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Nonparametric Methods

• Most of the methods we have studied require

distributional assumptions

(on either joint or marginal distributions)

• multivariate normal joint distribution

(either unstructured or with a special

covariance structure)

• multinomial joint distribution

• normal, Bernoulli, Poisson, gamma marginal

distributions

• The exceptions were:

• summary statistic approach using

nonparametric measures of association

• randomization model analyses based on

CMH statistics
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Rationale for Nonparametric Methods

1. For continuous responses:

a. the assumption of multivariate normality is

not always reasonable

b. the actual distribution may be unknown

Thus, the use of standard parametric procedures

is subject to criticism

2. For ordered categorical responses with a large

number of possible outcomes:

a. general categorical data methods may be

inapplicable due to sample size limitations

b. assumptions of specific ordinal data models

may be inappropriate

3. To confirm the results of parametric analyses
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Some Nonparametric Methods

Summary Statistic Approach

• Analysis of a univariate function of the repeated

measurements using distribution-free methods

• Ghosh et al. (1973) extension based on the use of

two or more summary statistics for each subject

Rank Correlation Methods

• Another type of multivariate approach based on

summary statistics

• Applicable when ordinal response is measured at

multiple time points in several ordered groups

• Rank measures of association between group and

response are constructed at each time

• Covariance matrix of these correlated measures

of association is then estimated

• Carr, Hafner, and Koch (1989)
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Some Nonparametric Methods

Multivariate Generalizations of Univariate

Distribution-Free Methods

(rank-based methods for samples from continuous

multivariate distributions)

• Multivariate one-sample tests for complete data

• Nonparametric analogues of Hotelling’s T 2

• Multivariate generalizations of the sign and

Wilcoxon signed rank tests

• Hettmansperger (1984, chapter 6)

• Puri and Sen (1971, chapter 4)

• Multivariate multisample tests for complete data

• Nonparametric analogues of MANOVA

• Multivariate generalizations of the Kruskal-

Wallis and Brown-Mood (1951) median tests

• Puri and Sen (1971, chapter 5)
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Some Nonparametric Methods

Counterparts of Multivariate Normal Methods

• Nonparametric counterparts of Hotelling’s T 2

statistic and profile analysis (Bhapkar, 1984)

• Nonparametric analogues of the Potthoff-Roy

growth curve model (Sen, 1984)

Randomization Model Approaches

• Cochran-Mantel-Haenszel tests for one-sample

repeated measures using rank scores

• Randomization analysis of growth curves

Zerbe and Walker (1977), Zerbe (1979)

Two-sample Tests for Incomplete Data

• Wei & Lachin (1984), Wei & Johnson (1985)

• Palesch and Lachin (1994) extension to more

than two groups
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Some Nonparametric Methods

Rank Transform Methods

• Replace the observations by their ranks and

then perform standard parametric analyses

• Inappropriate for many common hypotheses in

the repeated measures setting (Akritas, ’91, ’93)

• Thompson (1991) and Akritas & Arnold (1994)

provide valid asymptotic tests for hypotheses of

interest in several repeated measures models

Nonparametric Regression Methods

• Approaches based on kernel estimation,

weighted local least squares estimation, and

smoothing splines

• Müller (1988), Diggle et al. (1994, Chapter 3),

Kshirsagar and Smith (1995, Chapter 10)
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Multivariate Multisample Nonparametric

Tests for Complete Data

• Puri and Sen (1971) considered the problem of

testing the equality of s multivariate distributions

F1, . . . , Fs, where Fh is a t-variate cdf

• When the underlying distributions F1, . . . , Fs are

multivariate normal, they can differ only in their

mean vectors and covariance matrices

• However, for non-normal Fh, differences among

distributions may be due to a variety of reasons

• Equality of location vectors and covariance

matrices does not imply that F1 = · · · = Fs

• Puri and Sen assumed that the cdfs Fh had a

common unspecified form, but differed in their

location (or scale) vectors
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Multivariate Multisample Nonparametric

