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Weighted Least Squares Analysis of
Repeated Categorical Data

e The first general approach to the analysis of

repeated categorical outcomes

e Makes no assumptions concerning the time

dependence

e Inherently nonparametric; based only on the

multinomial sampling model

e Useful when:

e Response has only a few possible outcomes
e All covariates are categorical
e Number of measurement times is small

e Sample sizes are large

e Can accommodate randomly missing data



307

The Multinomial Distribution
Consider a sequence of n independent trials

On each trial, one of ¢ mutually exclusive and

exhaustive events F1, ..., E. occurs

m; = Pr(FE;) is constant across trials

O<m<l1l > m=1

The probability that E; occurs x; times, ...,

E. occurs z. times is given by

n!

— L1 L2 x
flxy,...,x:) = — STy g e TS
L1:T2. -+ Lp-

where ; > 0 and > ;_,z; =n
The random vector x = (x1,...,2.)" has the

M_.(n,m) distribution with parameters n and

= (m1,...,7)
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Moments of the Multinomial Distribution

o E(x;) =nm, fori=1,...,c
e Var(z;) =nm(l—m), fori=1,...,c
o Cov(z;,z;) =—nmmj,fori#75=1,... ¢

e The variance-covariance matrix of the vector

r = (x1,...,2.) is given by
( nmy (1 — ) —NT1 Ty e —NTITe
—NT T nmo(l —my) ... — N,
\  —NT T, — N9, oo nme(l —me)

e This variance-covariance matrix can be
written as n(D, — "), where D is a diagonal
matrix with the vector # = (71,...,7.)" on the

main diagonal
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Parameter Estimates

The maximum likelihood estimators of

,pc)’ is an unbiased estimator of

T1,...,T. are given by p; = x;/n
E(p;) = m;, Var(p;) = m(1 — m;)/n
Cov(ps,pj) = —mim;/n
p=(p1,---

= (m1,...,7)

The variance-covariance matrix of p is:

(1 — 7)) — 172
— 7179 7T2(1—7T2)
\ —T1 T — T2
1
= —(Dy — 7r’)

S

—T1T¢ )
—T2T¢

(1l —me) 4
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Large-Sample Distribution Theory

e Asn — oo, the asymptotic distribution of

vn(p —m)is N.(0,D, — nr’)

e A consistent estimator of Var(p) is

rpi(l—p1) —pip2 .. —P1De )
1 —p1p2 p2(l—p2) ...  —paope
V, = — | | | |
n . . . .
\  —DP1DPe —pape .. Pe(l—pe) S
1
— Z(D. — oy
n( D pp)
e p=(p1,...,p:) has an approximate

multivariate normal distribution with mean

vector m and variance-covariance matrix Vp

D~ NC(7T,Vp)
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Linear Models Using
Weighted Least Squares

e A generalization of ordinary least squares that
permits observations to be correlated and have

nonconstant variance

o Let y=(y1,...,yn) beann x 1 vector of

observations

e Suppose that y ~ N, (X3,V)
X is an n X p design (model) matrix (p < n)
(3 is a p X 1 vector of parameters

V' is the n x n variance-covariance matrix of y

e The linear model is y = X3 + €, where
e ~ N,(0,V)



312

Weighted Least Squares

Basic idea:

Transform the observations y = (y1,...,yn)" to
other variables y* which satisfy the assumptions

of the linear model

y* = X*0 + €*, where ¢ ~ N,(0,1)

e A unique nonsingular symmetric matrix V'1/2

exists such that V1/2y1/2 =y

e Multiplying both sides of the equation
y=X0+e
by V=12 yields

V2 = v 2X B+ V2
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Weighted Least Squares

e Thus, we have y* = X*(3 + €*, where

y* _ V_1/2y
X*=V-12x
et = V12

E(e*) = E(V1/2¢) = V- Y2E(e) = 0,

Var(e*) = Var(V ~1/%¢)
— V1 2Var(e)V /¥
_ -2y -1/2
_ V—1/2(V1/2V1/2)V—1/2
=7

AN

e 3 =D, the least squares estimator of (3, is

found by minimizing the error sum of squares
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_ V_1/2y o V—l/QXb)/(V—l/Qy . V—1/2Xb)

= [V (y — X)) [V~ (y — Xb)]
(y — Xb)' VY2 V=12 — XD)

= (y — Xb)'V " (y — Xb)

= (y VX"Vl (y — Xb)

=y Vly -2/ X'V ly+ VX'V X0

OSSE

T —2X'V 7y 42X’V XD

OSSE

& — 0= X'V1Xb=XV"y
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Parameter Estimation
o If X is of full rank, b = (X'V1X)"HX'V~1y)

e Since b is a linear function of y, b is normally-

distributed with mean and variance given by:

E(b) = (X'V ' X)"' X'V 1E(y)
= (X'V'X)"' X'V X3
=0
Var(b) = Var[( X'V 1 X) "1 X'V 1y
= (X'V X)) X'V Var(y)
x [(X'VIX)"I X'V
=XV X)"'x'v-lv
x VXXV IXx)!
=XV X) ' xXv'xXxv'x)!

— (le—lX)—l
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Sums of Squares
SST = y*'y*
— (V—1/2y)/v—1/2y
— y/V—l/QV—l/Qy
=y'V7ly
SSE =¢'V 'y — 28/ X'V ly + ¥ X'V Xb
=o'V ly b X'V iy b X'V ly
+ X'V XD
=’V ly - b X'V ly
— bV (X'V 'y - X'V 1XDb)
=o'V ly b X'Vly — ¥ x
(X'Vly - X'VIIX(X'VIX)TIX'V )
=y V iy —-bX'Vvly
— WV (X'V iy - X'V

_ y/v—ly . b/le—ly



317

Sums of Squares

e Since X'V ~ly = X'V~1Xb,
SSE=¢'V 3y -t X'V 1Xb
=y'V 7y — (Xb)V X0
= SST — SSR

where SSR is the regression sum of squares

e For theoretical purposes, it is useful to express SSE

as a quadratic form in y:

SSE =y'V 7y - ' X'Vly
=Vl = (VX)X XYy
=V —yVIX(XVTIX)TIX'V
=y Ly

where L = V_l — V—lX(X/V—lX)_lX,V_l

e It can be shown that the rank of L isn —p
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Hypothesis Tests

The fit of the model can be tested using the

minimum value of SSE

W =minSSE = ¢V 'y — (Xb)V 1 Xb

If the model fits, then W has a chi-square

distribution with n — p degrees of freedom

i.e., under Hy:E(y) = X3, W ~ X%_p

If the model fits, additional hypotheses of the
form Hy: C'3 = 0 may be tested, where C'is a

¢ X p coefficient matrix

The Wald statistic
We = (O [C(X'VIX)~tCT1ob

has a x? distribution if Hy is true
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Predicted Values and Residuals
o U= (T1,...,0n) = Xb=X(X'VIX)"IX'V~1ly
E(y) = E(Xb) = X0
Var(y) = Var(Xb) = XVar(b) X’
= X(X'V'X)"'X’
er=y—y=y— XXV 1IX)IX'V 1y
E(r)=E(y-y)=XB-XB=0
Var(r) = Var[(] — X(X'V I X)) X'V 1yl
= ([ -XXVIX)"' X'V HV
x (I -V XXV 1X)~1X))
= (V-XXV1X)"'Xx)
x (I -V XXV 1X)~tX)

=V -X(X'V'X)"'X'
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Nonlinear Response Functions

e We start from the assumption that the
underlying vector of multinomial proportions

is approximately normal: p ~ N.(m, V)

e For linear response functions f(p) = Ap,

f(p) = Ny (Am, V), where V; = AV, A’

e In many applications, the response functions
of interest are nonlinear functions of p
marginal logits for binary responses
generalized logits for polytomous responses

cumulative logits for ordinal responses

e Nonlinear response functions also arise when

there are missing data
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Univariate Taylor Series Approximations

e Let X be a random variable with known mean

and variance

E(X) =p, Var(X)=E[X —p)’] = 0"

e Let Y = ¢g(X), where the function g(x) has

first and second derivatives

e Suppose that exact calculation of E(Y') and
Var(Y) is difficult

e We will expand ¢g(X) in a Taylor series
about 1 and use this series representation to

approximate E(Y') and Var(Y)
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Univariate Taylor Series Approximations

e The first three terms are

9(X) = (1) + 0/ ()X — ) + 56" (1) (X — o)

e The approximation for the mean of Y is

1

B(Y) = Elg(n) + 9" (1) (X = p) + 59" (1) (X — p1)?]
1

=g(p) + 59”(M)Var(X )

e Using the linear term only, E(Y) = g(u)

e The approximation for the variance of Y is

Var(Y')

E
E_
E

=
=
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The 6 Method

Let X,, be a random variable such that the
asymptotic distribution of /n(X, — u) is
N (0,02(u))

Let g(x) be a function that can be
differentiated at x=p so that it has the

following expansion as = — pu:

g(x) = g(u) + g () (x — p) + o(|z — pl)

