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Random Walks

Those cannot remember the past are condemned to repeat it.
—Santayanna

Random walks entered mathematics early on through the analysis of gambling
and other games of chance. To cite a typical example, let X0 denote the initial
fortune of a certain gambler and let Xn stand for the amount won (if Xn ≥ 0)
or lost (if Xn ≤ 0) the nth time that the gambler places a bet. In the simplest
gambling situations, the Xn’s are i.i.d., and the gambler’s fortune at time n is
described by the partial sum Sn =

∑n
j=0Xj . The stochastic process S = (Sn; n ≥

0) is called a one-dimensional random walk and lies at the heart of modern, as
well as classical, probability theory. This chapter is a study of some properties of
systems of such walks.

The main problem addressed here is, under what conditions does the random
walk return to 0 infinitely often? To see how this may come up, suppose the
gambler plays ad infinitum and has an unbounded credit line. We then wish to
know under what conditions the gambler can break even, infinitely many times,
as he or she plays on. In the language of the theory of Markov chains, we wish
to know when the state 0 is recurrent.

The analogous problem for systems of random walks is more intricate and is

the subject of much of this chapter: Suppose the Xj ’s are i.i.d. random vectors in

d-space. Then, the d-dimensional random walk models the movement of a small

particle in a homogeneous medium. Suppose we have N particles, each of which

paints every point that it visits. If each individual particle uses a distinct color,

under what conditions do the N random lines created by the N random particles

cross paths infinitely many times? These are some of the main problems that are

taken up in this chapter.
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1 One-Parameter Random Walks

The stochastic process S = (Sn; n ≥ 1) is a random walk if it has station-
ary, independent increments. To put it another way, we consider indepen-
dent, identically distributed random variables X1, X2, . . ., all taking values
in Rd, and define the corresponding random walk n �→ Sn as Sn =

∑n
i=1Xi

(n = 1, 2, . . .). Clearly, X1 = S1, and for all n ≥ 2, Xn = Sn − Sn−1, when
n ≥ 2. Thus, we are justified in calling the Xi’s the increments of S. This
is a review section on one-parameter random walks; we develop the theory
with an eye toward multiparameter extensions that will be developed in
the remainder of this chapter.

1.1 Transition Operators

Suppose S = (Sn; n ≥ 1) is a d-dimensional random walk with increments
X = (Xn; n ≥ 1). For all n ≥ 1, define Fn to be the σ-field generated by
X1, . . . , Xn. It is simple to see that Fn is precisely the σ-field generated by
S1, . . . , Sn. In the notation of Chapter 1, we have shown that F = (Fn; n ≥
1) is the history of the stochastic process S.

It is always the case that the study of the stochastic process S is equiv-
alent to the analysis of probabilities of the form

P(Sn1 ∈ E1, Sn2 ∈ E2, . . . , Snk
∈ Ek),

where k, n1, . . . , nk ≥ 1 are integers and E1, . . . , Ek are measurable sub-
sets of Rd. These probabilities are called the finite-dimensional distri-
butions of S. It turns out that the finite-dimensional distributions of the
random walk S are completely determined by the collection P(X1+x ∈ E),
where E ⊂ Rd is measurable and x ∈ Rd. A precise form of such a state-
ment is called the Markov property; we shall come to this later. Bearing
this discussion in mind, we define for all measurable functions f : Rd → R,
all n ≥ 1, and x ∈ Rd,

Tnf(x) = E
[
f(Sn + x)

]
.

In particular, note that for all Borel sets E ⊂ Rd, T11lE(x) = P(X1 + x ∈
E). Thus, once we know the operator Tn, we know how to compute these
probabilities. We begin our study of random walks by first analyzing these
operators.

Note that Tn is a bounded linear operator: For all bounded measur-
able f, g : Rd → R, n ≥ 1, x ∈ Rd and all α, β ∈ R,

(i) supx∈Rd |Tnf(x)| ≤ supx∈Rd |f(x)|;

(ii) Tn(αf + βg)(x) = αTnf(x) + βTng(x); and

(iii) x �→ Tnf(x) is measurable.
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Next, we interpret Tn in terms of the conditional distributions of S.

Lemma 1.1.1 For all n, k ≥ 1 and all bounded measurable f : Rd → R,

E
[
f(Sk+n)

∣∣Fk

]
= E
[
f(Sk+n)

∣∣Sk

]
= Tnf(Sk), a.s.