Tests for Complete Data

• Puri & Sen considered the general null hypothesis

H0: F1(x) = · · · = Fs(x) for all x, where F ∈ Ω,

and Ω is the class of continuous cdfs

• The general alternative hypothesis was that each

Fh ∈ Ω and not all equal

• Although they considered both translation- and

scale-type alternatives, we shall consider the case

Fh(x) = F (x + ∆h), h = 1, . . . , s

• The null hypothesis of interest is

H0:∆1 = · · · = ∆s = (0, . . . , 0)′

• The alternative is that ∆1 . . . , ∆s are not all equal
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Methodology for Repeated Measures

• Suppose repeated measurements at t time points

have been obtained from s groups of subjects

• Let nh denote the number of subjects in group h

and let n =
∑s

h=1 nh

• Let yhij denote the response at time j from

the ith subject in group h, for h = 1, . . . , s,

i = 1, . . . , nh, and j = 1, . . . , t

• Let Fh(x + ∆h) denote the cdf in group h, where

x′ = (x1, . . . , xt) and ∆h = (∆h1, . . . , ∆ht)′

• The test of no difference among groups across

all time points tests H0:∆1 = · · · = ∆s = 0t

• The omnibus alternative is that not all groups

are the same at all time points
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Methodology for Repeated Measures

• The data can be displayed as follows:

Time Point
Group Subject 1 . . . j . . . t

1 1 y111 . . . y11j . . . y11t

...
...

. . .
...

. . .
...

i y1i1 . . . y1ij . . . y1it

...
...

. . .
...

. . .
...

n1 y1n11 . . . y1n1j . . . y1n1t
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

h 1 yh11 . . . yh1j . . . yh1t

...
...

. . .
...

. . .
...

i yhi1 . . . yhij . . . yhit

...
...

. . .
...

. . .
...

nh yhnh1 . . . yhnhj . . . yhnht
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

s 1 ys11 . . . ys1j . . . ys1t

...
...

. . .
...

. . .
...

i ysi1 . . . ysij . . . ysit

...
...

. . .
...

. . .
...

ns ysns1 . . . ysnsj . . . ysnst
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Rank Permutation Principle

• Rank the t columns of the n× t data matrix Y

(all groups combined) in ascending order

• Let R denote the n× t matrix of ranks

• Under H0, each column of R is a random

permutation of the numbers 1, . . . , n

• Two such matrices are permutationally

equivalent if one can be obtained from the

other by a rearrangement of its rows

• Let R∗ denote the matrix that has the same

row vectors as R, but is arranged so that its

first column is ordered 1, . . . , n

• R∗ has (n!)t−1 possible realizations
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Rank Permutation Principle

• The t components of yhi = (yhi1, . . . , yhit)′ are,

in general, stochastically dependent

• Thus, the joint distribution of the elements of R

(or R∗) will depend on the unknown distribution

F (even when H0: F1 = · · · = Fs = F is true)

• Let R∗ denote the set of all (n!)t−1 possible

realizations of R∗

• The unconditional distribution of R∗ over R∗

depends on F1, . . . , Fs

• When F1 = · · · = Fs, the n random vectors

y11, . . . , y1n1 , y21, . . . , y2n2 , . . . , ys1, . . . , ysns

are independent and identically distributed
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Rank Permutation Principle

• The joint distribution of the yhi is invariant

under any permutation among themselves

• Thus, the conditional distribution of R over the

set of n! possible permutations of the columns of

R∗ is uniform under H0:F1 = · · · = Fs = F , i.e.,

Pr(R = r | S(R∗),H0) = 1/n! for all r ∈ S(R∗)

• Puri and Sen define P as the conditional

(permutational) probability measure generated

by the n! equally likely possible permutations of

the columns of R∗

• They show that any statistic which depends

explicitly on R has a completely specified

conditional distribution under P
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Permutation Rank Order Tests

• Let Rij denote the (i, j)th element of R(n×t)

• Let Eij = J(Rij/(n + 1)) for some function J

satisfying Puri and Sen’s (1971, p. 95) conditions

• Let E denote the n× t matrix of rank scores

• Let Ehj denote the average rank score at the jth

time point in the hth sample

• Puri and Sen derive a test statistic L which is a

weighted sum of s quadratic forms in Eh − E.

