The Multivariate General Linear Model

multivariate case of vector observations

e The algebra is essentially the same as the

univariate case

e Univariate variances are replaced by

covariance matrices

e Univariate sums of squares are replaced by

sums of squares and products (ssp) matrices

e Distribution theory analogous to that of the

univariate case

e Test criteria are analogs of F'-statistics

which can be tested
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Extension of the univariate linear model to the

There is more latitude in terms of hypotheses
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The Multivariate General Linear Model

e Let y;; denote the response from subject 7 at

time j, for:=1,...,n,53=1,...,t

e Suppose that the jth response from the ith

individual was generated by the linear model

Yij = Ti1P1j + Ti2B2j + -+ + TipFpj + €ij
p
= Z Tik Ok + €ij
k=1
= z;0; + €

o 3; = (B1j,---,0p;) is a vector of p unknown

parameters (specific to the jth time point)

We assume that p <n —t¢

o v, = (%1,...,%ip) is a vector of p known

coefficients (specific to the ith subject)
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The Multivariate General Linear Model

e ¢, = (€1,...,¢€;)" is a vector of ¢ residual

variates for the ith subject
® C; Nt (O, Z)

e The nt x 1 vector

€1
e = NNnt(O,In(X)Z),

€n

where I,, denotes the n x n identity matrix

e Thus, the y; = (yi1,--.,yit) vectors are

independent N¢(p;, %) random vectors with

( ) / )
i1 ( «772-51

122

/
\ Hit ) \ xzﬂt )



Matrix Formulation

Let Y denote the n x t data matrix:

RN

Y1 o Y1 Y1

Y= ............. = :
Ynl " Ynt \ ?J;L )
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Let X denote the n x p known design matrix:

>
|
|

ooooooooooooo

Bi1 - P
B= ............. = (81, -, 0¢)
5p1 ’ Bpt
Let E denote the nxt matrix of random errors:
(o7 )
e
€11 €1t 1
E=1 ............. = :
e e /
nl nt L en J
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Parameter Estimation

e The multivariate general linear model is

Y =XB+E,

where E(Y) = X B and

( )

Y1
Var )

. YUn )

=1, ® X

e The maximum likelihood estimators of B and

Y. are

B

>

n

(X' X)"'X'Y

EW—XEHY—X@

e An unbiased estimator of X is given by

1
n—p

g —

(Y — XB) (Y — XB)
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Estimation of Linear Functions

of the Elements of B

o Let 1 = a’Be, where a(,x1) and c(;x1) are

vectors of constants
a’ operates within time points

c operates between time points

e 1) = a’ Bc has minimum variance among all

linear unbiased estimates of

AN

i.e., Y is a best linear unbiased estimate

(BLUE)
o Var(¢) = (¢X0)[a/(X'X)q]

e This result is known as the multivariate

Gauss-Markov theorem
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Hypothesis Testing

e Consider the general hypothesis Hy: ABC = D

e Aisan a X p matrix of coefficients

permitting “within time” hypotheses

rank(A) =a <p

e (U is at X c matrix of coeflicients permitting

“between time” hypotheses

rank(C) =c <t < (n—p)

e [ is an a X ¢ matrix of constants

e Let (), denote the hypothesis ssp matrix:

Qn = (ABC — DY[A(X'X) "t A" (ABC — D)

e Let (). denote the residual ssp matrix:

Q.=C'(Y'Y — B(X'X)B)C



83

Test Statistics

e The likelihood ratio statistic is

min(a,b)

Qe
A_\Qh+Qe\_ [1 14+ A

i=1
where \; are the solutions of the characteristic

equation |Qp — AQ.| =0
e This statistic is known as Wilks A

e A has a multivariate beta null distribution

e The Pillai trace statistic is

V = trace[Qn(Qn + Qc) '] = - 0;, where

0, are the solutions of the characteristic
equation |Qn — 0(Qr + Q)| =0

e also known as the Barlett-Nanda-Pillai trace

e It can be shown that 6, = \; /(1 + \;)
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Test Statistics

e The Hotelling-Lawley trace statistic is
U = trace[Qn, Q1 = >°\;