Then the asymptotic distribution of

Vn(g(Xn) —g(p)) is N(Ov o* (1) (9/(“))2)

Definition of o(|z — )
If x,, is any sequence such that x,, — u and if
an = g(n) — g(p) — g' () (@n — 1),
by, = Tn — W,
then for any € > 0, there exists n(e) such that
if n > n(e), then |a,| < €|b,]|
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Multivariate Taylor Series Approximations

o Let X =(X1,...,X,)" be arandom vector with

known mean vector and covariance matrix

E(X)=u, Var(X)=X

o Let Y =¢g(Xq,...,X,), where g(x1,...,2,)
is a continuous function with first and second

partial derivatives

e Fxpand ¢g(X) in a Taylor series about u:

“. 0
g(@) = g(u) + > (s — i)
i=1 Opti
1 n n 029
-~ (25 — ps) (25 — py),
2 ;jz_:l OO ’ ’
where
dg _ 0Jg
8,u@ (92137, :lsz,u7
0%g B 0%g
8/%-8/47- B 8:61(’9:1:] T=LU
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Multivariate Taylor Series Approximations

s, s,
o Let ¢V(p) = <(9—,ugl %) be the row vector

of first partial derivatives

.....

o y=g(z1,...,z,) = g(p) + (9 (1) (x — )
e The approximate mean and variance of Y are

E(Y) = Elg(u)] + (¢ (1) E(X — p)
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Taylor Series Approximations for

Multiple Functions of a Random Vector

e Let X =(Xy,...,X,) bearandom vector
with known mean vector and covariance matrix

E(X)=u, Var(X)=%X%

o Let Y =(Y1,...,Y,,), where
)/;j — gi(Xla S 7X’rl)7

fore=1,...,m

e From the results for a univariate function of a

random vector:
E(Y;) = g:(n)

Var(Y;) = (957 (1) = (94" ()’

e We would now like to approximate Cov(Y;, Yj)
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Taylor Series Approximations for

Multiple Functions of a Random Vector

Cov(Y;,Y;) = E[(Y; — E(Y)))(Y; — E(Y;))]
(

o
e Now let (6’—9) denote the m X n matrix
7

whose ith row is ggl)(,u)

.. 89 . (9gi
e The (¢,7) element of (@) is o,

T=L
e The approximate mean and covariance matrix of
Y are:

Var(Y) = (g—i> ) (g—Z)/
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The Multivariate 6 Method

Let X,, be a p-dimensional random variable such
that the asymptotic distribution of v/n(X, — u)
is N, (0, 2(u))

Let g(Xy) = (91(Xn), - . ,gu(Xn))/ be a function

with the following expansions as X,, — u:

097,
+Z +o(llz — pll)
Ljlz=p
Let 8— be the u x p matrix whose (i, j) entry is
v
99
(9333' T=U

Then the asymptotic distribution of

Vi(g(Xn) —g(w)) is

w0 (5) =00 (1))
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Variances of Linear Functions

e Let x(,x1) have mean p and covariance matrix

o Let Ymx1) = f(.%’) — 14(7n><n):1j

( aii ain L1
N Adm1 - Qmn In
(Y= 0%5 Y fiz) )
\ Z;L:]_ a/mjaj] J \ fm(x) J
%, Ofm
® 8—];1: (all,...,&ln),...,%:(amla'”aa’mn)?
and of
( 1 )
Oz
()= = =+
Ol
\ ax /

e Therefore, Var(y) = (g—i) ) (%)/ =AY A



330

Variance Approximations for

Logarithmic Functions

e Let x be an X 1 vector with mean p and

covariance matrix X
o Let yier) = f(r) = loga

ie., y1 = fi(z) = log(z1)

Yn = fn(x) — log(xn)

e The partial derivatives are given by:

0

a—? = (1/.%‘1,0,...,0)
0

(9—.];2 — (0,1/332,0,...,0)
Ofn

o (0,...,0,1/x,)
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Variance Approximations for

Logarithmic Functions

Ox (1/zy 0 -0 )
Of 9f2 0 1/zg -+ 0
—— =1 Oz | = . .
Ox . : 0
% . 0 0 1/xy, )
\ O /
fl/,ul 0 0
of B 0 1/pe 0
Ox T=uU - 0
. 0 0 1/ b,
_D;1,
L (Of of /
Var) = (5,1,,) ® (551,,)

_ N1 —1
= D;'¥ D;
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Variance Approximations for

Exponential Functions

e Let x be an X 1 vector with mean p and

covariance matrix X
o Let yimx1) = f(x) = exp(x)

ie., y1 = fi(x) = e™

Yn — fn(x) = e¥n

e The partial derivatives are given by:

oft 4

%—(6 ,O,...,O)
df2 2
%—(0,6 ,O, ,O)
Ofn _ (0,...,0,e")

or
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Variance Approximations for

Exponential Functions

Ox (et 0 .- 0 )
G, O 0 e - 0
f —= &
a}n L0 0 evn
\ O
(ePt 0 .. 0 )
g _ O GIUQ . .. O
L0 0 - ekn
— De“a
i af /
Var() = (5], ) = (5,1,2)

— Deu E Deu
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Variance Approximations for

Compound Functions

e T'wo types of compound functions are

commonly used:
f(p) = Azlog(A1p)
g(p) = exp(Azlog(A1p)) = exp(f(p))

e We wish to approximate V; = Var(f(p)) and
Vy, = Var(g(p))

o First, let f1(p) = Ayp
Vi, = Var(fi(p)) = A1V, A}
e Now, let fo(p) = 10g(f1 (p)) = log(A1p)

Vi, = Var<f2 (p)) — Var(log(fl (p)>)
=Dy Vi, D! = Dy AWV, A D
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Variance Approximations for

Compound Functions

o Finally, let f(p) = Aafa(p) = Azlog(Aip)

Vi = Var(f(p))
= Var(As f2(p))
= A2Vf2A/2

- AQD;llAleA’lD;llA’Q

e Now, let g(p) = exp(f(p)) = eXp(Az log(Aﬂ?))

Vy = Var(g(p))
= Var(exp(f(p)))
= D, ViD,s

= Dos Ay D} ALV, A1 DAY D,



One-Sample Repeated Measures

e The data are as follows:

Time Point

Subject 1 i t
1 Y11 e Yij ce Y1t
0 Yil e Yij e Yit
n Yn1 .y Ynj e Ynt

e y;; 1S a categorical response variable with c

possible outcomes

e These data correspond to a sample of size

n from a multinomial distribution with ¢

potential outcomes

336
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Example

46 subjects were treated with each of three

drugs (A, B, and C)

The response to each drug was recorded as

favorable (F') or unfavorable (U)

We wish to test if the drugs have similar

response profiles

Since the response is dichotomous, the null
hypothesis can be written as
HO: mA — T = T(C,

where mx=Pr(favorable response with drug X)

Reference
Grizzle, J. E., Starmer, C. F., and Koch, G. G.
(1969). Analysis of categorical data by linear
models. Biometrics 25, 489-504.
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Drug Response Data

Drug
A B C

Drug
A B C

Subject

Subject

PP PPPRERPPEHPPPPRH PR PP RD
CIc R haRaRaccT BN IRc I c Y cINc I c IR R c TR Sl c IR Iy S

PR PRPPEHRERERERPPPRERRERPRER PP RHREP

L0 O~ O AN M FHLO OIP-00H O — AN M 1O O
AN AN AN AN ANANMMONHDNNNNOMNNN A

PP PP PRHPPPRHPPRPPREHEHPPPP KPP

Cop el e TR cT c Y cRca Co e an €

PP PRRERERRERP,PEHPPRE PR P AP

— AN FLIO OI-0HZO—ANMN F10 O DP~-0000 O — AN M
oA A =~ — — AN AN AN A
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Multinomial Structure of the Example

e There are ¢ = 2 possible outcomes at each of

t = 3 time points

e Thus, there are ¢! = 23 = 8 potential response

profiles

e The observed data can be displayed as follows:

Response Drug
Profile A B C Frequency
1 F F F 6
2 F F U 16
3 F U F 2
4 F U U 4
5 U F F 2
6 U F U 4
7 U U F 6
8 U U U 6

Total 46
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WLS Approach

The underlying multinomial probability vector

will be denoted by m = (71,...,mt)’

The corresponding vector of sample
proportions p is an unbiased estimator of the

probability vector m

A consistent estimator of the variance-

t

covariance matrix of p is given by the ¢! x ¢!

matrix

Since the elements of m (and p) are linearly
dependent, we must restrict consideration to a

set of linearly independent functions f(p)
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Models for Linear Functions

of the Response Proportions

e Consider models of the form f(p) = Xp
f(p) = Ap, where A is a u x ¢! matrix of rank u
X is an u X v model matrix

