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Abstract
RMNP2 is an easy-to-use FORTRAN program for the analysis of repeated measures using the nonpara-

metric two-sample tests of Wei and Lachin [1] and Wei and Johnson [2]. The program compares two groups
of subjects or experimental units when measurements are obtained at multiple time points, or under multiple
conditions, from each subject. A strength of the methodology is that subjects with missing responses at one
or more time points can be included in the analysis, under the assumption that the missing value mechanism
is independent of the response. In contrast to other methods that require parametric assumptions concerning
the distribution of the outcome variable, RMNP2 is applicable when the response variable is continuous, but
not normally-distributed. The program is also useful in the analysis of ordered categorical outcomes when
the number of possible responses is too large to permit application of general categorical data methodol-
ogy. The program can be run on microcomputers, workstations, and mainframe computers. Two examples
illustrating the usage and features of RMNP2 are provided.

1. Introduction
A frequently-occurring problem in biomedical research is to evaluate the effectiveness of a new treatment

in patients or subjects with a specified disease or condition. One commonly-used design involves selection
of eligible subjects, randomization to one of two groups (new therapy, standard treatment), measurement of
an appropriate outcome variable following treatment, and statistical comparison of the distribution of the
outcome in the two groups. In many such studies, the response variable of interest is measured at multiple
fixed time points for each experimental unit. In these situations, it is often desirable to base the comparison of
the two treatment groups on the vector of responses from each subject. The statistical analysis is complicated
by the dependence among successive observations made on the same experimental unit. In addition, since
the investigator cannot usually control completely the circumstances for obtaining measurements, the data
may be partially incomplete.

General approaches for the analysis of repeated measurements are now widely available in standard
statistical software packages such as BMDP [3] and SAS [4]. Although these methods allow missing data,
unbalanced measurement patterns, and multiple discrete and/or continuous covariates, they make the strong
assumption that the response variable is normally-distributed. The weighted least squares approach to the
analysis of repeated categorical outcomes [5], and subsequent extensions to accommodate missing data [6–8],
can also be carried out using standard software [9,10]. The distributional assumptions underlying this
approach, however, limit its usefulness to situations in which the sample size is quite large and the number
of time points and number of possible values of the categorical response variable are both small. Versatile
methods based on extensions of generalized linear models [11] to the repeated measures setting have also
been proposed [12–17]. These approaches do not make assumptions concerning the joint distribution of the
responses across time, but rather assume only a particular form for the marginal distribution at each time
point, e.g., normal, Poisson, binomial, gamma. Although none of these methods have yet been implemented
in commercial packages, software for the GEE approach [12, 13] is available [18–20].

While all of the above methods require assumptions on either the joint or the marginal distributions
of the response variable, there are at least three general situations in which nonparametric methods may
be useful. First, when the response is continuous, the assumption of multivariate normality may not be
reasonable or the underlying distribution may be unknown. In this case, the use of standard parametric
procedures is subject to criticism. Second, when the response is an ordered categorical variable with a large
number of possible outcomes, the general categorical data methods may be inapplicable due to sample size
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limitations. In addition, the restrictive proportional odds assumption of ordinal data methodology may not
be justified. Apart from these considerations, there are also situations in which it may be desirable to confirm
the results of a parametric analysis using nonparametric methods.

Two-sample nonparametric tests for complete multivariate observations have been studied extensively,
e.g., [21,22]. This paper describes the FORTRAN program RMNP2 (Repeated Measures Non-Parametric 2
samples) which implements two general methods for the analysis of incomplete repeated measurements [1, 2].
Although RMNP2 does not require any assumptions concerning the distribution of the response variable, the
statistical methodology is limited to comparisons between two groups of experimental units, i.e., multiple
covariates can not be accommodated. In addition, the methodology provides hypothesis tests only, and not
estimation procedures. Finally, although the missing value patterns in the two groups are allowed to be
different, missing responses are assumed to be missing completely at random [23].

Section 2 reviews the Wei-Lachin [1] and Wei-Johnson [2] methodologies and outlines the computational
methods, while section 3 describes the RMNP2 program. Section 4 gives two examples illustrating the usage
and features of RMNP2. Finally, sections 5 and 6 describe hardware and software specifications and program
availability, respectively.