• Eh is the t× 1 vector of average rank scores from

the hth sample

• E. is the vector of average rank scores from all

samples combined
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Permutation Rank Order Tests

• The conditional distribution of L given R∗ is

the same under H0, regardless of F

• Under H0, the t(s− 1) contrasts Ehj − E.j are

stochastically small in absolute value

• The test criteria L rejects H0 if any of these

contrasts are numerically too large

• Unless n and t are both small, exact application

of the permutation test based on L is difficult

• Puri and Sen (1971) show that the asymptotic

null distribution of L is χ2
t(s−1)

• They also note that L is asymptotically

equivalent to the LR test based on T 2
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Multivariate Multisample Rank Sum Test

• For each sample at each time point, the MMRST

compares the difference between the sample

average rank and the combined data average rank

• Let rh denote the average rank vector (t×1) from

the hth group:

rhj =

nh∑

i=1

rhij

nh
,

where rhij is the rank of the jth response from

the ith subject in sample h

• Let r. denote the average rank vector (t × 1) for

the combined samples:

r.j =

s∑

h=1

nh∑

i=1

rhij

s∑

h=1

nh
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Multivariate Multisample Rank Sum Test

• The test statistic is

LRS =
s∑

h=1

nh(rh − r.)′V −1(rh − r.)

• The covariance matrix V has elements

Vjl =

(
s∑

h=1

nh∑

i=1

rhijrhil

/ s∑

h=1

nh

)
− r.jr.l

• LRS tests the hypothesis of no differences in the

multivariate response profiles from the s samples

• The asymptotic null distribution of LRS is χ2
t(s−1)

• If t = 1, LRS reduces to the Kruskal-Wallis test

• Schwertman (1982) gives a FORTRAN subroutine

for computing the MMRST
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Multivariate Multisample Median Test

• The MMMT compares differences between

proportions less than or equal to the median to

the corresponding combined data proportions

• Let ph denote the t × 1 vector of proportions

from the hth sample which are less than or

equal to the median of the combined samples:

phj =
∑nh

i=1 xhij/nh, where

xhij =
{

1 if rhij ≤
∑s

h=1 nh/2

0 otherwise

• Let p. denote the t × 1 vector of proportions

from the combined samples that are less than

or equal to the combined samples median:

p.j =
s∑

h=1

nh∑

i=1

xhij

/ s∑

h=1

nh
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Multivariate Multisample Median Test

• The test statistic is

LM =
s∑

h=1

nh(ph − p.)
′V −1(ph − p.)

• The covariance matrix V has elements

Vjl =

(
s∑

h=1

nh∑

i=1

xhijxhil

/ s∑

h=1

nh

)
− p.jp.l

• LM tests the hypothesis of no differences in the

multivariate response profiles from the s samples

• The asymptotic null distribution of LM is χ2
t(s−1)

• If t = 1, LM reduces to the Brown-Mood (1951)

several-sample median test

• Schwertman (1982) gives a FORTRAN subroutine

for computing the MMMT
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Example

• Leppik et al. (1987) conducted a clinical trial

in 59 epileptic patients

• Patients suffering from simple or complex

partial seizures were randomized to receive

either the antiepileptic drug progabide

(31 patients) or a placebo (28 patients)

• At each of four successive postrandomization

visits, the number of seizures occurring during

the previous two weeks was reported

• The medical question of interest is whether

or not progabide reduces the frequency of

epileptic seizures

Reference

Leppik IE, Dreifuss FE, Porter R et al. (1987). A controlled

study of progabide in partial seizures: methodology and results.

Neurology 37, 963–968.
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Modified Box Plots of Seizure Counts
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Multivariate Approach

• During each two-week period, there appears

to be a slight tendency for seizure counts to

be lower in progabide-treated patients than in

placebo-treated patients

• The median number of seizures in the progabide

group at weeks 2, 4, 6, and 8 is 4, 5, 4, and 4,

respectively

• The corresponding medians in the placebo group

are 5, 4.5, 5, and 5, respectively

• Using the multivariate multisample rank sum

test, the chi-square statistic is 5.47 with 4 df

(p = 0.24)

• The multivariate multisample median test gives

an even less-significant result (chi-square= 3.46,

df= 4, p = 0.48)
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Two-Sample Nonparametric Tests for

Incomplete Repeated Measures

• General methods for comparing two samples of

incomplete repeated measures were studied by:

Wei and Lachin (1984, JASA)

Wei and Johnson (1985, Biometrika)

