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Repeated Measures ANOVA

• The unstructured multivariate approach makes no

assumptions concerning the covariance structure

• While this is robust, it can result in low power

• For normally-distributed responses, it would be

natural to use ANOVA methods if the repeated

measurements were independent

• A traditional approach to repeated measures is to:

• perform a standard ANOVA

(as if the observations were independent)

• determine if additional assumptions or

modifications are required to make the

analysis valid
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Repeated Measures ANOVA

The Fundamental Model

• Let yij denote the response from subject i at

time j, for i = 1, . . . , n, j = 1, . . . , t

• The general basis for repeated measures

ANOVA is the model

yij = µij + πij + eij

• µij is the mean at time j for individuals

randomly selected from the same population

as individual i

• πij is the consistent departure of yij from µij

for the ith individual

• eij is the departure of yij from µij + πij for

individual i at time j
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Types of Effects in the Model

• The µij parameters are called fixed effects

µij has a fixed value irrespective of the

particular individual

“an immutable constant of the universe”

• The πij parameters are called random effects

πij varies randomly over the population of

individuals

“a lasting characteristic of the individual”

• The eij parameters are random error terms

“a fleeting aberration of the moment”

• Since the fundamental model contains both

fixed and random effects, it is often called the

mixed model
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Assumptions of the Fundamental Model

Means and Variances:

• For given j, E(πij) = 0 and Var(πij) = σ2
πj

The variance is constant over individuals

Any nonzero mean is absorbed in µij

• For given j, E(eij) = 0 and Var(eij) = σ2
j

The error variance is constant over individuals

Correlation Structure:

• Cov(πij , πi′j) = Cov(πij , πi′j′) = 0

The random effects for different subjects are

uncorrelated

• Cov(πij , πij′) = σπjj′

Within-subject covariances of random effects

are the same across subjects
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Assumptions of the Fundamental Model

Correlation Structure:

• Cov(eij , ei′j′) = 0 if i 6= i′ or j 6= j′

the error terms are all uncorrelated

• Cov(πij , ei′j′) = 0 for all i, j, i′, j′

The random effects and the error terms are

uncorrelated

Distributional Assumptions:

• The random effects πij and the error terms eij

are normally distributed

Some Common Simplifications:

• σ2
πj = σ2

π is constant across time points

• σπjj′ is constant for all j, j′

• σ2
j = σ2 is constant across time points
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Consequences of the Assumptions

• E(yij) = µij (since E(πij) = E(eij) = 0)

• Cov(yij , yi′j′) = E[(yij − µij)(yi′j′ − µi′j′)]

= E[(πij + eij)(πi′j′ + ei′j′)]

= E[πijπi′j′ + πijei′j′ + πi′j′eij

+ eijei′j′ ]

• E(πijπi′j′) =
{

Var(πij) if i = i′, j = j′

Cov(πij , πi′j′) otherwise

• E(πijπi′j′) =





σ2
πj if i = i′, j = j′

σπjj′ if i = i′, j 6= j′

0 if i 6= i′

• Thus, E(πijπi′j′) = δii′σπjj′ , where

δii′ =
{

1 if i = i′

0 otherwise

and σπjj = σ2
πj
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Consequences of the Assumptions

• Cov(yij , yi′j′) = E[πijπi′j′ + πijei′j′ + πi′j′eij

+eijei′j′ ]

• E(πijei′j′) = 0, E(πi′j′eij) = 0

• E(eijei′j′) =
{

Var(eij) if i = i′, j = j′

Cov(eij , ei′j′) otherwise

• E(eijei′j′) =
{

σ2
j if i = i′, j = j′

0 otherwise

or E(eijei′j′) = δii′δjj′σ
2
j

• Thus, the model specification for the first two

moments of yij is

E(yij) = µij

Cov(yij , yi′j′) = δii′σπjj′ + δii′δjj′σ
2
j

= δii′(σπjj′ + δjj′σ
2
j )
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Correlation Structure

