Chapter 1

Preliminaries

The purpose of an exploration of data may be rather limited and ad hoc, or the
purpose may be more general, perhaps to gain understanding of some natural
phenomenon. The questions addressed may be somewhat open-ended. The pro-
cess of understanding often begins with general questions about the structure
of the data. At any stage of the analysis, our understanding is facilitated by
means of a model.

A model is a description that embodies our current understanding of a
phenomenon. In an operational sense, we can formulate a model either as a
description of a data generating process, or as a prescription for processing data.
The model is often expressed as a set of equations that relate data elements to
each other. It may include probability distributions for the data elements. If
any of the data elements are considered to be realizations of random variables,
the model is a stochastic model.

A model should not limit our analysis; rather the model should be able
to evolve. The process of understanding involves successive refinements of the
model. The refinements proceed from vague models to more specific ones. An
exploratory data analysis may begin by mining the data to identify interesting
properties. These properties generally raise questions that are to be explored
further.

A class of models may have a common form, within which the members
of the class are distinguished by values of parameters. For example, the class
of normal probability distributions has a single form of a probability density
function that has two parameters. If this form of model is chosen to represent
the properties of a dataset, we may seek confidence intervals for values of the
two parameters, or we may perform statistical tests of hypothesized values of
the parameters.

In models that are not as mathematically tractable as the normal probabil-
ity model — and many realistic models are not — computationally-intensive
methods involving simulations, resamplings, and multiple views may be used
to make inferences about the parameters of a model.
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1.1 Discovering Structure:
Data Structures and Structure in Data

The components of statistical datasets are “observations” and “variables”. In
general, “data structures” are ways of organizing data to take advantage of
the relationships among the variables constituting the dataset. Data structures
may express hierarchical relationships, crossed relationships (as in “relational”
databases), or more complicated aspects of the data (as in “object-oriented”
databases).

In data analysis, “structure in the data” is of interest. Structure in the data
includes such nonparametric features as modes, gaps, or clusters in the data,
the symmetry of the data, and other general aspects of the shape of the data.
Because many classical techniques of statistical analysis rely on an assumption
of normality of the data, the most interesting structure in the data may be
those aspects of the data that deviate most from normality.

Sometimes it is possible to express the structure in the data in terms of
mathematical models. Prior to doing this, graphical displays may be used
to discover qualitative structure in the data. Patterns observed in the data
may suggest explicit statements of the structure or of relationships among the
variables on the dataset. The process of building models of relationships is an
iterative one, and graphical displays are useful throughout the process. Graphs
comparing data and the fitted models are used to refine the models.

Multiple Analyses and Multiple Views

Effective use of graphics often requires multiple views. For multivariate data,
plots of individual variables or combinations of variables can be produced
quickly and used to get a general idea of the properties of the data. The data
should be inspected from various perspectives. Instead of a single histogram to
depict the general shape of univariate data, for example, multiple histograms
with different bin widths and different bin locations may provide more insight.

Sometimes a few data points in a display can completely obscure interesting
structure in the other data points. A zooming window to restrict the scope
of the display and simultaneously restore the scale to an appropriate viewing
size can reveal structure. A zooming window can be used with any graphics
software whether the software supports it or not; zooming can be accomplished
by deletion of the points in the dataset outside of the window.

Scaling the axes can also be used effectively to reveal structure. The relative
scales is called the “aspect ratio”. In Figure 1.1, which is a plot of a bivariate
dataset, we form a zooming window that deletes a single observation. The
greater magnification and the changed aspect ratio clearly shows a relationship
between X and Y in a region close to the origin that may not hold for the full
range of data. A simple statement of this relationship would not extrapolate
outside the window to the outlying point.

The use of a zooming window is not “deletion of outliers”; it is focusing
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in on a subset of the data, and is done independently of whatever is believed
about the data outside of the window.

A

0.4

0
7
)
H
i
¢
00

Figure 1.1: Scales Matter

One type of structure that may go undetected is that arising from the or-
der in which the data were collected. For data that are recognized as a time
series by the analyst, this is obviously not a problem, but often there is a
time-dependency in the data that is not recognized immediately. “Time” or
“location” may not be an explicit variable on the data set, even though it may
be an important variable. The index of the observation within the dataset may
be a surrogate variable for time, and characteristics of the data may vary as the
index varies. Often it is useful to make plots in which one axis is the index num-
ber of the observations. More subtle time-dependencies are those in which the
values of the variables are not directly related to time, but relationships among
variables are changing over time. The identification of such time-dependencies
is much more difficult, and often requires fitting a model and plotting residuals.
Another strictly graphical way of observing changes in relationships over time
is by use of a sequence of graphical displays.

Simple Plots May Reveal the Unexpected

A simple plot of the data will often reveal structure or other characteristics of
the data that numerical summaries do not.

An important property of data that is often easily seen in a graph is the unit
of measurements. Data on continuous variables are often rounded or measured
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on a coarse grid. This may indicate other problems in the collection of the data.
The horizontal lines in Figure 1.2 indicate that the data do not come from a
continuous distribution. Whether or not we can use methods of data analysis
that assume continuity depends on the coarseness of the grid or measurement;
that is, on the extent to which the data are discrete or the extent to which they
have been discretized.

15

Figure 1.2: Discrete Data, Rounded Data, or Data Measured Imprecisely

We discuss graphics further in Chapter 7. The emphasis is on the use of
graphics for discovery. The field of statistical graphics is much broader, of
course, and includes many issues of design of graphical displays for conveying
(rather than discovering) information.

1.2 Modeling and Computational Inference

The process of building models involves successive refinements. The evolution
of the models proceeds from vague tentative models to more complete ones, and
our understanding of the process being modeled grows in this process.

The usual statements about statistical methods regarding bias, variance, and
so on are made in the context of a model. It is not possible to measure bias or
variance of a procedure to select a model, except in the relatively simple case of
selection from some well-defined and simple set of possible models. Only within
the context of rigid assumptions (a “metamodel”) can we do a precise statistical
analysis of model selection. Even the simple cases of selection of variables in
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linear regression analysis under the usual assumptions about the distribution
of residuals (and this is a highly idealized situation), present more problems to
the analyst than are generally recognized. See Kennedy and Bancroft (1971)
and Speed and Yu (1993), for example, for some discussions of these kinds of
problems in regression model building.

Descriptive Statistics, Inferential Statistics, and Model Building

We can distinguish statistical activities that involve
e data collection,
e descriptions of a given dataset,
e inference within the context of a model or family of models, and
e model selection.

In any given application, it is likely that all of these activities will come into
play. Sometimes (and often, ideally!) a statistician can specify how data are
to be collected, either in surveys or in experiments. We will not be concerned
with this aspect of the process in this text.

Once data are available, either from a survey or designed experiment, or
just observational data, a statistical analysis begins by consideration of general
descriptions of the dataset. These descriptions include ensemble characteristics,
such as averages and spreads, and identification of extreme points. The descrip-
tions are in the form of various summary statistics and of graphical displays.
The descriptive analyses may be computationally intensive for large datasets,
especially if there is a large number of variables. The computationally-intensive
approach also involves multiple views of the data, including consideration of a
large number transformations of the data. We discuss these methods in Chap-
ters 5 and 7, and in Part II.

A stochastic model is often expressed as a probability density function or
as a cumulative distribution function of a random variable. In a simple linear
regression model with normal errors,

Y =0+ +E,

for example, the model may be expressed by use of the probability density
function for the random variable E. (Notice that Y and E are written in
upper case because they represent random variables.) The probability density

function for Y is )

2ro

6—(y7,307,31x)2/(202).

p(y) =

In this model, x is an observable covariate; o, 3y, and [ are unobservable (and,
generally, unknown) parameters; and 2 and 7 are constants. Statistical infer-
ence about parameters includes estimation or tests of their values or statements
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about their probability distributions based on observations of the elements of
the model.