(3 is a v X 1 vector of unknown parameters
o p~ Neu(m, Vp)

o f(p) = Ap =~ N,(Am, V), where Vy = AV, A’

has rank u

e Using the vector of observed functions f(p)
and the consistent estimator of its covariance

matrix V7, linear models of the form

flp) = X3

can be fit using weighted least squares
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e The 8 x 1 vector of proportions p is defined as

follows:
Response Drug Component
Profile A B C of p

1 F F F P1
2 F F U D2
3 F U F P3
4 F U U P4
5 U F F D5
6 U F U D
7 U U F D7
8 U U U PS

e Let A be the 3 x 8 matrix given by
0O 0 0 O

A

1
1
1

I 1 1
1 0 O
0 1 0

1
1

1 0 O
0 1 0
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Application to the Example

e The transformation f(p) = Ap defines the

response functions

f(p) = (pa,pB,pc),

where px is the observed proportion with a

favorable response to drug X

e A consistent estimator of the 3 X 3 covariance

matrix of f(p) is given by
1

Ve =AV,A" = EA(DP —pp')A’

e Note that the elements of Vy are consistent

estimates of

( V&I’(pA) COV(pA7pB) COV(pAapC> )
Cov(pa,pp)  Var(pp)  Cov(ps,pc)
{ Cov(pa,pc) Cov(pp,pc)  Var(pc) |
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Model Fitting and

Test of Marginal Homogeneity

The null hypothesis is Hy: mq4 =75 = 7o

Method 1:

e Fit the model f(p) = Xlﬁ, where X1 = Ig

a saturated model with 0 df for lack-of-fit

e Test marginal homogeneity as Hy: C'G = 0,

1 -1 0
C‘[1 0 —1]

o If H is rejected, pairwise comparisons between

where

drugs can be tested using:

Hy C
TA=TR (1 -1 0)
TA = TC (1 0 -1)
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SAS Statements for Method 1

data a;
input subject a $ b $§ c $;
cards;
1 FFU
200U
45 F F F
46 U F U
proc catmod;
response 1 1110000,
11001100,
10101010;
model a*bxc=(1 0 O,
010,
0 0 1) / noprofile;
contrast ’A=B=C’ all_parms 1 -1 O,
all_parms 1 O -1;
contrast ’A=B’ all_parms 1 -1 O;
contrast ’A=C’ all parms 1 O -1;
contrast ’B=C’ all_parms O 1 -1;



Model Fitting and

Test of Marginal Homogeneity

Method 2:

e Fit the model f(p) = X203, where
1 1 0
Xo= 11 0 1
1 -1 -1
This model includes an overall intercept and

two parameters for drug differences

TA = b+ Oy
TR = U+ Q2

TC = M — 1 — Q2

“sum-to-zero” parameterization

e Test marginal homogeneity as Hy: C3 = 0,

0 1 0
= {00 1)

where

347
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Model Fitting and
Test of Marginal Homogeneity

Method 2 (continued):

o If H is rejected, pairwise comparisons between

drugs can be tested using:

Hy C
TA=TR (0 1 -1)
A — TTC (O 2 1)
B = TC (0 1 2)

Method 3:

e Fit the model f(p) = X350, where
X;=(1 1 1)
e Marginal homogeneity is tested by the lack-of-fit

statistic

e Pairwise drug comparisons can not be tested
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SAS Statements for Method 2

proc catmod;

response marginals;

model axb*c=_response_ / noprofile;
repeated drug 3;

contrast ’A=B’ all_parms O 1 -1;
contrast ’A=C’ all_parms 0 2 1;
contrast ’B=C’ all_parms O 1 2;

e For a k-level dependent variable,
response marginals computes the first £ — 1
independent marginal proportions

e The _response_ effect indicates that variation
among the repeated measures will be modelled
e The repeated statement specifies:
1. the names of the repeated measures effect(s)
2. the number of levels of the effects(s)
3. the effects to be included in the model

This statement could have been written:

repeated drug 3 / _response_=drug;



350

SAS Statements for Method 3

proc catmod;
response marginals;
model a*bxc=(1,
1,
1) / noprofile;

e When the model matrix is specified
explicitly, the default ANOVA table

contains effects labelled

MODEL : MEAN
RESIDUAL

e The MODEL:MEAN effect tests the
significance of all sources of variation other

than an overall intercept

e In this example, the only effect is the

overall intercept
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Reduced Model

e At a=.05, the marginal homogeneity hypothesis

Hy: ma=mp=mc is rejected (p = .037)

e The pairwise comparisons indicate that drug C

differs from drugs A and B

e A reduced model, which includes an overall
intercept and an incremental effect for drug C,

can be fit as follows:

proc catmod;
response marginals;
model axbxc=(1 O,
1 0,
1 1)
(1="Intercept’,
2=’Drug C Effect’) / noprofile;

e Tests that the labelled parameters are equal to

zero will be included in the ANOVA table
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Example

e In a longitudinal study of health effects of
air pollution, 1019 children were examined

annually at ages 9, 10, 11, and 12

e At each examination, the response variable

was the presence or absence of wheezing

e The questions of interest include:

e Does the prevalence of wheezing change

with age?

e Is there a quantifiable trend in the age-

specific prevalence rates?

References
Agresti, A. (1990). Categorical Data Analysis. New York: John
Wiley and Sons, p. 408.

Ware, J. H., Lipsitz, S., and Speizer, F. E. (1988). Issues in the

analysis of repeated categorical outcomes. Statist Med 7, 95—107.
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Respiratory Illness Data

Wheeze (1=present, 2=absent) No. of

Age 9 Age 10 Agell Age 12 Children

1 1 1 1 94
1 1 1 2 30
1 1 2 1 15
1 1 2 2 28
1 2 1 1 14
1 2 1 2 9
1 2 2 1 12
1 2 2 2 63
2 1 1 1 19
2 1 1 2 15
2 1 2 1 10
2 1 2 2 44
2 2 1 1 17
2 2 1 2 42
2 2 2 1 35
2 2 2 2 D72

Total 1019
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Response Functions

c=2 outcomes, t=4 time points, c!=2*=16

response profiles

Let p denote the 16 x 1 vector of proportions
corresponding to the multi-way cross-
classification of response at the four ages

(ordered as shown)

Let P, denote the marginal prevalence of

wheezing at age =, for x =9,...,12

The response functions of interest are given by
f(p) = (P, Pio, P11, P12)’ = Ap, where A is
the 4 x 16 matrix

—_ = O =
—_0 O =
—_ = = O
— O = O
—_ = O O
o= O O
_ O O O

—_ = = =
O = ==
—_ O = =
OO = =
O R, O
SO O =
O = = O
o O = O
o O O O
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Model 1
o Test Ho: Hg = HlO = H11 = H12

e Instead of one observation per child, there is
one observation per combination of response

categories

e In this situation, the weight statement is used

data a;
input w9 wl0 wll wl2 count;

cards;

1111 94
1112 30
2 221 35
2 2 2 2 572

proc catmod; weight count;

response marginals;

model wO*wlO*wll*wl2=_response_
/ noprofile;

repeated age 4;
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Model 2

e Test linear and nonlinear components of the

age effect

e Since the observations are equally spaced,

orthogonal polynomial coefficients can be used

proc catmod; weight count;
response marginals;
model w9*wlO*wllxwl12=(1 -3 1 -1,

1 -1 -1 3,
1 1 -1 -3,
1 3 1 1)
(1="Intercept’,
2 3 4="Age’,
2=’ Linear’,
3=’ (Quadratic’,
4=’ (Cubic’,
3 4=’ Nonlinear’) / noprofile;

e Note that tests of multiple df effects can be

specified in the model statement
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Model 3

e Fit the linear model II, = a4+ B(x — 9)

proc catmod; weight count;
response marginals;
model w9*wlO*wllxwl2=(1 O,

1 1,
1 2,
1 3)

(1="Intercept’,
2=’Linear Age’)
/ noprofile p;

e The p option prints observed and predicted

response functions

e Standard errors of the observed and

predicted response functions are also printed
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Results

This model provides a good fit to the observed
data

W = .54 with 2 df, p = .762

The predicted prevalence (+ SE) at age 9 is
263 = .013

The linear effect of age is highly significant

Wage = 12.31, p < .001

The probability of wheezing is estimated to
decrease by .0161 4= .0046 per year of age
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Example
In a longitudinal study of health effects of air

pollution, 1019 children were examined annually

at ages 9, 10, 11, and 12

At each examination, the response variable was

the presence or absence of wheezing

The previous model was II, = a + G(x — 9),

where 11, = marginal prob. of wheezing at age x
It may also be of interest to analyze these data
on the logit scale

e age effects are multiplicative

(instead of additive)
e predicted probabilities are constrained to (0,1)

e parameters have odds ratio interpretations
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Response Functions

e ¢ = 2 outcomes, t = 4 time points, ¢! = 2* = 16

response profiles

e The marginal logit response functions can be
defined as f(p) = Azlog(Aip), where p is the
16 x 1 vector of multinomial proportions, A; is

the 8 x 16 matrix

(111111110000000 0
000000001 1111111
1111000011110000
000011110000111°1
1100110011001100]/"
00110011001100°1 1
1010101010101010
01 0101010101010 1)