2. Statistical methodology
Wei and Lachin [1] studied a family of asymptotically distribution-free tests for equality of two multi-

variate distributions. Although their methodology was motivated and developed for multivariate censored
failure time data, an important application is to repeated measures with missing observations.

Let n1 and n2 denote the number of subjects in groups 1 and 2, respectively, and let n = n1+n2. Suppose
that repeated measurements of an outcome variable Y are scheduled at time points labelled 1, . . . , t. Let yhij

denote the response at time j from the ith subject in group h, for h = 1, 2, i = 1, . . . , nh, and j = 1, . . . , t.
In addition, define indicator variables

δhij =
{

1 if yhij is observed,
0 if yhij is missing.

Also let Fh(x1, . . . , xt) denote the multivariate cumulative distribution function (cdf) of the repeated obser-
vations from group h, for h = 1, 2. The Wei-Lachin statistic for testing H0: F1(x1, . . . , xt) = F2(x1, . . . , xt)
against the general alternative that F1 6= F2 is X2

W = W ′Σ̂−1
W W , where W ′ = (W1, . . . , Wt) is a vector of

test statistics comparing groups 1 and 2 at each of the t time points, and Σ̂W is a consistent estimator of
Var(W ) given by Theorem 1 of [1]. Apart from a scale factor, the jth component of W equals

n1∑

i=1

n2∑

i′=1

δ1ij δ2i′j φ(y1ij , y2i′j),

where

φ(x, y) =

{ 1 if x > y,
0 if x = y,

−1 if x < y.
(1)

Thus, at each time point j, comparisons between groups 1 and 2 are made for all i, i′ for which y1ij and y2i′j

are both observed. The asymptotic null distribution of X2
W is chi-square with t degrees of freedom (χ2

t ).
In many studies, the detection of stochastic ordering of the distributions F1 and F2 is of primary interest.

For example, the alternative hypothesis H1 may be that F1j(x) ≤ F2j(x) for each pair (F1j , F2j) of marginal
cdfs, j = 1, . . . , t. Under this alternative, the observations from group 1 tend to be larger than those from
group 2 at each time point. For this situation, Wei and Lachin [1] propose the statistic

zW =
e′T√
e′Σ̂T e

,
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where e′ is the t-component vector (1, . . . , 1). The asymptotic null distribution of zW is normal with mean
0 and variance 1 [N(0, 1)]. If the alternative hypothesis is F1 ≤ F2 (F1 ≥ F2), the null hypothesis is rejected
when zW is a large positive (negative) value.

Wei and Lachin [1] derive the preceding methodology based on a commonly used random-censorship
model [24] and focus on an omnibus test of equality versus a general alternative. In contrast, Wei and
Johnson [2] focus primarily on optimal methods of combining dependent tests and propose a class of two-
sample nonparametric tests for incomplete repeated measures based on two-sample U -statistics. Their
motivation is that if a researcher wishes to draw an overall conclusion regarding the superiority of one
treatment over another (across time), then a univariate one-sided test that combines the results at individual
time points is more appropriate than an omnibus two-sided test of H0: F1(x1, . . . , xt) = F2(x1, . . . , xt).

The Wei-Johnson [2] test statistic at the jth time point is

Uj =
√

n

n1n2

n1∑

i=1

n2∑

i′=1

δ1ij δ2i′j φ(y1ij , y2i′j),

where φ(x, y) is a “kernel” function. Under mild regularity conditions, the elements of the variance-covariance
matrix Σ̂U of U = (U1, . . . , Ut)′ can be estimated consistently by

σ̂jk =
n

n1
σ̂1jk +

n

n2
σ̂2jk,

where

σ̂1jk =
1

n1n2(n2 − 1)

n1∑

i=1

n2∑

l 6=l′=1

δ1ij δ1ik δ2lj δ2l′k φ(y1ij , y2lj)φ(y1ik, y2l′k),

σ̂2jk =
1

n2n1(n1 − 1)

n2∑

l=1

n1∑

i6=i′=1

δ1ij δ1i′k δ2lj δ2lk φ(y1ij , y2lj) φ(y1i′k, y2lk).

