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The Multivariate General Linear Model

• Extension of the univariate linear model to the

multivariate case of vector observations

• The algebra is essentially the same as the

univariate case

• Univariate variances are replaced by

covariance matrices

• Univariate sums of squares are replaced by

sums of squares and products (ssp) matrices

• Distribution theory analogous to that of the

univariate case

• Test criteria are analogs of F -statistics

• There is more latitude in terms of hypotheses

which can be tested
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The Multivariate General Linear Model

• Let yij denote the response from subject i at

time j, for i = 1, . . . , n, j = 1, . . . , t

• Suppose that the jth response from the ith

individual was generated by the linear model

yij = xi1β1j + xi2β2j + · · ·+ xipβpj + eij

=
p∑

k=1

xikβkj + eij

= x′iβj + eij

• βj = (β1j , . . . , βpj)′ is a vector of p unknown

parameters (specific to the jth time point)

We assume that p ≤ n− t

• xi = (xi1, . . . , xip)′ is a vector of p known

coefficients (specific to the ith subject)
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The Multivariate General Linear Model

• ei = (ei1, . . . , eit)′ is a vector of t residual

variates for the ith subject

• ei ∼ Nt(0,Σ)

• The nt× 1 vector

e =




e1
...

en


 ∼ Nnt(0, In ⊗ Σ),

where In denotes the n× n identity matrix

• Thus, the yi = (yi1, . . . , yit)′ vectors are

independent Nt(µi, Σ) random vectors with

µi =




µi1
...

µit


 =




x′iβ1

...
x′iβt



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Matrix Formulation

• Let Y denote the n× t data matrix:

Y =




y11 · · · y1t

. . . . . . . . . . . . .
yn1 · · · ynt


 =




y′1
...

y′n




• Let X denote the n× p known design matrix:

X =




x11 · · · x1p

. . . . . . . . . . . . .
xn1 · · · xnp


 =




x′1
...

x′n




• Let B denote the p× t parameter matrix:

B =




β11 · · · β1t

. . . . . . . . . . . . .
βp1 · · · βpt


 = (β1, · · · , βt)

• Let E denote the n×t matrix of random errors:

E =




e11 · · · e1t

. . . . . . . . . . . . .
en1 · · · ent


 =




e′1
...

e′n



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Parameter Estimation

• The multivariate general linear model is

Y = XB + E,

where E(Y ) = XB and

Var




y1
...

yn


 = In ⊗ Σ

• The maximum likelihood estimators of B and

Σ are

B̂ = (X ′X)−1X ′Y

Σ̂ =
1
n

(Y −XB̂)′(Y −XB̂)

• An unbiased estimator of Σ is given by

S =
1

n− p
(Y −XB̂)′(Y −XB̂)
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Estimation of Linear Functions

of the Elements of B

• Let ψ = a′Bc, where a(p×1) and c(t×1) are

vectors of constants

a′ operates within time points

c operates between time points

• ψ̂ = a′B̂c has minimum variance among all

linear unbiased estimates of ψ

i.e., ψ̂ is a best linear unbiased estimate

(BLUE)

• Var(ψ̂) = (c′Σc)[a′(X ′X)−1a]

• This result is known as the multivariate

Gauss-Markov theorem
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Hypothesis Testing

• Consider the general hypothesis H0:ABC = D

• A is an a × p matrix of coefficients

permitting “within time” hypotheses

rank(A) = a ≤ p

• C is a t × c matrix of coefficients permitting

“between time” hypotheses

rank(C) = c ≤ t ≤ (n− p)

• D is an a× c matrix of constants

• Let Qh denote the hypothesis ssp matrix:

Qh = (AB̂C −D)′[A(X ′X)−1A′]−1(AB̂C −D)

• Let Qe denote the residual ssp matrix:

Qe = C ′(Y ′Y − B̂′(X ′X)B̂)C
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Test Statistics

• The likelihood ratio statistic is

Λ =
|Qe|

|Qh + Qe| =
min(a,b)∏

i=1

1
1 + λi

,

where λi are the solutions of the characteristic

equation |Qh − λQe| = 0

• This statistic is known as Wilks Λ

• Λ has a multivariate beta null distribution

• The Pillai trace statistic is

V = trace[Qh(Qh + Qe)−1] =
∑

θi, where

θi are the solutions of the characteristic

equation |Qh − θ(Qh + Qe)| = 0

• also known as the Barlett-Nanda-Pillai trace

• It can be shown that θi = λi/(1 + λi)