• The methods make no assumptions concerning

the distribution of the response variable

• The missing value patterns in the two groups are

allowed to be different and both “embedded” and

“tail” missing observations can be accommodated

• The missing data mechanism, however, must be

independent of the response

• Methods are limited to two-group comparisons
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Wei-Lachin Method

• A family of asymptotically distribution-free tests

for equality of two multivariate distributions,

based on censored data

• Proposed and developed for multivariate

censored failure time data

• Natural generalizations of the log-rank test and

the Gehan-Wilcoxon test for survival data

• Based on the commonly used random censorship

model (Kalbfleisch and Prentice, 1980)

• censoring vectors for each subject are

mutually independent and also independent

of the underlying failure time vectors

• The methodology is also applicable to repeated

measures with missing observations
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Wei-Lachin Method

• Let yhi = (yhi1, . . . , yhit)′ denote the repeated

observations from subject i in group h, for

h = 1, 2 and i = 1, . . . , nh

• Apart from a scale factor, the jth component

of the W-L vector of test statistics equals

Tj =
n1∑

i=1

n2∑

i′=1

δ1ijδ2i′jφ(y1ij , y2i′j),

where

φ(x, y) =

{ 1 if y > x
0 if y = x

−1 if y < x

and δhij is 1 if yhij is observed, 0 otherwise

• Thus, at each time point j, comparisons

between group 1 and group 2 are made for all

i, i′ for which y1ij and y2i′j are both observed
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Wei-Lachin Omnibus Test

• Let Fh(x1, . . . , xt) denote the multivariate cdf

of the repeated observations from group h, for

h = 1, 2

• The statistic for testing

H0: F1(x1, . . . , xt) = F2(x1, . . . , xt)

against the general alternative that F1 6= F2 is

T ′Σ̂−1
T T , where

• T ′ = (T1, . . . , Tt)

• Σ̂T is a consistent estimator of Var(T )

(Wei and Lachin, 1984, Theorem 1)

• The asymptotic null distribution of this

statistic is χ2
t
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Wei-Lachin One-Sided Test

• In many studies, the detection of stochastic

ordering of the distributions F1 and F2 is of

primary interest

• For example, the alternative hypothesis H1

may be that F2j(x) ≤ F1j(x) for each marginal

cdf Fhj , j = 1, . . . , t

• In this case, Wei & Lachin propose the statistic

z =
e′T√
e′Σ̂T e

,

where e′ is the t-component vector (1, . . . , 1)

• The asymptotic distribution of z is N(0, 1)

• H0 is rejected when z is equal to a large

positive (or large negative) value
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Wei-Johnson Method

• A class of two-sample nonparametric tests

for incomplete repeated measures based on

two-sample U -statistics

• The primary focus is on optimal methods of

combining dependent tests

• Motivation:

Suppose a researcher wishes to draw an overall

conclusion regarding the superiority of one

treatment over another (across time)

A univariate one-sided test that combines

the results at individual time points is more

appropriate than an omnibus two-sided test of

H0: F1(x1, . . . , xt) = F2(x1, . . . , xt)
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One-Sample U-Statistics

• Let F denote a family of cumulative distribution

functions

• Let X1, . . . , Xn be a random sample from a

distribution with cdf F ∈ F

• Let γ denote a parameter to be estimated

• γ is estimable of degree r for the family F if r is

the smallest sample size for which there exists a

function h(x1, . . . , xr) such that

E[h(X1, . . . , Xr)] = γ

for every distribution F ∈ F

• h(x1, . . . , xr) is a statistic that does not depend

on F and is called the kernel of the parameter γ
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One-Sample U-Statistics

• h(x1, . . . , xr) is assumed to be symmetric in its

arguments, that is,

h(x1, . . . , xr) = h(xα1 , . . . , xαr )

for every permutation (α1, . . . , αr) of the

integers 1, . . . , r

• A one-sample U -statistic for the estimable

parameter γ of degree r is created with the

symmetric kernel h(x1, . . . , xr) by forming

U(X1, . . . , Xn) =
(

n

r

)−1 ∑

β∈B

h(Xβ1 , . . . , Xβr
),

where B =
{
β | β is one of the

(
n
r

)
unordered

subsets of r integers chosen without replacement

from the set {1, . . . , n}}
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Example of a One-Sample U-Statistic

