=age male dose dosesq dosecu

week4 week8 / dist=bin;
repeated subject=subject

/ type=unstr corrw covb sorted;
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Model 2 (continued)

• Multiple degree of freedom contrasts were also

tested using PROC IML

• Wald tests of interest:

Effect Chi-square df p-value

Age 3.45 1 0.06
Sex 2.31 1 0.13
Age and Sex 6.58 2 0.04
Dose 9.88 3 0.02
250 vs placebo 1.62 1 0.20
500 vs placebo 6.60 1 0.01

1000 vs placebo 6.86 1 0.01
Nonlinear dose 3.05 2 0.22
Week 0.56 2 0.76

• Similar results were obtained from independence

and exchangeable working correlation structures

• Since the week effect is nonsignificant, these two

terms will first be omitted
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Model 3

Age, sex, three dose parameters

• Six regression parameters (with intercept)

• Two parameterizations are used:

• Indicator variables for dose

• Linear, quadratic, and cubic dose

• The SAS statements are:

proc genmod data=a;
class subject;
model rating=age male

dose2 dose3 dose4 / dist=bin;
repeated subject=subject

/ type=unstr corrw covb sorted;

proc genmod data=a;
class subject;
model rating=age male

dose dosesq dosecu / dist=bin;
repeated subject=subject

/ type=unstr corrw covb sorted;
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Model 3 (continued)

• Multiple df contrasts were also tested

• The results from this model are:

Wald Tests

Effect Chi-square df p-value

Age 3.42 1 0.06
Sex 2.44 1 0.12
Age and Sex 6.69 2 0.03
Dose 9.80 3 0.02
250 vs placebo 1.48 1 0.22
500 vs placebo 6.36 1 0.01

1000 vs placebo 6.80 1 0.01
Nonlinear dose 2.82 2 0.24

Regression Coefficient

Covariate Estimate S.E. Odds Ratio

Age −0.03 0.02 0.97
Male gender −0.66 0.42 0.52
250 units 0.88 0.73 2.42
500 units 1.88 0.74 6.53

1000 units 1.91 0.73 6.77
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Model 4

Age, sex, linear dose

proc genmod data=a; class subject;
model rating=age male dose / dist=bin;
repeated subject=subject

/ type=unstr corrw covb sorted;
make ’geeemppest’ out=estimate;
make ’geercov’ out=cov noprint;
make ’classlevels’ out=junk1 noprint;
make ’parminfo’ out=junk2 noprint;
make ’modfit’ out=junk3 noprint;
make ’geencov’ out=junk4 noprint;
proc iml;
use estimate; read all var{estimate}

where(parm ^= "Scale") into estimate;
use cov; read all into cov; n=nrow(cov);
do i=2 to n; im1=i-1; do j=1 to im1;
cov[i,j]=cov[j,i]; end; end;
col={"Chi-square" "df" "p-value"};
print "Age and Sex";
x=estimate[2:3,1]; print x;
var=cov[2:3,2:3]; print var;
df=nrow(x); q=x‘*inv(var)*x;
pvalue=1-probchi(q,df);
result=q :: df :: pvalue;
print result [colname=col format=7.3];
quit;
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Results from Model 4

Wald Tests

Effect Chi-square df p-value

Age 3.83 1 0.050
Sex 2.62 1 0.105
Age and Sex 7.22 2 0.027
Linear dose∗ 9.30 1 0.002

Regression Coefficient

Covariate Estimate S.E. Odds Ratio

Age −0.03 0.02 0.97
Male gender −0.70 0.43 0.50
Linear dose∗ 0.44 0.14 1.55

∗
0=placebo, 1=250 units, 2=500 units, 4=1000 units

• Odds of a good response:

• decrease as age increases

• lower for males than females

• increase as dose increases
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Comments on the Analysis

• In model 3, the test of nonlinearity of the dose

effect is not significant

• chi-square=2.82 with 2 df, p=0.24

• However, parameter estimates of the effects for

the two highest doses (500, 1000 units) are:

• nearly identical

• twice as large as those for the 250 unit dose

(1.88 and 1.91, respectively, versus 0.88)

• Thus, the model with indicator effects for

dosage may be most appropriate

• The results that follow are based on model 3

parameterized with indicator dosage effects
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Effect of Working Correlation Structure

Regression CoefficientWorking
Covariate Correlation Est. S.E. z

Age Unspecified −0.0285 0.0154 −1.85
Exchangeable −0.0281 0.0152 −1.85
Independence −0.0285 0.0153 −1.86

Male sex Unspecified −0.6627 0.4239 −1.56
Exchangeable −0.6707 0.4244 −1.58
Independence −0.7221 0.4262 −1.69