‘1 =1 0 0 0 0 0 0\

0 0 1 -1 0 0 0 0
and =10 g o 0 1 -1 0 0

0o 0 0 0 0 0 1 —1,
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Logit Model

a+ B(x —9), where

L, = log(Hx/(l _ HCE))

e The model is L,

O 0 0 O O O,

proc catmod; weight count;
1
O 0 O O

response 1 -1

O 0 O O,
1

-1
O 0 0 0 O O

0O O

0 O,
1

-1

-1

log

11111111000000O0 0,
0000000011111 111,

11110000111 1000 0,
0000111100001 111,
1100110011001100,
0011001100110011,
1010101010101010,
0101010101010101;

=(1 O,

model w9*wlO*xwll*wl2

1,

1
1
1

2,

3)

’Intercept’,

(1=

’Linear Age’) / noprofile p;

)=
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Interpretation of Logit Model

The model provides a good fit to the observed
data (W = .67 with 2 df, p = .72)

The age effect is highly significant
(Wage = 11.77, p < .001)

The predicted model is L, = & + 3 (x — 9),
where @ = —1.0276 and § = —.0879

The log-odds in favor of wheezing are

estimated to decrease by .0879 per year
The estimated odds ratio is e =937 = .916

The odds of wheezing are 0.916 times as great

at age xr than at age x — 1

The odds against wheezing are 1.092 (1/.916)

times as high at age x than at age x — 1
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Polytomous Response Variables

When the response is dichotomous:
There is one response function per time point

The test of marginal homogeneity has ¢t — 1 df

If y;; has c possible outcomes, there are at most
¢ — 1 linearly independent response functions per

time point

Test of marginal homogeneity has (c—1)(t—1) df

For nominal response variables, the natural linear

response functions are marginal proportions

For ordinal response variables, cumulative
marginal proportions and mean scores can also

be considered
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Example

e In the Iowa 65+ Rural Health Survey, 1926
elderly individuals were followed over a six-

year period

e Fach individual was surveyed at years 0, 3,

and 6

e One of the variables of interest was the

number of friends reported

An ordinal categorical response:
no friends

1-2 friends

3 or more friends

e We wish to determine if the distribution of the
number of reported friends is changing over

time
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Subject Classification, by No. of Friends

Year 0 Year 3 Year 6 Count

0 0 0 31
0 0 1-2 22
0 0 3+ 54
0 1-2 0 15
0 1-2 1-2 25
0 1-2 3+ o0
0 3+ 0 22
0 3+ 1-2 20
0 3+ 3+ 139
1-2 0 0 11
1-2 0 1-2 13
1-2 0 3+ 30
1-2 1-2 0 12
1-2 1-2 1-2 64
1-2 1-2 3+ 82
1-2 3+ 0 13
1-2 3+ 1-2 44
1-2 3+ 3+ 189
3+ 0 0 9
3+ 0 1-2 21
3+ 0 3+ 44
3+ 1-2 0 18
3+ 1-2 1-2 %5}
3+ 1-2 3+ 121
3+ 3+ 0 31
3+ 3+ 1-2 85
3+ 3+ 3+ 706

Total 1926
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Models for Marginal Proportions

c=3, t=3, c'=3%=27response profiles

Let p denote the 27 x 1 vector of proportions
corresponding to the multi-way cross-
classification of response at the three time

points (ordered as shown)

Let p;; denote the marginal proportion of

subjects at year ¢ in response category j

i=0,3,6, j=0,1{-2}, 3{+}

Linearly independent response functions are

given by

f(p) — (p007p01;p3oap31,p60,p61)/
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Models for Marginal Proportions

e In matrix notation, f(p) = Ap, where A is the

6 X 27 matrix

(111111111000000000000000000Y
0000000001111111110000000060
111000000111000000111000000
0001110000001110000001110060
100100100100100100100100100
.010010010010010010010010010 J

e In PROC CATMOD, these response functions
can be defined by:

response

111111111000000000000000000,
000000000111111111000000000,
111000000111000000111000000,
000111000000111000000111000,
100100100100100100100100100,
010010010010010010010010010;

or more simply by:

response marginals;
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Model 1: Analysis of Marginal Proportions

e For each of the marginal responses of interest
[Pr(no friends), Pr(1-2 friends)], the model
includes an intercept, and two parameters for

linear and nonlinear time effects

e Since the measurements were equally spaced
(0, 3, 6 years), orthogonal polynomial

coeflicients will be used in the model matrix

e The SAS statements creating the data file are:

data a;

input (n0 n3 n6 count)

($char3. +1 $char3. +1 $char3. 4.);
cards;

0) 0 0 31

3+ 3+ 3+ 706

.
J
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CATMOD Statements for Model 1

proc catmod; weight count;

response marginals;

model nO*n3*n6=(1 -1 1 O O O,
o 0 0 1-1 1,
1 0-2 0 0 O,
O 0 0 1 0 -2,
1 1 1 0 0 O,
O 0 0 1 1 1)
(1="Pr(0) : Intercept’,
2=’ Linear’,
3=’ Quadratic’,

2 3=’ Overall’,
4="Pr(1-2): Intercept’,
5=’ Linear’,
6=" Quadratic’,
6=" Overall’,
5=’Both: Linear’,

Quadratic’,

a W N o
(o)}
I

6="Homogeneity’) / noprofile;



Alternate Form of Model 1

The same results can be obtained using
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CATMOD’s default repeated measures capabilities

Advantage: model matrix need not be specified

Disadvantage: contrasts must be specified

proc catmod; weight count;

response marginals;

model nO*n3*n6=_response_ / noprofile;

repeated
contrast
contrast
contrast

contrast
contrast
contrast

contrast

contrast

time 3;

’0: L’
) Q)
) L&Q)
’1-2: L?
) Q)
) L&Q’
’Both: L’
) Q)

all_parms
all_parms
all_parms
all_parms
all_parms
all_parms
all_parms
all_parms
all_parms
all_parms
all_parms
all_parms

O O O O O O O O O o O O

O O O O O O O O O o o o

O OO N OOOOOoOHr ON

O O NNOO K, ONO O O O
O rOFrRr OO0, O K

- e - - e Y )

. - e

- - e - - e (¥

R O FrRrP OFrRrPr OFrr P, OO OO Oo

- o
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Mean Score Response Functions

Applicable for discrete numeric or ordinal

response variables

Examples:
e Number of times married (0, 1, ...)
e Litter size (0, 1, ...)

e Pain severity (none, mild, moderate, severe)

If “reasonable” scores can be assigned to the
levels of the response, we can analyze the
change in the mean over time (rather than the

change in the entire distribution)

We now have a single response function per

time point

The hypothesis of homogeneity of means over

time has t — 1 df
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Formulation of Marginal Mean Scores

Consider an ordinal or discrete numeric

response variable with ¢ categories

Let a; denote the score assigned to the jth

level of the response, for j =1,...,c

Let fi(p) = Aip denote the ct x 1 vector of
marginal proportions
p is the ¢! x1 vector of multinomial proportions

Aq is a ct X ¢! matrix

Let fo(p) = Aa(f1(p)) denote the ¢ x 1 vector
of marginal mean scores, where A is the t x ct

matrix

oooooooooooooooooooooooooooooooo
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Direct Product Notation

e fo(p) = Ay (f1 (p)), where

AQZIt(X)(G,l,...,CLC)

e In general, the direct (Kronecker) product of a

p X ¢ matrix A and a m X n matrix B is given

by
( CLllB c. aqu )

\ aplB ¢ o o a/qu y,

e A ® Bisapm X gn matrix consisting of
all possible products of an element of A

multiplied by an element of B

e This definition is sometimes referred to as the

right direct product
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Choice of Scores

e Whenever possible, choose scores based on

substantive considerations

e Different choices of scores lead to different

assumed spacings between categories

e T'ypes of scores include:

L.

Natural scores
numeric value of the categorical variable

midpoint or median of class interval

. Binary partition scores

a; =0for j <d,a; =1for 5 >d

dichotomizes the response variable

. Rank scores

Integer scores (a; = j)
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Model 2: Analysis of Mean Scores

e One choice of scores for the response categories

O, 1—2, 3+ 18 CL1:O, CL2:1.5, CL3:4

e The following SAS statements use the default
model matrix and test for linear and nonlinear

time effects using contrast statements

proc catmod; weight count;
response
1.4 0 0 O O,
O 0 1.54 0 O,
O 0 O O 1.54
000000000111111111000000000,
000000000000000000111111111,
000111000000111000000111000,
000000111000000111000000111,
010010010010010010010010010,
001001001001001001001001001,;
model nO*n3*n6=_response_ / noprofile;
repeated time 3;
contrast ’Linear’ all_parms O 2 1;
contrast ’Quadratic’ all_parms 0 O 1;
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Linear and Quadratic Contrasts

e In terms of the default “sum-to-zero”

parameterization, we have:

Orthogonal Coefficients

Year Parameterization Linear Quadratic
0 v + 1 —1 1
3 U+ Q2 0 —2
§ U — a1 — Qo 1 1

e The test of linearity is:
0=—(p+a1)+0(p+a2)+(p—ar —ag)

= —20&1 — (X9

e The test of nonlinearity is:
0=(n+a1) —2(p+az)+ (p— a1 — az)

