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Nonparametric Methods

e Most of the methods we have studied require

distributional assumptions

(on either joint or marginal distributions)

e multivariate normal joint distribution

(either unstructured or with a special

covariance structure)
e multinomial joint distribution

e normal, Bernoulli, Poisson, gamma marginal

distributions

e The exceptions were:

e summary statistic approach using

nonparametric measures of association

e randomization model analyses based on

CMH statistics
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Rationale for Nonparametric Methods

. For continuous responses:

a. the assumption of multivariate normality is

not always reasonable
b. the actual distribution may be unknown

Thus, the use of standard parametric procedures

is subject to criticism

. For ordered categorical responses with a large

number of possible outcomes:

a. general categorical data methods may be

inapplicable due to sample size limitations

b. assumptions of specific ordinal data models

may be inappropriate

. To confirm the results of parametric analyses
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Some Nonparametric Methods

Summary Statistic Approach

Analysis of a univariate function of the repeated

measurements using distribution-free methods

Ghosh et al. (1973) extension based on the use of

two or more summary statistics for each subject

Rank Correlation Methods

Another type of multivariate approach based on

summary statistics

Applicable when ordinal response is measured at

multiple time points in several ordered groups

Rank measures of association between group and

response are constructed at each time

Covariance matrix of these correlated measures

of association is then estimated

Carr, Hafner, and Koch (1989)
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Some Nonparametric Methods

Multivariate Generalizations of Univariate

Distribution-Free Methods

(rank-based methods for samples from continuous

multivariate distributions)

e Multivariate one-sample tests for complete data
e Nonparametric analogues of Hotelling’s T2

e Multivariate generalizations of the sign and

Wilcoxon signed rank tests
e Hettmansperger (1984, chapter 6)
e Puri and Sen (1971, chapter 4)

e Multivariate multisample tests for complete data
e Nonparametric analogues of MANOVA

e Multivariate generalizations of the Kruskal-

Wallis and Brown-Mood (1951) median tests
e Puri and Sen (1971, chapter 5)
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Some Nonparametric Methods

Counterparts of Multivariate Normal Methods

e Nonparametric counterparts of Hotelling’s T

statistic and profile analysis (Bhapkar, 1984)

e Nonparametric analogues of the Potthoff-Roy
growth curve model (Sen, 1984)

Randomization Model Approaches

e Cochran-Mantel-Haenszel tests for one-sample

repeated measures using rank scores

e Randomization analysis of growth curves

Zerbe and Walker (1977), Zerbe (1979)

Two-sample Tests for Incomplete Data
e Wei & Lachin (1984), Wei & Johnson (1985)

e Palesch and Lachin (1994) extension to more

than two groups
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Some Nonparametric Methods

Rank Transform Methods

e Replace the observations by their ranks and

then perform standard parametric analyses

e Inappropriate for many common hypotheses in

the repeated measures setting (Akritas, '91, ’93)

e Thompson (1991) and Akritas & Arnold (1994)
provide valid asymptotic tests for hypotheses of

interest in several repeated measures models

Nonparametric Regression Methods

e Approaches based on kernel estimation,
weighted local least squares estimation, and

smoothing splines

e Miiller (1988), Diggle et al. (1994, Chapter 3),
Kshirsagar and Smith (1995, Chapter 10)
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Multivariate Multisample Nonparametric

Tests for Complete Data

Puri and Sen (1971) considered the problem of
testing the equality of s multivariate distributions

Fi, ..., Fs, where F}, is a t-variate cdf

When the underlying distributions Fi, ..., Fy are
multivariate normal, they can differ only in their

mean vectors and covariance matrices

However, for non-normal F},, differences among

distributions may be due to a variety of reasons

Equality of location vectors and covariance

matrices does not imply that F} = --- = Fj

Puri and Sen assumed that the cdfs F}, had a
common unspecified form, but differed in their

location (or scale) vectors
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Multivariate Multisample Nonparametric