Since the null distribution of U is approximately multivariate normal with zero mean vector and variance-
covariance matrix Σ̂U , the hypothesis H0:F1 = F2 can be tested against a general alternative using the
statistic X2

U = U ′Σ̂−1
U U , which is asymptotically χ2

t . A univariate one-sided test that combines the results
at individual time points can be based on the linear combination c′U =

∑t
j=1 cjUj , where c′ = (c1, . . . , ct)

is a vector of weights. Under H0, the statistic

zU =
c′U√
c′Σ̂Uc

is asymptotically N(0, 1)
Under the assumption that the test statistics at the individual time points are estimates of a common

effect, the optimal weights are given by c′ = e′Σ̂−1
U , where e′ is the t-component vector (1, . . . , 1) [25,26]. In

practice, however, this assumption may not hold. In addition, Bloch and Moses [27] show that the use of
simple weights often results in little loss of efficiency. The simplest choice for the vector c is to weight each
component equally, i.e. c′ = (1, . . . , 1). Another possibility is to weight by the reciprocals of the variances,
i.e., c′ = (1/σ̂11, . . . , 1/σ̂tt). Note that if the values of the test statistics differ considerably across time points,
the weights c′ = e′Σ̂−1

U may give a result which is quite different from that using equal weights or weighting
by precision.

Although Wei and Johnson [2] suggest several choices for the kernel function φ(x, y), we restrict con-
sideration to the function given in equation (1). With this choice, the Wei-Johnson vector of test statistics
U and the Wei-Lachin vector of test statistics W are equivalent, apart from a scale factor. The consistent
estimators of the variances and covariances of the components of the vector of test statistics, however, are
different. The two methods will usually give similar results.
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3. Program description and usage
3.1. General description

The FORTRAN-77 program RMNP2 consists of a main program and 14 subprograms. First, four
subroutines are called to determine the type of input and output desired (screen-directed or file-directed), to
read in the analysis options and data, and to check for errors and inconsistencies in the input parameters. The
analysis options are then written to the screen or output file, as desired. The main program then calls three
major subroutines to carry out the required computations and to print the results. First, the Wei-Lachin
and/or Wei-Johnson vectors of test statistics and their estimated covariance matrices are computed. The
omnibus chi-square statistics X2

W and X2
U are then calculated and printed, as well as the linear combination

statistics zW and zU for the three sets of weight vectors described in section 2:
equal c′ = (1, . . . , 1),
variance reciprocals c′ = (1/σ̂11, . . . , 1/σ̂tt),
optimal c′ = (1, . . . , 1)Σ̂−1.

The remaining seven subprograms handle matrix operations and calculation of normal and chi-square prob-
abilities.

The user can specify that the analysis be carried out using the Wei-Lachin method, the Wei-Johnson
method, or both methods. The program output includes the vector of test statistics comparing the two
groups at each time point (W , U), the covariance (Σ̂W , Σ̂U ) and correlation matrices of the statistics, and
the vector of standardized test statistics (statistic/standard error). The raw data may optionally be listed.
The results from the two-sided omnibus test of the null hypothesis of no difference between the two groups
are printed (X2

W and/or X2
U , degrees of freedom, chi-square p-value), as well as the three one-sided tests of

stochastic ordering (zW and/or zU , N(0, 1) p-value).

3.2. Structure of the input data file
The input data file must be a standard text (ASCII) file with no hidden characters or word processing

format codes. This file should contain one line per subject (independent experimental unit). The data for
each subject must include a group identifier and the values of the outcome variable at each of the multiple
time points or measurement conditions. Although each record may contain other variables not to be used
in the analysis, such as subject identifier, demographic data, etc., the program is restricted to reading in
at most 100 variables per subject. Note that the group identifier and the repeated measurements are not
required to be in specific fields.

All data items are read in as real numbers using free format input. Thus, fields must be separated
by one or more blanks. Data values less than a user-specified missing data code are interpreted as missing
values.

The current version of the program is restricted to at most 125 subjects in each of the two treatment
groups. In addition, analysis is restricted to a maximum of eight repeated measurements. Although these
limitations are necessary for execution on an IBM-compatible personal computer using the DOS operating
system, the source code can be easily changed for use on other systems. Also, reducing the maximum number
of repeated measurements permits increasing the maximum number of subjects, and vice-versa.

3.3. Specification of analysis options
The RMNP2 options allow the user to determine input/output modes and to specify the missing value

indicator, the number of variables to be read in, the indices of the group identifier and repeated measurements
variables, the values identifying the two groups of subjects, and the test statistics to be computed. These
analysis options are listed in Table 1. They can be specified in one of three ways, depending on how the
program is invoked.