The elements of a stochastic model include observable random variables,
observable covariates, unobservable parameters, and constants. Some random
variables in the model may be considered to be “responses”. The covariates may
be considered to affect the response; they may or may not be random variables.
The parameters are variable within a class of models, but for a specific data
model the parameters are constants. The parameters may be considered to
be unobservable random variables, and in that sense, a specific data model
is defined by a realization of the parameter random variable. In the model,
written as

Y = f(x;8) + E,

we identify a “systematic component”, f(z;3), and a “random component”, E.
The selection of an appropriate model may be very difficult, and almost always
involves not only questions of how well the model corresponds to the observed
data, but also how tractable is the model. The methods of computational
statistics allow a much wider range of tractability than can be comtemplated
in mathematical statistics.

Statistical analyses generally are undertaken with the purpose of making a
decision about a dataset or about a population from which a sample dataset is
available, or in making a prediction about a future event. Much of the theory
of statistics developed during the middle third of the twentieth century was
concerned with formal inference; that is, use of a sample to make decisions
about stochastic models based on probabilities that would result if a given
model was indeed the data generating process. The heuristic paradigm calls for
rejection of a model if the probability is small that data arising from the model
would be similar to the observed sample. This process can be quite tedious
because of the wide range of models that should be explored, and because
some of the models may not yield mathematically tractable estimators or test
statistics. Computationally-intensive methods include exploration of a range of
models, many of which may be mathematically intractable.

In a different approach employing the same paradigm, the statistical meth-
ods may involve direct simulation of the hypothesized data generating process,
rather than formal computations of probabilities that would result under a given
model of the data generating process. We refer to this approach as computa-
tional inference. We discuss methods of computational inference in Chapters 2,
3, and 4. In a variation of computational inference, we may not even attempt
to develop a model of the data generating process; rather, we build decision
rules directly from the data. This is often the approach in clustering and clas-
sification, which we discuss in Chapter 10. Computational inference is rooted
in classical statistical inference. In subsequent sections of the current chapter
we discuss general techniques used in statistical inference.
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1.3 The Role of the Empirical Cumulative Dis-
tribution Function

Methods of statistical inference are based on an assumption (often implicit)
that a discrete uniform distribution with mass points at the observed values of
ta random sample is asymptotically the same as the distribution governing the
data generating process. Thus, the distribution function of this discrete uni-
form distribution is a model of the distribution function of the data generating
process.

For a given set of univariate data, y1,ys, ..., yn, the empirical cumulative
distribution function, or ECDF, is

_ #Hyi sty <y}
n

Pu(y)

The ECDF is the basic function used in many methods of computational infer-
ence.

Although the ECDF has similar definitions for univariate and multivariate
random variables, it is most useful in the univariate case. An equivalent ex-
pression for univariate random variables, in terms of intervals on the real line,
is

Pn(y) = % ZI(—oo,y] (yi)a (11)

where T is the indicator function. (See page 363 for the definition and some of
the properties of the indicator function. The measure dI(_. 4)(z), which we
use in equation (1.6) for example, is particularly interesting.)

It is easy to see that the ECDF is pointwise unbiased for the CDF, that is,
for given y,

E(P.(y) = E<;Zl(m,y](Yi)>

= Y B (g (M) (12)
=1

= Pr(Y <y)
P(y).
Similarly, we find
V(Pu(y)) = P(y) (1 — P(y))/n; (1.3)

indeed, at a fixed point y, nP,(y) is a binomial random variable with parameters
n and m = P(y). Because P, is a function of the order statistics, which form a
complete sufficient statistic for P, there is no unbiased estimator of P(y) with
smaller variance.
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We also define the empirical probability density function (EPDF) as the
derivative of the ECDF:

p(y) =+ 360y — ). (1.4)
=1

where ¢ is the Dirac delta function. The EPDF is just a series of spikes at
points corresponding to the observed values. It is not as useful as the ECDF. It
is, however, unbiased at any point for the probability density function at that
point.

The ECDF and the EPDF can be used as estimators of the corresponding
population functions, but there are better estimators. See Chapter 9.

Statistical Functions of the CDF and the ECDF

In many models of interest, a parameter can be expressed as a functional of
the probability density function or of the cumulative distribution function of a
random variable in the model. The mean of a distribution, for example, can be
expressed as a functional © of the CDF P:

o) = [ vdrw. (15)
R
A functional that defines a parameter is called a statistical function.

Estimation of Statistical Functions

A common task in statistics is to use a random sample to estimate the param-
eters of a probability distribution. If the statistic T from a random sample is
used to estimate the parameter 6, we measure the performance of T by the
magnitude of the bias,

E(T) - 0],

by the variance,
V(1) = E((T - E(T))"),
by the mean squared error,
E((T-0)?),

and by other expected values of measures of the distance from 7' to 6. (These
expressions are for the scalar case, but similar expressions apply to vectors T
and 6, in which case the bias is a vector, the variance is the variance-covariance
matrix, and the mean squared error is a dot product, hence, a scalar.)

If E(T) = 0, T is unbiased for §. For sample size n, if E(T) = § +O(n~1/?),
T is said to be first-order accurate for 0; if E(T) = 0+O0(n™1), it is second-order
accurate. (See page 363 for definition of O(-). Convergence of E(T) can also be
expressed as a stochastic convergence of T, in which case we use the notation

Op(-).)
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The order of the mean squared error is an important characteristic of an
estimator. For good estimators of location, the order of the mean squared error
is typically O(n~!). Good estimators of probability densities, however, typically
have mean squared errors of at least order O(n~=%°) (see Chapter 9).

Estimation Using the ECDF

There are many ways to construct an estimator and to make inferences about
the population. In the univariate case especially, we often use data to make
inferences about a parameter by applying the statistical function to the ECDF.
An estimator of a parameter that is defined in this way is called a plug-in
estimator. A plug-in estimator for a given parameter is the same functional of
the ECDF as the parameter is of the CDF.

For the mean of the model, for example, we use the estimate that is the
same functional of the ECDF as the population mean in equation (1.5),

| varw)

— 00

e’} 1 n
/ yd~ > T—ooy (i)
> i=1

1 [®
- dI—oo i
n;_l/_ooy (—ooy) (Ui)
1 n
= *E Yi
ni*l

= 7 (1.6)

O(Pn)

The sample mean is thus a plug-in estimator of the population mean. Such
an estimator is called a method of moments estimator. This is an important
type of plug-in estimator. The method of moments results in estimates of the
parameters E(Y") that are the corresponding sample moments.

Statistical properties of plug-in estimators are generally relatively easy to
determine. In some cases, the statistical properties, such as expectation and
variance, are optimal in some sense.

In addition to estimation based on the ECDF, other methods of computa-
tional statistics make use of the ECDF. In some cases, such as in bootstrap
methods, the ECDF is a surrogate for the CDF. In other cases, such as Monte
Carlo methods, an ECDF for an estimator is constructed by repeated sam-
pling, and that ECDF is used to make inferences using the observed value of
the estimator from the given sample.

Viewed as a statistical function, © denotes a specific functional form. Any
functional of the ECDF is a function of the data, so we may also use the notation
O(Y1,Ys,...,Y,). Often, however, the notation is cleaner if we use another
letter to denote the function of the data; for example, T(Y7,Y2,...,Y,), even
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if it might be the case that
T(Y1,Ya,...,Y,) = O(F,).

We will also often use the same letter that denotes the functional of the sample
to represent the random variable computed from a random sample; that is, we
may write

T=TM,Ys,...,Y,).