Tests for Complete Data

Puri & Sen considered the general null hypothesis
Hy: Fi(z) = -+ = Fy(x) for all z, where F' € (),

and €2 is the class of continuous cdfs

The general alternative hypothesis was that each

Fy, € Q0 and not all equal

Although they considered both translation- and

scale-type alternatives, we shall consider the case

Fh(x):F(x—l—Ah), h=1,....s

The null hypothesis of interest is

H()ZAl:"':AS:(O,...,O)/

The alternative is that A; ..., Ay are not all equal
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Methodology for Repeated Measures

Suppose repeated measurements at ¢t time points

have been obtained from s groups of subjects

Let nj denote the number of subjects in group A

and let n=>; _, ny

Let yp;; denote the response at time j from
the ith subject in group h, for h =1,...,s,

1=1,...,np,and 7 =1,...,¢

Let Fi,(x 4+ Ap) denote the cdf in group h, where
x = (ZEl, “. ,Zlft) and Ah = (Ahla coey Aht)/

The test of no difference among groups across

all time points tests Hyp: A1 = --- = Ag = 04

The omnibus alternative is that not all groups

are the same at all time points
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Methodology for Repeated Measures

e The data can be displayed as follows:

Time Point

Group Subject 1 . g . t

1 1 Yyiir -+ Y115 -+ Yi1e

( Yiixr - Yiig oo Ylit

ni Yin1 Ylnij Ylnqt

h 1 Yni1 Yh1j Ynlt

v Yhil Yhij Yhit
np Yhnp1 Yhny,j Yhnpt

S 1 Ys11 Ys1j Ysit

? Ysil ysij Ysit
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Rank Permutation Principle

Rank the ¢t columns of the n x t data matrix Y

(all groups combined) in ascending order
Let R denote the n X t matrix of ranks

Under Hy, each column of R is a random

permutation of the numbers 1,...,n

Two such matrices are permutationally
equivalent if one can be obtained from the

other by a rearrangement of its rows

Let R* denote the matrix that has the same
row vectors as R, but is arranged so that its

first column is ordered 1,...,n

R* has (n!)'~! possible realizations
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The t components of yn; = (Ynit,---,Ynit) are,

in general, stochastically dependent

Thus, the joint distribution of the elements of R

(or R*) will depend on the unknown distribution

F (even when Hy: F} = -+ = Fy = F is true)

Let R* denote the set of all (n!)!~! possible

realizations of R*

The unconditional distribution of R* over R*

depends on Fi, ..., Fj

When Fy} = --- = F, the n random vectors

Y11y -+ -y Yins Y21y - - -5 Y2nos - - - s Ysly o o+ 5y Ysn,

are independent and identically distributed



716

Rank Permutation Principle

The joint distribution of the y;; is invariant

under any permutation among themselves

Thus, the conditional distribution of R over the
set of n! possible permutations of the columns of

R* is uniform under Hy: F}, = --- = F;, = F, i.e.,

Pr(R=r|S(R"),Hy) = 1/n! for all r € S(R")

Puri and Sen define P as the conditional
(permutational) probability measure generated
by the n! equally likely possible permutations of

the columns of R*

They show that any statistic which depends
explicitly on R has a completely specified

conditional distribution under P
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Permutation Rank Order Tests

Let R;; denote the (¢, j)th element of R, .+

Let E;; = J(R;;/(n+ 1)) for some function J
satisfying Puri and Sen’s (1971, p. 95) conditions

Let E denote the n x t matrix of rank scores

Let Ehj denote the average rank score at the jth

time point in the Ath sample

Puri and Sen derive a test statistic L. which is a

weighted sum of s quadratic forms in £}, — E

E}, is the t x 1 vector of average rank scores from

the hth sample

E is the vector of average rank scores from all

samples combined
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Permutation Rank Order Tests