84

Test Statistics

• The Hotelling-Lawley trace statistic is

U = trace[Qh Q−1
e ] =

∑
λi

Lawley (1938), Bartlett (1939),

Hotelling (1947, 1951)

• Roy’s (1957) maximum root statistic is

Θ =
λ1

1 + λ1
,

where λ1 is the largest solution of the

characteristic equation |Qh − λQe| = 0

Equivalently, Θ is the largest solution of the

characteristic equation |Qh − θ(Qh + Qe)| = 0

• In most cases, the exact null distributions of

these four test criteria can not be computed

and approximate tests are required
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Theoretical Power Comparisons

• Λ, V , and U have been compared based

on asymptotic expansions of their nonnull

distributions

Mikhail (1965, Biometrika)

Pillai and Jayachandran (1967, Biometrika)

Lee (1971, Biometrika)

Rothenberg (1977)

• If the population characteristic roots are

roughly equal, the ordering from most

powerful to least powerful is V > Λ > U

• If the roots are unequal, the ordering is

U > Λ > V

• These results support the use of Λ
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Empirical Power Comparisons

• Ito (1962) compared the large-sample power

properties of Λ and U for a simple class of

alternative hypotheses

there was little difference between these two

statistics

• Pillai and Jayachandran (1967) compared all

four statistics

When the population characteristic roots were

very different, U tended to have the highest

power

When the characteristic roots were equal, V

was most powerful

In the situations they considered, Θ was least

powerful
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Empirical Power Comparisons

• Roy, Gnanadesikan, and Srivastava (1971)

compared all four statistics

For equal population roots, V was most

powerful, followed by Λ and U

For the case of a single large population root,

Θ had the highest empirical power

• Simulation studies by Schatzoff (1966) and

Olson (1974)

Θ was most powerful if the alternative was

one-dimensional

Θ was inferior if there were multiple non-zero

characteristic roots
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Robustness Comparisons

• All four test procedures tend to be relatively

robust to departures from normality

• The limiting distributions of each criterion

(suitably standardized) for non-normal Y are

the same as when Y is normal

(as long as conditions such as bounded fourth

moments are satisfied)

• Olson (1974) studied the robustness under

departures from covariance homogeneity and

departures from normality

Λ, U , and V were quite robust

Θ was least robust
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Profile Analysis

• Suppose that repeated measurements at t time

points have been obtained from s groups of

subjects

• Let nh denote the number of subjects in

group h, for h = 1, . . . , s (n =
∑s

h=1 nh)

• Let yhij denote the response at time j from

the ith subject in group h, for h = 1, . . . , s,

i = 1, . . . , nh, and j = 1, . . . , t

• We assume that the data vectors

yhi = (yhi1, . . . , yhit)′

are independent and normally distributed

with mean µh = (µh1, . . . , µht)′ and common

covariance matrix Σ

yhi ∼ Nt(µh,Σ)
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Profile Analysis Model

• The model is yhij = µhj + ehij

• In terms of the multivariate general linear

model,




y′11
...

y′1n1

y′21
...

y′2n2

...

y′s1
...

y′sns




=




1 0 · · · 0
...

... · · · ...
1 0 · · · 0
0 1 · · · 0
...

... · · · ...
0 1 · · · 0

...

0 0 · · · 1
...

... · · · ...
0 0 · · · 1







µ11 · · · µ1t

µ21 · · · µ2t
...

...
...

µs1 · · · µst




+




e′11
...

e′1n1

e′21
...

e′2n2

...

e′s1
...

e′sns




or Y = XB + E, where Y and E are n× t

matrices, X is n× s, and B is s× t
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Profile Analysis Hypotheses

• Three general hypotheses are of interest

H01: the profiles for the s groups are parallel

i.e., no group-by-time interaction

H02: no differences among groups

H03: no differences among time points

• H01 should be tested first, since the acceptance

or rejection of this hypothesis affects how the

other two hypotheses can be tested

• In addition, if H01 is rejected, we may wish to

test hypotheses of the form

H04: no differences among groups within some

subset of the total number of time points

H05: no differences among time points in a

particular group (or subset of groups)
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Test of Parallelism

• Recall that µhj is the mean response at time j

in group h

• The parallelism hypothesis is

H01:




µ11 − µ12

µ12 − µ13
...

µ1,t−1 − µ1t




= · · · =




µs1 − µs2

µs2 − µs3
...

µs,t−1 − µst




• In terms of the general H0:ABC = D,

A(s−1)×s = (Is−1,−1s−1)

Ct×(t−1) =




1 0 · · · 0
−1 1 · · · 0

0 −1 · · · 0
. . . . . . . . . . . . . . . . . .