250 units Unspecified 0.8819 0.7254 1.22
Exchangeable 0.9022 0.7322 1.23
Independence 0.9850 0.7325 1.34

500 units Unspecified 1.8757 0.7440 2.52
Exchangeable 1.8465 0.7492 2.46
Independence 1.9294 0.7508 2.57

1000 units Unspecified 1.9122 0.7334 2.61
Exchangeable 1.9026 0.7402 2.57
Independence 1.9614 0.7393 2.65
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Working Correlation Matrices from

Model with Age, Sex, and Dose Indicators

• Unspecified working correlation structure:




1.00 0.61 0.39
0.61 1.00 0.41
0.39 0.41 1.00




• Exchangeable working correlation structure:




1.00 0.54 0.54
0.54 1.00 0.54
0.54 0.54 1.00




• Independence working correlation structure:




1.00 0.00 0.00
0.00 1.00 0.00
0.00 0.00 1.00



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Comparison with Univariate Analyses

Regression Coefficient
Covariate Model Est. S.E. z

Age GEE −0.029 0.015 −1.85
Week 2 −0.034 0.025 −1.37
Week 4 −0.020 0.024 −0.81
Week 8 −0.034 0.025 −1.33

Male sex GEE −0.663 0.425 −1.56
Week 2 −0.824 0.551 −1.50
Week 4 −0.737 0.547 −1.35
Week 8 −0.650 0.567 −1.15

250 units GEE 0.882 0.725 1.22
Week 2 0.893 0.819 1.09
Week 4 1.359 0.906 1.50
Week 8 0.708 0.953 0.74

500 units GEE 1.876 0.744 2.52
Week 2 1.300 0.824 1.58
Week 4 2.314 0.910 2.54
Week 8 2.220 0.918 2.42

1000 units GEE 1.912 0.733 2.61
Week 2 1.379 0.842 1.64
Week 4 2.348 0.918 2.56
Week 8 2.187 0.921 2.37
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Comment

• Disadvantages of Wald statistics for testing

hypotheses about individual parameters or

sets of parameters

• Dependent on the measurement scale

• Require estimation of the covariance matrix

(unstable if number of clusters is small and

cluster size is large)

• With n=75 and ti=3, their performance may

be satisfactory

• Rotnitzky and Jewell (1990, Biometrika)

discuss the use of ‘working’ score and

likelihood ratio tests

• these are not yet implemented in standard

software packages
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Assessing the Adequacy of the

Working Correlation Matrix

• Inferences regarding the regression coefficients β

can be made using the:

1. robust variance estimator M−1
0 M1 M−1

0

• consistent even if R(α) is misspecified

• may be inefficient

2. naive (model-based) variance estimator M−1
0

• assumes that R(α) is correctly specified

• Consider testing the hypothesis that the first q

components of β are equal to specified values

• Rotnitzky and Jewell (1990, Biometrika) show

that if variance estimation is based on M−1
0 , the

Wald statistic is asymptotically equal to

c1X1 + c2X2 + · · · cqXq
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Assessing the Adequacy of the

Working Correlation Matrix

• c1 ≥ c2 ≥ · · · ≥ cq ≥ 0 are the eigenvalues of a

matrix Q

• Q is a function of
(∂µi

∂β

)
, Vi, and Ai

• X1, . . . , Xq are independent χ2
1 random variables

• Examination of the weights cj provides

information on:

• how close the working correlation matrix

R(α) is to the true correlation structure

• the effect of a particular choice of Vi on

inference about the components of β

• The asymptotic mean and variance of the Wald

statistic are
∑

cj and 2
∑

c2
j , respectively
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Assessing the Adequacy of the

Working Correlation Matrix

• If Vi is close to Cov(yi), then c1 =
∑

cj/q and

c2 =
∑

c2
j/q will both approximately equal 1

• Points close to (1, 1) in a plot of c1 versus c2

for different choices of R(α) indicate reasonable

choices of the working correlation structure

• Note that c1 and c2 can be computed without

computation of the individual eigenvalues

• qc1 = trace(Q), qc2 = trace(Q2)

• Probability statements about c1 and c2 would,

however, require the null distribution of Q̂

• Hadgu et al. (1997, Statistics in Medicine) and

Hadgu (1998, J Biopharm Statist) demonstrate

the use of this approach
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Studies of the Properties of GEE
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Paik M (1988). Commun Statist Simul Comput
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Park T (1993). Statist Med 12:1723–1732

Park T, Davis CS, and Li N (1998). Comput
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Sharples S and Breslow N (1992). J Statist
Comput Simul 42:1–20
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Properties of GEE (for Categorical Data)