As usual, we will use t to denote a realization of the random variable T

Use of the ECDF in statistical inference does not require many assumptions
about the distribution. Other methods discussed below are based on informa-
tion or assumptions about the data generating process.

Empirical Quantiles

For a € (0,1), the a quantile of the distribution with CDF P is the value
Y(a) such that P(y.)) = . (For a univariate random variable, this is a single
point. For a d-variate random variable, it is a (d — 1)-dimensional object that
is generally nonunique.) For a discrete distribution the quantile may not exist
for a given value of a.

If P(y) = a we say the quantile of y is .

If the underlying distribution is discrete, the above definition of a quantile
applied to the ECDF is also meaningful. If the distribution is continuous, how-
ever, it is likely that the range of the distribution extends beyond the smallest
and largest observed values. For a sample from a continuous distribution, the
definition of a quantile applied to the ECDF leads to a quantile of 0 for the
smallest sample value y(1), and a quantile of 1 for the largest sample value y(,,).
These values for quantiles are not so useful if the distribution is continuous. We
define the empirical quantile, or sample quantile, corresponding to the i*" order
statistic, y(;), in a sample of size n as

1— 1L
n+v’

(1.7)

for o, v € [0, 3]. Values of ¢ and v that make the empirical quantiles of a random
sample correspond closely to those of the population depend on the distribution
of the population, which, of course, is generally unknown. A certain symmetry
may be imposed by requiring v = 1 — 2. Common choices are ¢ = % and v = 0.

We use empirical quantiles in Monte Carlo inference, in nonparametric in-
ference, and in graphical displays for comparing a sample with a standard dis-
tribution or with another sample. Empirical quantiles can be used as estimators
of the population quantiles, but there are other estimators. Some, such as the
Kaigh-Lachenbruch estimator and the Harrell-Davis estimator (see Kaigh and
Lachenbruch, 1982, and Harrell and Davis, 1982), use a weighted combination
of multiple data points instead of just a single one, as in the simple estimators
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above. See Dielman, Lowry, and Pfaffenberger (1994) for comparisons of vari-
ous quantile estimators. If a covariate is available, it may be possible to use it
to improve the quantile estimate. This is often the case in simulation studies.
See Hesterberg and Nelson (1998) for discussion of this technique.

1.4 The Role of Optimization in Inference

Important classes of estimators are defined as the point at which some func-
tion that involves the parameter and the random variable achieves an optimum.
There are, of course, many functions that involve the parameter and the ran-
dom variable; an example is the probability density. In the use of optimization
in inference, once the objective function is chosen (it must have a known form),
observations on the random variable are taken and then considered to be fixed,
and the parameter in the function is considered to be a variable. The function
is then optimized with respect to the parameter variable. The nature of the
function determines the meaning of “optimized”; if the function is the probabil-
ity density, for example, “optimized” would logically mean “maximized”. (This
leads to maximum likelihood estimation, which we discuss below.)

In discussing this approach to estimation, we must be careful to distinguish
between a symbol that represents a fixed parameter and a symbol that repre-
sents a “variable” parameter. When we denote a probability density function
as p(y | 0), we generally expect “6” to represent a fixed, but possibly unknown,
parameter. In an estimation method that involves optimizing this function,
however, “0” is a variable placeholder. In the following discussion, we will gen-
erally consider 6 to be a variable. We will use 6, to represent the true value of
the parameter on which the random variable observed is conditioned. We may
also use g, 61, and so on to represent specific fixed values of the variable. In an
iterative algorithm, we use 0(%) to represent a fixed value in the k" iteration.

Estimation by Minimizing Residuals

In many applications we can express the expected value of a random variable
as a function of a parameter (which might be a vector, of course):

E(Y) = f(0.). (1.8)

The expectation may also involve covariates, so in general we may write f(z, 0.).
The standard linear regression model is an example: E(Y) = 2T3. If the
covariates are observable, they can be subsumed into f(0).

The more difficult and interesting problems of course involve the determina-
tion of the form of the function f(6). In these sections, however, we concentrate
on the simpler problem of determining an appropriate value of 6, assuming the
form is known.

If we can obtain observations y1,¥ya,...,y, on Y (and observations on the
covariates if there are any), a reasonable estimator of 0, is a value 0 that
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minimizes the residuals,
ri(0) = yi — f(0), (1.9)

over all possible choices of #. This is a logical approach because we expect the
observed y’s to be close to f(6.).

There are, of course, several ways we could reasonably “minimize the resid-
uals”. In general, we seek to minimize some norm of r(f), the n-vector of
residuals. The optimization problem is

min (6)]|. (1.10)

We often choose the norm as the L, norm, so we minimize a function of an L,
norm of the residuals,

(0) = 3 lvi = 10" (11)

for some p > 1, to obtain an L, estimator. Simple choices are the sum of the
absolute values and the sum of the squares. The latter choice yields the least
squares estimator. More generally, we could minimize

s5p(0) = Z plyi — £(0))

for some nonnegative function p(-), to obtain an “M estimator”. (The name
comes from the similarity of this objective function to the objective function
for some maximum likelihood estimators.)

Standard techniques for optimization can be used to determine estimates
that minimize various functions of the residuals, that is, for some appropriate
function of the residuals s(-), to solve

mein s(6). (1.12)

Except for special forms of the objective function, the algorithms to solve (1.12)
are iterative. If s is twice differentiable, one algorithm is Newton’s method, in
which the minimizing value of 6, 6, is obtained as a limit of the iterates

k) — g(k=1) _ (Hs (e(k—l)))_l vs(9<k—1>), (1.13)

where H,(0) denotes the Hessian of s and Vs() denotes the gradient of s, both
evaluated at 6. (Newton’s method is sometimes called the Newton-Raphson
method, for no apparent reason.)
The function s(-) is usually chosen to be differentiable, at least piecewise.
For various computational considerations, instead of the exact Hessian, a
matrix Hg approximating the Hessian is often used. In this case the technique
is called a quasi-Newton method.
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Newton’s method or a quasi-Newton method often overshoots the best step.

The direction
gk _ p(k=1)

may be the best direction, but the distance
609 — gD

may be too great. A variety of methods using Newton-like iterations involve a
system of equations of the form

H,(0)d = Vs(0). (1.14)

These equations are solved for the direction d, and the new point is taken as
the old 0 plus ad, for some damping factor «.

There are various ways of deciding when an iterative optimization algo-
rithm has converged. In general, convergence criteria are based on the size of
the change in #) from #*~1) or the size of the change in s(#*)) from s(g*F—1).
See Kennedy and Gentle (1980), page 435 and following, for discussion of ter-
mination criteria in multivariate optimization.

Statistical Properties of Minimum-Residual Estimators

It is generally difficult to determine the variance or other high-order statistical
properties of an estimator defined as above; that is, defined as the minimizer of
some function of the residuals. In many cases all that is possible is to approxi-
mate the variance of the estimator in terms of some relationship that holds for a
normal distribution. (In robust statistical methods, for example, it is common
to see a “scale estimate” expressed in terms of some mysterious constant times
a function of some transformation of the residuals.)

There are two issues that affect both the computational method and the
statistical properties of the estimator defined as the solution to the optimiza-
tion problem. One consideration has to do with the acceptable values of the
parameter 6. In order for the model to make sense, it may be necessary that the
parameter be in some restricted range. In some models, a parameter must be
positive, for example. In these cases the optimization problem has constraints.
Such a problem is more difficult to solve than an unconstrained problem. Sta-
tistical properties of the solution are also more difficult to determine. More
extreme cases of restrictions on the parameter may require the parameter to
take values in a countable set. Obviously, in such cases Newton’s method can-
not be used. Rather, a combinatorial optimization algorithm must be used. A
function that is not differentiable also presents problems for the optimization
algorithm.