— —3042
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Alternate Method for Model 2

e If the response variable is numeric, the
statement
response means;

computes marginal mean scores

e First, create numeric variables:

data b; set a;

s0=1.5%x(n0>> 0 ’)+2.5%(n0="3+ ’);
s3=1.5%x(n3>’ 0 ’)+2.5%(n3="3+ ’);
s6=1.5%x(n6>’ 0 ’)+2.5%(n6="3+ ’);

e Model 2 can be then be fit as follows:

proc catmod; weight count;

response means;

model sO*s3*s6=_response_ / noprofile;
repeated time 3;

contrast ’Linear’ all_parms O 2 1;
contrast ’Quadratic’ all_parms O O 1;
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Model 3: Reduced Mean Score Model

e The nonlinear time effect is nonsignificant

(Wnonlinearity — 427 df = 17 P = 51)

e Thus, we may wish to fit the reduced model
lr, = a + PBx, where u, is the marginal mean

at year x

proc catmod; weight count;
response means;
model sO*s3*s6=(1 0,
1 3,
1 6)
(1="Intercept’,
2=’Linear Time’)
/ noprofile p;

e The resulting model is 1, = 2.629 + .0978z

The average number of friends is estimated to

increase by .0978 per year



Multi-Sample Problems
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Time Point

Group Subject 1 9 t

1 1 Y111 Y11y Y11t

v Y1i1 Y1ij Y1it

i Yin1 Ylnij Ylnqt

h 1 Yni1 Ynhlj Yhit

v Yhil Yhij Yhit
nh yhnh 1 yhnh] yhnht

S 1 Ys11 Ysiy Ysit

v Ysil Ysij Ysit

Ng Ysngl ysnsj Ysngt

® yni; 1s categorical with ¢ possible outcomes
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Multinomial Structure

The data correspond to s independent

multinomial samples of size n, (h=1,...,5)

The probability vector 7, for each of these
independent multinomial distributions has

r = ¢! potential outcomes (response profiles)

If “missing” is a possible outcome, r = (¢+1)*—1

Let p;, denote the r x 1 vector of sample

proportions in the Ath subpopulation
pp, is an unbiased estimator of 7,

The variance-covariance matrix of p;, can be

consistently estimated by



Multinomial Structure

e Now let p = (p1,...,ps)" denote the sr x 1

vector of observed proportions from all

s subpopulations

392

e p is an unbiased estimator of m = (7y1,..., 7))’

e Var(p) can be consistently estimated by the

block diagonal matrix

( Vpl

0
Vp =

° Vp 1S a ST X Sr matrix

0
Vs

e Since the elements of 7, (and py,) are linearly

dependent, V), is a singular covariance matrix
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Model Fitting Using WLS

e Consider models of the form f(p) = X
e f(p)is awu x 1 vector of response functions

(defined in terms of a sequence of linear,

exponential, and logarithmic operations)
e X is a u X v model matrix of rank v < u

e Jis awv X 1 vector of unknown parameters

e Since p &~ Ng.(m, V), f(p) = Nu(f(7),Vy), where
V¢ is the Taylor series estimate of Var(f(p))

e V; is assumed to have rank u

e The WLS estimate of 3 is

B= X'V, X)XV f(p))
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Model Fitting Using WLS

e The goodness of fit of the model can be tested

using the statistic
l+
W= (f(p) — XB)'V; ' (f(p) — XP)
e If the model X fits, then W ~ x2_

e Additional hypotheses of the form Hy: C(3 =0
may then be tested

e (('is a ¢ X v coeflicient matrix

e Since B~ N, (3, (X,Vf_lX)_1)7
CB ~ N.(CB,C(X'V, X)~1C)

e The Wald statistic
We = (CB)[C(X'V/IX)~rCtep

is approximately x? if Hy is true
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Example

The Iowa 65+ Rural Health Study

sponsored by National Institute on Aging as part
of the Established Populations for Epidemiologic
Study of the Elderly (EPESE) project

Cohort of elderly individuals was followed over a

six-year period

At each of three surveys (years 0, 3, 6), extensive
demographic and social support data were

obtained from each respondent

One variable of interest was church attendance
Yes: subject is a regular church attender
No: subject does not regularly attend

Missing: subject did not answer this question

or did not participate in this survey
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Example (continued)

e Data were obtained from 3085 individuals

e 1935 females, 1150 males

e There were a substantial number of missing values

e most occur at the end of a sequence of

nonmissing responses

e due largely to deaths or losses to follow-up

e (Questions to be answered:
e Do church attendance rates differ between
females and males?
e Are attendance rates changing over time?

e Are the observed patterns of change the same

for females and males?

e Thus, interest focuses on modeling the marginal
probability of regular church attendance as a

function of gender and survey year.



Church Attendance Data
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Regular Attender at:

Frequency

Year 0 Year 3 Year 6 Female Male Total
Missing  No Missing 3 2 5
Missing  No No 1 3 4
Missing  No Yes 1 1 2
Missing  Yes Missing 2 2 4
Missing  Yes Yes 2 0 2
No Missing Missing 101 122 223
No Missing  No 11 5 16
No Missing  Yes 3 2 5
No No Missing 71 86 157
No No No 158 143 301
No No Yes 30 18 48
No Yes Missing 14 5 19
No Yes No 22 21 43
No Yes Yes 33 15 48
Yes Missing Missing 195 125 320
Yes Missing  No 4 0 4
Yes Missing  Yes 18 9 27
Yes No Missing 28 16 44
Yes No No 51 26 7
Yes No Yes 25 12 37
Yes Yes Missing 170 110 280
Yes Yes No 88 36 124
Yes Yes Yes 904 391 1295
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Complete Data

e We first analyze the data from 1973 individuals

who responded at all three surveys:

Regular Church Attender
Gender Year 0 Year3 Year 6 Count

Females No No No 158
No No Yes 30

No Yes No 22

No Yes Yes 33

Yes No No 51

Yes No Yes 29

Yes Yes No 88

Yes Yes Yes 904

Total 1311

Males No No No 143
No No Yes 18

No Yes No 21

No Yes Yes 15

Yes No No 26

Yes No Yes 12

Yes Yes No 36

Yes Yes Yes 391

Total 662




399

Analysis of Marginal Proportions

e Let pj, denote the underlying 8 X 1 proportion
vector in subpopulation h

(h =1 for females, h = 2 for males)

e In each subpopulation, let f(py) denote the

3 x 1 vector of marginal proportions:

f(ph) = (ph07ph37ph6)/a

where pj; is the marginal proportion of
subjects in group h who regularly attend

church at year j

e f(pn) = Apn, where

0O 0 0 0 1 1 1 1
A=10 0 1 1 0 0 1 1
01 0 1 0 1 0 1
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Analysis of Marginal Proportions

e In this example,

0.815 0.702
flp1)=10799 |,  f(p2)= | 0.699
0.757 0.659

e Now let f(p) be the 6 x 1 vector
[ f(p1) ]
f(p2)

e The estimated covariance matrix of f(p) is the

6 X 6 matrix

_ [V 0
Vr= [ 0 Vg ] 7
where V, is the estimated covariance matrix

of f(pn)

e We can now use weighted least squares to fit

models of the form f(p) = X
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Analysis Strategy

e We will first fit a saturated model with separate

parameters for females and males

e The model is f(p) = X1, where X7 isa 6 x 6

design matrix and

B = (Br1,BrL, BrQ, Bur, Bvr, Buqg)

e Bcr, Bar, Bag are the intercept, linear time

effect, and quadratic time effect for gender GG

e Since the surveys were equally spaced,
orthogonal polynomial coefficients will be

used for the time effects

e Based on results of hypothesis tests concerning
the parameters of the saturated model, we will

then fit an appropriate reduced model



SAS Statements for
Analysis of Complete Data

data church;

* gender: F=female, M=male;
* attend: M=missing, N=no, Y=yes;
input gender $ attend0 $ attend3 $

cards;

M

£ IS B By By
= ===

= sSRERE=E
KRR <

.
)

data complete; set church;
if attendO=’M’

< = =

<=2 =2 =
<Rk =aE
N NN~ P, W

attend6 $ count;

N 26
Y 12
M 110
N 36
Y 391

or attend3=’M’
attend6="M’ then delete;
title2 ’Analysis of Complete Data’;

402
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Model 1: Saturated

proc catmod; weight count; population gender;
response 0 0 001111,
00110011,
01010101,
model attendO*attend3*attend6=
(1-1 1 0 0 O,

b

o o Ne)
I
_OFrr OO
R NP OO

)
emales: Intercept’,
Linear’,
Quadratic’,
Lin & Quad’,
Males: Intercept’,
Linear’,
Quadratic’,
Lin & Quad’,
Both: Linear’,
Quadratic’,
Lin & Quad’) / noprofile;
-1 0 O,
O -1 0,
O 0 -1;
-1 0 O;
O -1 0;
O 0 -1;