• Let F denote the class of all univariate

distributions with finite first moment γ

• Let X1, . . . , Xn be a random sample from a

distribution with cdf F ∈ F

• Since E(X1) = γ, the mean γ is an estimable

parameter of degree 1 for the family F

• Using the kernel h(x) = x, the U -statistic

estimator of the mean is

U(X1, . . . , Xn) =
(

n

1

)−1 n∑

i=1

h(Xi)

=
1
n

n∑

i=1

Xi

= X
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One-Sample U-Statistic Theorem

• Let X1, . . . , Xn be a random sample from a

distribution with cdf F ∈ F

• Let γ be an estimable parameter of degree r

with symmetric kernel h(x1, . . . , xr) and let

U(X1, . . . , Xn) =
(

n

r

)−1 ∑

β∈B

h(Xβ1 , . . . , Xβr )

• If E[h2(X1, . . . , Xr)] < ∞, and if

ζ1 = E[h(X1, . . . , Xr)h(X1, Xr+1, . . . , X2r−1)]−γ2

is positive, then

√
n[U(X1, . . . , Xn)− γ]

has a limiting N(0, r2ζ1) distribution

• Hoeffding (1948), Randles and Wolfe (1979)
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Two-Sample U-Statistics

• Let X1, . . . , Xm and Y1, . . . , Yn be independent

random samples from populations with cdf’s

F (x) and G(y), respectively, from a family of

cumulative distribution functions F

• A parameter γ is estimable of degree (r, s) for

distributions (F,G) in a family F if r and s are

the smallest sample sizes for which there exists

a function h(x1, . . . , xr, y1, . . . , ys) such that

E[h(X1, . . . , Xr, Y1, . . . , Ys)] = γ

for all distributions (F, G) ∈ F

• h(x1, . . . , xr, y1, . . . , ys) is called the two-sample

kernel of the parameter γ
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Two-Sample U-Statistics

• The kernel h(x1, . . . , xr, y1, . . . , ys) is assumed to

be symmetric separately in its xi components and

in its yi components

• A two-sample U -statistic for the estimable

parameter γ of degree (r, s) is created with the

kernel h(x1, . . . , xr, y1, . . . , ys) by forming

U(X1, . . . , Xm, Y1, . . . , Yn) =

[(
m

r

)(
n

s

)]−1∑

α∈A

∑

β∈B

h(Xα1 , . . . , XαrYβ1 , . . . , Yβs),

where A (B) is the collection of subsets of r (s)

integers chosen without replacement from the

integers {1, . . . , m} ({1, . . . , n})

• Note that sample sizes m ≥ r, n ≥ s are required
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Example of a Two-Sample U-Statistic

• Let F be the class of univariate distributions

with finite first moment γ

• Let X1, . . . , Xm and Y1, . . . , Yn be independent

random samples from distributions with cdfs F

and G, respectively, where F,G ∈ F

• Since E(X1) = µX and E(Y1) = µY , the

mean diference γ = µY − µX is an estimable

parameter of degree (1,1) for the family F

• Using the kernel h(x, y) = y − x, the U -statistic

estimator of the mean difference is

U(X1, . . . , Yn) =
[(

m

1

)(
n

1

)]−1 m∑

i=1

n∑

j=1

h(Xi, Yj)

=
1

mn

m∑

i=1

n∑

j=1

(Yj −Xi) = Y −X
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Two-Sample U-Statistic Theorem (r = s = 1)

• Let X1, . . . , Xm and Y1, . . . , Yn be independent

random samples from distributions with cdfs F

and G, respectively, where F,G ∈ F

• Let h(·) be a symmetric kernel for an estimable

parameter γ of degree (1, 1) and let U be the U -

statistic estimator of γ

• Let N = m + n and let 0 < λ = lim
N→∞

m

N
< 1

• Let ζ1,0 = E[h(X1, Y1)h(X1, Y2)]− γ2 and let

ζ0,1 = E[h(X1, Y1)h(X2, Y1)]− γ2

• If E[h2(X1, Y1)] < ∞, and if

σ2 =
ζ1,0

λ
+

ζ0,1

1− λ
> 0,

the limiting distribution of
√

N(U−γ) is N(0, σ2)
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Joint Limiting Distribution of