The conditional distribution of L given R* is

the same under Hj, regardless of F

Under Hy, the t(s — 1) contrasts Ej; — FE_; are

stochastically small in absolute value

The test criteria L rejects Hy if any of these

contrasts are numerically too large

Unless n and t are both small, exact application

of the permutation test based on L is difficult

Puri and Sen (1971) show that the asymptotic

null distribution of L is X%( s—1)

They also note that L is asymptotically
equivalent to the LR test based on 7
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Multivariate Multisample Rank Sum Test

e For each sample at each time point, the MMRST
compares the difference between the sample

average rank and the combined data average rank

e Let 7, denote the average rank vector (¢t x 1) from

the hth group:

E T'hij

=1
Th; = n, )

where 73, is the rank of the jth response from

the 7th subject in sample h

e Let 7 denote the average rank vector (¢t x 1) for
the combined samples:

S Th
E E T'hij

— h=1 1=1

— S
>
h=1

T’_j—
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Multivariate Multisample Rank Sum Test

The test statistic is

Lrs = Znh("“h — 7)YV (r, —7)
h—1

The covariance matrix V has elements

S TR S
Vii = E E Thijrhil/g np | — T 4T
h=1

h=1 1=1

L rs tests the hypothesis of no differences in the

multivariate response profiles from the s samples
The asymptotic null distribution of Lrg is X%(s—l)
If t =1, Lrg reduces to the Kruskal-Wallis test

Schwertman (1982) gives a FORTRAN subroutine
for computing the MMRST
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Multivariate Multisample Median Test

e The MMMT compares differences between
proportions less than or equal to the median to

the corresponding combined data proportions

e Let p; denote the t X 1 vector of proportions
from the hth sample which are less than or

equal to the median of the combined samples:

np
Phj = 01 Thij/Nn, Where

1 if T'hij S 22:1 nh/2
Lhij =

0 otherwise

e Let p denote the ¢t x 1 vector of proportions
from the combined samples that are less than
or equal to the combined samples median:

TS M) 3

h=11=1
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Multivariate Multisample Median Test

The test statistic is

Ly =Y nalpn—D)'V " (pn —D)
h=1

The covariance matrix V has elements

s np s
Vi = ( > thijl’hz‘z/z nh) — DD
h=1

h=1 =1

L tests the hypothesis of no differences in the

multivariate response profiles from the s samples
The asymptotic null distribution of L, is X?(s—l)

If t =1, Ljs reduces to the Brown-Mood (1951)

several-sample median test

Schwertman (1982) gives a FORTRAN subroutine
for computing the MMMT
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Example

e Leppik et al. (1987) conducted a clinical trial
in 59 epileptic patients

e Patients suffering from simple or complex
partial seizures were randomized to receive
either the antiepileptic drug progabide
(31 patients) or a placebo (28 patients)

e At each of four successive postrandomization
visits, the number of seizures occurring during

the previous two weeks was reported

e The medical question of interest is whether
or not progabide reduces the frequency of

epileptic seizures

Reference
Leppik IE, Dreifuss FE, Porter R et al. (1987). A controlled
study of progabide in partial seizures: methodology and results.

Neurology 37, 963-968.
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Modified Box Plots of Seizure Counts
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Multivariate Approach

During each two-week period, there appears
to be a slight tendency for seizure counts to
be lower in progabide-treated patients than in

placebo-treated patients

The median number of seizures in the progabide
group at weeks 2, 4, 6, and 8 is 4, 5, 4, and 4,

respectively

The corresponding medians in the placebo group

are 9, 4.5, 5, and 5, respectively

Using the multivariate multisample rank sum
test, the chi-square statistic is 5.47 with 4 df
(p=0.24)

The multivariate multisample median test gives

an even less-significant result (chi-square= 3.46,

df= 4, p = 0.48)
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Two-Sample Nonparametric Tests for

Incomplete Repeated Measures

General methods for comparing two samples of

incomplete repeated measures were studied by:

Wei and Lachin (1984, JASA)
Wei and Johnson (1985, Biometrika)

The methods make no assumptions concerning

the distribution of the response variable

The missing value patterns in the two groups are
allowed to be different and both “embedded” and

“tail” missing observations can be accommodated

The missing data mechanism, however, must be

independent of the response

Methods are limited to two-group comparisons
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Wei-Lachin Method

A family of asymptotically distribution-free tests
for equality of two multivariate distributions,

based on censored data

Proposed and developed for multivariate

censored failure time data

Natural generalizations of the log-rank test and

the Gehan-Wilcoxon test for survival data

Based on the commonly used random censorship

model (Kalbfleisch and Prentice, 1980)

e censoring vectors for each subject are
mutually independent and also independent

of the underlying failure time vectors

The methodology is also applicable to repeated

measures with missing observations
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Wei-Lachin Method

o Let yni = (Yni1,---,Ynit) denote the repeated
observations from subject ¢ in group h, for

h=12and:=1,...,np

e Apart from a scale factor, the jth component

of the W-L vector of test statistics equals

1 T2
T; = Z Z 01i502i ;O (Y145, Y2i75),
i=14'=1
where
1 ify>«x
o(z,y) = { 0 ity=u
—1 ify<z

and dp,; is 1 if yp,; is observed, 0 otherwise

e Thus, at each time point j, comparisons
between group 1 and group 2 are made for all

i,9" for which yi,; and ya,;/; are both observed
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Wei-Lachin Omnibus Test

o Let Fy(xq,...,x:) denote the multivariate cdf

of the repeated observations from group h, for

h=1,2

e The statistic for testing
Hy: Fi(x1,...,2¢) = Fo(x1, ..., 24¢)
against the general alternative that F; # F5 is
T’i;lT, where

o T'=(T1,...,T})

e 31 is a consistent estimator of Var(T)

(Wei and Lachin, 1984, Theorem 1)

e The asymptotic null distribution of this

statistic is x?
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Wei-Lachin One-Sided Test

In many studies, the detection of stochastic
ordering of the distributions F; and F5 is of

primary interest

For example, the alternative hypothesis H;
may be that Fy;(x) < Fi,(z) for each marginal

Cdthj,jzl,...,t

In this case, Wei & Lachin propose the statistic

e'T
z = :
\/ e’ e
where €’ is the t-component vector (1,...,1)

The asymptotic distribution of z is N(0,1)

Hy is rejected when z is equal to a large

positive (or large negative) value
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Wei-Johnson Method

e A class of two-sample nonparametric tests
for incomplete repeated measures based on

two-sample U-statistics

e The primary focus is on optimal methods of

combining dependent tests

e Motivation:

Suppose a researcher wishes to draw an overall
conclusion regarding the superiority of one

treatment over another (across time)

A univariate one-sided test that combines
the results at individual time points is more

appropriate than an omnibus two-sided test of

Ho: Fy(xy,. .. 2¢) = Fo(x1, ..., 2¢)
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One-Sample U-Statistics

Let F denote a family of cumulative distribution

functions

Let Xq,...,X,, be arandom sample from a

distribution with cdf F' € F

Let v denote a parameter to be estimated

v is estimable of degree r for the family F if r is
the smallest sample size for which there exists a

function h(x1,...,x,) such that
Elh(X,.... X)) =7

for every distribution F' € F

h(x1,...,x,) is a statistic that does not depend

on F' and is called the kernel of the parameter
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One-Sample U-Statistics

e h(x1,...,x,) is assumed to be symmetric in its

arguments, that is,

h(ﬂfl,...,ﬁljr) — h(ma17"'7$a?°)

for every permutation (az,...,q,) of the

integers 1,...,7

e A one-sample U -statistic for the estimable
parameter v of degree r is created with the

symmetric kernel h(xq,...,x,) by forming
o\ ]
U . — .
(X1, , Xn) (T) Z h(Xﬁw 7X57~)7
BEB

where B = {ﬁ | (3 is one of the (Z’) unordered
subsets of r integers chosen without replacement

from the set {1,...,n}}
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Example of a One-Sample U-Statistic