W N O N
CDOBO'IOBOBO'IFPCIJIOOOI\DI—\OOOI—\I—\

~ - ~ ~ ~ ~ ~ ~ ~ ~ ~

2 35
contrast ’Sex Eq.’ all_parms

all_parms

all_parms
contrast ’Int Eq.’ all_parms
contrast ’Lin Eq.’ all_parms
contrast ’Quad Eq’ all_parms

OO FrPrLrOOK
OPrOoOoOoOorrOoOo
ROOFrk OO
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Results from Model 1

Linear time effect is significant in females and

in males

Nonlinear time effect is nearly significant in

females and in males

The joint test of nonlinearity in females and

males is nearly significant

The intercepts for females and males differ

significantly

The linear time effects in females and males are

not significantly different

The nonlinear time effects in females and males

are not significantly different
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Model 2: Reduced

e It seems sensible to fit a reduced model with
common linear and nonlinear time effects for

females and males

proc catmod; weight count;

population gender;

response 0 0 001111,
00110011,
0101010 1;

model attendO*attend3*attend6=

(1 0-1 1,

1 0 0 -2,

1 0 1 1,

o 1-1 1,

O 1 0 -2,

O 1 1 1)
(1="Intercept: Females’,
2=" Males’,

3=’Linear Time’,
4=’Quadratic Time’)
/ noprofile p;
contrast ’Intercept Equality’
all_parms 1 -1 0 O;
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Summary of Analysis of Complete Data

e Model 2 provides a good fit to the observed data
e the residual chi-square is 0.87 with 2 df

e Fach of the model parameters is significantly

different from zero

e intercept for females, intercept for males,

linear time effect, quadratic time effect

e Conclusions:

e probability of regular church attendance is

decreasing over time
e the change is nonlinear

(decrease from year 0 to year 3 is less than
the decrease from year 3 to year 6)

e at each time point, females are more likely
than males to regularly attend church

e the estimated difference between females and

males is 0.7905 — 0.6865 = 0.104
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Reparameterization of Model 2

e In order to produce results that are more
easily interpretable, Model 2 will be re-fit on
the natural time scale (years)

e (instead of using orthogonal polynomials)

model attendO*attend3*xattendb=

(1 0 0 O,

1 0 3 9,

1 0 6 36,

O 1 0 O,

0O 1 3 9,

0O 1 6 36)
(1="Intercept: Females’,
2=’ Males’,

3=’Linear Time’,
4=’Quadratic Time’)
/ noprofile p;
contrast ’Intercept Equality’
all_parms 1 -1 0O O;

e All other statements are unchanged
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Comments

Both parameterizations give the same:
e lack of fit statistic
e test of the quadratic time effect

e predicted values

The parameter estimates differ, as do the tests

of all other effects

In particular, the reparameterized test of the
linear time effect is nonsignificant (due to

correlation with the quadratic time effect)

The time effect parameters are both negative

when orthogonal polynomial coefficients are used

On the natural time scale, the linear time

parameter 1s positive
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Analysis of Marginal Logits

e Let f*(pn) denote the 3 x 1 vector of marginal
logits in group h

o f*(pn) = Aslog(Aipy), where

‘000 00 1 1 1 13
1 111000 0
4|00 1 100 11
1100110 0]
0101010 1
L1 01 01 0 1 0,
‘1 -1 0 0 0 0
A,=10 0 1 -1 0 0
o 0 0 0 1 -1

e The response statement is replaced with:

response 1 -1 0 O O O,
O 0 1-1 O O,
O 0 0 0 1-1
log 0 0 0 0 1 1 1 1,
111 1 0 O O O,
o 0 11 0 O 1 1,
11 0 0 1 1 O O,
o 1 01 0 1 0 1,
1 0 1 0 1 0 1 O;
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Summary of Analysis of Marginal Logits

The model with
e separate intercepts for females and males
e common linear and quadratic time effects

provides an adequate fit (p = 0.29)

Each of the model parameters is significantly

different from zero

At each time point, the odds of regularly
attending church are estimated to be
el-3241=0.7911 — £0.533 — 1 7 times higher for

females than for males

The fit of the marginal logit model is not quite
as good as the fit of the corresponding model on
the marginal probability scale

e logit scale: residual chi-square = 2.47

e probability scale: residual chi-square = 0.87
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Observed and Predicted Probabilities of
Church Attendance

0.6 -4 Observed

Predicted

o Females —— Probability scale
| x Males e Logit scale
0.5 | | |
0 3 6

Year
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Missing Data

Data collected in longitudinal studies are often

incomplete

Generally, some of the individuals who are
intended to be followed over time will fail
to provide information at one or more of the

scheduled follow-up times

An observation may be missing:
e by design
e at random

e due to characteristics of the subject

Most of the standard methods of analysis

require complete data

In a longitudinal study, the analysis of
complete cases can lead to a substantial

reduction in sample size
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Ratio Estimation for Proportions

e Consider a one-sample repeated measures study
with a categorical response
e n subjects
e ¢ time points
e y;; 1S a categorical response variable with
c possible outcomes, forz = 1,...,n and

j=1,....1

o If there are no missing data, there are ¢!

potential response profiles

e If “missing” is also considered to be a category
of response, there are ¢ 4+ 1 potential outcomes

at each time point

e In this case, the number of response profiles is

(c+1)—1
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Ratio Estimation for Proportions

e Let m; denote the marginal probability of
response category [ at time j, for j = 1,....,¢,

[=1,...,c
e 7, can be estimated by 7;;, where

AN

7le:

no. of subjects in category [ at time j

no. of subjects with a response at time j

e The tc x 1 vector

P

s AN A AN /
mw = (7'('11,...,7Tlc,...,7Tt1,...,7th)
can be calculated as

T = exp <A2 log(Alp))

e pis the ((¢c+1)%1)x1 vector of proportions
corresponding to the multi-way cross-

classification of response at the ¢ time points
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Ratio Estimation for Proportions

e Ajisat(c+1)x ((c+1)" —1) matrix

Row Proportion of subjects with:
1 response category 1 at time 1
2 response category 2 at time 1
c response category c at time 1
c+1 non-missing response at time 1

(t-1)(c+1)4+1 response category 1 at time ¢
(t-1)(c+1)42 response category 2 at time ¢

(t-1)(c+1)+c response category c at time ¢
(t-1)(c+1)4c+1 non-missing response at time ¢
=t(c+1)]
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Ratio Estimation for Proportions

e Asisthe text(c+1) matrix I; ® [I.,—1.], where
I is the k x k identity matrix and 1 is the £ x 1

vector (1,...,1)

e Since the elements of 7 are linearly dependent,
additional transformations can then be used to

compute:

e marginal proportions

e marginal cumulative proportions
e marginal mean scores

e marginal logits

e In practice, the matrices A; and As can often
be simplified (to compute only the specific

marginal proportions of interest)



422

Example

The Muscatine Coronary Risk Factor Study

A longitudinal study of coronary risk factors

in school children

From 1971-1981, six biennial cross-sectional

school screens were completed

Data from 1977, 1979, and 1981 were reported

Only children currently enrolled in school
were eligible to participate, and about 70%

of eligible children were screened

Height and weight were measured on each
participating child, from which relative weight

was computed

(ratio of child’s weight to the median weight in
the sex-age-height group)
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Example

e The outcome of interest was dichotomous

(obese, not obese)

Children with relative weight greater than 110%

of the median weight were classified as obese

e In this example, we consider the cohort of males

who were 7-9 years old in 1977

e This group consists of 522 children

Only 225 children participated in all three
surveys (356 in 1977, 375 in 1979, 380 in 1981)

Reference

Woolson, R. F. and Clarke, W. R. (1984).
Analysis of categorical incomplete longitudinal
data. J. Roy. Statist. Soc A 147, 87-99.
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1977 Cohort of 79 Year Old Males

Classified as Obese in: No. of
1977 1979 1981 Children
Yes Yes Yes 20
Yes Yes No 7
Yes Yes Unk 11
Yes No Yes 9
Yes No No 8
Yes No Unk 1
Yes Unk Yes 3
Yes Unk No 1
Yes Unk Unk 7
No Yes Yes 8
No Yes No 8
No Yes Unk 3
No No Yes 15
No No No 150
No No Unk 38
No Unk Yes 6
No Unk No 16
No Unk Unk 45
Unk Yes Yes 13
Unk Yes No 3
Unk Yes Unk 4
Unk No Yes 2
Unk No No 42
Unk No Unk 33
Unk Unk Yes 14

Unk Unk No Do
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Definition of Response Functions

Let m, denote the marginal probability of being

classified as obese at year x, for x = 77, 79, 81

. 1s estimated by p,, the observed proportion

classified as obese

The response functions f(p) = (p77, P79, ps1)’ can
be computed as f(p) = exp (AQ log(Alp)>, where
p is the 26 x 1 vector of multinomial proportions,
A1 is the 6 x 26 matrix

(11111111100000000000000000?
11111111111111111100000000
11100000011100000011100000
11111100011111100011111100}°
10010010010010010010010010

. 11011011011011011011011011,

1 -1 0 0 0 0
and A, = | 0 0 I -1 0 0
0 0 0 0 I —1
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SAS Statements

data a;