• Lipsitz, Laird, and Harrington (1991) simulated

binary data with n = 100, t = 2, p = 1 and seven

correlation structures

• Parameter estimates biased slightly upward

• Bias increased as the correlation increased

• Confidence interval coverage probabilities

were close to nominal 95%

• Additional simulations with n = 40 led to

convergence problems

• Emrich and Piedmonte (1992) simulated binary

data with n = 20, t = 64, p = 4, and four

correlation structures

• Parameter estimates were unbiased

• Type I error rates were inflated (from 5%)

• to as high as 8% for individual parameters

• to as much as 17% for joint tests
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Properties of GEE (for Categorical Data)

• Lipsitz et al. (1994) simulated binary data

with n = 15, 30, 45, t = 3, p = 4 and three

exchangeable correlation structures

• Type I error rates were close to nominal 5%

• Confidence interval coverage probabilities

were close to nominal 95%

• Li (1994) simulated binary data with n = 25, 50,

100, 200, t = 3, p = 1, 2, 3 and four correlation

structures

• Test sizes and confidence interval coverages

were close to nominal levels

• GEE with unspecified correlation structure

had convergence problems with n = 25

• Properties of WLS estimates and confidence

intervals were similar to those from GEE

(even when n = 25)
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Properties of GEE (for Continuous Data)

• Paik (1988) investigated the small sample

properties for correlated gamma data in a

limited study

• t = 4, p = 1: point estimates and confidence

intervals perform satisfactorily if n ≥ 30

• t = 4, p = 4: point estimates and confidence

intervals perform satisfactorily if n ≥ 50

• Park (1993) simulated multivariate normal data

(t = 4) with p = 3, n = 30, 50, and missing data

probabilities of 0.1, 0.2, and 0.3

• For n = 30, confidence interval coverage

probabilities are less than nominal levels

• For n = 50, coverage probabilities are close to

nominal levels

• GEE estimators are more sensitive to missing

data than the MLEs
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Computer Software

Programs for GEE1:

• Karim and Zeger (1988) SAS macro

• requires PROC IML

• Lipsitz and Harrington (1990)

• Davis (1993) FORTRAN program

• runs on any type of computer

• not as user-friendly

• Carey (1994) S-PLUS program

• available from STATLIB

• SUDAAN Release 7 (MULTILOG procedure)

• SAS (version 6.12) GENMOD procedure
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Cautions Concerning the Use of GEE

• GEE is semiparametric (not nonparametric)

• correct specification of marginal mean and

variance are required

• Missing data cannot depend upon observed or

unobserved responses

• A moderate to large number of independent

experimental units (n) is required

• Bias & efficiency for finite samples may depend on

• Number of experimental units (n)

• Distribution of cluster sizes

• Magnitudes of the correlations among repeated

measurements

• Number and type of covariates

e.g., cluster level (time-independent) and/or

observation level (time-dependent)
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A Caution with Time-Dependent Covariates

• Pepe and Anderson (1994). Commun Statist

Simul Comput, 23, 939–951

• When there are time-dependent covariates, β̂

may not always be a consistent estimator of β

• In this case, one must either:

1. use a diagonal working covariance matrix

2. verify that the marginal expectation

E(yij |xij) is equal to the partly-conditional

expectation E(yij |xi1, . . . , xiti)

• Note that when covariates are time-independent,

the second condition is trivially satisfied

• Pepe and Anderson (1994) describe some

general classes of correlation structures for

which condition 2. does and does not hold
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Alternative GEE Estimation Procedures

• The second step of the GEE iteration procedure

uses the Pearson residuals

rij =
yij − µ̂ij√

[Vi]jj

• Although this choice may be most appropriate

for continuous, normally-distributed outcomes,

it may not be best for categorical responses

• In univariate generalized linear models, other

types of residuals have been considered:

• Anscombe residual

• Deviance residual

• Modifying the GEE estimation procedure to

use a type of residual more appropriate to the

response variable might lead to better properties
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Anscombe Residuals

• Anscombe (1953) proposed defining a residual

using a function A(y) instead of y

• The function A is chosen to make the distribution

of A(y) more normal, and is given by
∫

dµ

V 1/3(µ)

• Then for Poisson outcomes,

rA
ij =

3
2 (y2/3

ij − µ̂
2/3
ij )

µ̂
1/6
ij

• For binary outcomes, A(y) =
∫ y

0
t−1/3(1−t)−1/3dt

• This can be computed using algorithms for the

incomplete beta function I( 2
3 , 2

3 )
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Deviance Residuals

• In univariate generalized linear models,

the deviance is often used as a measure of

discrepancy

• The deviance residual is the signed square root

of the contribution of each observation to the

likelihood ratio statistic

• For Poisson outcomes, the deviance residual is

rD
ij = sign(yij − µ̂ij)