Lawley (1938), Bartlett (1939),
Hotelling (1947, 1951)

e Roy’s (1957) maximum root statistic is

A1

O =
1—|—)\1’

where A\ is the largest solution of the

characteristic equation |Qp — AQ¢| =0

Equivalently, © is the largest solution of the
characteristic equation |Qn — 0(Qrn + Qc)| =0

e In most cases, the exact null distributions of
these four test criteria can not be computed

and approximate tests are required
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Theoretical Power Comparisons

e A, V, and U have been compared based
on asymptotic expansions of their nonnull

distributions

Mikhail (1965, Biometrika)

Pillai and Jayachandran (1967, Biometrika)
Lee (1971, Biometrika)

Rothenberg (1977)

e If the population characteristic roots are
roughly equal, the ordering from most

powerful to least powerfulis V> A > U

e If the roots are unequal, the ordering is

U>A>V

e These results support the use of A
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Empirical Power Comparisons

e [to (1962) compared the large-sample power
properties of A and U for a simple class of

alternative hypotheses

there was little difference between these two

statistics

e Pillai and Jayachandran (1967) compared all

four statistics

When the population characteristic roots were
very different, U tended to have the highest

power

When the characteristic roots were equal, V

was most powerful

In the situations they considered, © was least

powerful
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Empirical Power Comparisons

e Roy, Gnanadesikan, and Srivastava (1971)

compared all four statistics

For equal population roots, V' was most

powerful, followed by A and U

For the case of a single large population root,

© had the highest empirical power

e Simulation studies by Schatzoff (1966) and
Olson (1974)

© was most powerful if the alternative was

one-dimensional

© was inferior if there were multiple non-zero

characteristic roots
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Robustness Comparisons

e All four test procedures tend to be relatively

robust to departures from normality

e The limiting distributions of each criterion
(suitably standardized) for non-normal Y are

the same as when Y is normal

(as long as conditions such as bounded fourth

moments are satisfied)

e Olson (1974) studied the robustness under
departures from covariance homogeneity and

departures from normality
A, U, and V were quite robust

O was least robust
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Profile Analysis

Suppose that repeated measurements at ¢ time
points have been obtained from s groups of

subjects

Let nj denote the number of subjects in

group h, for h=1,...,8 (n=>_;_,nya)

Let yp;; denote the response at time j from
the ith subject in group h, for h = 1,...,s,

1=1,...,np,and 3 =1,...,¢

We assume that the data vectors

Yhi = (yhila e 7yhit)’

are independent and normally distributed
with mean pp = (un1,---, pre) and common

covariance matrix X

Yni ~ Nie(pn, 2)



Profile Analysis Model
e The model 1S ynij = pn; + enij

e In terms of the multivariate general linear

model,
YA (el )
J11 (10 ---0) ?1
Vin, Lo ™
! e’
G I ] T
. L o1 * - U2t :
oo | = {010 |0 [ e
\ Us1 * HUst /
|

Vi1 OO . €51

L00---1) :
\y;nS) \e,snS/

or Y = XB+ E, where Y and E are n x t

matrices, X isn X s, and B is s X t
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Profile Analysis Hypotheses

e Three general hypotheses are of interest

Hyq: the profiles for the s groups are parallel

i.e., no group-by-time interaction
Hyo: no differences among groups
Hys: no differences among time points
e Hy; should be tested first, since the acceptance

or rejection of this hypothesis affects how the

other two hypotheses can be tested
e In addition, if Hy; is rejected, we may wish to
test hypotheses of the form

Hy4: no differences among groups within some

subset of the total number of time points

Hys: no differences among time points in a

particular group (or subset of groups)
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Test of Parallelism

e Recall that pp; 1s the mean response at time j

in group h

e The parallelism hypothesis is

(11 — M12 ) ([ Us1 — Hs2 )
Hi12 — H13 Hs2 — Hs3
Hoy:: : R .
\ U1.t—1 — M1t / \ s t—1 — HUst /

e In terms of the general Hy: ABC = D,

A(S—l)XS — (Is—lv _18—1)

(1 0 0

1 1 0

0 -1 0

Coceny =
0 0 1

L 0 0 —1)




Tests for Differences Among Groups

e Depending on the results of the test of Hyy,

two tests of Hpyo are possible

e If the parallelism hypothesis is reasonable,
the test for differences among groups can be
carried out using the sum (or average) of the

repeated observations from each subject

e In this case:
A(S—l)XS — ([S—la _13—1)