Secondly, it may turn out that the optimization problem (1.12) has local
minima. This depends on the nature of the function f(-) in equation (1.8).
Local minima present problems for the computation of the solution, because
the algorithm may get stuck in a local optimum. Local minima also present
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conceptual problems concerning the appropriateness of the estimation criterion
itself. So long as there is a unique global optimum, it seems reasonable to seek
it and to ignore local optima. It is not so clear what to do if there are multiple
points at which the global optimum is attained.

Least-Squares Estimation

Least-squares estimators are generally more tractable than estimators based
on other functions of the residuals. They are more tractable both in terms of
solving the optimization problem to obtain the estimate and in approximating
statistical properties of the estimators, such as their variances.

Assume 6 is an m-vector and assume f(-) is a smooth function. Letting y be
the n-vector of observations, we can write the least squares objective function
corresponding to equation (1.11) as

s(0) = (r(9)) "r(0), (1.15)

where the superscript T indicates the transpose of a vector or of a matrix.
The gradient and the Hessian for a least squares problem have special struc-
tures that involve the Jacobian of the residuals, J,.(6). The gradient of s is

Vs(0) = (3.(0)) " r(0). (1.16)

Taking derivatives of Vs(6), we see the Hessian of s can be written in terms of
the Jacobian of  and the individual residuals:

H.(0) = (1:(0)) " 3,(0) + > ri(0)H,.(6). (1.17)
i=1

In the vicinity of the solution (/9\, the residuals r;(0) should be small, and
H,(0) may be approximated by neglecting the second term:

H.(0) ~ (3.(0)) " J,.(0).

Using (1.16) and this approximation for (1.17) in the gradient descent equa-
tion (1.14), we have the system of equations

(IO T3 (0% D) a®) = — (3,(0%D)) Tr(p*D) (1.18)

to be solved for d*), where

d® « k) — pk—1)
It is clear that the solution d(*) is a descent direction; that is, if Vs(é)(k_l)) #0,

(dE)Tvs(g*-D) = _((JT(Q(kq)))Td(k))T (JT(G(kﬂ)))Td(k)
< 0.
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The update step is determined by a line search in the appropriate direction:

gk _ gh=1) — (k) gk

This method is called the Gauss-Newton algorithm. (The method is also some-
times called the “modified Gauss-Newton algorithm”, because many years ago
no damping was used in the Gauss-Newton algorithm, and a(¥) was taken as
the constant 1. Without an adjustment to the step, the Gauss-Newton method
tends to overshoot the minimum in the direction d®).) In practice, rather than
a full search to determine the best value of a«*), we just consider the sequence
of values 1,3, %, ... and take the largest value so that s(0*)) < s(9(*=1). The
algorithm terminates when the change is small.

If the residuals are not small or if J T(G(’“)) is poorly conditioned, the Gauss-
Newton method can perform very poorly. One possibility is to add a condi-
tioning matrix to the coefficient matrix in equation (1.18). A simple choice is
(M) I.., and the equation for the update becomes

(@n(OF) T 3,(0% ) 4 7 @11, ) d) = —(3,(0%1) Tr(0* D),

where I, is the m X m identity matrix. A better choice may be an m x m
scaling matrix, S*)| that takes into account the variability in the columns of
J(0%=1); hence, we have for the update

((@n(O%) T 3,(0% 1) + AB (s0) Ts®) a® = —(3,(0%1)) Tr(o 1),
(1.19)
The basic requirement for the matrix (S (k))TS (%) is that it improve the condi-
tion of the coefficient matrix. There are various way of choosing this matrix.
One is to transform the matrix (JT(O(k_l)))TJT(Q(’“_l)) so it has 1’s along the
diagonal (this is equivalent to forming a correlation matrix from a variance-
covariance matrix), and to use the scaling vector to form S (k) The nonnegative
factor A(*) can be chosen to control the extent of the adjustment. The sequence
M%) must go to 0 for the algorithm to converge.
Equation (1.19) can be thought of as a Lagrange multiplier formulation of
the constrained problem,

min 3 (0% D)z + r(6*-D)||
(1.20)
s.t. Hs(k)xH < 6.

The Lagrange multiplier A(*) is zero if d*) from equation (1.18) satisfies ||d®)|| <
Ox; otherwise, it is chosen so that HS(k)d(k)H = 0.

Use of an adjustment such as in equation (1.19) is called the Levenberg-
Marquardt algorithm. This is probably the most widely used method for non-
linear least squares.
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Variance of Least-Squares Estimators

If the distribution of Y has finite moments, the sample mean Y is a consistent
estimator of f(6.). Furthermore, the minimum residual norm (r(&))Tr(O) di-
vided by (n — m) is a consistent estimator of the variance of Y, say o2, that
is

o =B — f(0)*

We denote this estimator as o2:

~\T =~

o2 = (r(®) " r(@)/(n —m).

The variance of the least squares estimator 5, however, is not easy to work
out, except in special cases. In the simplest case, f is linear and Y has a normal
distribution, and we have the familiar linear regression estimates /o\f 0 and of
the variance of the estimator of . The estimator of the variance is 02/(n —m),

where o2 is an estimator of the varaince of the residuals.

Without the linearity property, however, even with the assumption of nor-
mality, it may not be possible to write a simple expression for the variance-
covariance matrix of an estimator that is defined as the solution to the least-
squares optimization problem. Using a linear approximation, however, we may
estimate an approximate variance-covariance matrix for 6 as

((Jr(g))TJr(é))_IEE. (1.21)

Compare this linear approximation to the expression for the estimated variance-
covariance matrix of the least-squares estimator 3 in the linear regression model
E(Y) = X3, in which J,(8) is just X. The estimate of o2 is taken as the sum
of the squared residuals, divided by n —m, where m is the number of estimated
elements in 6.

If the residuals are small, the Hessian is approximately equal to the cross-
product of the Jacobian as we see from equation (1.17), and so an alternate
expression for the estimated variance-covariance matrix is

-1

(H,.(8)) " 'o2. (1.22)

This latter expression is more useful if Newton’s method or a quasi-Newton
method is used instead of the Gauss-Newton method for the solution of the
least squares problem, because in these methods the Hessian or an approximate
Hessian is used in the computations.

Iteratively Reweighted Least Squares

Often in applications, the residuals in equation (1.9) are not given equal weight
for estimating #. This may be because the reliability or precision of the obser-
vations may be different. For weighted least squares, instead of (1.15) we have
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the objective function
2
Sw(l) = Zwl (ri(0))". (1.23)
i=1

The weights add no complexity to the problem, and the Gauss-Newton
methods of the previous section apply immediately, with

7(0) = Wr(0),

where W is a diagonal matrix containing the weights.

The simplicity of the computations for weighted least squares suggests a
more general usage of the method. Suppose we are to minimize some other L,
norm of the residuals r;, as in equation (1.11). The objective function can be
written as

sp(0) = ; m lyi — F(0)? (1.24)

This leads to an iteration on the least squares solutions. Beginning with
yi — f(0(9) =1, we form the recursion that results from the approximation

Sp(e(k)) ~
i=1

1
w10

2

vi = £(6)]

2—p

Hence, we solve a weighted least squares problem, and then form a new weighted
least squares problem using the residuals from the previous problem. This
method is called iteratively reweighted least squares or IRLS. The iterations
over the residuals are outside the loops of iterations to solve the least squares
problems, so in nonlinear least squares, IRLS results in nested iterations.

There are some problems with the use of reciprocals of powers of residuals
as weights. The most obvious problem arises from very small residuals. This is
usually handled by use of a fixed large number as the weight.

Iteratively reweighted least squares can also be applied to other norms,

n

$0(0) = pyi — 1(0)),

i=1

but the approximations for the updates may not be as good.