√
2(yij log(yij/µ̂ij)− yij + µ̂ij)

• For binary outcomes,

rD
ij =

{−√
2 | log(1− π̂ij)| if yij = 0

√
2 | ln(π̂ij)| if yij = 1

where π̂ij is the predicted probability at the

current value of β
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Comparisons of GEE Estimation Procedures

• The three approaches were compared in a model

for generating correlated categorical responses

with arbitrary covariance structure

• The specific case considered was:

• Two groups (p = 1 dichotomous covariate)

• Three time points (t = 3)

• yhij is the dichotomous (0,1) response at

time j for subject i in group h, for h = 1, 2,

i = 1, . . . , nh, and j = 1, 2, 3

• The model was

logit(y1ij) = β1 + β3 j,

logit(y2ij) = β1 + β2 + (β3 + β4)j,

with (β1, β2, β3, β4) = (0.1, 0.2, 0.2, 0.0)

(A linear logistic model with separate intercepts

and a common slope)



657

Comparisons of GEE Estimation Procedures

• Three correlation structures were considered:

• common AR-1 with ρ = 0.5

• exchangeable (ρ = 0.5) in group 1,
AR-1 (ρ = 0.5) in group 2

• exchangeable (ρ = 0.1) in group 1,
AR-1 (ρ = 0.5) in group 2

• Model parameters were estimated using GEE

with the unstructured working correlation model

• Sample sizes of 25, 50, and 100 observations per

group were studied

• 2000 replications were carried out for each

combination of the model parameters

• The results were summarized in terms of bias,

root mean square error, confidence interval

coverage, and test size (for H0: β4 = 0)
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Alternative GEE Estimation: Binary Outcome
Bias versus Sample Size
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Alternative GEE Estimation: Binary Outcome
Root Mean Square Error versus Sample Size
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Alternative GEE Estimation: Binary Outcome
C.I. Coverage versus Sample Size
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Alternative GEE Estimation: Binary Outcome
Test Size versus Sample Size
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Power Comparisons

• The powers of the three estimation methods

were also compared

• The hypothesis of parallelism (H0:β4 = 0) was

tested at the alternatives β4 = 0.1, 0.3, 0.5, 0.7

• The true correlation model was:

• exchangeable (ρ = 0.1) in group 1

• AR-1 (ρ = 0.5) in group 2

• Model parameters were estimated using the

unstructured working correlation model

• Sample sizes of 25, 50, and 100 observations

per group were studied

• 2000 replications were carried out for each

combination of the factors studied
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Alternative GEE Estimation: Binary Outcome
Power of Test for Parallelism versus

Treatment Difference
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Summary of Results

• There are no clear distinctions among methods

• The properties of the GEE estimates, confidence

intervals, and test sizes are satisfactory even

when correlation structures differ among groups

• In particular, test sizes were between 0.04 and

0.06 for all sample sizes considered

• Estimation using deviance residuals gives lower

power than Pearson or Anscombe residuals

• The conclusions based on simulations of Poisson

outcomes are similar

• There is no compelling reason to consider use of

alternatives to Pearson residuals
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Other Developments and Extensions

• Lipsitz, Laird, and Harrington (1991) study using

the odds ratio as the measure of association

(instead of the Pearson correlation coefficient)

• may be easier to interpret

• pairwise odds ratios are not constrained by the

marginal probabilities

• not constrained to be in the interval (−1, 1)

• approach applies only to binary outcomes

• in a simulation study with n = 100, t = 2, and

p = 1, the parameter estimates from the odds

ratio association model appeared to be slightly

more efficient

• Carey et al. (1993) ALR method

• Chaganty (1997) QLS method
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Other Developments and Extensions

• Lipsitz, Fitzmaurice, Orav, and Laird (1994).

Biometrics, 50, 270–278

• A one-step estimator to circumvent convergence

problems associated with the GEE estimation

algorithm was proposed

• In a simulation study with a binary response,

n = 15, 30, 45, t = 3, and p = 4, the performance

of the one-step estimator was similar to that of

the fully iterated estimator

• They recommend the one-step approach when

the sample size is small and the association

between binary responses is high

(In this case, the fully iterated GEE algorithm

often has convergence problems)
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Other Developments and Extensions

• Robins, Rotnitzky, and Zhao (1995, JASA)

propose an extension of GEE that allows for

data to be MAR, rather than MCAR

• Thus, the probability that yij is missing may

depend on past values of the outcome and

covariates

• However, correct specification of a model for the

probability of nonresponse is required

• Rotnitzky and Wypij (1994, Biometrics)

propose a general approach for calculating the

asymptotic bias of GEE estimators calculated

from incomplete data

• In an example, they show that use of the

exchangeable working correlation structure

can result in larger bias than the independence

working correlation model
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Subsequent Developments