Ctxl =1
D(s—l)xl = 05—1
e This test of Hys is equivalent to that from

a one-way ANOVA on the totals (or means)

across time from each subject
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Tests for Differences Among Groups

e A multivariate test for differences among
groups can also be carried out without

assuming parallelism:

(111 ) (21 ) ( [ls1 )
112 122 Hs2
HOQ: . p— . T e e e — .
\ U1t / \ 2t / \ Ust /

e In this case:

As—1yxs = (Ls—1, —15-1)
Cixt = Iy
Ds—1yxt =0
e If comparisons among groups for a subset of
the ¢t time points are of interest, the columns

of C' corresponding to the excluded time

points can be omitted
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Tests for Differences Among Time Points

e Depending on the results of the test of Hpq,

two tests of Hpy3 are possible

e If the parallelism hypothesis is reasonable, the
test for differences among time points can be
carried out using the sum (or average) across

groups of the observations at each time point

e In this case:

Aixs = (1,...,1) or (1/s,...,1/s)

e This is equivalent to a one-sample T test
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Tests for Differences Among Time Points

e The preceding procedure weights each of the s

groups equally and is usually appropriate

e However, if unequal group sizes result from the
nature of the experimental conditions, it may
be desirable to use a weighted average rather

than a simple average

e In this case, A = (ny,...,ng) or
A:(@,...,%)
n n

can be used

e Note that C' and D are unchanged
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Tests for Differences Among Time Points

e [y3 can also be tested without assuming

parallelism:
( p11 ) (12 ) ( 1t
Ho ,u:21 _ ,u:22 o M.2t
\ sl / \ M52 / \ st

e In this case:

ASXS = I
Iy 4
Ctx(t—l) — [ 1/ ]
t—1
sz(t—l) =0

e [f comparisons among time points in a
particular group (or subset of groups) are of
interest, the rows of A corresponding to the

excluded groups can be omitted
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Example

e At ages 8, 10, 12, and 14, the distance (mm)
from the pituitary to the pteryomaxillary fissure

was measured in 16 boys and 11 girls

o Let pp = (b8, 6,10, Mb,12, MUb14)" and
Mg = (:ug,Sa Hg,105, Hg,125 ,ug,14)’

e The profile analysis model is:

aTY ) (o )
Yv.1 (10 €p,1
4 10 e
Yoa6 | _ [ o8 " [b,14 ] L | Cve
y;J 01 fg,8 " Hg,14 e’g’l
/ \ 0 ]. J /
\ Yg,11 / \ €g,11 /

or Y = XB + E, where Y and E are 27 x 4
matrices, X is 27 x 2, and B is 2 x 4
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SAS Statements

data a;

input sex id d8 d10 di12 di4;
male=(sex=1);
female=(sex=2);

cards;

1 1 26.0 25.0 29.0 31.0

1 2 21.5 22.5 23.0 26.
1 3 23.0 22.5 24.0 27.5

o
o

2 9 20.0 21.0 22.0 21.5
2 10 16.5 19.0 19.0 19.
2 11 24.5 25.0 28.0 28.0

O
ol

e The derived variables male and female will be

used to define the design matrix X

] 1 for boys
male =10 for girls
P 1 for girls

0 for boys
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SAS Statements (Continued)

Fit the profile analysis model:
proc glm;
model d8 d10 d12 dl4=male female
/ noint nouni;

Note that this model does not include an

intercept term

Test the parallelism hypothesis:

contrast ’Parallelism’
male 1 female -1;

manova m=(1 -1 0 O,

O 1-1 0,

0O 0 1 -1);