In particular, for all x ∈ Rd, n, k ≥ 1, and all bounded measurable f :
Rd → R, Tn+kf(x) = Tn(Tkf)(x) = Tk(Tnf)(x).

In functional-analytic language, (Tn; n ≥ 1) is a semigroup of opera-
tors. To see what the above lemma means, take f = 1lE for some Borel set
E ⊂ Rd. The above says that if k denotes the current time,

1. given the present position Sk, any future position Sk+n is condition-
ally independent of the past positions S1, . . . , Sk−1; and

2. Tn1lE(Sk) is the conditional probability of making a transition to E
in n steps, given Fk.

Motivated by this, we call Tn the n-step transition operator of S.

Proof of Lemma 1.1.1 Note that Sk+n − Sk =
∑k+n

j=k+1 Xj is (a) in-
dependent of Fk; and (b) has the same distribution as Sn =

∑n
j=1Xj.

Thus,

E
[
f(Sk+n)

∣∣Fk

]
= E
[
f(Sk+n − Sk + Sk)

∣∣Fk

]
=
∫
f(x+ Sk) P(Sn ∈ dx)

= Tnf(Sk),

almost surely. From this, we also can conclude the equality regarding the
conditional expectation E[f(Sk+n) |Sk]. Applying the preceding to f(•+x),
we obtain E[f(x+Sk+n) |Fk] = Tnf(x+Sk), almost surely. Taking expec-
tations, we deduce that Tk+nf(x) = Tk(Tnf)(x). The rest follows from
reversing the roles of k and n. �

Digression If we define S0 = 0, then for any x ∈ Rd, we can, and should,
think of x+S as our random walk started at x. In particular, S itself should
be thought of as the random walk started at the origin. The above lemma
suggests the following interpretation: Given the position of the process at
time k, the future trajectories of our walk are those of a random walk
started at Sk. The following is a more precise formulation of this and is a
version of the so-called Markov property of S that was alluded to earlier.

Theorem 1.1.1 (The Markov Property) Fix integers k ≥ 1, n ≥ 2
and bounded measurable functions f1, . . . , fn : Rd → R. Then, the following
holds with probability one:

E
[ n∏

�=1

f�(Sk+� − Sk)
∣∣∣Fk

]
= E
[ n∏

�=1

f�(S�)
]
.
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In other words, for any k ≥ 1, the process n �→ Sn+k − Sk is (i) inde-
pendent of Fk; and (ii) has the same finite-dimensional distributions as the
original process S.

Recalling that we think of n �→ Sn +x as a random walk with increments
X1, X2, . . . that starts at x ∈ Rd, we readily obtain the following useful
interpretation of the above.

Corollary 1.1.1 Suppose k ≥ 1 is a fixed integer. Then, conditionally on
σ(Sk), (Sk+n; k ≥ 0) is a random walk whose increments have the same
distribution as X1. Moreover, the σ-field generated by (Sk+n; n ≥ 0) is
conditionally independent of Fk, given σ(Sk).

See Section 3.6 of Chapter 1 for information on conditional independence.

Exercise 1.1.1 Carefully prove Corollary 1.1.1. �
Proof of Theorem 1.1.1 Since it depends only on Xk+1, . . . , Xk+n, the
random variable

∏n
�=1 f�(Sk+� − Sk) is independent of (X1, . . . , Xk) and

hence of Fk. (Why?) As a result, with probability one,

E
[ n∏

�=1

f�(Sk+� − Sk)
∣∣∣Fk

]
= E
[ n∏

�=1

f�(Sk+� − Sk)
]
.

On the other hand, the sequence (Xk+1, . . . , Xk+n) has the same distri-
bution as the sequence (X1, . . . , Xn). After performing a little algebra, we
can reinterpret this statement as follows: The distribution of the Rnd-valued
random vector (Sk+1−Sk, . . . , Sk+n−Sk) is the same as that of (S1, . . . , Sn).
In particular, we have E[

∏n
�=1 f�(Sk+� − Sk)] = E[

∏n
�=1 f�(S�)], which

proves the result. �

It is clear that Corollary 1.1.1 extends the conditional independence as-
sertion of Lemma 1.1.1. However, the latter lemma also contains informa-
tion on the transition operators, to which we now return.

Corollary 1.1.2 The transition operators, in fact T1, uniquely determine
the finite-dimensional distributions and vice versa.