Prentice (1988)

• Considered the special case of binary data

• Proposed GEE estimator of the vector α of

correlation parameters

• Improved efficiency vs. original GEE formulation

Zhao & Prentice (1990), Prentice & Zhao (1991),

Liang, Zeger & Qaqish (1992)

• Proposed alternative equation for simultaneous

estimation of regression parameters β and

covariance parameters α

• Requires modeling the third and fourth moments

of yij (instead of just the mean and variance)

• This extension is now called GEE2 and the

original formulation is GEE1
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Distinctions Between GEE1 and GEE2

• In GEE1, the regression parameters β are

considered to be orthogonal to association

parameters α (even though they are not)

• GEE1 thus gives consistent estimates of β

even when association parameters are modeled

incorrectly

• GEE2 gives consistent estimates of β and

α only when the marginal means and

associations are modeled correctly

• In this case, GEE2 provides parameter

estimates which have high efficiency relative

to maximum likelihood
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Distinctions Between GEE1 and GEE2

• GEE1 gives slightly less efficient estimates of

β, but may give inefficient estimates of α

• GEE2 sacrifices the appeal of requiring only

first and second moment assumptions

Conclusion:

• Use GEE1 if regression parameters are the

primary focus

• Use GEE2 if:

• efficient estimation of association

parameters is of interest

• model for covariance structure is known to

be correctly specified
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Other Developments and Extensions

• Hall (1994) and Hall & Severini (1998) propose

extended generalized estimating equations (EGEE)

• Uses ideas from extended quasi-likelihood

• Nelder and Pregibon (1987, Biometrika)

• McCullagh and Nelder (1989)

• Provides estimating equations for regression and

association parameters simultaneously

• Makes only first and second moment assumptions

• Estimates α efficiently (like GEE2)

• consistency of α̂ requires correct covariance

specification

• Does not require a correct covariance specification

for consistency of regression parameter estimates
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Summary

• Recent extensions of generalized linear model

methodology are especially useful in the analysis

of repeated categorical and continuous outcomes

• In many types of applications, marginal models

may be more appropriate than random effects

and transition models

• and software is more widely available

• GEE1 (and EGEE) require weaker assumptions

than GEE2

• and GEE1 software is more widely available

• GEE1 estimators and test statistics generally

have satisfactory properties
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Comments on Random Effects Models

• More difficult to fit, since evaluation of the

likelihood (or even the first two moments)

requires numerical methods in most cases

• Mauritsen (1984) proposed a mixed effects

model known as the logistic binomial

• eases the computational burden

• available in the EGRET software package

• Conaway (1990, Biometrics) proposed a random

effects model for binary data based on the

complementary log-log link and a log-gamma

random effects distribution

• yields a closed form expression for the full

likelihood, thus simplifying likelihood analysis

• regression parameters, however, do not have

log odds ratio interpretations
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Comments on Random Effects Models

• One approach to avoiding numerical integration

is to approximate the integrands with simple

expansions whose integrals have closed forms

• Stiratelli, Laird, and Ware (1984, Biometrics)

• Breslow and Clayton (1993, JASA)

• These approximate techniques give effective

estimates of the fixed effects, but are biased

for estimating random effects and the random

effects variance matrix

• Waclawiw and Liang (1993, JASA) propose an

alternative strategy based on optimal estimating

equations

• Zeger and Karim (1991, JASA) describe a

Bayesian approach using Gibbs sampling
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Comments on Random Effects Models

• The SAS macro GLIMMIX fits generalized

linear mixed models using restricted pseudo

likelihood (REPL)

• Wolfinger and O’Connell (1993). J Statist

Comput Simul, 48, 233–243

• For the mixed effects logistic model, estimates of

fixed effects and variance components are biased

under some common conditions:

• moderate to large variance components, i.e.,

moderate to large within-cluster correlation

• small to moderate cluster sizes

• This was shown by Kuk (1995, JRSS B) and

Breslow and Lin (1995, Biometrika)

• These authors provide methods that reduce the

bias (but not yet implemented in GLIMMIX)
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Additional Developments

• Version 7 of SAS contains an experimental

procedure, PROC NLMIXED, for fitting

nonlinear models with fixed and random effects

• Estimation techniques are not the same as those

used in the NLINMIX and GLIMMIX macros

• Parameters are estimated by maximizing an

approximation to the likelihood integrated over

the random effects

• Different integral approximations are available,

including:

• adaptive Gaussian quadrature

• a first-order Taylor series approximation

• A variety of alternative optimization techniques

are available to carry out the maximization

• the default is a dual quasi-Newton algorithm
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Methods for the Analysis of