A(1x2) is specified using the contrast statement

/

The transpose of C( 4%3) is specified using the

manova statement

D is assumed to be a matrix (or vector) of zeros



SAS Statements (Continued)

e Test for differences between boys and girls

(assuming parallelism)

contrast ’Sex (if Parallel)’
male 1 female -1;

manova m=(1 1 1 1);

e Test for differences between boys and girls

(without assuming parallelism)

contrast ’Sex (Not Parallel)’
male 1 female -1;
manova m=(1 0 0 O,
0100,
0010,
0001);
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e (The manova statement is not necessary, since

the default C' is the identity matrix)
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SAS Statements (Continued)

e Test for differences among time points

(assuming parallelism and using equal weights)

contrast ’Time (Parallel)’
male 0.5 female 0.5;

manova m=(1 0 O -1,
O 1 0 -1,
0O 0 1 -1);

e Test for differences among time points
(assuming parallelism and using weights

proportional to sample size)

contrast ’Time (Par., Weights)’
male .59259 female .40741;
manova m=(1 0 O -1,
O 1 0 -1,
0O 0 1 -1);
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SAS Statements (Continued)

e Test for differences among time points (without

assuming parallelism)

contrast ’Time (Not Parallel)’
male 1, female 1;
manova m=(1 0 O -1,
O 1 0 -1,
0O 0 1 -1);

e Test for differences among time points in boys

contrast ’Time (M, Not Parall)’ male 1;
manova m=(1 O O -1,

O 1 0 -1,

0O 0 1 -1);

e Test for differences among time points in girls

contrast ’Time (F, Not Parall)’ female 1;
manova m=(1 0 O -1,

O 1 0 -1,

0O 0 1 -1);
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Growth Curve Analysis

The MANOVA approach does not require that a

subject’s repeated measurements are ordered

In fact, repeated measurements obtained over

time are naturally ordered

In this case, it may be of interest to characterize

trends over time using low-order polynomials

The means at the repeated time points can then
be summarized by a few coeflicients, rather than

by the entire vector

When the number of responses is large, reduction

to a linear or quadratic function is very useful

Focus shifts from hypothesis testing to estimation

of a substantive model for the responses
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Growth Curve Analysis

An extension of the standard MANOVA model

Initially proposed by Potthoff and Roy (1964)

An alternative formulation was developed by

Rao (1965, 1966, 1967) and Khatri (1966)

Grizzle and Allen (1969) unified and illustrated
the methodology

Kleinbaum (1973) generalized the model to

allow missing data

A relatively unused approach, due to:
e unfamiliarity with the methodology

e lack of readily available software
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Potthoff-Roy Model

o Y = XDBT + E, where

e Y is the n X t data matrix

Y;; 1s the response from subject ¢ at time j
e X is an X s across-individual design matrix
e D is a s X g parameter matrix

e T'is a g x t within-individual design matrix

rank(T) = ¢q, where ¢ <t

e [ is the n X t matrix of random errors

e Each row y, = (y;1,...,¥y:) of the data matrix
Y has an independent multivariate normal

distribution with covariance matrix X

e E(Y)=XBT and Var | ! | =1,®%
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Distinction Between Profile Analysis

and Growth Curve Analysis

Suppose repeated measurements are obtained at

times 7 = 1,...,t from s groups of subjects

Let yp;; denote the response at time j from
the ith subject in group h, for h=1,...,s,

1=1,...,np,and 3 =1,...,1
The profile analysis model is yni; = pn; + €nij

If the time trend in each group can be described
by a (¢ — 1)st degree polynomial (¢ < t), the

growth curve model is

Yhij = Bro+Br1 J+ Bn2 G4+ Bng—1 J T €hij

(Although the functional form of the time trend

is the same in each group, the parameters vary)
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Distinction Between Profile Analysis

and Growth Curve Analysis

e The profile analysis model is Y = XB+ F
e Y and E are n X t matrices
e X is a n X s matrix of zeros and ones

e B is a s xt matrix with (h, j)th element pp;

YA (el
J1 r10---0) 11
Yin, o s

A e!
y?1 01 O (p11 o Hat ) ?1
: 21 - 1ot :
Yo, | — [ 01~ 0 SRR I

\ Us1 = HUst /
00---1
y;1 = : 6{91
00 ---1)
/ /
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Distinction Between Profile Analysis

e The growth curve model is Y = XBT + FE
e Y and F are n X t matrices

e X is an X s matrix of zeros and ones

and Growth Curve Analysis

e [ is a s X g matrix

e ['is a g Xt matrix

e Thus, the expected value of Y is equal to

(10 ---0)
100
01---0
010
00--1
001,

( B1o - Bi,g—1 )
Bao -+ B2,q—1
\ BSO T ﬁs,q—l /
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The Potthoff-Roy Approach

e The basic idea is to transform the growth curve

model to the usual MANOVA model

e Let G be at Xt symmetric, positive-definite

matrix satisfying the following conditions:

e (G must be nonstochastic or independent of Y

o TG~ T’ has rank ¢
e If both sides of the model Y = X BT + E are
post-multiplied by G~ 1T/ (TG~ 1T")~1,
YG'T(TG Tt = XBTrG—'r' (G171
+EG'T(TG T,
or Z/ = XB+ E*, where
Z=YG'T'(TG 1)

is a matrix of transformed dependent variables
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The Potthoff-Roy Approach
The transformed data matrix Z has mean X B