Correlated Two-Sample U-Statistics

• Special case of several two-sample U -statistics,

each of degree (1,1)

• Let X1, . . . , Xm and Y1, . . . , Yn be independent

random samples from distributions with

t-variate cdfs F and G, respectively

X ′
i = (Xi1, . . . , Xit), Y ′

j = (Yj1, . . . , Yjt)

• Let U1, . . . , Ut be two-sample U -statistics with

symmetric kernel h(x, y), where Uk estimates

γk of degree (1,1) and is given by

Uk = (mn)−1
m∑

i=1

n∑

j=1

h(Xik, Yjk), k = 1, . . . , t

• Let N = m + n and let λ = lim
N→∞

m

N
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Joint Limiting Distribution of

Correlated Two-Sample U-Statistics

• The joint limiting distribution of
√

N(U1 − γ1), . . . ,
√

N(Ut − γt)

is t-variate normal with zero mean vector and

covariance matrix Σ with elements

σk,k′ =
ζ1(k,k′)

λ
+

ζ2(k,k′)

1− λ

• The quantities ζ1(k,k′) and ζ2(k,k′) are given by

Cov
[(

h(X1k, Y1k)− γk

)
,
(
h(X1k′ , Y2k′)− γk′

)]

= E[h(X1k, Y1k)h(X1k′ , Y2k′)]− γkγk′

and

Cov
[(

h(X1k, Y1k)− γk

)
,
(
h(X2k′ , Y1k′)− γk′

)]

= E[h(X1k, Y1k)h(X2k′ , Y1k′)]− γkγk′ ,

for k, k′ = 1, . . . , t
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Wei-Johnson Class of Nonparametric Tests

• For each time point j = 1, . . . , t, let

Uj =
√

N

n1n2

n1∑

i=1

n2∑

i′=1

δ1ij δ2i′j φ(y1ij , y2i′j)

• N = n1 + n2 is the total sample size

• yhij is the observation from subject i in

group h at time j, for h = 1, 2, i = 1, . . . , nh,

and j = 1, . . . , t

• δhij is 1 if yhij is observed, 0 otherwise

• φ(x, y) is a kernel function, e.g.,

φ(x, y) =

{ 1 if y > x,
0 if y = x,
−1 if y < x.

φ(x, y) = y − x
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Wei-Johnson Class of Nonparametric Tests

• If E[φ2(y1ij , y2i′j ] < ∞ and n1/(n1 + n2) → c

(0 < c < 1) as N →∞, then U = (U1, . . . , Ut)′

has an asymptotic null N(0,Σ) distribution

• If E[φ4(y1ij , y2i′j ] < ∞, for j = 1, . . . , t, the

elements of the covariance matrix Σ = (σjk)

can be consistently estimated by

σ̂jk =
N

n1
σ̂1jk +

N

n2
σ̂2jk,

where σ̂1jk = (n1n2(n2 − 1))−1 ×
n1∑

i=1

n2∑

l 6=l′
δ1ij δ1ikδ2lj δ2l′kφ(y1ij , y2lj)φ(y1ik, y2l′k)

and σ̂2jk = (n2n1(n1 − 1))−1 ×
n2∑

l=1

n1∑

i6=i′
δ1ij δ1i′kδ2lj δ2lkφ(y1ij , y2lj)φ(y1i′k, y2lk)
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Test Statistics

• Let Σ̂ denote the estimated covariance matrix of

the vector of test statistics U

• Since U ≈ N(0, Σ̂), the hypothesis H0:F1 = F2

can be tested against a general alternative using

the statistic

Q = U ′Σ̂−1U,

which is asymptotically χ2
t

• A univariate one-sided test that combines the

results at individual time points can be based

on the linear combination w′U =
∑t

k=1 wkUk

• Under H0, the statistic

z =
w′U√
w′Σ̂w

is asymptotically N(0, 1)
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Choice of Weights

• The simplest choice is to weight each component

equally, i.e. w′ = (1, . . . , 1)

• Bloch and Moses (1988, Amer. Statist.) show

that the use of equal weights often results in

little loss of efficiency

• Another possibility is to weight by the

reciprocals of the variances, i.e.,

w′ = (1/Σ̂11, . . . , 1/Σ̂tt)