0 0 · · · 1
0 0 · · · −1




D(s−1)×(t−1) = 0
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Tests for Differences Among Groups

• Depending on the results of the test of H01,

two tests of H02 are possible

• If the parallelism hypothesis is reasonable,

the test for differences among groups can be

carried out using the sum (or average) of the

repeated observations from each subject

• In this case:

A(s−1)×s = (Is−1,−1s−1)

Ct×1 = 1t

D(s−1)×1 = 0s−1

• This test of H02 is equivalent to that from

a one-way ANOVA on the totals (or means)

across time from each subject
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Tests for Differences Among Groups

• A multivariate test for differences among

groups can also be carried out without

assuming parallelism:

H02:




µ11

µ12
...

µ1t




=




µ21

µ22
...

µ2t




= · · · =




µs1

µs2
...

µst




• In this case:

A(s−1)×s = (Is−1,−1s−1)

Ct×t = It

D(s−1)×t = 0

• If comparisons among groups for a subset of

the t time points are of interest, the columns

of C corresponding to the excluded time

points can be omitted
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Tests for Differences Among Time Points

• Depending on the results of the test of H01,

two tests of H03 are possible

• If the parallelism hypothesis is reasonable, the

test for differences among time points can be

carried out using the sum (or average) across

groups of the observations at each time point

• In this case:

A1×s = (1, . . . , 1) or (1/s, . . . , 1/s)

Ct×(t−1) =

 It−1

−1′t−1




D1×(t−1) = 0

• This is equivalent to a one-sample T 2 test
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Tests for Differences Among Time Points

• The preceding procedure weights each of the s

groups equally and is usually appropriate

• However, if unequal group sizes result from the

nature of the experimental conditions, it may

be desirable to use a weighted average rather

than a simple average

• In this case, A = (n1, . . . , ns) or

A =
(n1

n
, . . . ,

ns

n

)

can be used

• Note that C and D are unchanged
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Tests for Differences Among Time Points

• H03 can also be tested without assuming

parallelism:

H03:




µ11

µ21
...

µs1




=




µ12

µ22
...

µs2




= · · · =




µ1t

µ2t
...

µst




• In this case:

As×s = Is

Ct×(t−1) =

 It−1

−1′t−1




Ds×(t−1) = 0

• If comparisons among time points in a

particular group (or subset of groups) are of

interest, the rows of A corresponding to the

excluded groups can be omitted
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Example

• At ages 8, 10, 12, and 14, the distance (mm)

from the pituitary to the pteryomaxillary fissure

was measured in 16 boys and 11 girls

• Let µb = (µb,8, µb,10, µb,12, µb,14)′ and

µg = (µg,8, µg,10, µg,12, µg,14)′

• The profile analysis model is:




y′b,1

...
y′b,16

y′g,1

...
y′g,11




=




1 0
...

1 0
0 1
...

0 1





 µb,8 · · · µb,14

µg,8 · · · µg,14


 +




e′b,1

...
e′b,16

e′g,1

...
e′g,11




or Y = XB + E, where Y and E are 27 × 4

matrices, X is 27× 2, and B is 2× 4
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SAS Statements

data a;
input sex id d8 d10 d12 d14;
male=(sex=1);
female=(sex=2);
cards;
1 1 26.0 25.0 29.0 31.0
1 2 21.5 22.5 23.0 26.5
1 3 23.0 22.5 24.0 27.5

. . .
2 9 20.0 21.0 22.0 21.5
2 10 16.5 19.0 19.0 19.5
2 11 24.5 25.0 28.0 28.0
;

• The derived variables male and female will be

used to define the design matrix X

male =
{

1 for boys
0 for girls

female =
{

1 for girls
0 for boys
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SAS Statements (Continued)

• Fit the profile analysis model:

proc glm;
model d8 d10 d12 d14=male female

/ noint nouni;

• Note that this model does not include an

intercept term

• Test the parallelism hypothesis:

contrast ’Parallelism’
male 1 female -1;

manova m=(1 -1 0 0,
0 1 -1 0,
0 0 1 -1);

• A(1×2) is specified using the contrast statement

• The transpose of C ′(4×3) is specified using the

manova statement

• D is assumed to be a matrix (or vector) of zeros
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SAS Statements (Continued)

• Test for differences between boys and girls

(assuming parallelism)

contrast ’Sex (if Parallel)’

male 1 female -1;

manova m=(1 1 1 1);

• Test for differences between boys and girls

(without assuming parallelism)

contrast ’Sex (Not Parallel)’

male 1 female -1;

manova m=(1 0 0 0,

0 1 0 0,

0 0 1 0,

0 0 0 1);