• Observations from different individuals (i 6= i′)

are uncorrelated

• The correlation between measurements on

the same individual is called an intraclass

correlation and is given by

Corr(yij , yij′) =
σπjj′

[(σπjj + σ2
j )(σπj′j′ + σ2

j′)]1/2

• In the special case where σ2
j = σ2 and

σπjj′ = σ2
π,

ρ = Corr(yij , yij′) =
σ2

π

σ2
π + σ2

• ρ ranges from 0 to 1 as σ2
π/σ2 ranges from

0 to ∞ and measures the strength of the

“personal touch”
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One-Sample Repeated Measures ANOVA

The model is: yij = µ + πi + τj + eij

• yij is the response from subject i at time j

• µ is the (fixed) overall mean

• πi is a random effect for subject i which is

constant over all occasions

• πi are independent N(0, σ2
π) random variables

• τj is the fixed effect of time j (
∑t

j=1 τj = 0)

• eij is a random error component specific to

subject i at time j

• eij are independent N(0, σ2
e) random variables

• eij and πi are independent
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One-Sample Repeated Measures ANOVA

• In terms of the general model

yij = µij + πij + eij :

• µij = µ + τj

(Note that the subscript i is unnecessary)

• πij = πi (constant across time points)

• σ2
πj = σ2

π (constant across time points)

• σ2
πjj′ = σ2

π (constant across time points)

• σ2
j = σ2

e (constant across time points)

• Corr(yij , yij′) =
σ2

π

σ2
π + σ2

e
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Covariance Structure

• Var(yij) = Var(µ + πi + τj + eij) = σ2
π + σ2

e

• Cov(yij , yi′j) = 0, for i 6= i′

• Cov(yij , yij′) = σ2
π, for j 6= j′

• Thus, the covariance matrix of the vector

yi = (yi1, . . . , yit)′ is given by

Σ =




σ2
π + σ2

e σ2
π

. . .
σ2

π σ2
π + σ2

e




= (σ2
π + σ2

e)




1 ρ
. . .

ρ 1


 ,

where ρ =
σ2

π

σ2
π + σ2

e

= Corr(yij , yij′)
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Compound Symmetry

• Although all random variables in the model

are independent, the repeated observations

from a subject are correlated

• The resulting covariance matrix with equal

diagonal elements and equal off-diagonal

elements is said to have compound symmetry

• This covariance structure implies that the

correlation between any pair of repeated

observations is the same, regardless of the

“spacing” between observations

• This assumption is highly restrictive and

often unrealistic, especially when the repeated

measures factor is time
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Analysis of Variance Table

• The ANOVA table is the same as that of the

two-way mixed model with one observation per

cell and no subject × time interaction

Source SS df MS E(MS)

Time SST t− 1 MST σ2
e + nσ2

τ

Subjects SSS n− 1 MSS σ2
e + tσ2

π

Residual SSR (n− 1)(t− 1) MSR σ2
e

where σ2
τ is a function of the τj fixed effects

SST =
n∑

i=1

t∑

j=1

(y.j − y..)
2 = n

t∑

j=1

(y.j − y..)
2

SSS =
n∑

i=1

t∑

j=1

(yi. − y..)
2 = t

n∑

i=1

(yi. − y..)
2

SSR =
n∑

i=1

t∑

j=1

(yij − yi. − y.j + y..)
2
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Computational Procedures

and Hypothesis Tests

• SST, SSS, and SSR can be computed using

a standard ANOVA program for a two-way

main-effects model with one observation

per cell

• The null hypothesis that there are no

differences among time periods can be tested

using the statistic F = MST/MSR

• This test statistic has the Ft−1,(n−1)(t−1)

distribution if the null hypothesis is true and

if the compound symmetry assumption holds

• Linear contrasts of the time period means can

also be tested
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Comments

• If compound symmetry holds, the F test is

more powerful than T 2

• However, since the F test is anti-conservative

in the absence of compound symmetry,

rejection decisions cannot be trusted

• Compound symmetry can be tested

Rouanet and Lepine (1970, Br. J. Math.

Statist. Psych.)