Let F denote the class of all univariate

distributions with finite first moment -~y

Let X4,...,X,, be arandom sample from a

distribution with cdf F' € F

Since E(X7) = 7, the mean ~ is an estimable

parameter of degree 1 for the family F

Using the kernel h(z) = x, the U-statistic

estimator of the mean is

U(X1,...,X,) = (?) . zﬂ; h(X;)

[
3| -
]
25
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One-Sample U-Statistic Theorem

Let X4,...,X,, be arandom sample from a

distribution with cdf F' € F

Let v be an estimable parameter of degree r

with symmetric kernel h(xzq,...,x,) and let

U(X1,...,X,) = (Z”)l N h(Xp,, .-, X5,)

peB
If E[h?(X1,...,X,)] < oo, and if
G =ER(Xy,. .., X)X, Xog1, .0, Xor1)] =7

is positive, then

\/ﬁ[U<X17 SR 7Xn) o 7]

has a limiting N (0, 7r2¢;) distribution

Hoeffding (1948), Randles and Wolfe (1979)
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Two-Sample U-Statistics

o Let X4,...,X,, and Y7,...,Y,, be independent

random samples from populations with cdf’s
F(z) and G(y), respectively, from a family of

cumulative distribution functions F

A parameter « is estimable of degree (r, s) for
distributions (F, &) in a family F if r and s are
the smallest sample sizes for which there exists

a function h(zy,...,2,, y1,...,ys) such that

Elh(X1,. .., Xr Y1,...,Y5)] =~

for all distributions (F,G) € F

h(x1,...,%r,91,...,Ys) is called the two-sample

kernel of the parameter
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Two-Sample U-Statistics

e The kernel A(x1,..., 2, Y1,.-.,Ys) is assumed to
be symmetric separately in its x; components and

in 1ts y; components

e A two-sample U-statistic for the estimable
parameter v of degree (r,s) is created with the

kernel h(x1,...,Tr,Y1,-..,Yys) by forming

U(X1,..., X, Y1,...,Y,) =

[(T)(Z)]—lz > MXayse o Xa, Yo, Ya,),

acA pBeB

where A (B) is the collection of subsets of r (s)

integers chosen without replacement from the

integers {1,...,m} ({1,...,n})

e Note that sample sizes m > r, n > s are required
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Example of a Two-Sample U-Statistic

Let F be the class of univariate distributions

with finite first moment ~

Let X4,...,X,, and Y7,...,Y,, be independent

random samples from distributions with cdfs F

and G, respectively, where F,G € F

Since E(X1) = px and E(Y1) = py, the
mean diference v = puy — pux is an estimable

parameter of degree (1,1) for the family F

Using the kernel h(zx,y) = y — x, the U-statistic

estimator of the mean difference is

—1 m n

=[G S

i=1 j=1

m n

— Y- X) =YX

i=1 j=1
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Two-Sample U-Statistic Theorem (r = s=1)

e Let X4,...,X,, and Y7,...,Y,, be independent

random samples from distributions with cdfs F

and G, respectively, where F,G € F

e Let h(-) be a symmetric kernel for an estimable
parameter v of degree (1,1) and let U be the U-

statistic estimator of ~y

o let N=m-+nandlet 0 < A= lim %<1

N —o0

o [et Cl,O — E[h(Xl,Yl)h(Xl,YQ)] — 72 and let
o1 = E[h(X1,Y1)h(X2, Y1)] — 72
o If E[h?(X1,Y7)] < oo, and if

> G1,0 Co,1
S W

> 0,

the limiting distribution of v N(U—~) is N(0, c?)
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Joint Limiting Distribution of