• (The manova statement is not necessary, since

the default C is the identity matrix)
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SAS Statements (Continued)

• Test for differences among time points

(assuming parallelism and using equal weights)

contrast ’Time (Parallel)’

male 0.5 female 0.5;

manova m=(1 0 0 -1,

0 1 0 -1,

0 0 1 -1);

• Test for differences among time points

(assuming parallelism and using weights

proportional to sample size)

contrast ’Time (Par., Weights)’

male .59259 female .40741;

manova m=(1 0 0 -1,

0 1 0 -1,

0 0 1 -1);
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SAS Statements (Continued)

• Test for differences among time points (without

assuming parallelism)

contrast ’Time (Not Parallel)’
male 1, female 1;

manova m=(1 0 0 -1,
0 1 0 -1,
0 0 1 -1);

• Test for differences among time points in boys

contrast ’Time (M, Not Parall)’ male 1;
manova m=(1 0 0 -1,

0 1 0 -1,
0 0 1 -1);

• Test for differences among time points in girls

contrast ’Time (F, Not Parall)’ female 1;
manova m=(1 0 0 -1,

0 1 0 -1,
0 0 1 -1);
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Growth Curve Analysis

• The MANOVA approach does not require that a

subject’s repeated measurements are ordered

• In fact, repeated measurements obtained over

time are naturally ordered

• In this case, it may be of interest to characterize

trends over time using low-order polynomials

• The means at the repeated time points can then

be summarized by a few coefficients, rather than

by the entire vector

• When the number of responses is large, reduction

to a linear or quadratic function is very useful

• Focus shifts from hypothesis testing to estimation

of a substantive model for the responses
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Growth Curve Analysis

• An extension of the standard MANOVA model

• Initially proposed by Potthoff and Roy (1964)

• An alternative formulation was developed by

Rao (1965, 1966, 1967) and Khatri (1966)

• Grizzle and Allen (1969) unified and illustrated

the methodology

• Kleinbaum (1973) generalized the model to

allow missing data

• A relatively unused approach, due to:

• unfamiliarity with the methodology

• lack of readily available software
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Potthoff-Roy Model

• Y = XBT + E, where

• Y is the n× t data matrix

yij is the response from subject i at time j

• X is a n× s across-individual design matrix

• B is a s× q parameter matrix

• T is a q × t within-individual design matrix

rank(T ) = q, where q ≤ t

• E is the n× t matrix of random errors

• Each row y′i = (yi1, . . . , yit) of the data matrix

Y has an independent multivariate normal

distribution with covariance matrix Σ

• E(Y ) = XBT and Var




y1
...

yn


 = In ⊗ Σ
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Distinction Between Profile Analysis

and Growth Curve Analysis

• Suppose repeated measurements are obtained at

times j = 1, . . . , t from s groups of subjects

• Let yhij denote the response at time j from

the ith subject in group h, for h = 1, . . . , s,

i = 1, . . . , nh, and j = 1, . . . , t

• The profile analysis model is yhij = µhj + ehij

• If the time trend in each group can be described

by a (q − 1)st degree polynomial (q ≤ t), the

growth curve model is

yhij = βh0+βh1 j+βh2 j2+ · · ·+βh,q−1 jq−1+ehij

(Although the functional form of the time trend

is the same in each group, the parameters vary)
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Distinction Between Profile Analysis

and Growth Curve Analysis

• The profile analysis model is Y = XB + E

• Y and E are n× t matrices

• X is a n× s matrix of zeros and ones

• B is a s× t matrix with (h, j)th element µhj




y′11
...

y′1n1

y′21
...

y′2n2

...

y′s1
...

y′sns




=




1 0 · · · 0
...

... · · · ...
1 0 · · · 0
0 1 · · · 0
...

... · · · ...
0 1 · · · 0

...

0 0 · · · 1
...

... · · · ...
0 0 · · · 1







µ11 · · · µ1t

µ21 · · · µ2t
...

...
...

µs1 · · · µst




+




e′11
...

e′1n1

e′21
...

e′2n2

...

e′s1
...

e′sns



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Distinction Between Profile Analysis

and Growth Curve Analysis

• The growth curve model is Y = XBT + E

• Y and E are n× t matrices

• X is a n× s matrix of zeros and ones

• B is a s× q matrix

• T is a q × t matrix

• Thus, the expected value of Y is equal to




1 0 · · · 0
...

... · · · ...
1 0 · · · 0
0 1 · · · 0
...