* l=obese, 2=not obese, 3=missing;
input o77 o79 081 count;

cards;

111 20

332 b5b
proc catmod data=a; weight count;
response exp 1 -1 O O O O,
O 0 1-1 O O,
O 0 0 0 1-1
log
11111111100000000000000000,
11111111111111111100000000,
11100000011100000011100000,
11111100011111100011111100,
10010010010010010010010010,
11011011011011011011011011;
model o77*x079*x081=(1 O,
1 2,
1 4)
(1="Intercept’,
2=’Linear Age’)
/ noprofile p;
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Comments on the Example

e It is wise to check the components of the

response function vector

(PROC FREQ is often useful in this regard)

e The model provides a very good fit to the

observed data
W =0.15, p =0.70

(The 1 df residual tests non-linearity)

e The predicted model is

7, = 0.186 + 0.0120(z — 77)

(The marginal probability of obesity is
estimated to increase by 0.0120 per year)

How would the results differ if the analysis had
been carried out using only the data from the 225

children who participated in all three surveys?
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Analysis of Complete Data

e Model with linear age effect

data b; set a;
if o77 ne 3 & 079 ne 3 & 081 ne 3;
proc catmod; weight count;
response marginals;
model o77*x079*x081=(1 O,
1 2,
1 4)
(1="Intercept’,
2=’Linear Age’) / noprofile;

The linear effect of age is not significant

e Model with only an intercept

proc catmod; weight count;
response marginals;
model o77*079*x081=(1,
1,
1)
(1="Intercept’) / noprofile;

e This model fits well to the complete data
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Church Attendance Example
Analysis of All Data

Excluding subjects with incomplete data results

in a substantially reduced sample size

To use all available data at each time point, the
marginal proportions are estimated as ratios of

sums of underlying multinomial proportions

These are computed using a series of linear,

logarithmic, and exponential transformations

This approach (and extensions) has been

discussed by:

e Stanish, Gillings & Koch (1978, Biometrics)
e Woolson and Clarke (1984, JRSS A)

e Landis et al. (1988, Statistics in Medicine)

e Park and Davis (1993, Biometrics)
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Analysis of All Data

o [et pll — (panpf37pf6) and p/2 — (meapmi%:pmG)

e In general, p; is computed as exp(Aslog(A1p})),

where

e p’ is the vector of underlying multinomial

proportions in each subpopulation

e A; has ct rows and as many columns as there

are observed response profiles

(a maximum of (¢ + 1)* — 1 columns)
e Asisa (c— 1)t x ct matrix

e c is the number of possible outcomes of the

response (excluding the “missing” category)

e ¢ is the number of time points

e In this example, c = 2, ¢t = 3, A7 is 6 x 23 and
AQ 1S 3 X 6
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Analysis of All Data

e It is convenient to define the rows of A as:

Row Proportion of subjects with:
1 response category 1 at time 1
c—1 response category ¢ — 1 at time 1
C non-missing response at time 1

c(t-1)+1  response category 1 at time ¢

c(t-1)+(c—1) response category ¢ — 1 at time ¢
c(t-1)+c  non-missing response at time ¢

e With this defn. of Ay, Ay = I; ® [I(c—1), —€(c—1)]
o [; is the k£ X k identity matrix
e ¢ is the k x 1 vector (1,...,1)

e X denotes the Kronecker product
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Analysis of All Data

e In this example,

Py = (pro, br3, bre), Py = (Pm0, Pm3s Pm6)

r00000000000000111111111
00000111111111111111111
00011000000111000000111
11111000111111000111111
00101001001001001001001
. 01101011011011011011011)

1-100 0 0
Ay=IL®(1,-1)=]0 0 1-1 0 0
00 0 1

e Rows 1, 3, and 5 of A; compute the proportion
of individuals who regularly attended church at

years 0, 3, and 6, respectively

e Rows 2, 4, and 6 calculate the corresponding
proportions who responded to this question at

the three surveys
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Model 1: Saturated

proc catmod data=church; weight count;

population gender;

(o) (o) (o) © aN e
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Lin & Quad’) / noprofile;
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Model 2: Reduced

e In model 1, the time effects are not significantly

different from zero

e This suggests a model with separate intercepts

for females and males

proc catmod data=church; weight count;
population gender;

response exp 1 -1 O O O O,

O 0 1-1 0 O,

O 0 0 0 1 -1 log
Ooo0oo00000O0OO0OO0OO0OOO0O1T111111
coooo0o01111111111111111
0001100000011 10000O0O01
1111100011111 10001111
00101001001 0010010010
0110101101101 10110110
model attendO*attend3*attend6=(1 O,

1 O,
1 0,
o 1,
o 1,
0 1)

(1="Females: Intercept’,
2=’Males: Intercept’) / noprofile;
contrast ’Int. Equality’ all_parms 1 -1;

R O R R P

“ e - - - - -

e e
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Summary of Analysis of All Data

e Model 2 provides a good fit to the observed data
e residual chi-square is 6.0 with 4 df (p = 0.2)

e The two parameters of the model are both

statistically significant

e Conclusions:

e Females are more likely than males to

regularly attend church

e the estimated difference between females and

males is 0.7660 — 0.6434 = 0.1226

e The estimated probability of regular church

attendance does not change over time

e Estimated sex difference is similar to the

estimate from the analysis of the complete data

e The conclusions concerning time trends differ
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Alternative Response Functions

This methodology can be extended to more
complicated response functions

e.g., generalized logits or cumulative logits

Simplest approach is to first compute the

marginal proportions

In this case, usually necessary to calculate all
c proportions
(Instead of computing only the first ¢ —1 linearly

independent marginal proportions)

Thus, A; has (c+ 1)t rows and As is the
ct X (c+ 1)t matrix I; ® [I., —e]

Additional matrix, exponential, and logarithmic
operations can then be applied to obtain the

response functions of interest
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Logit Response Functions

e Suppose we prefer to analyze the data on the

logit scale rather than on the probability scale

e Consider models [ = X3, where [ = (I1,[3)" and

l1:<log< £fo ),log( bfs ),log< £fo ))

1 —pro 1 —pys3 1 —Dpre

12:(1og( Prmo ),bg( Pm3 ),log( Prm6 ))
1 —Dpmo L —pm3 1 —pme

o ! = Bylog(B1p}), where By is

(000000000000001 11111111\
00000111111111000000000
00011000000111000000111
11100000111000000111000
00101001001001001001001
.01000010010010010010010 J

0
0
—1

o O -
_— O O

—1
0
0

S = O

0
and BQ :Ig®(1,—1) — [ —1
0
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A Test of the Missing Data Mechanism

Fit a single model to complete & incomplete data

Test if parameter estimates for complete data
are significantly different (individually & jointly)

from parameter estimates for incomplete data
Proposed by Park and Davis (1993, Biometrics)

The 12 x 1 vector of response functions is now

P = (p17p2)/7 where

P1 = (pfOca Pf3cy Pf6es Prois Pr3is pf6z’)

P2 = (pm007 Pm3cs Pm6cs Pm0is Pm3i, pm6z')

The third subscript is “c” for subjects with

733)
1

complete data and for subjects with one or

more missing responses

p; = exp(Azlog(A1p}))
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A Test of the Missing Data Mechanism

r0000000000000000001101 1Y
00000000000011000000011
00000000001001000001001
00000000011011000011011
00000000000000111100100
00000111100100111100100
00011000000100000000100
11111000100100000100100
00101001000000001000000
. 01101011000000011000000 J

=
|

e Subjects who responded to all three surveys:
e rows 1-3 compute proportion who attended
regularly at years 0, 3, and 6, respectively
e row 4 computes the proportion who responded

at all three surveys

e Subjects who had at least one missing response:
e rows 5—6 compute numerator (attend regularly)
and denominator (responded) for year 0
e rows 7—8 and 9-10 calculate the corresponding

quantities for year 3 and year 6
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A Test of the Missing Data Mechanism