Ordered Categorical Repeated Measurements

Three general approaches to the analysis of ordered

categorical repeated measurements:

1. CMH mean score and correlation tests

• Applicable only in the one-sample setting

• Landis et al. (1988, Statistics in Medicine)

2. Weighted least squares

• Polytomous logit, cumulative logit, and mean

score response functions for the one-sample

and multi-sample repeated measures settings

• Unless sample sizes are quite large, only mean

score models may be feasible

3. Methods based on extensions of generalized

linear model methodology
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Generalized Linear Model Methodology

• Extensions of GEE1 studied by:

• Stram, Wei, and Ware (1988, JASA)

• Liang, Zeger, and Qaqish (1992, JRSS B)

• Agresti, Lipsitz, and Lang (1992, JSCS)

• Kenward & Jones (1992, J Biopharm Statist)

• Miller, Davis and Landis (1993, Biometrics)

• Lipsitz, Kim, and Zhao (1994, Statist Med)

• Software:

• Shaw, Kenward et al. (1994) SAS macro

• Lipsitz, Kim, and Zhao (1994) SAS macro

• SUDAAN Release 7 (MULTILOG procedure)

• FORTRAN program for Stram-Wei-Ware

(Davis and Hall, 1996)
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Ordinal Response Considerations

• Polytomous response variables are often ordinal

• Advantageous to construct logits that:

• account for category ordering

• are less affected by the number or choice of

response categories

i.e., if a new category is formed by combining

adjacent categories of the old scale, the form

of the conclusions should be unaffected

• Unnecessary to restrict consideration to only

two response categories at a time

• Instead, logits can be formed by grouping

categories that are contiguous

• These considerations lead to models based on

cumulative response probabilities
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Cumulative Logits

• Cumulative response probabilities are

γj = Pr(Y ≤ j), j = 0, 1, . . . , c

• Thus, γ0 = π0, γ1 = π0 + π1, . . . , γc = 1

• Cumulative logits are

λj = log
( γj−1

1− γj−1

)
j = 1, . . . , c

• Each cumulative logit uses all c + 1 response

categories

• A model for λj is similar to the ordinary logit

model for a binary response

(categories 0 to j − 1 form the first category

and categories j to c form the second category)
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The Proportional Odds Model

• λj(x) = αj + x′β, for j = 1, . . . , c

• x′ = (x1, . . . , xp) is a vector of explanatory

variables

• β′ = (β1, . . . , βp) is a vector of unknown

parameters

• Relationship between xk and a dichotomized

response Y does not depend on j, the point of

dichotomization

• Ordinality is an integral feature

• Unnecessary to assign scores to the categories

• Some authors consider: λj(x) = αj − x′β

(negative sign ensures that large values of x′β

lead to an increase in the probability of higher

numbered categories)
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Parameter Interpretation

• For individuals with covariate vectors x∗ and x,

the odds ratio for response below category j is

Ψj(x∗, x) =

Pr(Y < j | x∗)
Pr(Y ≥ j | x∗)
Pr(Y < j | x)
Pr(Y ≥ j | x)

=
exp{λj(x∗)}
exp{λj(x)}

= exp{λj(x∗)− λj(x)}

= exp{(αj + x∗′β)− (αj + x′β)}

= exp{x∗′β − x′β}

= exp{(x∗ − x)′β}

• Note that Ψj(x∗, x) does not depend on j
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Motivation

• Suppose that the underlying continuous (and

perhaps unobservable) response variable is Z

• The ordinal response Y is produced via cut-off

points α1, . . . , αc

• The categories of Y are envisaged as

contiguous intervals on the continuous scale

• Points of division αj are assumed unknown

• Therefore,

Y =





0 if Z ≤ α1

1 if α1 < Z ≤ α2

...
...

c− 1 if αc−1 < Z ≤ αc

c if Z > αc
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Motivation

• Suppose that Z has the logistic distribution

under some set of standard baseline conditions

Pr(Y ≤ j) = Pr(Z ≤ αj+1)

=
eαj+1

1 + eαj+1
, for j = 0, . . . , c− 1

• Suppose that the effect of explanatory variables

is represented by a simple location shift of the

distribution of Z

i.e., Z+x′β has the standard logistic distribution

• The common effect β for different j in the

proportional odds model can be motivated by

assuming that a regression model holds when

the response is measured more finely

Anderson and Philips (1981)
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Motivation

• Under these assumptions,

Pr(Y ≤ j − 1) = Pr(Z ≤ αj)

= Pr(Z + x′β ≤ αj + x′β)

=
exp(αj + x′β)