The rows of Z have independent N, (0, ¥*)

distributions, where

Y= (TG T 'TG e T (TG 1)~ !

The growth curve model has thus been reduced to

the profile analysis model

Standard multivariate linear model theory can be

used to:
e cstimate B

e test hypotheses of the form ABC = D

In particular, the linear unbiased estimator of B is

B=(X'X)'X'YG'T/(TG'1")!
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Choice of (¢

Potthoff and Roy (1964) proved that the

minimum variance unbiased estimator of B 1is

B=(X'X)"'X'yy 'r(re 1)

Therefore, although B is unbiased for any G,
the optimal choice is G = X

In practice, X is usually unknown

Potthoff and Roy (1964) suggested using an
estimate of X obtained from an independent

experiment

They did not, however, develop the theory
for allowing G = S, where S is the sample
covariance matrix calculated from the data

used to estimate B
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Choice of (¢

e The problem is simplified when ¢ = ¢

i.e., when the time trend across the t points is

described by a (¢ — 1)st degree polynomial

e In this case,
Z=YG'T'(TG 1)
=YG ' (T tGr!
=YT 1,

so that there is no need to choose GG

e If T is an orthogonal matrix, then Z = YT’

and matrix inversion is not required

e Bock (1963) developed this procedure using
Roy-Bargmann (1958) step-down F-tests and

orthogonal polynomials
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Choice of (¢

When ¢ < t, the simplest choice is G = I;

In this case,
Z=YG 'T(TG 1)
=YT'(TT")™!
If the time trends are parameterized using

orthogonal polynomial coefficients, the

transformation further simplifies to Z = Y'T"

This simplifies the calculations and eliminates

the need for matrix inversion

However, it may not be the best choice in

terms of power

Information is lost in reducing Y to Z unless

G =X (or unless ¥ = o2])
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Rao-Khatri Approach

e In order to avoid the arbitrary choice of G,
Khatri (1966) derived the maximum likelihood

estimator of B

e Rao (1965, 1966, 1967) considered the
conditional model E(Y|W) = XB 4+ WT and

derived a covariate-adjusted estimator of B

o If ¢ < t, identical results are obtained from:
e Khatri’s maximum likelihood approach

e Rao’s covariate-adjusted approach using

t — q covariates

e Potthoft and Roy’s approach using G = S

e When ¢ < t, the Potthoff-Roy approach using
G = I is equivalent to not using covariates in

Rao’s conditional model



120

Example

e In a dental study, the height of the ramus bone
(mm) was measured in 20 boys at ages 8, 8%, 9,

and 9% years

e Three questions:

e Does bone height change with age?

Not of great interest, since answer is obvious

e Is there a linear relationship between age and

bone height?

e What is the model for predicting bone height

from age?

Reference

Elston, R. C. and Grizzle, J. E. (1962).
Estimation of time-response curves and their
confidence bands. Biometrics 18, 148-159.



Data from Example

Age (years)

Subject 8 82 9 92
1 47.8 488  49.0  49.7
2 46.4 473 477 484
3 46.3  46.8  47.8 485
4 45.1 453  46.1 472
5 476 485 489  49.3
6 525 53.2  53.3  53.7
7 51.2  53.0 543 545
8 49.8 500  50.3  52.7
9 48.1  50.8 523 544

10 45.0  47.0 473  49.3
11 512 514  51.6 519
12 485 492  53.0 555
13 521 52.8  53.7  55.0
14 48.2 489 493 498
15 49.6 504 512 518
16 50.7  51.7 527 533
17 472 AT7T 484 495
18 53.3  54.6 551  55.3
19 46.2 475 481 484
20 46.3 476  51.3 518