1l 0O O -1 O O O O 0 0)
o 1 0-1 O O O O 0 O
A, = o 0o 1 -1 0 0 O 0 0 O
o 0 o0 o0 1 -1 0 0 0 O
o 0o 0 0 0 O 1 -1 0 O
.0 0 0 0 0 O O 0 1 —1)

e Rows 1-3 pertain to subjects who responded to
all three surveys
e difference between the log of the proportion
who attended church regularly at year ¢ and
the log of the proportion who responded to all

three surveys, for ¢ = 0, 3, 6, respectively

e Rows 4-6 pertain to subjects who had at least
one missing response
e difference between the log of the proportion
who attended church regularly at year ¢ and
the log of the proportion who responded at

year 1, for ¢ = 0, 3, 6, respectively
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Model 1: Saturated

e Procedure invocation, defn. of response functions:

proc catmod data=church;

weight count;

population gender;

response exp

O 0 0 O O O,
O 0 0 O O O,
O 0 0 O O O,

O 0 -1
1
O O
1
O 0 0 0 O O

1
0

0 -1
1

O 0 O O

-1

O 0 0 O,
1

O 0 0 0 0 0 O O

log
00000000000000000011011,

-1

0 O,
1

-1

-1

0000000000001 1000000O011,

00000000001 001000001001,

0000000001101 1000011011,

00000000000000111100100,

000001111001 00111100100,

000110000001 0000000010O00,

111110001001 0000010010 0,
00101001000000001000600O0 0,

0110101100000001100000 0;
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Model 1: Saturated (continued)

e MODEL statement:

model attendO*attend3*attend6

o 0 0 0 0 0 O O O,

1
0-2 0 0 0 0 0 0 O O O,

1

(1 -1

1
1

o 0 0 0 0 0 O O O,

1

1-1 1 0 0 O,

1
1

O 0 0 0 O O

0-2 0 0 O,

1

O 0 0 0 O O

O 0 O,

1

O 0 0 0 O O

O 0 0 O O O,

-1 1

1

1

1
O 0 0 0 0O OO0 O O
O 0 0 0 0 0 O O O
O 0 0 0 0 0 O O O

O 0 O
O 0 O
O 0 O

0-2 0 0 0 O O O,

1

O 0 0 O O O,

1

1 -1 1,
0 -2,

1
1

1)

1

) / noprofile;

b
b
b
b
b
b
b
b
b
b
b

,,,,,,,,,,,,

Lin
Quad
Int.
Lin
Quad

,,,,,,,,,,,,
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Model 1: Saturated (continued)

e CONTRAST statements for testing equality
of parameters for subjects with complete and

incomplete data

contrast ’C=IC’

all. parms 1 0 0 0 0 O0-1 O O O O O,
all parms 0O 1 0 0 O O O-1 O O O O,
all. parms 0O 0 1 0 0 O O O-1 O O O,
all parms O 0 0 1 0 O O O O0-1 O O,
all parms O 0 0 0 1 0 O O O O-1 O,
all parms O 0 0 0 O 1 O O O O O -1;

contrast ’C=IC: Int.’
all parms 1 0 0 0 0 O0-1 O O O O O,
O 0 O O0-1 0 O0;

—
o

all_parms O O O
contrast ’C=IC: L & Q’

all parms O 1 0 0 O O O0-1 O O O O,
all.parms O 0 1 0 0 0 O O0-1 O O O,
all parms O 0 0 0 1 O O O O O -1 O,
all parms 0O 0 0 0 0 1 O O O O O -1;
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Results from Model 1

e Highly significant difference between complete

and incomplete cases

e chi-square= 82.7, df= 6, p < 0.001

e Time effects for complete and incomplete cases

are not significantly different

e chi-square= 1.58, di=4, p = 0.8

e This motivates fitting a reduced model with:
e separate intercepts for complete and
incomplete females and males (4 parameters)
e common linear and quadratic time effects
for females (2 parameters) and for males

(2 parameters)

e The PROC, WEIGHT, POPULATION, and
RESPONSE statements are identical to those
from Model 1
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Model 2: Reduced

e MODEL statement:

model attendO*attend3*attend6

1 0 0 0 O,

O 0-2 0 O O O,

0 -1

(1
1

O 0 0 O,
O 0 0 O,

1

1

1
-1

1
1

0-2 0 O 0 O,

1
O 0 0 O
O 0 0 O
O 0 0 O

0

O 0 O O,

1
1
1

O 0 0 O O
O 0 0 O O
O 0 0 O O

(1

1

1,

0 -1

0O 0 -2,

0
1

1
1

-1

0 -2,

1

’F: C Int.’,

IC Int.’,

2=
3

Linear’,

)

Quadratic’,

4=

5=’M: C Int.’,

6=
7

IC Int.’,

Linear’,

)

Quadratic’) / noprofile;

g="



Model 2: Reduced (continued)

e CONTRAST statements:

contrast ’C=IC: Int
all_parms 1 -1
all_parms O O
contrast ’ F I
all_parms 1 -1
contrast ’ MI
all_parms 0 O
contrast 'M=F: L &
all_parms 0 O
all_parms O O

contrast ’ Lin.

all_parms O O
contrast ’ Qua
all_parms O O
contrast ’Int.: M=F
all_parms 1 O
all_parms 0 1
contrast ’C Int.:
all_parms 1 O
contrast ’IC Int.:
all_parms 0 1

)

O O O O

O 0 1

nt.’

O 0 O O

nt.’

O 0 1 -1
Q)

1 0 0 O

O 1 0 O

1 0 0 O

d.’

O 1 0 O

O 0-1 0

O O O -1

M=F"’

O O0-1 0

M=F"’

O O O -1

450
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Results from Model 2

Provides a good fit to the data
e residual chi-square is 1.58 with 4 df

All tests comparing intercepts are statistically

significant

e complete versus incomplete cases

(joint, in females, in males)

e males versus females

(joint, in complete cases, in incomplete cases)

The time effects in females and males are not

significantly different

Motivates a further reduced model with:
e four intercepts

(complete and incomplete females and males)

e common linear and quadratic time effects

(2 parameters)
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Model 3: Further Reduced

e MODEL statement:

model attendO*attend3*xattendb=
(1 0 0 0-1 1,
1

= O
|
N

I
=

- “

= O
|

-

-

= O
|

I
=

-

O O r Pk Pk, O O O O ©
R ), P, O O O O O O o o
|
|_\

N P = N P P NP

o
[EEN
.

-

Tl O O O O O O, »r »r O O

|

~
Q
H
=
ct

5

IC Int.’,
: C Int.’,
4=" IC Int.’,
5=’Linear Time’,

-

1
0
0
0
0
0
0
0
0
0
1
2
3

I
=

6="Quadratic Time’)
/ noprofile p;



455

Model 3: Further Reduced

e CONTRAST statements:

contrast ’Int.: Equal.’

all_ parms 1 0 0 -1 0O O,

all_ parms 0O 1 0 -1 O O,

all_ parms 0O O 1 -1 O O;
contrast ’ F=M’

all parms 1 0 -1 0O O O,

all parms 0O 1 0 -1 O O;
contrast ’ F=M:C’

all_ parms 1 0 -1 O O O;
contrast ’ IC’

all_ parms 0O 1 0 -1 0O O;
contrast ’ C=IC’

all_ parms 1 -1 0 O O O,

all_ parms 0O O 1 -1 O O;

contrast '’ C=IC:F’

all_ parms 1 -1 O O O O;
contrast '’ M’

all_ parms O 0 1 -1 0O O;
contrast '’ C F=IC M’

all_ parms 1 0 O -1 O O;
contrast '’ IC F=C M’

all parms 0 1 -1 O O O;
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Results of Model 3

e Provides a good fit to the data

e residual chi-square is 2.58 with 6 df

e Linear and nonlinear time effects are both

statistically significant

e The following tests comparing intercepts are

statistically significant

e joint equality (3 df)

e females versus males

(joint, in complete cases, in incomplete cases)
e complete versus incomplete

(joint, in females, in males)

e The only nonsignificant intercept comparison is

incomplete females versus complete males



Model 4 (Final)

e In order to produce results that are more
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easily interpretable, Model 3 will be re-fit on

the natural time scale (years)

e (instead of using orthogonal polynomials)

model attendO*attend3*xattendb=

(1 O

[ —

O O O O O O O O O =
O O O o oo ¥+ O O

e All other statements are unchanged

0

O O O r r r O O O O o

0

P P PO O O O O O o o

0

OO W O OO0 W O O W O O W

0,
9,
36,
0,
9,
36,
0,
9,
36,
0,
9,
36)
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Results of Model 4 (Final)

e The estimated intercepts are:

Subpopulation Estimate
Complete females 0.8128
Incomplete females 0.6710
Complete males 0.7089
Incomplete males 0.5426

e The profiles over time are parallel across the

four groups

e The estimated probability of regular attendance:
e decreases nonlinearly over time

e the decrease from year 0 to year 3 is greater

than the decrease from year 3 to year 6

e is highest for complete females, followed
by complete males, incomplete females,

incomplete males
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Summary of Approaches

Analysis of Complete Data Only

Parameter Estimate
Female intercept 0.8122
Male intercept 0.7081
Linear year 0.0009
Quadratic year —0.0016

Analysis of All Data

Parameter Estimate
Female intercept 0.7660
Male intercept 0.6434

Combined Analysis of Complete € Incomplete Data

Parameter Estimate
Complete female intercept 0.8128
Incomplete female intercept 0.6710
Complete male intercept 0.7089
Incomplete male intercept 0.5426
Linear year —0.0001

Quadratic year —0.0015
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Comments on the WLS Approach

e A flexible methodology that can handle a wide
variety of response functions and accommodate

missing data

(test of missing data mechanism is also possible)

e The main disadvantages are that the:
e Sample size must be large
e Number of time points must be small

e Covariates must be categorical and time-

independent

e Some key references:
e Koch et al. (1977, Biometrics)
e Stanish et al. (1978, Biometrics)
e Woolson and Clarke (1984, JRSS A)
e Landis et al. (1988, Statistics in Medicine)
e Park and Davis (1993, Biometrics)