[INSERT TABLE 1 ABOUT HERE]

When RMNP2 is invoked, the user is asked:
ARE INPUT PARAMETERS INCLUDED AT THE BEGINNING OF YOUR DATA FILE?

(1=YES, 2=NO)
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The simplest method of specifying the desired options is to respond with a ‘2’ and then enter the options
interactively in response to program prompts. When options are specified in this manner, the program
checks for validity and consistency with the values of previously-entered options. If errors are detected, the
user is prompted to reenter the option.

It is sometimes more convenient to include the analysis options at the beginning of the input data file.
In this case, options B, C, D, F , H, and I should be specified on line 1 of the input file, option E should
be specified on line 2, and option G on line 3.

On MS-DOS compatible microcomputers and UNIX workstations, it is also possible to include the
values of the options in a separate control file. This file must contain one line for each of the 11 options
listed in Table 1 and the first line (option A) must contain the value 2. If this file is called ANALYSIS.CTL,
the command RMNP2<ANALYSIS.CTL is then used to invoke the program. If the analysis options are included
at the beginning of the data file or in a separate control file, the values of invalid and/or inconsistent options
are printed and execution of the program is terminated. Examples of all three types of option specifications
are given in the next section.

4. Examples
4.1. Comparison of two treatments for maternal pain relief during labor and delivery

Eighty-three women in labor were randomized to receive an experimental pain medication (n1 = 43) or
placebo (n2 = 40). Treatment was initiated when the cervical dilation was 8 cm. At 30 minute intervals, the
amount of pain was self-reported by placing a mark on a 100 mm line (0=no pain, 100=very much pain).
Data were collected at baseline and at 30, 60, 90, 120, 150, and 180 minutes following treatment.

The response variable (pain severity) is essentially continuous, since the length of the line to the left of
the mark was measured to the nearest 0.5 mm. However, the pain severity scores are very non-normal. At
early time points, the distribution is skewed to the left and there are many zeros. The marginal distributions
tend to be U-shaped at some of the later time points. Thus, standard parametric analysis methods seem
inappropriate. In addition, there are numerous missing values at later measurement times.

The data file PAIN.DAT contains the group indicator (1=experimental treatment, 2=placebo), a subject
identifier, and pain severity measures at minutes 0, 30, 60, 90, 120, 150, and 180. Since the smallest
nonmissing value is 0.0, missing measurements are coded as −1.0. Table 2 displays the data from the first
10 subjects in group 1; the entire data file is listed in Appendix III of [28].

[INSERT TABLE 2 ABOUT HERE]

We will compare the two treatment groups using both the Wei-Lachin and Wei-Johnson methods at
minutes 30, 60, 90, 120, 150, and 180. The analysis options will be specified interactively and the results
will be written to the file PAIN.OUT. The program is invoked by typing RMNP2. The session log and the
results of the analysis are displayed in Tables 3 and 4, respectively. In the session log, statements in capital
letters denote prompts which appear on the screen; these are followed by user responses (numbers and lower
case letters).

[INSERT TABLES 3 AND 4 ABOUT HERE]

For both methods, the signs of the test statistics indicate that, at each time point, the pain scores are
lower (better) in the treated group than in the placebo group. Although the two methods yield similar
conclusions, the Wei-Lachin standardized statistic is larger in magnitude (more significant) than the Wei-
Johnson statistic at every time point. The omnibus Wei-Lachin statistic is highly significant, while the
omnibus Wei-Johnson statistic is marginally significant (p = .065). The one-sided tests based on linear
combinations of the individual statistics also indicate that the two treatments are significantly different.

The preceding analysis can also be carried out by including the options in a separate file. For example,
given the file PAIN.CTL listed in Table 5, the statement RMNP2<PAIN.CTL produces the same results as
shown in Table 4. (Note that the descriptive comments to the right of each line in Table 5 are not part of
the file PAIN.CTL.)

[INSERT TABLE 5 ABOUT HERE]
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4.2. Effect of chenodiol on cholesterol levels in the National Cooperative Gallstone Study
The National Cooperative Gallstone Study studied the safety of the drug chenodiol in the treatment

of cholesterol gallstones. This drug dissolves gallstones by altering the metabolic pathway of cholesterol to
reduce cholesterol secretion into gallbladder bile. However, it was thought that it also might increase serum
cholesterol, a known risk factor for atherosclerotic disease.