121



122

Application to Example

In this example, n =20, t =4, s =1

Since there is a single group of subjects, X is

the 20 x 1 matrix (1,...,1)’
We will first choose g =t =4

If T is the 4 X 4 matrix of orthogonal

polynomial coefficients,

Z=YG 'T'(TG T '=YyT'=YT

Thus, it is not necessary to choose G and

matrix inversion is not required

We will use this model to test if the nonlinear
components of the time effect are statistically

significant
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SAS Statements
(¢=4, Standardized Orth. Poly. Coeflicients)

data a;
input subject h80 h85 h90 h95b;
* standardized orth. poly. coefficients;
sop0O=( h80 + h85 + h90 + h95)/2;
sop1=(-3*h80- h85+ h90+3*h95)/sqrt (20);
sop2=( h80- h85- h90+ h95)/2;
sop3=( -h80+3%¥h85-3*h90+ h95)/sqrt (20);
cards;

1 47.8 48.8 49.0 49.7

2 46.4 47.3 47.7 48.4

19 46.2 47.5 48.1 48.4
20 46.3 47.6 51.3 51.8
proc glm;

model sopO-sop3= / nouni;

manova h=intercept m=(1 0 0 0);
manova h=intercept m=(0 1 0 0);
manova h=intercept m=(0 0 1 0);
manova h=intercept m=(0 0 0 1);
manova h=intercept m=(0 0 1 O,

000 1);
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Comments

The constant and linear age effects are highly

significant

The quadratic and cubic effects of age are

nonsignificant, both individually and jointly

We will now model the effects of age on ramus

height using a linear growth curve model (¢ = 2)

Computations are simpler using orthogonal

polynomial coefficients

Interpretation is simpler using the matrix

1 1 1 1
= [8.0 8.5 9.0 9.5]

We will first use G = I, and then consider

G = S (the sample covariance matrix)
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Linear Model, G = 14
o Z=YG'T'(TG Tt =YT/(TT") !

e The transformation is computed as follows:

(1 8.0
TT,_[ 1 1 1 1] 1 85 _[4 35 ]
-~ 180859095 1 90| 353075
L1 9.5
oyt = (Vo
(9.5 —0.6)
/ N—1 2.0 —0.2
T = —1.5 0.2
. —0.0 0.6 J

e The SAS statements are:

data b; set a;
p10=5.5*xh80+2.0*xh85-1.5*xh90-5.0*h95;
pil=-.6*xh80-0.2*xh85+0.2*xh90+0.6*h95;
proc glm;

model piO pil=;



Linear Model, G = S
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e In a one-sample problem, the sample covariance

matrix S can be computed using PROC CORR:

proc corr nosimple cov; var h80 h85 h90 h95;

e In this example,

(6.32997
6.18908
5.77700

\ 5.35579

6.18908 5.77700
6.44934 6.15342
6.15342 6.91800
D.78526 6.77421

5.35579
5.78526
6.77421
7.18316 )

e For the case in which G = S, the transformation

Z =YG YT (TG™1T") ! is computed as follows:

Gl =

/

\

2.6933
—2.8416
0.0498
0.2334

—2.8416  0.0498
4.1461 —1.5651
—1.5651  3.8824
0.2555 —2.4379

0.2334

0.2555
—2.4379

2.0585
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Linear Model, G = S

(- 0.13501104 0.05931779 Y
G-l7! — —0.00512515 0.85011176
—0.07088109 —1.12416465
. 0.10952328 1.65380106 )
TG — [ 0.16852809 1.43906596 )
1.43906596 13.29412054 )

(TG'T')" = [ 78.42126986 —8.48896924]

—8.48896924 0.99413772

r10.084191  —1.087135 )
—7.618493 0.888635
3.984414 —0.515867

. —5.450112 0.714366 )

G—lT/(TG—lT/)—l —

e The SAS statements are:

data b; set a;

ps0=10.08419058*h80-7.61849306*h85
+3.98441438*%h90-5.45011190*h95;

ps1=-1.08713454*xh80+0.88863538*xh85
—-0.51586713*xh90+0.71436629*h95;

proc glm;

model psO psl=;
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Example
A study conducted in 16 boys and 11 girls