Proof By the very definition of Tn, if we know all finite-dimensional dis-
tributions, we can compute Tnf(x) for all measurable f : Rd → R+, all
n ≥ 1, and all x ∈ Rd. The converse requires an honest proof. Consider the
following proposition:

(Πn) For all measurable f1, . . . , fn : Rd → R+, E[
∏n

�=1 f�(S�)] can be
computed from T1.

Our goal is to show that (Πn) holds for all n ≥ 1. We will prove this
by using induction on n: Lemma 1.1.1 shows that (Π1) is true. Thus, we
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suppose that (Π1), . . . , (Πn−1) hold and venture to prove (Πn). By Lemma
1.1.1, for all measurable f1, . . . , fn : Rd → R+,

E
[ n∏

�=1

f�(S�)
∣∣Fn−1

]
=

n−1∏
�=1

f�(S�) · T1f(Sn−1) =
n−1∏
�=1

g�(S�),

where gi = fi for all 1 ≤ i ≤ n−2 and gn−1(x) = fn−1(x) ·T1fn−1(x). Tak-
ing expectations, we see that E[

∏n
�=1 f�(S�)] = E[

∏n−1
i=1 gi(Si)]. By Πn−1,

this can be written entirely in terms of T1, thus proving (Πn). �

Exercise 1.1.2 Find an explicit recursive formula for E[
∏n

�=1 f�(S�)] in
terms of T1. �

1.2 The Strong Markov Property

Let S = (Sk; k ≥ 1) denote a d-dimensional random walk with history
F = (Fk; k ≥ 1) and increment process X = (Xk; k ≥ 1). The strong
Markov property of S states that for any finite stopping time T (with
respect to the filtration F), the stochastic process (Sk+T − ST ; k ≥ 1) is
independent of FT and has the same finite-dimensional distributions as the
process S. Roughly speaking, this means that the process (Sk+T ; k ≥ 1)
is conditionally independent of FT given ST and is, in distribution, the
random walk S started at ST .

Theorem 1.2.1 (The Strong Markov Property) Suppose T is a stop-
ping time with respect to F. Given integers n, k ≥ 1 and bounded, measur-
able f1, . . . , fn : Rd → R,

E
[ n∏

�=1

f�(ST+� − ST )
∣∣∣FT

]
1l(T<∞) = E

[ n∏
�=1

f�(S�)
]
1l(T<∞), a.s.

Remarks (i) Given the transition operators, the above expression can be
computed using Corollaries 1.1.1 and 1.1.2; see Exercise 1.1.2.
(ii) It is important to realize that the stopping time condition cannot be
removed in general, as the following clearly shows.

Exercise 1.2.1 Consider the simple walk on Z1. Here, the increments
X1, X2, . . . take the values ±1 with probability 1

2 each. Consider the N0 ∪
{∞}-valued random variable L = sup(k ≥ 0 : Sk ≤ − 1

2k), where sup ∅ =
0. That is, L designates the last time that the random walk goes below the
line y = − 1

2x.

(i) Show that with probability one, L < ∞ and that L is not a stopping
time with respect to the history of the process S.
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(ii) Verify that FL is a σ-field and that the process j �→ Sj+L − SL

is independent of FL, where FL =
(
A ∈ ∨nFn : A ∩ (L ≤ j) ∈

Fj , for all j ≥ 0
)

is defined as if L were a stopping time.

(iii) Show that the stochastic process j �→ SL+j − SL does not have the
same finite-dimensional distributions as S.

This is a part of a deep result of Williams (1970, 1974).
(Hint: for part (i), you can use a limit theorem; for part (ii), condition on
the value of L.) �

Proof of Theorem 1.2.1 For all � ≥ 1, ST+� − ST =
∑T+�

j=T+1Xj. Since
for all j ≥ 1, the event (T = j) is FT -measurable,

E
[ n∏

�=1

f�(ST+� − ST )
∣∣∣FT

]
1l(T<∞) =

∞∑
j=1

E
[ n∏

�=1

f�(ST+� − ST )
∣∣∣FT

]
1l(T=j)

=
∞∑

j=1

E
[ n∏

�=1

f�(Sj+� − Sj)
∣∣∣FT

]
1l(T=j),

almost surely. Regarding j ≥ 1 as fixed, define Y =
∏n

�=1 f�(Sj+� − Sj)
and for all k ≥ 1, let Mk = E[Y |Fk]. By Theorem 1.1.1, Chapter 1, with
probability one, Mj1l(T=j) = MT 1l(T=j) = E[Y |FT ]1l(T=j). Thus,

E
[ n∏

�=1

f�(ST+� − ST )
∣∣∣FT

]
1l(T<∞) =

∞∑
j=1

E
[ n∏

�=1

f�(Sj+� − Sj)
∣∣Fj

]
1l(T=j).