In a group of 112 patients with floating gallstones, 64 patients received 750 mg/day of chenodiol and
48 patients received placebo. Serum cholesterol was measured in these patients prior to treatment and at 6,
12, 20, and 24 months of follow-up. Many cholesterol measurements were missing because patient follow-up
was terminated, visits were missed, or laboratory specimens were lost or inadequate. The two groups have
rather different missing value patterns, mainly because of the termination of follow-up for different reasons.
We wish to compare the chenodiol and placebo groups with respect to the increases in cholesterol levels
(from baseline) at months 6, 12, 20, and 24.

The analysis options and the data are contained in the file CHOLEST.DAT, which contains 115 records.
Table 6 lists the first 13 records from this file (and includes the data from the first 10 subjects in the chenodiol
group); the complete data set is listed in Table 2 of [1]. With the exception of the first three records, which
contain the analysis options, each record has five variables: group identifier (1=chenodiol, 2=placebo) and
the cholesterol increases at months 6, 12, 20, and 24. Since the cholesterol changes may be either positive
or negative, missing values are denoted in the data file by the value −999.

[INSERT TABLE 6 ABOUT HERE]

The first record contains the missing value indicator, the total number of variables to be read in, the
index of the group identifier, the number of time points at which test statistics are to be calculated, and the
indicators for test statistic calculation and raw data listing (options B, C, D, F , H, and I). The options
specified indicate that values less than −998 are missing, that five variables will be read in, that the first
variable is the group identifier, that four time points will be used in the analysis, that both methods will be
used, and that the raw data will not be listed. The second line gives the group identifiers and the third line
specifies the indices of the measurement times for which test statistics are to be calculated.

The session log and the results of the analysis are displayed in Tables 7 and 8, respectively. At each
time point, the cholesterol increases are greater in the chenodiol group than in the placebo group. For both
methods, the p-value from the omnibus statistic is greater than 0.1, while the linear combination with equal
weights is significant at the 0.05 level. However, the two other linear combinations give more weight to the
last two time points, where the difference between the two groups is diminished. In particular, the optimal
set of weights under the assumption that the individual test statistics are estimates of a common effect yields
nonsignificant p-values. The substantial differences among the three linear combinations result from the fact
that the values of the test statistics differ across time points.

[INSERT TABLES 7 AND 8 ABOUT HERE]

5. Hardware and software specifications
RMNP2 is written in standard FORTRAN-77. It was originally developed for MS-DOS personal comput-

ers and compiled using the MICROSOFT (R) FORTRAN Optimizing Compiler Version 5.0. The program has
also been compiled and executed on HP APOLLO Series 700 workstations using the HP-UX FORTRAN 77
compiler; no modifications of any kind were required. Intermediate test statistic and Wei-Johnson covariance
calculations use integer arithmetic, with the results stored as single precision real numbers; the Wei-Lachin
covariance calculations are carried out using double precision arithmetic. The following algorithms from
Griffiths and Hill [29] are used:

SYMINV inversion of a positive semi-definite symmetric matrix;
CHOL triangular decomposition of a symmetric matrix;

ALNORM calculation of tail areas of the standard normal distribution.
In addition, algorithms of MacLeod [30] and Shea [31] are used to compute the natural logarithm of the
gamma function and the incomplete gamma integral, respectively.
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Although general-purpose programs for the nonparametric analysis of incomplete repeated measures
have not been made available previously, Makuch, Escobar, and Merrill [32] provide a FORTRAN subroutine
for computing the Wei-Lachin omnibus statistic X2

W and linear combination statistic zW using the weight
vector c′ = (1, . . . , 1). While their interest was in the analysis of multivariate censored failure time data,
they provide instructions for adapting their algorithm to the general repeated measures setting. Apart from
a sign change, the two algorithms give the same results.
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Table 1
Analysis options

Option Description

A Method of specifying input options:
1=included at the beginning of the input file,
2=specified interactively or included in a separate file

B Missing value indicator (data items less than this value are interpreted as missing values)

C Total number of variables to be read in (at most 100)

D Index of the group identifier; permissible values are 1, . . . , C

E The two possible values of the group identifier variable D; these define the two groups of subjects

F Number of time points at which the test statistics are to be calculated; permissible values are
1, . . . , min(C − 1, 8)

G Indices of variables (time points) at which test statistics are to be calculated; the F values specified
must be in ascending order and each must be in the range 1, . . . , C and must not equal D

H Test statistics to be computed:
1=Wei-Lachin only,
2=Wei-Johnson only,
3=Wei-Lachin and Wei-Johnson

I Code for optional raw data listing:
1=list the data for the time points at which test statistics are to be calculated,
2=do not list the raw data.