Correlated Two-Sample U-Statistics

e Special case of several two-sample U-statistics,

each of degree (1,1)

o Let X4,...,X,, and Y7,....Y,, be independent
random samples from distributions with

t-variate cdfs F' and GG, respectively

X=X, ..., Xy), Yi=,....Y)

o Let Uy,...,U; be two-sample U-statistics with
symmetric kernel h(x,y), where U, estimates
v, of degree (1,1) and is given by
U= (mn) "> > h(Xik, Yjr), k=1,....1

i=1 j=1

o et N=m-+nandlet A\ = lim m
N—oo N
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Joint Limiting Distribution of

Correlated Two-Sample U-Statistics

e The joint limiting distribution of
\/N(Ul — M) \/N<Ut —t)

is t-variate normal with zero mean vector and
covariance matrix > with elements

C k,k’ C k,k’
g = LDy SR

e The quantities Cy(x,r) and Co(x k) are given by

Cov[(h(Xlk, Yie) — ’Yk), (h(Xlk’a Yor') — 'Vk’)]
= B[h( X1k, Yir) R ( X1k, Yor )] — Yever

and

Cov[(h(Xlk, Yie) — Wk)a (h(ng/, Yig) — Wﬂ’)]

= E[h( X1k, Yie)h(Xow, Yik)] — vevwe,
for k, k' =1,...,t
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Wei-Johnson Class of Nonparametric Tests

e For each time point j =1,...,¢, let

\/N mn1 T2
U; = Z Z 015 02175 P(Y1ij, Y2:'5)

mne T

e N = nq + ny is the total sample size

® Yyp;; is the observation from subject ¢ in
group h at time j, for h =1,2, 1 =1,...,np,
and j=1,....t

® Op;; is 1 if yp,; is observed, 0 otherwise
e ¢(x,y) is a kernel function, e.g.,
1 ify >z,
sb(w,y):{ 0 ify=uz,
—1 ity <.

o(x,y) =y—=x
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Wei-Johnson Class of Nonparametric Tests

o If E[¢?(y1i5, Y2irj] < o0 and ny/(ny +ng) — ¢
(0<ec<1)as N — oo, then U = (Uy,...,U;)

has an asymptotic null N (0, 33) distribution

o If E[¢4(ylij,y2i’j] < oo, for 3 =1,...,t, the
elements of the covariance matrix ¥ = (o)

can be consistently estimated by

N N _ N N

Ojk — — 014k — 025k

J nq J No IR
where Gljk — (nlng(ng — 1))_1 X

niy mn2

Z Z 01i501ik 0215 021k P(Y1ij > Y215) P(Y1ik, Your k)
i=1 1Al
and g, = (neni(ng — 1))~ x

nz N1

Z Z 51723' 014k 521;‘ 021k Qb(yuj, y2lj>§b(y1i’k> y2lk)

1=1 i£i’
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Test Statistics

o Let ¥ denote the estimated covariance matrix of

the vector of test statistics U

e Since U ~ N (0, i), the hypothesis Hy: F1 = F5
can be tested against a general alternative using
the statistic

Q=U%"U,

which is asymptotically X%

e A univariate one-sided test that combines the
results at individual time points can be based

. L t
on the linear combination w'U =), _; wiUy

e Under Hj, the statistic
w'U

\/w’iw

z =

is asymptotically N(0,1)
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Choice of Weights

e The simplest choice is to weight each component

equally, i.e. w' = (1,...,1)

e Bloch and Moses (1988, Amer. Statist.) show
that the use of equal weights often results in

little loss of efficiency

e Another possibility is to weight by the

reciprocals of the variances, i.e.,

w = (1/S11,...,1/5)

e Under the assumption that the test statistics
at the individual time points are estimates of a

common effect, the optimal weights are given by

w=(1,..., )%}

e This assumption may not be reasonable



746

Example

e Leppik et al. (1987) conducted a clinical trial
in 59 epileptic patients

e Patients suffering from simple or complex
partial seizures were randomized to receive
either the antiepileptic drug progabide
(31 patients) or a placebo (28 patients)

e At each of four successive postrandomization
visits, the number of seizures occurring during

the previous two weeks was reported

e The medical question of interest is whether
or not progabide reduces the frequency of

epileptic seizures

Reference
Leppik IE, Dreifuss FE, Porter R et al. (1987). A controlled
study of progabide in partial seizures: methodology and results.