1 + exp(αj + x′β)
,

for j = 1, . . . , c

• Therefore,

λj(x) = log
(

Pr(Y ≤ j − 1)
1− Pr(Y ≤ j − 1)

)

= log




exp(αj + x′β)
1 + exp(αj + x′β)

1− exp(αj + x′β)
1 + exp(αj + x′β)




= αj + x′β,

for j = 1, . . . , c
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Comments on the Proportional Odds Model

• Since the c response curves are constrained to

have the same shape, the model cannot be fit

using separate logit models for each cutpoint

• Not equivalent to a log-linear model

(unlike other logit models)

• Walker & Duncan (1967) and McCullagh (1980)

give Fisher scoring algorithms for iterative

calculation of MLEs of parameters

Similar to Newton-Raphson, except expected

(rather than observed) values are used in the

second derivative matrix

• It is not difficult to find examples of non-

proportional odds (Peterson & Harrell, 1990)

Therefore, the model may not be applicable
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Stram, Wei, and Ware (1988)

• Applicable when ordered categorical responses

are obtained at a common set of time points

• At each time point, the marginal distribution

of the response variable is modeled using the

proportional odds regression model

• The model parameters are assumed to be

specific to each occasion and are estimated by

maximizing the occasion-specific likelihoods

• The joint asymptotic distribution of the estimates

of the occasion-specific regression coefficients is

obtained without imposing any parametric model

of dependence on the repeated observations
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Stram, Wei, and Ware (1988)

• The vector of estimated regression coefficients is

asymptotically multivariate normal

• Covariance matrix can be estimated consistently

• Provides procedures to test hypotheses about:

• covariates at a single time point

(occasion-specific)

• a single covariate across time points

(parameter-specific)

and to estimate pooled effects of covariates

across time points

• The approach allows for both time-dependent

covariates and missing data

• missing values are assumed to be MCAR

(missing completely at random)
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Example

• A comparison of the effects of varying dosages

of an anesthetic on post-surgical recovery

• Sixty young children undergoing outpatient

surgery were randomized to one of four

dosages (15, 20, 25 and 30 mg/kg)

• 15 children per group

• Recovery scores assigned upon admission to

recovery room and at minutes 5, 15, and 30

• The response at each of the four time points

was an ordinal categorical variable ranging

from 0 (least favorable) to 6 (most favorable)

• Two covariates in addition to dosage:

• patient age (months)

• duration of surgery (minutes)
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Model 1

• Covariate vector for subject i at time j is:

xij1 =
{

1 20 mg/kg dose
0 otherwise

xij2 =
{

1 25 mg/kg dose
0 otherwise

xij3 =
{

1 30 mg/kg dose
0 otherwise

xij4 = age (months)

xij5 = duration of surgery (minutes)

• Note that all covariates are time-independent

• Since Stram et al. use the parameterization

λk(x) = αk − x′β

at each time point, parameter estimates with

positive signs are associated with increased

probability of higher (more favorable) responses



691

Results from Model 1

Regression Coefficient
Time Standard

Covariate Point Estimate Error Est./S.E.
20 mg/kg 1 −0.105 0.799 −0.13

vs. 2 −0.249 0.758 −0.33
15 mg/kg 3 −0.558 0.724 −0.77

4 0.194 0.897 0.22
25 mg/kg 1 −0.634 0.770 −0.82

vs. 2 −0.441 0.771 −0.57
15 mg/kg 3 −0.072 0.688 −0.10

4 −0.371 0.837 −0.44
30 mg/kg 1 −1.010 0.751 −1.34

vs. 2 −0.675 0.735 −0.92
15 mg/kg 3 −0.701 0.708 −0.99

4 −0.465 0.884 −0.53
Age 1 −0.011 0.018 −0.61

(months) 2 −0.011 0.018 −0.61
3 −0.028 0.020 −1.45
4 −0.014 0.020 −0.70

Duration 1 −0.012 0.008 −1.40
of 2 −0.003 0.007 −0.41

Surgery 3 −0.008 0.007 −1.14
(minutes) 4 −0.018 0.009 −1.92
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Results from Model 1

• Nearly all of the estimated regression coefficients

are negative

(indicating that the probability of a more

favorable outcome decreases as the dosage,

age of the patient, or duration of the surgical

procedure increases)

• There is no consistent evidence (across time)

of statistically significant effects due to dosage,

age, or duration of surgery

• The test statistics “Estimate/S.E.” are

approximately standard normal

• None are individually significant based on a

two-sided 5%-level test
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Time-Specific Hypothesis Tests

• The joint effect of all covariates is not

significantly different from zero

i.e., H0: βj1 = · · · = βj5 = 0

(p-values at times 1–4 are 0.44, 0.91, 0.46,

and 0.31, respectively)