... · · · ...
0 1 · · · 0

...

0 0 · · · 1
...

... · · · ...
0 0 · · · 1







β10 · · · β1,q−1

β20 · · · β2,q−1

...
...

...
βs0 · · · βs,q−1







1 1 · · · 1
1 2 · · · t
1 4 · · · t2
...

...
...

...
1 2q−1 · · · tq−1



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The Potthoff-Roy Approach

• The basic idea is to transform the growth curve

model to the usual MANOVA model

• Let G be a t× t symmetric, positive-definite

matrix satisfying the following conditions:

• G must be nonstochastic or independent of Y

• TG−1T ′ has rank q

• If both sides of the model Y = XBT + E are

post-multiplied by G−1T ′(TG−1T ′)−1,

Y G−1T ′(TG−1T ′)−1 = XBTG−1T ′(TG−1T ′)−1

+ EG−1T ′(TG−1T ′)−1,

or Z = XB + E∗, where

Z = Y G−1T ′(TG−1T ′)−1

is a matrix of transformed dependent variables
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The Potthoff-Roy Approach

• The transformed data matrix Z has mean XB

• The rows of Z have independent Nq(0, Σ∗)

distributions, where

Σ∗ = (TG−1T ′)−1TG−1ΣG−1T ′(TG−1T ′)−1

• The growth curve model has thus been reduced to

the profile analysis model

• Standard multivariate linear model theory can be

used to:

• estimate B

• test hypotheses of the form ABC = D

• In particular, the linear unbiased estimator of B is

B̂ = (X ′X)−1X ′Y G−1T ′(TG−1T ′)−1
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Choice of G

• Potthoff and Roy (1964) proved that the

minimum variance unbiased estimator of B is

B̂ = (X ′X)−1X ′Y Σ−1T ′(TΣ−1T ′)−1

• Therefore, although B̂ is unbiased for any G,

the optimal choice is G = Σ

• In practice, Σ is usually unknown

• Potthoff and Roy (1964) suggested using an

estimate of Σ obtained from an independent

experiment

• They did not, however, develop the theory

for allowing G = S, where S is the sample

covariance matrix calculated from the data

used to estimate B
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Choice of G

• The problem is simplified when q = t

i.e., when the time trend across the t points is

described by a (t− 1)st degree polynomial

• In this case,

Z = Y G−1T ′(TG−1T ′)−1

= Y G−1T ′(T ′)−1GT−1

= Y T−1,

so that there is no need to choose G

• If T is an orthogonal matrix, then Z = Y T ′

and matrix inversion is not required

• Bock (1963) developed this procedure using

Roy-Bargmann (1958) step-down F -tests and

orthogonal polynomials
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Choice of G

• When q < t, the simplest choice is G = It

• In this case,

Z = Y G−1T ′(TG−1T ′)−1

= Y T ′(TT ′)−1

• If the time trends are parameterized using

orthogonal polynomial coefficients, the

transformation further simplifies to Z = Y T ′

• This simplifies the calculations and eliminates

the need for matrix inversion

• However, it may not be the best choice in

terms of power

• Information is lost in reducing Y to Z unless

G = Σ (or unless Σ = σ2I)
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Rao-Khatri Approach

• In order to avoid the arbitrary choice of G,

Khatri (1966) derived the maximum likelihood

estimator of B

• Rao (1965, 1966, 1967) considered the

conditional model E(Y |W ) = XB + WΓ and

derived a covariate-adjusted estimator of B

• If q < t, identical results are obtained from:

• Khatri’s maximum likelihood approach

• Rao’s covariate-adjusted approach using

t− q covariates

• Potthoff and Roy’s approach using G = S

• When q < t, the Potthoff-Roy approach using

G = I is equivalent to not using covariates in

Rao’s conditional model
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Example

• In a dental study, the height of the ramus bone

(mm) was measured in 20 boys at ages 8, 8 1
2 , 9,

and 9 1
2 years

• Three questions:

• Does bone height change with age?

Not of great interest, since answer is obvious

• Is there a linear relationship between age and

bone height?

• What is the model for predicting bone height

from age?