• Although this condition is sufficient for the

F statistic to have a null Ft−1,(n−1)(t−1)

distribution, it is not necessary
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Scheffé’s Mixed Model

Scheffés’ (1959) model is: yij = µ + πi + τj + eij

• yij , µ, and τj are defined as before

• The error components eij now include

subject × time interaction, as well as

measurement error

• The πi and eij components are jointly

normal

• Cov(eij , eij′) 6= 0, Cov(πi, eij) 6= 0

• Many texts do not make a distinction between

the two models

• Provided that certain assumptions are satisfied,

the analysis is the same for both models
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ANOVA for Scheffé’s Mixed Model

Source SS df E(MS)

Time SST t− 1 σ2
e + σ2

T×S + nσ2
τ

Subjects SSS n− 1 σ2
e + tσ2

π

T×S SSTS (n− 1)(t− 1) σ2
e + σ2

T×S
Inter.

where σ2
τ is a function of the τj fixed effects

SST =
n∑

i=1

t∑

j=1

(y.j − y..)
2 = n

t∑

j=1

(y.j − y..)
2

SSS =
n∑

i=1

t∑

j=1

(yi. − y..)
2 = t

n∑

i=1

(yi. − y..)
2

SSTS =
n∑

i=1

t∑

j=1

(yij − yi. − y.j + y..)
2

• The statistic F = MST/MSTS tests

H0: no differences among time periods
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Sphericity Condition

• Compound symmetry is a special case of a more

general situation under which the F test is valid

• The sphericity condition can be expressed in a

number of alternative ways:

a. The variances of all pairwise differences

between variables are equal

Var(yij − yij′) is constant

b. ε = 1, where

ε =
t2(σii − σ..)2

(t− 1)(s− 2t
∑

σ2
i. + t2σ2

..)

σii = mean of entries on main diagonal of Σ

σ.. = mean of all elements of Σ

σi. = mean of entries in row i of Σ

s = sum of the squares of the elements of Σ
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Test of the Sphericity Condition

• Mauchly (1940, Ann. Math. Statist.)

• Has low power for small sample sizes

• For large sample sizes, the test is likely to

show significance even though the effect on

the F -test may be negligible

• Sensitive to departures from normality

conservative for light-tailed distributions

anti-conservative for heavy-tailed distributions

• Very sensitive to outliers

• Not of great practical use
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What if the Sphericity Assumption

is Unreasonable?

1. Use the unstructured multivariate approach

2. Modify the univariate approach

When sphericity doesn’t hold, the F -statistic

has an approximate Fε(t−1),ε(t−1)(n−1)

distribution, where ε is a function of the actual

covariance matrix

ε =
t2(σii − σ..)2

(t− 1)(s− 2t
∑

σ2
i. + t2σ2

..)

σii = mean of entries on main diagonal of Σ

σ.. = mean of all elements of Σ

σi. = mean of entries in row i of Σ

s = sum of the squares of the elements of Σ

It can be shown that 1/(t− 1) ≤ ε ≤ 1



173

Modified Univariate ANOVA Tests

1. Use the lower bound for ε

• With ε = 1/(t − 1), the Fε(t−1),ε(t−1)(n−1)

distribution is replaced by F1,n−1

• This test is very conservative

2. Use ε̂ = ε(S) computed from the sample

covariance matrix S

• Greenhouse & Geisser (1959, Psychometrika)

• The maximum likelihood estimate of ε

• Seriously biased for ε > .75 and n < 2t

• Tends to overcorrect the degrees of freedom

and produce a conservative test



174

Modified Univariate ANOVA Tests

3. Use

ε̃ = min
(
1,

n(t− 1)ε̂− 2
(t− 1)(n− 1− (t− 1)ε̂)

)

• Hunyh and Feldt (1976, J. Educ. Statist.)