At ages 8, 10, 12, and 14, the distance (mm)
from the center of the pituitary gland to the

pteryomaxillary fissure was measured

The change in the pituitary-pteryomaxillary
distance during growth is important in

orthodontal therapy

The goals are to:

e Describe the distance in boys and girls as

simple functions of age
e Compare the functions for boys and girls

Reference

Potthoff, R. F. and Roy, S. N. (1964). A generalized
multivariate analysis of variance model useful especially for

growth curve problems. Biometrika 51, 313-326.
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Group ID Age8 Agel1l0 Age 12 Age 14
Boys 1 26.0 25.0 29.0 31.0
2 215 22.5 23.0 26.5
3  23.0 22.5 24.0 27.5
4 255 27.5 26.5 27.0
5  20.0 23.5 22.5 26.0
6  24.5 25.5 27.0 28.5
7T 220 22.0 24.5 26.5
8  24.0 21.5 24.5 25.5
9 23.0 20.5 31.0 26.0
10 27.5 28.0 31.0 31.5
11 23.0 23.0 23.5 25.0
12 21.5 23.5 24.0 28.0
13 17.0 24.5 26.0 29.5
14 22.5 25.5 25.5 26.0
15 23.0 24.5 26.0 30.0
16 22.0 21.5 23.5 25.0
Mean 22.9 23.8 25.7 27.95
Girls 1 21.0 20.0 21.5 23.0
2 21.0 21.5 24.0 25.5
3 205 24.0 24.5 26.0
4 235 24.5 25.0 26.5
5 215 23.0 22.5 23.5
6 20.0 21.0 21.0 22.5
7T 215 22.5 23.0 25.0
8  23.0 23.0 23.5 24.0
9 20.0 21.0 22.0 21.5
10 16.5 19.0 19.0 19.5
11 24.5 25.0 28.0 28.0
Mean 21.2 22.2 23.1 24.1
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Outline of Analyses

1. Fit growth curve model with ¢ =t = 4 using

standardized orthogonal polynomial coefficients

e matrix inversion and/or computation of the

pooled covariance matrix S not required

e test joint significance of constant, linear,
quadratic, and cubic terms to determine

degree of polynomial

2. Fit reduced covariate-adjusted model using

standardized orthogonal polynomial coeflicients
e test equality of parameters for boys and girls

e compare with Potthoff-Roy estimated

parameters when G = S

3. Fit Potthoff-Roy reduced polynomial model

with T defined on the natural time scale
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SAS Statements
(¢=4, Standardized Orth. Poly. Coeflicients)

data a;

input sex id d8 d10 di12 di4;
male=(sex=1);

female=(sex=2);

* standardized orth. poly. coefficients;
sopO0=( d8 + d10 + di12 + d14)/2;
sopl=(-3*d8- d10+ d12+3*d14)/sqrt(20);
sop2=( d8- d10- di12+ d14)/2;

sop3=( -d8+3*d10-3*d12+ di14)/sqrt(20);
cards;

1 1 26.0 25.0 29.0 31.0

2 11 24.5 25.0 28.0 28.0

proc glm;

model sopO-sop3=male female / noint nouni;
contrast ’Both Sexes’ male 1, female 1;

manova m=(1 0 0 0);
manova m=(0 1 0 0);
manova m=(0 0 1 0);
manova m=(0 0 0 1);
manova m=(0 0 1 O,

000 1);
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Covariate-Adjusted Linear Model

e Since nonlinear effects are nonsignificant, quadratic

and cubic effects will be used as covariates

e The SAS statements are:

proc glm;
model sop0 sopl=male female sop2 sop3
/ noint;

contrast ’Both Sexes’ male 1, female 1;
manova m=(1 0O,

0 1);
proc glm;
model sopO sopl=male female sop2 sop3
/ noint;

contrast ’Sex’ male 1 female -1;
manova m=(1 O,

0 1);

e The first model tests joint effects in boys and girls,
while the second model tests equality of effects for

boys and girls
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Potthoff-Roy Linear Model with G = S

e In a multi-sample problem, PROC DISCRIM
can be used to compute the pooled sample

covariance matrix S

proc discrim pcov; class sex;
var d8 d10 d12 d14;

e In this example,

(5.41545 2.71682 3.91023 2.71023
2.71682 4.18477 2.92716 3.31716
3.91023 2.92716 6.45574 4.13074