Estimation by Maximum Likelihood

One of the most commonly-used approaches to statistical estimation is mazi-
mum likelithood. The concept has an intuitive appeal, and the estimators based
on this approach have a number of desirable mathematical properties, at least
for broad classes of distributions.

Given a sample y1,¥s, ..., Yy, from a distribution with probability density
p(y | 0«), a reasonable estimate of ¢ is the value that maximizes the joint
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density with variable 6 at the observed sample value: [[, p(y;|6). We define
the likelihood function as a function of a variable in place of the parameter:

n

La(0; y) = [ [ p(v: | 0). (1.25)

i=1

Note the reversal in roles of variables and parameters. For a discrete distribu-
tion, the likelihood is defined with the probability mass function in place of the
density in equation (1.25).

The more difficult and interesting problems of course involve the determi-
nation of the form of the function p(y; | ). In these sections, however, we
concentrate on the simpler problem of determining an appropriate value of 6,
assuming the form is known.

The value of 0 for which L attains its maximum value is the maximum
likelihood estimate (MLE) of 6, for the given data, y. The data, that is, the
realizations of the variables in the density function, are considered as fixed and
the parameters are considered as variables of the optimization problem,

max L,(0;v). (1.26)

This optimization problem can be much more difficult than the optimization
problem (1.10) that results from an estimation approach based on minimization
of some norm of a residual vector. As we dicussed in that case, there can be
both computational and statistical problems associated either with restrictions
on the set of possible parameter values or with the existence of local optima
of the objective function. These problems also occur in maximum likelihood
estimation. Applying constraints in the optimization problem so as to force the
solution to be within the set of possible parameter values is called restricted
mazimum likelihood estimation, or REML estimation. In addition to these two
types of problems, the likelihood function may not even be bounded. The con-
ceptual difficulties resulting from an unbounded likelihood are much deeper. In
practice, for computing estimates in the unbounded case, the general likelihood
principle may be retained, and the optimization problem redefined to include
a penalty that keeps the function bounded. Adding a penalty so as to form a
bounded objective function in the optimization problem, or so as to dampen
the solution is called penalized mazimum likelihood estimation.

For a broad class of distributions, the maximum likelihood criterion yields
estimators with good statistical properties. The conditions that guarantee cer-
tain optimality properties are called the “regular case”. The general theory
of the regular case is discussed in a number of texts, such as Lehmann and
Casella (1998). Various nonregular cases are discussed by Cheng and Tray-
lor (1995).

While in practice the functions of residuals that are minimized are almost
always differentiable, and the optimum occurs at a stationary point, this is
often not the case in maximum likelihood estimation. A standard example in
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which the MLE does not occur at a stationary point is a distribution in which
the range depends on the parameter, and the simplest such distribution is the
uniform U(0, ). In this case, the MLE is the max order statistic.

An important family of probability distributions are those whose probability
densities are members of the exponential family, that is, densities of the form

Pyl0) = hyexp(6Tgy) —al0)). i yey,  (L27)

= 0, otherwise,

where ) is some set, 6 is an m-vector, and ¢g(-) is an m-vector-valued function.
Maximum likelihood estimation is particularly straightforward for distributions
in the exponential family. Whenever ) does not depend on ¢, and ¢(-) and a(-)
are sufficiently smooth, the MLE has certain optimal statistical properties. This
family of probability distributions includes many of the familiar distributions,
such as the normal, the binomial, the Poisson, the gamma, the Pareto, and the
negative binomial.
The log-likelihood function,

I, (05 y) =log Ln(0; y), (1.28)

is a sum rather than a product. The form of the log-likelihood in the exponential
family is particularly simple:

I, (0;y) = Z‘)TQ(%‘) —na(f) +c,
i=1

where ¢ depends on the y;, but is constant with respect to the variable of
interest.

The logarithm is monotone, so the optimization problem (1.26) can be solved
by solving the maximization problem with the log-likelihood function:

max I, (05 y). (1.29)

In the following discussion we will find it convenient to drop the subscript
n in the notation for the likelihood and the log-likelihood. We will also often
work with the likelihood and log-likelihood as if there is only one observation.
(A general definition of a likelihood function is any nonnegative function that
is proportional to the density or the probability mass function; that is, it is the
same as the density or the probability mass function except that the arguments
are switched, and its integral or sum over the domain of the random variable
need not be 1.)

If the likelihood is twice differentiable and if the range does not depend
on the parameter, Newton’s method (see equation (1.14)) could be used to
solve (1.29). Newton’s equation

Hy, (0795 4)d® = Vi (0% y) (1.30)
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is used to determine the step direction in the k™ iteration. A quasi-Newton
method, as we mentioned on page 17, uses a matrix H;, (0*~1)) in place of the
Hessian H;, (§-—1).

The log-likelihood function relates directly to useful concepts in statistical
inference. If it exists, the derivative of the log-likelihood is the relative rate of
change, with respect to the parameter placeholder 6, of the probability density
function at a fixed observation. If 6 is a scalar, some positive function of the
derivative such as its square or its absolute value is obviously a measure of the
effect of change in the parameter, or of change in the estimate of the parameter.
More generally, an outer product of the derivative with itself is a useful measure
of the changes in the components of the parameter at any given point in the
parameter space:

ViL(0;y) (ViL(0; v)".

The average of this quantity with respect to the probability density of the
random variable Y,

101Y) =Fo (VI (0] ¥) (ViL(0|))T), (1.31)

is called the information matriz, or the Fisher information matrix, that an
observation on Y contains about the parameter 6.

The optimization problem (1.26) or (1.29) can be solved by Newton’s method,
equation (1.13) on page 16, or by a quasi-Newton method. (We should first note
that this is a maximization problem, and so the signs are reversed from our pre-
vious discussion of a minimization problem.)

If 6 is a scalar, the square of the first derivative is the negative of the second
derivative,

o ? 02
(551200 = = 5gztats )
or, in general,
V(05 y) (Vie(0: ) = —H, (0 y). (1.32)

This is interesting because the second derivative, or an approximation of it, is
used in a Newton-like method to solve the maximization problem.

A common quasi-Newton method for optimizing I,(0; y) is Fisher scoring,
in which the Hessian in Newton’s method is replaced by its expected value. The
expected value can be replaced by an estimate, such as the sample mean. The
iterates then are

~ —1
gk) — glk=1) _ (E(g(k—l))) Vi (g(k—l) : y)7 (1.33)
where E(#%*~1) is an estimate or an approximation of

E(HlL (0% | Y)), (1.34)
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which is itself an approximation of Eg, (H;, (¢ ‘ Y)). By equation (1.32) this is
the negative of the Fisher information matrix if the differentiation and expecta-
tion operators can be interchanged. (This is one of the “regularity conditions”
we alluded to earlier.) The most common practice is to take E(0*~1) as
the Hessian evaluated at the current value of the interations on 6; that is, as
H;, (01 ; 4). This is called the observed information matrix.

In some cases a covariate x; may be associated with the observed y;, and the
distribution of Y with given covariate x; has a parameter p that is a function
of x; and 0. (The linear regression model is an example, with u; = 216.) We
may in general write p = x;(#). In these cases another quasi-Netwon method
may be useful. The Hessian in equation (1.30) is replaced by

(X(G(k‘l)))T K (0% X (9*=1), (1.35)

where K(G(k_l)) is a positive definite matrix that may depend on the current
value §*~1) ., (Again, think of this in the context of a regression model, but not
necessarily linear regression.) This method was suggested by Joérgensen (1984),
and is called the Delta algorithm, because of its similarity to the delta method
for approximating a variance-covariance matrix (described on page 30).