Neurology 37, 963-968.
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Example

e The Wei—Lachin vector of test statistics is
W' = (—0.4700, —0.0375, —0.2008, —0.3685)

with estimated covariance matrix

0.0788 0.0529 0.0460 0.0509
0.0529 0.0804 0.0538 0.0556
0.0460 0.0538 0.0789 0.0501
0.0509 0.0556 0.0501 0.0775

S =

e The Wei—Lachin omnibus test of equality of
distributions is X7, = W’i‘;}W — 5.66 with
4 df (p = 0.23)

e Using equal weights, the Wei—Johnson

univariate statistic

c'U

Y
\/ ' Xyce

with ¢/ = (1,...,1), is equal to —1.09

e The two-sided p-value is 0.14
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Example

A clinical trial comparing two treatments for

maternal pain relief during labor

83 women in labor were randomized to receive
an experimental pain medication (43 subjects)

or placebo (40 subjects)

Treatment was initiated when the cervical

dilation was 8 cm

At 30-minute intervals, the amount of pain was
self-reported by placing a mark on a 100-mm

line (0 = no pain, 100 = very much pain)

The repeated pain scores are both nonnormal

and incomplete

Seems appropriate to compare treatments using

the Wei-Lachin or the Wei—Johnson procedures
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Example

e Based on the data from minutes 30, 60, 90, 120,
150, and 180, the Wei-Lachin vector W’ and

covariance matrix Xy are, respectively,

(—0.394, —0.602, —0.755, —0.729, —0.497, —0.298)

0794 .0479 .0284 .0178 .0114 .0057
0479 0585 .0316 .0208 .0155 .0064
0284 .0316 .0368 .0197 .0111 .0036
0178 .0208 .0197 .0265 .0148 .0054
0114 .0155 .0111 .0148 .0132 .0057
0057 .0064 .0036 .0054 .0057 .0052)

e Wei-Johnson U’ and covariance matrix Xy :

(—1.578, —2.410, —3.024, —2.918, —1.992, —1.192)

1.3298 0.9268 .6557 4182 .2429 .1433
0.9268 1.1120 .7783 .5576 .3625 .2114
0.6557 0.7783 .9337 7511 .4985 .2555
0.4182 0.5576 .7511 .7790 .5016 .2528
0.2429 0.3625 .4985 .5016 4189 .2234
0.1433 0.2114 .2555 .2528 .2234 .1819)
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Example

e Standardized statistics at each time point:

Standardized Statistic

Time point (minute) Wei-Lachin Wei-Johnson

30 —1.40 —1.37
60 —2.49 —2.28
90 —3.94 —3.13
120 —4.47 —3.31
150 —4.33 —3.08
180 —4.11 —2.79

e At each time, pain scores are lower (better) in

the experimental group

e Although both methods yield similar conclusions,
the Wei-Lachin standardized statistic is larger in

absolute value at every time point
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Example

e Omnibus chi-square statistics for testing equality

of distributions:
o X2, = WS W = 30.1 with 6 df, p < 0.001

o X2 = U'S7U =11.9 with 6 df, p = 0.065

e Linear combinations:

Standardized Statistic
Wei—Lachin Wei—Johnson

Equal weights —3.88 —3.06
Reciprocals of variances —4.85 —3.28
Optimal —4.42 —2.11

e With respect to the N(0, 1) reference
distribution, all statistics indicate a significant

difference between the two groups