• Based on unbiased estimators of the

numerator and denominator of ε

• Less biased than ε̂

• ε̃ ≥ ε̂

• ε̂ better for ε ≤ .5, but ε̃ better for ε ≥ .75

However, ε is unknown in practice
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Greenhouse-Geisser Approach

1. Conduct the univariate F -test

2. If not significant, then stop

3. If significant, conduct the conservative test

Use ε = 1/(t − 1), which leads to the F1,n−1

distribution

a. If significant, then stop

b. If not significant, estimate ε and conduct

an approximate test

ε̂ is more conservative than ε̃

Reference

Greenhouse, S.W. and Geisser, S. (1959).
On methods in the analysis of profile data.
Psychometrika 24, 95–112.
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Example

• Deal et al. (1979) measured ventilation

volumes (l/min) of eight subjects under six

different temperatures of inspired dry air

Temperature (◦C)

Subject −10 25 37 50 65 80

1 74.5 81.5 83.6 68.6 73.1 79.4
2 75.5 84.6 70.6 87.3 73.0 75.0
3 68.9 71.6 55.9 61.9 60.5 61.8
4 57.0 61.3 54.1 59.2 56.6 58.8
5 78.3 84.9 64.0 62.2 60.1 78.7
6 54.0 62.8 63.0 58.0 56.0 51.5
7 72.5 68.3 67.8 71.5 65.0 67.7
8 80.8 89.9 83.2 83.0 85.7 79.6

• Is ventilation volume affected by temperature?

Reference

Deal, E. C., McFadden, E. R., Ingram, R. H. et al. (1979).

Role of respiratory heat exchange in production of exercise-

induced asthma. J Appl Physiol 46, 467–475.
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SAS Statements for Example

data a;

input subject vv1-vv6;

cards;

1 74.5 81.5 83.6 68.6 73.1 79.4

...

8 80.8 89.9 83.2 83.0 85.7 79.6

;

proc glm data=a;

model vv1-vv6= / nouni;

repeated ventvol / nom printe;

• The nouni option omits separate analyses for

each dependent variable

• The nom option omits the unstructured

multivariate analysis

• The printe option provides Mauchly’s (1940)

sphericity test
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Comments

• The unadjusted and conservative analyses can

be carried out even if specialized repeated

measures capabilities are not available

• With some effort, the values of ε̂ and ε̃ could

also be calculated

• The analysis using a standard ANOVA

program requires that the data be restructured

(Instead of one observation per subject,

t observations are required)

• For large problems, the computational

technique of absorption may be required

(provides a large reduction in time and memory

requirements for certain types of models)
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SAS Statements for Example

(Classical ANOVA Approach)

data b; set a;

temp=-10; ventvol=vv1; output;

temp= 25; ventvol=vv2; output;

temp= 37; ventvol=vv3; output;

temp= 50; ventvol=vv4; output;

temp= 65; ventvol=vv5; output;

temp= 80; ventvol=vv6; output;

proc glm data=b;

class subject temp;

model ventvol=temp subject;

title1 ’Usual ANOVA’;

proc sort data=b; by subject;

proc glm data=b;

absorb subject;

class temp;

model ventvol=temp;

title1 ’Usual ANOVA with Absorption’;
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Comments on Absorption

• Classic use is when the model contains a blocking

factor with a large number of levels

• A main effect variable that does not participate

in interactions can be absorbed

• Thus, the effect can be “adjusted out” before

construction and solution of the rest of the model

• The size of the X ′X matrix is then a function

only of the effects in the MODEL statement

• Several variables can be specified; each is

assumed to be nested in the preceding one

• In SAS, the data set must be sorted by the

variables in the ABSORB statement
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Repeated Measures ANOVA

for Multiple Samples

• Suppose that repeated measurements at t time

points have been obtained from s groups of

subjects

• Let nh denote the number of subjects in group h

(n =
∑s

h=1 nh)

• Let yhij denote the response at time j from

the ith subject in group h, for h = 1, . . . , s,

i = 1, . . . , nh, and j = 1, . . . , t

• There are at least three models for this situation,

all resulting in the same ANOVA table

• The simplest is

yhij = µ + γh + τj + (γτ)hj + πi(h) + ehij
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Interpretation of Parameters