J Name of the input data file (may include a path name under MS-DOS and UNIX)

K Name of the output data file (may include a path name under MS-DOS and UNIX); enter * if
results are to be written to the screen instead of to a file

Table 2
Data from example 4.1: first ten subjects in group 1

1 1 0.0 0.0 0.0 0.0 -1.0 -1.0 -1.0

1 2 0.0 0.0 0.0 0.0 2.5 2.3 14.0

1 3 38.0 5.0 1.0 1.0 0.0 5.0 -1.0

1 4 6.0 48.0 85.0 0.0 0.0 -1.0 -1.0

1 5 19.0 5.0 -1.0 -1.0 -1.0 -1.0 -1.0

1 6 7.0 0.0 0.0 0.0 -1.0 -1.0 -1.0

1 7 44.0 42.0 42.0 45.0 -1.0 -1.0 -1.0

1 8 1.0 0.0 0.0 0.0 0.0 6.0 24.0

1 9 24.5 35.0 13.0 -1.0 -1.0 -1.0 -1.0

1 10 1.0 30.5 81.5 67.5 98.5 97.0 -1.0
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Table 3
Session log from example 4.1

LONGITUDINAL DATA ANALYSIS USING NONPARAMETRIC METHODS FOR
INCOMPLETE REPEATED MEASUREMENTS FROM TWO SAMPLES
WEI AND LACHIN (1984, JASA), WEI AND JOHNSON (1985, BIOMETRIKA)

ARE INPUT PARAMETERS INCLUDED AT THE BEGINNING OF YOUR DATA FILE?
(1=YES, 2=NO)
2

ENTER MISSING VALUE INDICATOR
(VALUES LESS THAN THIS VALUE ARE MISSING)
-0.5

ENTER THE TOTAL NUMBER OF VARIABLES TO BE READ IN (MAXIMUM OF 100)
9

ENTER THE INDEX OF THE GROUP IDENTIFIER (MUST BE IN THE RANGE 1- 9)
1

ENTER THE GROUP IDENTIFICATION CODES
1 2

ENTER THE NUMBER OF TIME POINTS AT WHICH THE TEST STATISTICS
ARE TO BE CALCULATED (MAXIMUM OF 8)
6

ENTER THE INDICES OF THE TIME POINTS TO BE USED
4 5 6 7 8 9

INDICATE WHICH TEST STATISTICS ARE TO BE COMPUTED
(1=WEI-LACHIN, 2=WEI-JOHNSON, 3=BOTH)
3

DO YOU WISH TO LIST THE RAW DATA? (1=YES, 2=NO)
2

ENTER THE NAME OF THE INPUT DATA FILE
pain.dat

ENTER THE NAME OF THE OUTPUT DATA FILE
(* IF RESULTS ARE TO BE WRITTEN TO THE SCREEN)
pain.out

Table 4
Output from example 4.1

LONGITUDINAL DATA ANALYSIS USING NONPARAMETRIC METHODS FOR
INCOMPLETE REPEATED MEASUREMENTS FROM TWO SAMPLES
WEI AND LACHIN (1984, JASA), WEI AND JOHNSON (1985, BIOMETRIKA)

MISSING VALUE INDICATOR: -.50
TOTAL NUMBER OF VARIABLES: 9
INDEX OF THE GROUP IDENTIFIER: 1
GROUP IDENTIFIERS: 1 2
NUMBER OF TIME POINTS: 6
INDICES OF TIME POINTS: 4 5 6 7 8 9
NUMBER OF SUBJECTS IN GROUP 1: 43
NUMBER OF SUBJECTS IN GROUP 2: 40
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Table 4 (continued)

WEI-LACHIN ANALYSIS:

VECTOR OF TEST STATISTICS
-.39409E+00 -.60172E+00 -.75513E+00 -.72868E+00 -.49725E+00 -.29755E+00

ESTIMATED COVARIANCE MATRIX OF VECTOR OF TEST STATISTICS
.79355E-01 .47911E-01 .28357E-01 .17829E-01 .11357E-01 .57492E-02
.47911E-01 .58464E-01 .31605E-01 .20765E-01 .15458E-01 .64448E-02
.28357E-01 .31605E-01 .36803E-01 .19749E-01 .11149E-01 .36276E-02
.17829E-01 .20765E-01 .19749E-01 .26539E-01 .14794E-01 .53505E-02
.11357E-01 .15458E-01 .11149E-01 .14794E-01 .13187E-01 .56908E-02
.57492E-02 .64448E-02 .36276E-02 .53505E-02 .56908E-02 .52491E-02

STANDARDIZED VECTOR OF TEST STATISTICS (ESTIMATE/S.E.)
-1.39898 -2.48856 -3.93623 -4.47297 -4.33010 -4.10698

CORRELATION MATRIX
1.00000 .70339 .52472 .38851 .35109 .28169
.70339 1.00000 .68135 .52716 .55670 .36789
.52472 .68135 1.00000 .63194 .50609 .26100
.38851 .52716 .63194 1.00000 .79081 .45333
.35109 .55670 .50609 .79081 1.00000 .68400
.28169 .36789 .26100 .45333 .68400 1.00000

LINEAR COMBINATIONS OF TEST STATISTICS

WEIGHTS STATISTIC VARIANCE Z P
(1,1,...,1) -.3274E+01 .7113E+00 -3.883 .000
RECIPROCALS OF THE VARIANCES -.1576E+03 .1055E+04 -4.853 .000
(1,1,...,1) X SIGMA INVERSE -.6293E+02 .2032E+03 -4.415 .000

OMNIBUS CHI-SQUARE TEST STATISTIC = 30.098 DF=6 P= .000

WEI-JOHNSON ANALYSIS:

VECTOR OF TEST STATISTICS
-.15784E+01 -.24100E+01 -.30245E+01 -.29185E+01 -.19916E+01 -.11918E+01

ESTIMATED COVARIANCE MATRIX OF VECTOR OF TEST STATISTICS
.13298E+01 .92683E+00 .65567E+00 .41822E+00 .24287E+00 .14334E+00
.92683E+00 .11200E+01 .77826E+00 .55765E+00 .36251E+00 .21144E+00
.65567E+00 .77826E+00 .93373E+00 .75114E+00 .49850E+00 .25548E+00
.41822E+00 .55765E+00 .75114E+00 .77904E+00 .50155E+00 .25277E+00
.24287E+00 .36251E+00 .49850E+00 .50155E+00 .41888E+00 .22344E+00
.14334E+00 .21144E+00 .25548E+00 .25277E+00 .22344E+00 .18191E+00

STANDARDIZED VECTOR OF TEST STATISTICS (ESTIMATE/S.E.)
-1.36876 -2.27724 -3.12995 -3.30661 -3.07717 -2.79427

CORRELATION MATRIX
1.00000 .75943 .58841 .41089 .32541 .29143
.75943 1.00000 .76103 .59700 .52925 .46844
.58841 .76103 1.00000 .88071 .79709 .61989
.41089 .59700 .88071 1.00000 .87799 .67147
.32541 .52925 .79709 .87799 1.00000 .80944
.29143 .46844 .61989 .67147 .80944 1.00000

LINEAR COMBINATIONS OF TEST STATISTICS

WEIGHTS STATISTIC VARIANCE Z P
(1,1,...,1) -.1311E+02 .1832E+02 -3.064 .001
RECIPROCALS OF THE VARIANCES -.2163E+02 .4357E+02 -3.277 .001
(1,1,...,1) X SIGMA INVERSE -.5229E+01 .6163E+01 -2.106 .018

OMNIBUS CHI-SQUARE TEST STATISTIC = 11.864 DF=6 P= .065
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Table 5
Analysis options file for example 4.1

2 Analysis options are not part of the data file
-0.5 Missing value indicator
9 Total number of variables to be read in
1 Index of the group identifier
1 2 Values of the group identifier variable
6 Number of time points at which test statistics are to be calculated
4 5 6 7 8 9 Indices of variables (time points) at which test statistics are to be calculated
3 Test statistics to be computed (3=Wei-Lachin and Wei-Johnson)
2 Code for optional raw data listing (2=do not list raw data)
pain.dat Name of input data file
pain.out Name of output data file

Table 6
Data from example 4.2 (first 13 lines)