Reference

Elston, R. C. and Grizzle, J. E. (1962).
Estimation of time-response curves and their
confidence bands. Biometrics 18, 148–159.
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Data from Example

Age (years)

Subject 8 8 1
2 9 9 1

2

1 47.8 48.8 49.0 49.7
2 46.4 47.3 47.7 48.4
3 46.3 46.8 47.8 48.5
4 45.1 45.3 46.1 47.2
5 47.6 48.5 48.9 49.3
6 52.5 53.2 53.3 53.7
7 51.2 53.0 54.3 54.5
8 49.8 50.0 50.3 52.7
9 48.1 50.8 52.3 54.4

10 45.0 47.0 47.3 49.3
11 51.2 51.4 51.6 51.9
12 48.5 49.2 53.0 55.5
13 52.1 52.8 53.7 55.0
14 48.2 48.9 49.3 49.8
15 49.6 50.4 51.2 51.8
16 50.7 51.7 52.7 53.3
17 47.2 47.7 48.4 49.5
18 53.3 54.6 55.1 55.3
19 46.2 47.5 48.1 48.4
20 46.3 47.6 51.3 51.8
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Application to Example

• In this example, n = 20, t = 4, s = 1

• Since there is a single group of subjects, X is

the 20× 1 matrix (1, . . . , 1)′

• We will first choose q = t = 4

• If T is the 4 × 4 matrix of orthogonal

polynomial coefficients,

Z = Y G−1T ′(TG−1T ′)−1 = Y T−1 = Y T ′

• Thus, it is not necessary to choose G and

matrix inversion is not required

• We will use this model to test if the nonlinear

components of the time effect are statistically

significant
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SAS Statements

(q=4, Standardized Orth. Poly. Coefficients)

data a;
input subject h80 h85 h90 h95;
* standardized orth. poly. coefficients;
sop0=( h80 + h85 + h90 + h95)/2;
sop1=(-3*h80- h85+ h90+3*h95)/sqrt(20);
sop2=( h80- h85- h90+ h95)/2;
sop3=( -h80+3*h85-3*h90+ h95)/sqrt(20);
cards;
1 47.8 48.8 49.0 49.7
2 46.4 47.3 47.7 48.4

. . .
19 46.2 47.5 48.1 48.4
20 46.3 47.6 51.3 51.8
;
proc glm;
model sop0-sop3= / nouni;
manova h=intercept m=(1 0 0 0);
manova h=intercept m=(0 1 0 0);
manova h=intercept m=(0 0 1 0);
manova h=intercept m=(0 0 0 1);
manova h=intercept m=(0 0 1 0,

0 0 0 1);
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Comments

• The constant and linear age effects are highly

significant

• The quadratic and cubic effects of age are

nonsignificant, both individually and jointly

• We will now model the effects of age on ramus

height using a linear growth curve model (q = 2)

• Computations are simpler using orthogonal

polynomial coefficients

• Interpretation is simpler using the matrix

T =

 1 1 1 1

8.0 8.5 9.0 9.5




• We will first use G = I4 and then consider

G = S (the sample covariance matrix)
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Linear Model, G = I4

• Z = Y G−1T ′(TG−1T ′)−1 = Y T ′(TT ′)−1

• The transformation is computed as follows:

TT ′=

 1 1 1 1

8.0 8.5 9.0 9.5







1 8.0
1 8.5
1 9.0
1 9.5




=

 4 35

35 307.5




(TT ′)−1 =

 61.5 −7
−7 0.8




T ′(TT ′)−1 =




5.5 −0.6
2.0 −0.2

−1.5 0.2
−5.0 0.6




• The SAS statements are:

data b; set a;
pi0=5.5*h80+2.0*h85-1.5*h90-5.0*h95;
pi1=-.6*h80-0.2*h85+0.2*h90+0.6*h95;
proc glm;
model pi0 pi1=;
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Linear Model, G = S

• In a one-sample problem, the sample covariance

matrix S can be computed using PROC CORR:

proc corr nosimple cov; var h80 h85 h90 h95;

• In this example,

S =




6.32997 6.18908 5.77700 5.35579
6.18908 6.44934 6.15342 5.78526
5.77700 6.15342 6.91800 6.77421
5.35579 5.78526 6.77421 7.18316




• For the case in which G = S, the transformation

Z = Y G−1T ′(TG−1T ′)−1 is computed as follows:

G−1 =




2.6933 −2.8416 0.0498 0.2334
−2.8416 4.1461 −1.5651 0.2555

0.0498 −1.5651 3.8824 −2.4379
0.2334 0.2555 −2.4379 2.0585



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Linear Model, G = S

G−1T ′ =




0.13501104 0.05931779
−0.00512515 0.85011176
−0.07088109 −1.12416465

0.10952328 1.65380106




TG−1T ′ =

 0.16852809 1.43906596

1.43906596 13.29412054




(TG−1T ′)−1 =

 78.42126986 −8.48896924
−8.48896924 0.99413772




G−1T ′(TG−1T ′)−1 =




10.084191 −1.087135
−7.618493 0.888635

3.984414 −0.515867
−5.450112 0.714366




• The SAS statements are:

data b; set a;
ps0=10.08419058*h80-7.61849306*h85

+3.98441438*h90-5.45011190*h95;
ps1=-1.08713454*h80+0.88863538*h85

-0.51586713*h90+0.71436629*h95;
proc glm;
model ps0 ps1=;
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Example