• µ is the overall mean

• γh is the fixed effect of group h:
∑s

h=1 γh = 0

• τj is the fixed effect of time j:
∑t

j=1 τj = 0

• (γτ)hj is the fixed effect for the interaction

of the hth group with the jth time:
∑s

h=1(γτ)hj =
∑t

j=1(γτ)hj = 0

• πi(h) are random effects for the ith subject in

the hth group: πi(h) ∼ N(0, σ2
π)

• ehij are random error terms: ehij ∼ N(0, σ2
e)

• In terms of the general model:

• µij = µ + γh + τj + (γτ)hj

• πij = πi(h)

• eij = ehij
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Analysis of Variance Table

• The sources of variation, degrees of freedom, and

expected mean squares are given below:

Source df E(MS)

Groups s− 1 σ2
e + tσ2

π + DG

Subjects(Groups) n− s σ2
e + tσ2

π

Time t− 1 σ2
e + DT

Groups × Time (s− 1)(t− 1) σ2
e + DGT

Residual (n− s)(t− 1) σ2
e

• The residual sum of squares is due to

Subjects(Groups × Time)

• The quantities labelled DG, DT , and DGT

measure differences among groups, time points,

and the group × time interaction, respectively
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Comments

1. An alternative model includes an additional

random effect for the subjects × time

interaction

• This effect is usually assumed to be

uncorrelated with the random subject effect

• Although the expected mean squares differ,

the sums of squares and test statistics are

identical

2. The F -test for differences among groups requires

the assumption that the within-group covariance

matrices are equal

3. The F -tests for the “time” and “groups × time”

effects require equality of covariance matrices

and the sphericity condition
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Example

• A seven-week study of the effect of a vitamin E

diet supplement on the growth of 15 guinea pigs

• In addition to a control group, low and high

doses of vitamin E were studied (with five

animals assigned to each of the three groups)

• All animals were given a growth-inhibiting

substance during week 1 and treatment was

initiated at the beginning of week 5

• The body weight, in grams, of each animal was

recorded at the end of weeks 1, 3, 4, 5, 6, and 7

• Do the growth profiles of the three groups differ?

Reference

Crowder, M. J. and Hand, D. J. (1990). Analysis of Repeated

Measures. London: Chapman and Hall, p. 27.
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Guinea Pig Body Weights

Week

Group ID 1 3 4 5 6 7

Control 1 455 460 510 504 436 466
2 467 565 610 596 542 587
3 445 530 580 597 582 619
4 485 542 594 583 611 612
5 480 500 550 528 562 576

Mean 466.4 519.4 568.8 561.6 546.6 572.0

Low 6 514 560 565 524 552 597
Dose 7 440 480 536 484 567 569

8 495 570 569 585 576 677
9 520 590 610 637 671 702

10 503 555 591 605 649 675
Mean 494.4 551.0 574.2 567.0 603.0 644.0

High 11 496 560 622 622 632 670
Dose 12 498 540 589 557 568 609

13 478 510 568 555 576 605
14 545 565 580 601 633 649
15 472 498 540 524 532 583

Mean 497.8 534.6 579.8 571.8 588.2 623.2
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SAS Statements

(Multivariate Data Structure)

data a;
* 1=control, 2=low dose, 3=high dose;
input group animal w1 w3-w7;
cards;
1 1 455 460 510 504 436 466

...
3 15 472 498 540 524 532 583
;
proc glm; class group;
model w1 w3-w7=group / nouni;
repeated week / printe nom;

• The nouni option omits separate analyses for

each dependent variable

• The nom option omits the unstructured

multivariate analysis

• The printe option provides Mauchly’s (1940)

sphericity test



191

SAS Statements

(Univariate Data Structure)

data b; set a; drop w1 w3-w7;

week=1; weight=w1; output;

week=3; weight=w3; output;

week=4; weight=w4; output;

week=5; weight=w5; output;

week=6; weight=w6; output;

week=7; weight=w7; output;

proc glm;

class group animal week;

model weight=group animal(group)

week group*week;

test h=group e=animal(group);

proc glm;

class group animal week;

model weight=group animal(group)

week group*week;

random animal(group) / test;