 2.71023 3.31716 4.13074 4.98574 )

e The transformation Z = YG T (TG 1T")" 1 is

computed as follows:

_— 1/2 1/2 /2 1/2
N [—3/\@ -1/v/20 1/v20 3/\@]
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Potthoff-Roy Linear Model with G = S

(

\

G—lT/ —

TG 'T =

(TG T ! = [

0.37168 —0.15407 —0.19490 0.06194 Y
—0.15407 0.57220 0.05082 —0.33905
—0.19490 0.05082 0.43363 —0.28713

0.06194 —0.33905 —0.28713 0.63038 )

r0.04232484
0.06494694
0.00120890
. 0.03306573

G—lT/(TG—lT/)—l —

0.07077320
—0.02046346

—0.21690806 Y

—0.24067261
0.02372727
0.39292648 )

0.4700241
0.7788937
0.0321401

\ 0.7189420

—0.02046346
0.46821105

14.31048448  0.62544880
0.62544880 2.16312460

—0.4427271 Y

—0.4799838
0.0520811
0.8706298 )
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Potthoff-Roy Linear Model with G = S

e The SAS statements are:

data b; set a;

sopsO= 0.47002414%d8+0.77889373*d10
+0.03214013*%d12+0.71894200%*d14;

sopsl1=-0.44272714*xd8-0.47998385*d10
+0.05208114%d12+0.87062985*d14;

proc glm;

model sopsO sopsl=male female / noint;

e The estimated constant and linear age
parameters for boys and girls are identical to

those from the covariate-adjusted model

e Differences between the two models:
e Standard errors of estimated parameters

e Test statistics and degrees of freedom for

hypothesis tests
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Potthoff-Roy Linear Model
(Natural Time Scale, G = 5)

e For ease of interpretation, the linear model will

now be fit using the matrix

r 1 1 1
T_[S 10 12 14]

 0.08464969 —0.03889577 Y
G177 — 0.12989387  0.35251199
0.00241780 0.13270736
. 0.06613146 2.48466667
TGl — [ 0.28309282 2.93099025 ]
2.93099025 39.59177541

TG [ 15.12612431 —1.11979123]

—1.11979123 0.10815623

(o 1.323977  —0.098997
1.570051 —0.107328

—0.112033 0.011646

\ —1.781995 0.194679 )

G—lT/(TG—lT/)—l —
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Potthoff-Roy Linear Model
(Natural Time Scale, G = 5)

e The SAS statements are:

data b; set a;
ps0=1.32397685*%d8+1.57005103*d10
-.11203261*%d12-1.78199527*d14;
ps1=-.09899680*d8-0.10732765*d10
+.01164570*%d12+0.19467875*d14;
proc glm;
model psO psl=male female / noint;
contrast ’Both Sexes’ male 1, female 1;
manova m=(1 O,
0 1);
proc glm;
model psO psl=male female / noint nouni;
contrast ’Sex’ male 1 female -1;
manova m=(1 0);
manova m=(0 1);
manova m=(1 O,
0 1);
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Potthoff-Roy Linear Model
(Natural Time Scale, G = 5)

e The resulting model is:

Boys Girls

Estimate S.E. Estimate §S.E.

Constant 15.842 0.972 17.425 1.173
Linear Age 0.827 0.082 0.476 0.099

e The slopes for boys and girls are significantly

different (p = 0.01)

e The intercepts for boys and girls are not

significantly different (p = 0.3)

e All hypothesis tests involving slopes, as well
as the joint tests of intercepts and slopes,
are identical to those from the orthogonal

polynomial parameterization
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Potthoff-Roy Linear Model
(Natural Time Scale, G = I)

o Z=YG'T(TG YT~ =YT'(TT")~ !, where

r 1 &
,_1111110_444]
TT_[S 10 12 14] 1 12 _[44 504
\ 1 ]_4 Y
Nl 6.30 —0.55]
(TT)™ = [—0.55 0.05
1.9 —0.15)
' N 0.8 —0.05
rrr)— = —0.3  0.05
. —1.4 0.15 )
e The resulting model is:
Boys Girls

Estimate S.E. Estimate S.E.

Constant 16.341 1.019 17373  1.228
Linear Age 0.784  0.086 0.480 0.104