In some cases, when 6 is a vector, the optimization problem (1.26) or (1.29)
can be solved by alternating iterations on the elements of 6. In this approach,
iterations based on equations such as (1.30), are

o, (9§k_1) ; 9§k_1),y) it = v, (9§k_1) ; 9]('“_1),1/), (1.36)
where 0 = (6;,60;) (or (6;,6;)), and d; is the update direction for ¢;, and 6; is
considered to be constant in this step. In the next step the indices ¢ and j are
exchanged. This is called component-wise optimization. For some objective
functions, the optimal value of 6; for fixed 6; can be determined in closed form.
In such cases, component-wise optimization may be the best method.

Sometimes we may be interested in the MLE of 6; given a fixed value of
0;, so the iterations do not involve an interchange of ¢ and j, as in component-
wise optimization. Separating the arguments of the likelihood or log-likelihood
function in this manner leads to what is called profile likelihood, or concentrated
likelihood.

As a purely computational device, the separation of € into smaller vectors
makes for a smaller optimization problem for which the number of computations
are reduced by more than a linear amount. The iterations tend to ziqzag toward
the solution, so convergence may be quite slow. If, however, the Hessian is block
diagonal, or almost block diagonal (with sparse off-diagonal submatrices), two
succesive steps of the alternating method are essentially equivalent to one step
with the full 8. The rate of convergence would be the same as that with the
full §. Because the total number of computations in the two steps is less than
the number of computations in a single step with a full 8, the method may be
more efficient in this case.
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Statistical Properties of MLE

Under suitable regularity conditions we referred to earlier, maximum likelihood
estimators have a number of desirable properties. For most distributions used
as models in practical applications, the MLE are consistent. Furthermore, in
those cases, the MLE 0 is asymptotically normal (with mean 6,) and variance-

covariance matrix
-1

<E9* (—HlL (0. | Y))) , (1.37)

that is, the inverse of the Fisher information matrix. A consistent estimator
of the variance-covariance matrix is the Hessian at 6. (Note that there are
two kinds of asymptotic properties and convergence issues: some involve the
iterative algorithm, and the others are the usual statistical asymptotics in terms

of the sample size.)

EM Methods

As we mentioned above, the computational burden in a single iteration for
solving the MLE optimization problem can be reduced by more than a linear
amount by separating 6 into two subvectors. The MLE is then computed by
alternating between computations involving the two subvectors, and the itera-
tions proceed in a zigzag path to the solution. Each of the individual sequence
of iterations is simpler than the sequence of iterations on the full 6.

Another alternating method that arises from an entirely different approach
alternates between updating #*) using maximum likelihood and conditional
expected values. This method is called the EM method because the alternating
steps involve an expectation and a maximization. The method was described
and analyzed by Dempster, Laird, and Rubin (1977). Many additional details
and alternatives are discussed by McLachlan and Krishnan (1997) who also
work through about thirty examples of applications of the EM algorithm.

The EM methods can be explained most easily in terms of a random sample
that consists of two components, one observed and one unobserved, or missing.
A simple example of missing data occurs in life-testing, when, for example,
a number of electrical units are switched on and the time when each fails is
recorded. In such an experiment it is usually necessary to curtail the recordings
prior to the failure of all units. The failure times of the units still working are
unobserved. The data are said to be left censored. The number of censored
observations and the time of the censoring obviously provide information about
the distribution of the failure times.

The missing data can be missing observations on the same random variable
as the random variable yielding the observed sample, as in the case of the
censoring example; or the missing data can be from a different random variable
that is related somehow to the random variable observed.

Many common applications of EM methods do involve missing-data prob-
lems, but this is not necessary. Often, an EM method can be constructed based
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on an artificial “missing” random variable to supplement the observable data.

Let Y = (U,V), and assume we have observations on U, but not on V.
We wish to estimate the parameter 6, which figures in the distribution of both
components of Y. An EM method uses the observations on U to obtain a value
of 8%) that increases the likelihood, and then uses an expectation based on V/
that increases the likelihood further.

Let L.(0 ; uw,v) and I, (0 ; u,v) denote respectively the likelihood and the
log-likelihood for the complete sample. The likelihood for the observed U is

L(O; u) = /LC(Q; u,v) dv,

and I, (6 ; u) =log L(6 ; u). The EM approach to maximizing L(6 ; u) has two
steps that begin with a value 6(°). The steps are iterated until convergence.

e E step - compute ¢*) () = Evu0t:-1 (1.0 | w,V))

e M step - determine %) so as to maximize (1(’“)(9)7 subject to any con-
straints on acceptable values of 6.

The sequence 1), 92 converges to a local maximum of the observed-data
likelihood L(# ; w) under fairly general conditions (including, of course, the
nonexistence of a local maximum near enough to 6(°)). See Wu (1983) for
discussion of the convergence conditions. The EM method can be very slow to
converge, however.

As an example of the EM method, consider an experiment described by
Flury and Zoppe (2000). It is assumed that the lifetime of light bulbs follow
an exponential distribution with mean 6. To estimate 8, n light bulbs were put
on test until they all failed. Their failure times were recorded as w1, us, . . ., Up.
In a separate test, m bulbs were put on test, but the individual failure times
were not recorded; only the number of bulbs, r, that had failed at time ¢ was
recorded. The missing data are the failure times of the bulbs in the second
experiment, vi,vs,...,V,. We have

Ip,(0; u,v) = —n(logh +u/0) — ilog0+vz/0
i=1
The expected value, Ey|, g1, of this is
g™ (0) = —(n+m)log — % (nu + (m—r)(t + %=1 4 (gD — th(k_l))) ,
where the hazard h*~1 is given by
/00D

(k=1) —
T e
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The k™ M step determines the maximum, which, given 6%~ occurs at

inﬁ +(m—r)t+ 9(1@—1)) + T(e(k—l) . th(k_l)),
n+m

ok —

Starting with a positive number (), this equation is iterated until convergence.

This example is interesting because if we assume the distribution of the light
bulbs is uniform, U(0, §), (such bulbs are called “heavybulbs”!) the EM algo-
rithm cannot be applied. As we have pointed out above, maximum likelihood
methods must be used with some care whenever the range of the distribution
depends on the parameter. In this case, however, there is another problem. It
is in computing ¢*) (), which does not exist for § < §+~1).

Although in the paper that first provided a solid description of the EM
method (Dempster, Laird, and Rubin, 1977), specific techniques were used for
the computations in the two steps, it is not necessary for the EM method to use
those same inner-loop algorithms. There are various other ways each of these
computations can be performed. A number of papers since 1977 have suggested
specific methods for the computations and have given new names to methods
based on those inner-loop computations.

For the expectation step there are not so many choices. In the happy case of
an exponential family or some other nice distributions, the expectation can be
computed in closed form. Otherwise, computing the expectation is a numerical
quadrature problem. There are various procedures for quadrature, including
Monte Carlo (see page 51). Wei and Tanner (1990) call an EM method that
uses Monte Carlo to evaluate the expectation an MCEM method. (If a Newton-
Cotes method is used, however, we do not call it an NCEM method.) The
additional Monte Carlo computations add a lot to the overall time required for
convergence of the EM method. Even the variance-reducing methods discussed
in Section 2.6 can do little to speed up the method. An additional problem
may be that the distribution of Y is difficult to simulate. The versatile Gibbs
method (page 48) is often useful in this context (see Chan and Ledolter, 1995).
The convergence criterion for optimization methods that involve Monte Carlo
generally should be tighter than those for deterministic methods.

For the maximization step there are more choices, as we have seen in the
discussion of maximum likelihood estimation above.

For the maximization step, Dempster, Laird, and Rubin (1977) suggested
requiring only an increase in the expected value; that is, take %) so that
@r(0®)) > g,_1(0%*~V). This is called a generalized EM algorithm, or GEM.
Rai and Matthews (1993) suggest taking 9%) as the point resulting from a
single Newton step, and called this method EM1.