-998 5 1 4 3 2
1 2
2 3 4 5
1 68 117 50 96
1 6 24 -9 86
1 47 30 35 107
1 49 22 41 101
1 27 60 37 25
1 31 -9 18 11
1 24 -20 -24 -62
1 13 36 37 5
1 25 -36 10 -32
1 -29 9 30 -8

Table 7
Session log from example 4.2

LONGITUDINAL DATA ANALYSIS USING NONPARAMETRIC METHODS FOR
INCOMPLETE REPEATED MEASUREMENTS FROM TWO SAMPLES
WEI AND LACHIN (1984, JASA), WEI AND JOHNSON (1985, BIOMETRIKA)

ARE INPUT PARAMETERS INCLUDED AT THE BEGINNING OF YOUR DATA FILE?
(1=YES, 2=NO)
1

ENTER THE NAME OF THE INPUT DATA FILE
cholest.dat

ENTER THE NAME OF THE OUTPUT DATA FILE
(* IF RESULTS ARE TO BE WRITTEN TO THE SCREEN)
cholest.out
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Table 8
Output from example 4.2

MISSING VALUE INDICATOR: -998.00
TOTAL NUMBER OF VARIABLES: 5
INDEX OF THE GROUP IDENTIFIER: 1
GROUP IDENTIFIERS: 1 2
NUMBER OF TIME POINTS: 4
INDICES OF TIME POINTS: 2 3 4 5
NUMBER OF SUBJECTS IN GROUP 1: 64
NUMBER OF SUBJECTS IN GROUP 2: 48

WEI-LACHIN ANALYSIS:

VECTOR OF TEST STATISTICS
.51211E+00 .53911E+00 .19742E+00 .55682E-01

ESTIMATED COVARIANCE MATRIX OF VECTOR OF TEST STATISTICS
.65719E-01 .33619E-01 .22034E-01 .15108E-01
.33619E-01 .49803E-01 .20568E-01 .13778E-01
.22034E-01 .20568E-01 .28929E-01 .10351E-01
.15108E-01 .13778E-01 .10351E-01 .18367E-01

STANDARDIZED VECTOR OF TEST STATISTICS (ESTIMATE/S.E.)
1.99764 2.41572 1.16070 .41087

CORRELATION MATRIX
1.00000 .58764 .50534 .43484
.58764 1.00000 .54187 .45556
.50534 .54187 1.00000 .44905
.43484 .45556 .44905 1.00000

LINEAR COMBINATIONS OF TEST STATISTICS

WEIGHTS STATISTIC VARIANCE Z P
(1,1,...,1) .1304E+01 .3937E+00 2.079 .019
RECIPROCALS OF THE VARIANCES .2847E+02 .2907E+03 1.670 .047
(1,1,...,1) X SIGMA INVERSE .5879E+01 .6287E+02 .741 .229

OMNIBUS CHI-SQUARE TEST STATISTIC = 7.313 DF=4 P= .120

WEI-JOHNSON ANALYSIS:

VECTOR OF TEST STATISTICS
.20911E+01 .22013E+01 .80613E+00 .22737E+00

ESTIMATED COVARIANCE MATRIX OF VECTOR OF TEST STATISTICS
.10949E+01 .63868E+00 .41113E+00 .23832E+00
.63868E+00 .86740E+00 .37388E+00 .22578E+00
.41113E+00 .37388E+00 .48645E+00 .16674E+00
.23832E+00 .22578E+00 .16674E+00 .29779E+00

STANDARDIZED VECTOR OF TEST STATISTICS (ESTIMATE/S.E.)
1.99839 2.36363 1.15580 .41666

CORRELATION MATRIX
1.00000 .65536 .56333 .41736
.65536 1.00000 .57558 .44425
.56333 .57558 1.00000 .43810
.41736 .44425 .43810 1.00000

LINEAR COMBINATIONS OF TEST STATISTICS

WEIGHTS STATISTIC VARIANCE Z P
(1,1,...,1) .5326E+01 .6856E+01 2.034 .021
RECIPROCALS OF THE VARIANCES .6868E+01 .1765E+02 1.635 .051
(1,1,...,1) X SIGMA INVERSE .1321E+01 .3868E+01 .672 .251

OMNIBUS CHI-SQUARE TEST STATISTIC = 6.715 DF=4 P= .152
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