• A study conducted in 16 boys and 11 girls

• At ages 8, 10, 12, and 14, the distance (mm)

from the center of the pituitary gland to the

pteryomaxillary fissure was measured

• The change in the pituitary-pteryomaxillary

distance during growth is important in

orthodontal therapy

• The goals are to:

• Describe the distance in boys and girls as

simple functions of age

• Compare the functions for boys and girls

Reference

Potthoff, R. F. and Roy, S. N. (1964). A generalized

multivariate analysis of variance model useful especially for

growth curve problems. Biometrika 51, 313–326.
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Dental Measurements

Group ID Age 8 Age 10 Age 12 Age 14
Boys 1 26.0 25.0 29.0 31.0

2 21.5 22.5 23.0 26.5
3 23.0 22.5 24.0 27.5
4 25.5 27.5 26.5 27.0
5 20.0 23.5 22.5 26.0
6 24.5 25.5 27.0 28.5
7 22.0 22.0 24.5 26.5
8 24.0 21.5 24.5 25.5
9 23.0 20.5 31.0 26.0

10 27.5 28.0 31.0 31.5
11 23.0 23.0 23.5 25.0
12 21.5 23.5 24.0 28.0
13 17.0 24.5 26.0 29.5
14 22.5 25.5 25.5 26.0
15 23.0 24.5 26.0 30.0
16 22.0 21.5 23.5 25.0

Mean 22.9 23.8 25.7 27.5
Girls 1 21.0 20.0 21.5 23.0

2 21.0 21.5 24.0 25.5
3 20.5 24.0 24.5 26.0
4 23.5 24.5 25.0 26.5
5 21.5 23.0 22.5 23.5
6 20.0 21.0 21.0 22.5
7 21.5 22.5 23.0 25.0
8 23.0 23.0 23.5 24.0
9 20.0 21.0 22.0 21.5

10 16.5 19.0 19.0 19.5
11 24.5 25.0 28.0 28.0

Mean 21.2 22.2 23.1 24.1
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Outline of Analyses

1. Fit growth curve model with q = t = 4 using

standardized orthogonal polynomial coefficients

• matrix inversion and/or computation of the

pooled covariance matrix S not required

• test joint significance of constant, linear,

quadratic, and cubic terms to determine

degree of polynomial

2. Fit reduced covariate-adjusted model using

standardized orthogonal polynomial coefficients

• test equality of parameters for boys and girls

• compare with Potthoff-Roy estimated

parameters when G = S

3. Fit Potthoff-Roy reduced polynomial model

with T defined on the natural time scale
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SAS Statements

(q=4, Standardized Orth. Poly. Coefficients)

data a;
input sex id d8 d10 d12 d14;
male=(sex=1);
female=(sex=2);
* standardized orth. poly. coefficients;
sop0=( d8 + d10 + d12 + d14)/2;
sop1=(-3*d8- d10+ d12+3*d14)/sqrt(20);
sop2=( d8- d10- d12+ d14)/2;
sop3=( -d8+3*d10-3*d12+ d14)/sqrt(20);
cards;
1 1 26.0 25.0 29.0 31.0

. . .
2 11 24.5 25.0 28.0 28.0
;

proc glm;
model sop0-sop3=male female / noint nouni;
contrast ’Both Sexes’ male 1, female 1;
manova m=(1 0 0 0);
manova m=(0 1 0 0);
manova m=(0 0 1 0);
manova m=(0 0 0 1);
manova m=(0 0 1 0,

0 0 0 1);
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Covariate-Adjusted Linear Model

• Since nonlinear effects are nonsignificant, quadratic

and cubic effects will be used as covariates

• The SAS statements are:

proc glm;
model sop0 sop1=male female sop2 sop3

/ noint;
contrast ’Both Sexes’ male 1, female 1;
manova m=(1 0,

0 1);
proc glm;
model sop0 sop1=male female sop2 sop3

/ noint;
contrast ’Sex’ male 1 female -1;
manova m=(1 0,

0 1);

• The first model tests joint effects in boys and girls,

while the second model tests equality of effects for

boys and girls
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Potthoff-Roy Linear Model with G = S