Meng and Rubin (1993) describe a GEM algorithm in which the M-step is
a component-wise maximization, as in the update step of equation (1.36) on

page 25; that is, if 0 = (01, 6s), first, 9§k) is determined so as to maximize ¢
subject to the constraint 0, = Gék_l); then Qék) is determined so as to maximize
q subject to the constraint 6; = 951@)' They call this an expectation conditional
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maximization, or ECM, algorithm. This sometimes simplifies the maximization
problem so that it can be done in closed form. Jamshidian and Jennrich (1993)
discuss acceleration of the EM algorithm, using conjugate gradient methods,
and by using quasi-Newton methods (Jamshidian and Jennrich, 1997).

Kim and Taylor (1995) describe an EM method when there are linear re-
strictions on the parameters.

As is usual for estimators defined as solutions to optimization problems, we
may have some difficulty in determining the statistical properties of the esti-
mators. Louis (1982) suggested a method of estimating the variance-covariance
matrix of the estimator by use of the gradient and Hessian of the complete-data
log-likelihood, I1_(6 ; u,v). Meng and Rubin (1991), use a “supplemented”
EM method, SEM, for estimation of the variance-covariance matrix. Kim and
Taylor (1995) also described ways of estimating the variance-covariance matrix
using computations that are part of the EM steps.

It is interesting to note that under certain assumptions on the distribution,
the iteratively reweighted least squares method discussed on page 21 can be
formulated as an EM method. (See Dempster, Laird, and Rubin, 1980.)

1.5 Inference about Functions

Functions of Parameters and Functions of Estimators

Suppose, instead of estimating the parameter 6, we wish to estimate g(6), where
g(-) is some function. If the function g(-) is monotonic or has certain other
properties estimators, it may be the case that the estimator that results from
the minimum residuals principle or from the maximum likelihood principle is
invariate; that is, the estimator of g(6) is merely the function g(-) evaluated
at the solution to the optimization problem for estimating 6. The statistical
properties of a T for estimating 6, however, do not necessarily carry over to
g(T) for estimating g(6).

As an example of why a function of an unbiased estimator may not be
unbiased, consider a simple case in which T" and ¢(T") are scalars. Let R = ¢g(T)
and consider E(R) and g(E(T)) in the case in which g is a convex function. (A
function g is a convex function if for any two points z and y in the domain of
9. 9(3(z +y)) < 2(g(z) + g(y)).) In this case, obviously

E(R) < g(E(T)), (1.38)

so R is biased for g(#). (This relation is Jensen’s inequality.) An opposite
inequality obviously also applies to a concave function, in which case the bias
is positive.

It is often possible to adjust R to be unbiased for g(#); and properties of
T, such as sufficiency for #, may carry over to the adjusted R. Some of the
applications of the jackknife and the bootstrap that we discuss later are in
making adjustments to estimators of g(f) that are based on estimators of 6.
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The variance of R = g(T') can often be approximated in terms of the variance
of T. Let T and 6 be m-vectors and let R be a k-vector. In a simple but common
case, we may know that T in a sample of size n has an approximate normal
distribution with mean 6 and some variance-covariance matrix, say V(7T'), and
g is a smooth function (that is, it can be approximated by a truncated Taylor
series about 0):

R = g(7T)
S i0) + 35, (O)(T — ) + (T — 0)"H, (6)(T — 6).

Because the variance of T is O(n~1), the remaining terms in the expansion go
to zero in probability at the rate of at least n~!.
This yields the approximations

E(R) = g(0) (1.39)

and
V(R) =~ J,(0) V(T) (3,(0)) " (1.40)
This method of approximation of the variance is called the delta method.
A common form of a simple estimator that may be difficult to analyze, and
which may have unexpected properties, is a ratio of two statistics,

T

S )

where S is a scalar. An example is a studentized statistic, in which T is a
sample mean and S is a function of squared deviations. If the underlying dis-
tribution is normal, a statistic of this form may have a wellknown and tractable
distribution, in particular if 7" is a mean and S is a function of an indepen-
dent chi-squared random variable, the distribution is that of a Student’s t. If
the underlying distribution has heavy tails, however, the distribution of R may
have unexpectedly light tails. An asymmetric underlying distribution may also
cause the distribution of R to be very different from a Student’s ¢ distribution.
If the underlying distribution is positively skewed, the distribution of R may
be negatively skewed (see Exercise 1.9).

R =

Linear Estimators

A functional © is linear if, for any two functions f and g in the domain of ©
and any real number a,

O(af +g) = aO(f) + O(g).

A statistic is linear if it is a linear functional of the ECDF. A linear statistic
can be computed from a sample using an online algorithm, and linear statistics
from two samples can be combined by addition. Strictly speaking, this definition
excludes statistics such as means, but such statistics are essentially linear in
the sense that they can be combined by a linear combination if the sample sizes
are known.
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1.6 Probability Statements in Statistical Infer-
ence

There are two instances in statistical inference in which statements about prob-
ability are associated with the decisions of the inferential methods. In hypoth-
esis testing, under assumptions about the distributions, we base our inferential
methods on probabilities of two types of errors. In confidence intervals the
decisions are associated with probability statements about coverage of the pa-
rameters. In computational inference, probabilities associated with hypothesis
tests or confidence intervals are estimated by simulation of an hypothesized
data generating process or by resampling of an observed sample.

Tests of Hypotheses

Often statistical inference involves testing a “null” hypothesis, Hy, about the
parameter. In a simple case, for example, we may test the hypothesis

H()Z 9:00

versus an alternative hypothesis that 6 takes on some other value or is in some
set that does not include 6y. The straightforward way of performing the test
involves use of a test statistic, T, computed from a random sample of data.
Associated with T is a rejection region C, such that if the null hypothesis is
true, Pr (T € C') is some preassigned (small) value, a, and Pr (T € C) is greater
than « if the null hypothesis is not true. Thus, C' is a region of more “extreme”
values of the test statistic if the null hypothesis is true. If T' € C, the null
hypothesis is rejected. It is desirable that the test have a high probability of
rejecting the null hypothesis if indeed the null hypothesis is not true. The
probability of rejection of the null hypothesis is called the power of the test.

A procedure for testing that is mechanically equivalent to this is to compute
the test statistic ¢ and then to determine the probability that 7" is more extreme
than ¢. In this approach, the realized value of the test statistic determines a
region Cy of more extreme values. The probability that the test statistic is in C;
if the null hypothesis is true, Pr (T' € C}), is called the “p-value” or “significance
level” of the realized test statistic.

If the distribution of T" under the null hypothesis is known, the critical re-
gion or the p-value can be determined. If the distribution of 7" is not known,
some other approach must be used. A common method is to use some approx-
imation to the distribution. The objective is to approximate a quantile of T
under the null hypothesis. The approximation is often based on an asymptotic
distribution of the test statistic. In Monte Carlo tests, discussed in Section 2.3,
the quantile of T is estimated by simulation of the distribution.
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Confidence Intervals

Our usual notion of a confidence interval relies on a frequency approach to
probability, and it leads to the definition of a 1 — « confidence interval for the
(scalar) parameter 6 as the random interval (77, Ty ), that has the property

Pr(T, <0<Ty)=1-o. (1.41)

This is also called a (1 — a)100% confidence interval. The interval (11, Ty ) is
not uniquely determined.

The concept extends easily to vector-valued parameters. Rather than taking
vectors T7, and Ty, however, we generally define an ellipsoidal region, whose
shape is determined by the covariances of the estimators.

A realization of the random interval, say (t1,, tr), is also called a confidence
interval. Although it may seem natural to state that the “probability that 6 is in
(tr, tv) is 1 — a7, this statement can be misleading unless a certain underlying
probability structure is assumed.