• Under the assumption that the test statistics

at the individual time points are estimates of a

common effect, the optimal weights are given by

w′ = (1, . . . , 1)Σ̂−1

• This assumption may not be reasonable
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Example

• Leppik et al. (1987) conducted a clinical trial

in 59 epileptic patients

• Patients suffering from simple or complex

partial seizures were randomized to receive

either the antiepileptic drug progabide

(31 patients) or a placebo (28 patients)

• At each of four successive postrandomization

visits, the number of seizures occurring during

the previous two weeks was reported

• The medical question of interest is whether

or not progabide reduces the frequency of

epileptic seizures

Reference

Leppik IE, Dreifuss FE, Porter R et al. (1987). A controlled

study of progabide in partial seizures: methodology and results.

Neurology 37, 963–968.
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Example

• The Wei–Lachin vector of test statistics is

W ′ = (−0.4700,−0.0375,−0.2008,−0.3685)

with estimated covariance matrix

Σ̂W =




0.0788 0.0529 0.0460 0.0509
0.0529 0.0804 0.0538 0.0556
0.0460 0.0538 0.0789 0.0501
0.0509 0.0556 0.0501 0.0775




• The Wei–Lachin omnibus test of equality of

distributions is X2
W = W ′Σ̂−1

W W = 5.66 with

4 df (p = 0.23)

• Using equal weights, the Wei–Johnson

univariate statistic

c′U√
c′Σ̂Uc

,

with c′ = (1, . . . , 1), is equal to −1.09

• The two-sided p-value is 0.14
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Example

• A clinical trial comparing two treatments for

maternal pain relief during labor

• 83 women in labor were randomized to receive

an experimental pain medication (43 subjects)

or placebo (40 subjects)

• Treatment was initiated when the cervical

dilation was 8 cm

• At 30-minute intervals, the amount of pain was

self-reported by placing a mark on a 100-mm

line (0 = no pain, 100 = very much pain)

• The repeated pain scores are both nonnormal

and incomplete

• Seems appropriate to compare treatments using

the Wei–Lachin or the Wei–Johnson procedures
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Example

• Based on the data from minutes 30, 60, 90, 120,

150, and 180, the Wei–Lachin vector W ′ and

covariance matrix Σ̂W are, respectively,

(−0.394,−0.602,−0.755,−0.729,−0.497,−0.298)



.0794 .0479 .0284 .0178 .0114 .0057

.0479 .0585 .0316 .0208 .0155 .0064

.0284 .0316 .0368 .0197 .0111 .0036

.0178 .0208 .0197 .0265 .0148 .0054

.0114 .0155 .0111 .0148 .0132 .0057

.0057 .0064 .0036 .0054 .0057 .0052




• Wei–Johnson U ′ and covariance matrix Σ̂U :

(−1.578,−2.410,−3.024,−2.918,−1.992,−1.192)



1.3298 0.9268 .6557 .4182 .2429 .1433
0.9268 1.1120 .7783 .5576 .3625 .2114
0.6557 0.7783 .9337 .7511 .4985 .2555
0.4182 0.5576 .7511 .7790 .5016 .2528
0.2429 0.3625 .4985 .5016 .4189 .2234
0.1433 0.2114 .2555 .2528 .2234 .1819



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Example

• Standardized statistics at each time point:

Standardized Statistic

Time point (minute) Wei–Lachin Wei–Johnson

30 −1.40 −1.37
60 −2.49 −2.28
90 −3.94 −3.13

120 −4.47 −3.31
150 −4.33 −3.08
180 −4.11 −2.79

• At each time, pain scores are lower (better) in

the experimental group

• Although both methods yield similar conclusions,

the Wei–Lachin standardized statistic is larger in

absolute value at every time point
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Example

• Omnibus chi-square statistics for testing equality

of distributions:

• X2
W = W ′Σ̂−1

W W = 30.1 with 6 df, p < 0.001

• X2
U = U ′Σ̂−1

U U = 11.9 with 6 df, p = 0.065

• Linear combinations:

Standardized Statistic

Wei–Lachin Wei–Johnson

Equal weights −3.88 −3.06
Reciprocals of variances −4.85 −3.28
Optimal −4.42 −2.11

• With respect to the N(0, 1) reference

distribution, all statistics indicate a significant

difference between the two groups