• In a multi-sample problem, PROC DISCRIM

can be used to compute the pooled sample

covariance matrix S

proc discrim pcov; class sex;

var d8 d10 d12 d14;

• In this example,

G = S =




5.41545 2.71682 3.91023 2.71023
2.71682 4.18477 2.92716 3.31716
3.91023 2.92716 6.45574 4.13074
2.71023 3.31716 4.13074 4.98574




• The transformation Z = Y G−1T ′(TG−1T ′)−1 is

computed as follows:

T =

 1/2 1/2 1/2 1/2
−3/

√
20 −1/

√
20 1/

√
20 3/

√
20



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Potthoff-Roy Linear Model with G = S

G−1 =




0.37168 −0.15407 −0.19490 0.06194
−0.15407 0.57220 0.05082 −0.33905
−0.19490 0.05082 0.43363 −0.28713

0.06194 −0.33905 −0.28713 0.63038




G−1T ′ =




0.04232484 −0.21690806
0.06494694 −0.24067261
0.00120890 0.02372727
0.03306573 0.39292648




TG−1T ′ =

 0.07077320 −0.02046346
−0.02046346 0.46821105




(TG−1T ′)−1 =

 14.31048448 0.62544880

0.62544880 2.16312460




G−1T ′(TG−1T ′)−1 =




0.4700241 −0.4427271
0.7788937 −0.4799838
0.0321401 0.0520811
0.7189420 0.8706298



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Potthoff-Roy Linear Model with G = S

• The SAS statements are:

data b; set a;

sops0= 0.47002414*d8+0.77889373*d10

+0.03214013*d12+0.71894200*d14;

sops1=-0.44272714*d8-0.47998385*d10

+0.05208114*d12+0.87062985*d14;

proc glm;

model sops0 sops1=male female / noint;

• The estimated constant and linear age

parameters for boys and girls are identical to

those from the covariate-adjusted model

• Differences between the two models:

• Standard errors of estimated parameters

• Test statistics and degrees of freedom for

hypothesis tests
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Potthoff-Roy Linear Model

(Natural Time Scale, G = S)

• For ease of interpretation, the linear model will

now be fit using the matrix

T =

 1 1 1 1

8 10 12 14




G−1T ′ =




0.08464969 −0.03889577
0.12989387 0.35251199
0.00241780 0.13270736
0.06613146 2.48466667




TG−1T ′ =

 0.28309282 2.93099025

2.93099025 39.59177541




(TG−1T ′)−1 =

 15.12612431 −1.11979123
−1.11979123 0.10815623




G−1T ′(TG−1T ′)−1 =




1.323977 −0.098997
1.570051 −0.107328

−0.112033 0.011646
−1.781995 0.194679



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Potthoff-Roy Linear Model

(Natural Time Scale, G = S)

• The SAS statements are:

data b; set a;

ps0=1.32397685*d8+1.57005103*d10

-.11203261*d12-1.78199527*d14;

ps1=-.09899680*d8-0.10732765*d10

+.01164570*d12+0.19467875*d14;

proc glm;

model ps0 ps1=male female / noint;

contrast ’Both Sexes’ male 1, female 1;

manova m=(1 0,

0 1);

proc glm;

model ps0 ps1=male female / noint nouni;

contrast ’Sex’ male 1 female -1;

manova m=(1 0);

manova m=(0 1);

manova m=(1 0,

0 1);
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Potthoff-Roy Linear Model

(Natural Time Scale, G = S)

• The resulting model is:

Boys Girls

Estimate S.E. Estimate S.E.

Constant 15.842 0.972 17.425 1.173
Linear Age 0.827 0.082 0.476 0.099

• The slopes for boys and girls are significantly

different (p = 0.01)

• The intercepts for boys and girls are not

significantly different (p = 0.3)

• All hypothesis tests involving slopes, as well

as the joint tests of intercepts and slopes,

are identical to those from the orthogonal

polynomial parameterization
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Potthoff-Roy Linear Model

(Natural Time Scale, G = I)

• Z = Y G−1T ′(TG−1T ′)−1 = Y T ′(TT ′)−1, where

TT ′=

 1 1 1 1

8 10 12 14







1 8
1 10
1 12
1 14




=

 4 44

44 504




(TT ′)−1 =

 6.30 −0.55
−0.55 0.05




T ′(TT ′)−1 =




1.9 −0.15
0.8 −0.05

−0.3 0.05
−1.4 0.15




• The resulting model is:

Boys Girls

Estimate S.E. Estimate S.E.

Constant 16.341 1.019 17.373 1.228
Linear Age 0.784 0.086 0.480 0.104