In practice, the interval is usually specified with respect to an estimator of
0, T. If we know the sampling distribution of T'— €, we may determine ¢; and
¢o such that

Prig <T-60 < ¢e)=1—q; (1.42)

and hence
Pr(T—co <0 <T-¢1)=1-q.

If either Ty, or Ty in (1.41) is infinite or corresponds to a bound on accept-
able values of 6, the confidence interval is one-sided. For two-sided confidence
intervals, we may seek to make the probability on either side of T to be equal,
to make ¢; = —c¢g, and/or to minimize |c;| or |cz|. This is similar in spirit to
seeking an estimator with small variance.

For forming confidence intervals, we generally use a function of the sample
that also involves the parameter of interest, f(7,6). The confidence interval is
then formed by separating the parameter from the sample values.

A class of functions that are particularly useful for forming confidence in-
tervals are called pivotal values, or pivotal functions. A function f(T,0) is said
to be a pivotal function if its distribution does not depend on any unknown pa-
rameters. This allows exact confidence intervals to be formed for the parameter
0. We first form

Pr(fasm € FT0) < faoam) = 1-a, (1.43)
where f(o/2) and f(1_o/2) are quantiles of the distribution of f(7',0); that is,

Pr(f(T,6) < fm) = 7.

If, as in the case considered above, f(T,0) = T — 0, the resulting confidence
interval has the form

PF(T—fu—a/z) <0< T—f(a/z)) =1l-a
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For example, suppose Y1,Y3,...,Y, is a random sample from a N(p,0?)
distribution, and Y is the sample mean. The quantity

F )= Y2 DO ) (1.44)

> (Yi-Y)

has a Student’s ¢ distribution with n — 1 degrees of freedom, no matter what is
the value of ¢2. This is one of the most commonly-used pivotal values.

The pivotal value in equation (1.44) can be used to form a confidence value
for 6 by first writing

Pr(tae) < f(Y,1) < ta—ayz) = 1—a,

where t(,) is a percentile from the Student’s ¢ distribution. Then, after making
substitutions for f(Y, 1), we form the familiar confidence interval for y:

(?_t(l—a/Q) S/\/’E, ?_t(a/Q) S/\/’E), (145)

where s? is the usual sample variance, > (V; — Y)?/(n — 1).

Other similar pivotal values have F' distributions. For example, consider the
usual linear regression model in which the n-vector random variable Y has a
N,,(X 3,0%I) distribution, where X is an n x m known matrix, and the m-vector
3 and the scalar o2 are unknown. A pivotal value useful in making inferences

about (3 is
5o (XB-9)"XB=p)/m »
WD X X B - ) 1
where

B=(XTX)txTy.

The random variable g(ﬁ, B) for any finite value of 02 has an F distribution
with m and n — m degrees of freedom.

For a given parameter and family of distributions there may be multiple
pivotal values. For purposes of statistical inference, such considerations as
unbiasedness and minimum variance may guide the choice of a pivotal value
to use. Alternatively, it may not be possible to identify a pivotal quantity for
a particular parameter. In that case, we may seek an approximate pivot. A
function is asymptotically pivotal if a sequence of linear transformations of the
function is pivotal in the limit as n — oc.

If the distribution of T' is known, ¢; and ¢y in equation (1.42) can be de-
termined. If the distribution of T' is not known, some other approach must
be used. A common method is to use some numerical approximation to the
distribution. Another method, discussed in Section 4.3, is to use “bootstrap”
samples from the ECDF.
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Exercises

1.1.

1.2

1.3.

1.4.

1.5.

1.6.

1.7.

(a) How would you describe, in nontechnical terms, the structure of the da-
taset displayed in Figure 1.1, page 77

(b) How would you describe the structure of the dataset in more precise math-
ematical terms? (Obviously, without having the actual data, your equa-
tions must contain unknown quantities. The question is meant to make
you think about how you would do this — that is, what would be the
components of your model.)

Show that the variance of the ECDF at a point y is the expression in equa-
tion (1.3) on page 11. Hint: Use the definition of the variance in terms of ex-

pected values, and represent E ( (Pn(y)) 2) in a manner similar to how E (Pn (y))

was represented in equations (1.2).

The variance functional.

(a) Express the variance of a random variable as a functional of its CDF as
was done in equation (1.5) for the mean.

(b) What is the same functional of the ECDF?
(c) What is the plug-in estimate of the variance?

(d) What are the statistical properties of the plug-in estimate of the variance?
(Is it unbiased? Is it consistent? Is it an MLE? etc.)

Assume a random sample of size 10 from a normal distribution. With v =1—-2
in equation (1.7), determine the value of + that makes the empirical quantile
of the 9'" order statistic be unbiased for the normal quantile corresponding to
0.90.

Give examples of

(a) a parameter that is defined by a linear functional of the distribution func-
tion, and

(b) a parameter that is not a linear functional of the distribution function.

(c¢) Is the variance a linear functional of the distribution function?

Consider the least-squares estimator of § in the usual linear regression model,
E(Y) = Xg.

(a) Use expression (1.21), page 20, to derive the variance-covariance matrix

for the estimator.

(b) Use expression (1.22) to derive the variance-covariance matrix for the es-
timator.

Assume a random sample y1, . . ., Yn from a gamma distribution with parameters
a and (.

(a) What are the least-squares estimates of o and 3?7 (Recall E(Y) = a8 and
V(Y) = ap?)
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(b)

(c)

(d)
(e)

(f)

Write a function in a language such as R, Matlab, or Fortran that accepts
a sample of size n and computes the least squares estimator of a and 8
and computes an approximation of the variance-covariance matrix using
both expression (1.21), page 20, and expression (1.22).

Try out your program in Exercise 1.7b by generating a sample of size 500
from a gamma(2,3) distribution and then computing the estimates. (See
Appendix B for information on software for generating random deviates.)

Formulate the optimization problem for determining the MLE of o and S.
Does this problem have a closed-form solution?

Write a function in a language such as R, Matlab, or Fortran that accepts
a sample of size n and computes the least squares estimator of a and (3
and computes an approximation of the variance-covariance matrix using
expression (1.37), page 26.

Try out your program in Exercise 1.7e by computing the estimates from
an artificial sample of size 500 from a gamma(2,3) distribution.

1.8. For the random variable Y with a distribution in the exponential family and
whose density is expressed in the form of equation (1.27), page 23, and assuming
that the first two moments of ¢g(Y) exist and a(-) is twice differentiable, show

1.9.

that

and

E(g(Y)) = Va(0)

Hint: First show that

E(Viog(p(Y'19))) = 0,

where the differentiation is with respect to 6.

Assume {X1, X2} is a random sample of size 2 from an exponential distribution
with parameter 6. Consider the random variable formed as a Student’s ¢:

al

-0

/522

T =

where X is the sample mean and S? is the sample variance,

- L S -%2

(Note n = 2.)

(a)
(b)

Show that the distribution of T is negatively skewed (although the distri-
bution of X is positively skewed).

Give a heuristic explanation of the negative skewness of T'.

. A function T of a random variable X with distribution parametrized by 6 is said

to be sufficient for 0 if the conditional distribution of X given T'(X) does not
depend on 6. Discuss (compare and contrast) pivotal and sufficient functions.
(Start with the basics: Are they statistics? In what way do they both depend
on some universe of discourse, that is, on some family of distributions?)
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1.11. Use the pivotal value g(ﬁ, () in equation (1.46), page 33, to form a (1 —a)100%
confidence region for 8 in the usual linear regression model.

1.12. Assume a random sample y1,...,Z, from a normal distribution with mean p
and variance o2. Determine an unbiased estimator of o, based on the sample
variance, s?. (Note that s? is sufficient and unbiased for ¢2.)
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