• The overall dosage effect is not significantly

different from zero

i.e., H0: βj1 = βj2 = βj3 = 0

(p-values at times 1–4 are 0.55, 0.82, 0.68,

and 0.86, respectively)

• The nonlinear components of the dosage

effect are not significantly different from zero

i.e., H0: βj1 = βj2 − βj1, βj1 = βj3 − βj2

(p-values at times 1–4 are 0.95, 0.99, 0.63,

and 0.88, respectively)
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Model 2

• Dosage is used as a quantitative variable:

xij1 = dosage (mg/kg)

xij2 = age (months)

xij3 = duration of surgery (minutes)

• The parameter estimates are:

Regression Coefficient

Covariate Time Estimate S.E. Est./S.E.

Dosage 1 −0.070 0.049 −1.43
2 −0.044 0.047 −0.95
3 −0.033 0.046 −0.72
4 −0.037 0.056 −0.66

Age 1 −0.013 0.016 −0.81
2 −0.011 0.017 −0.62
3 −0.025 0.019 −1.32
4 −0.017 0.019 −0.93

Duration 1 −0.012 0.007 −1.57
of 2 −0.003 0.007 −0.45

Surgery 3 −0.008 0.007 −1.12
4 −0.017 0.009 −1.94
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Parameter-Specific Tests and Estimators

• No dosage effect

H0: β11 = β21 = β31 = β41 = 0 p = 0.72

• Equality of dosage effects

H0: β11 = β21 = β31 = β41 p = 0.83

• No age effect

H0: β12 = β22 = β32 = β42 = 0 p = 0.58

• Equality of age effects

H0: β12 = β22 = β32 = β42 p = 0.61

• No surgery duration effect

H0: β13 = β23 = β33 = β43 = 0 p = 0.09

• Equality of surgery duration effects

H0: β13 = β23 = β33 = β43 p = 0.12
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Pooled Estimators of Effects

Variable Estimate S.E. Est./S.E.

Dosage −0.0460 0.0424 −1.09
Age −0.0143 0.0162 −0.88

Surgery Duration −0.0091 0.0065 −1.40

• The odds of having a recovery score higher than

a given cutpoint are:

• e−0.0460 = 0.955 times as high per 1 mg/kg

increase in dosage

• e−0.0143 = 0.986 times as high per 1 month

increase in age

• e−0.0091 = 0.991 times as high per 1 minute

increase in surgery duration

• Although there is modest evidence of an effect

due to surgery duration, there is essentially no

evidence that dosage or age influence recovery
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GEE Approach

• The Stram-Wei-Ware methodology:

1. models the data separately at each time point

2. combines the resulting estimates

This approach requires a common set of time
points for each experimental unit

• The SAS GENMOD procedure now allows for
the analysis of repeated ordered categorical
outcome variables using the GEE approach

• Using the GEE approach:

• The number of repeated measurements per
experimental unit need not be constant

• Measurement times need not be the same
across experimental units

• The proportional odds model is used for the
marginal distribution

• The “working” correlation matrix is the
independence model
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SAS Statements

• The statements on the following page:

• read in the original data set

(one observation for each subject)

• restructure the data set to have one

observation per time point

• fit a model with effects for:

• dosage (mg/kg)

• age (months)

• duration of surgery (minutes)

• Note that dosage is used both as a:

• class variable (in order to distinguish

duplicate subject identifiers across dosages)

• numeric variable (in the model statement)

• Also note that this model is analogous to the

Stram-Wei-Ware model 2
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SAS Statements

data a;
input dosage id age durat min0 min5

min15 min30;
dose=dosage;
cards;
15 1 36 128 3 5 6 6
15 2 35 70 3 4 6 6

...
30 14 27 61 3 5 5 6
30 15 56 106 0 1 1 3
;

data b; set a;
time=0; score=min0; output;
time=5; score=min5; output;
time=15; score=min15; output;
time=30; score=min30; output;

proc genmod;
class dosage id;
model score=dose age durat

/ dist=multinomial;
repeated subject=id(dosage)

/ type=ind;
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Comments

• The parameter estimates are similar to the

pooled estimators from the Stram-Wei-Ware

model (but are of opposite sign)

• The GEE approach would also allow one to

include time as a factor in the model:

proc genmod;
class dosage id;
model score=dose age durat time

/ dist=multinomial;
repeated subject=id(dosage)

/ type=ind;

• The odds of having a recovery score higher

than a given cutpoint are e0.0946 = 1.1 times

as high per minute in the recovery room

• This effect is highly significant (p < 0.0001)

• Interactions between covariates and time could

also be investigated using this approach