By the stationarity and the independence of the increments of S, the above
equals E[

∏n
�=1 f�(S�)]1l(T<∞), as desired. �

1.3 Recurrence

Suppose S is a d-dimensional random walk with increment process X and
history F. Throughout this section we assume that theX ’s are taking values
in the d-dimensional integer lattice Zd.

A point x ∈ Zd is said to be recurrent if P(Sk = x infinitely often) > 0.
When is a point x ∈ Zd recurrent? In this subsection we will resolve this
when x is the origin of Zd. Since it is the starting position of the random
walk, the origin is a very special point; see the Digression in Section 1.1.
Recurrence properties of a general point x ∈ Zd are discussed in Section
1.6 below.

Recalling that inf ∅ = ∞, let τ1 = inf(j ≥ 1 : Sj = 0); that is, τ1 is
the first time the random walk visits 0. Iteratively define τk+1 = inf(j ≥
1+τk : Sj = 0), for k ≥ 1. It is easy to see that τ1, τ2, . . . are stopping times.
One should think of τ1 (τ2, . . .) as the first (second, etc.) time the random
walk visits the origin. Among other things, this sequence of visitation times
has the following property.
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Lemma 1.3.1 Fix n, j ≥ 1. On (τn <∞),

P(τn+1 − τn = j |Fτn) = P(τ1 = j), a.s.

Suppose we knew that with probability one, τn < ∞ for all n ≥ 1.
The above lemma asserts that in this case, τ1, τ2 − τ1, . . . is a sequence
of independent, identically distributed random variables (why?). Since
τn = τ1 +

∑n
j=2(τj − τj−1), τ = (τn; n ≥ 1) is then identified as a random

walk with nonnegative increments.

Proof This is a consequence of the strong Markov property (see Theorem
1.2.1). In fact, since Sτn = 0 on

(
τn < ∞

)
,

P
(
τn+1 − τn = j

∣∣Fτn

)
1l(τn<∞)

= P
(
Sτn+� 
= 0 for all 1 ≤ � ≤ j − 1, Sτn+j = 0

∣∣Fτn

)
1l(τn<∞)

= P
(
Sτn+� − Sτn 
= 0 for all 1 ≤ � ≤ j − 1, Sτn+j − Sτn = 0

∣∣Fτn

)
1l(τn<∞)

= P
(
S� 
= 0 for all 1 ≤ � ≤ j − 1, Sj = 0

)
1l(τn<∞)

= P
(
τ1 = j

)
1l(τn<∞).

The strong Markov property (Theorem 1.2.1) is used in the penultimate
line. This proves the result. �

In particular, upon summing Lemma 1.3.1 over all integers j ≥ 1, we
arrive at the following: For all n ≥ 2,

P(τn <∞) = P(τn − τn−1 <∞, τn−1 < ∞)

= E
[
P(τn − τn−1 < ∞|Fτn−1)1l(τn−1<∞)

]
= P(τ1 < ∞) · P(τn−1 < ∞).

By induction,
P(τn <∞) =

{
P(τ1 < ∞)

}n
. (1)

With the unambiguous understanding that ∞ ≤ ∞, we can deduce that
the τn’s are nondecreasing. Continuity properties of probability measures
then imply that

P(0 is recurrent) = lim
n→∞ P(τn < ∞) = lim

n→∞
{
P(τ1 < ∞)

}n
.

Taking equation (1) into account, we have proven the following:

Proposition 1.3.1 The following are equivalent:

(i) 0 is recurrent;

(ii) P(Sk = 0 infinitely often) = 1; and
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(iii) P(τ1 < ∞) = 1.

Informally, we are stating that if starting from the origin we are sure of
returning to the origin, then we will do so infinitely many times. This is an
example of the strong Markov property at its finest.

1.4 Classification of Recurrence

A natural question is, how do the finite-dimensional distributions of a Zd-
valued random walk influence the recurrence of the point 0? For all integers
n ≥ 1, define

Rn = 1 +
n∑

k=1

1l(Sk=0).

Recalling the Digression of Section 1.1, we think of S as starting from the
origin, so that at time 0, S is at 0. Viewed as such, Rn denotes the total
number of visits to the origin by time n. Note that R∞ = limn→∞Rn is a
random variable taking values in N∪{∞}. Proposition 1.3.1 can be restated
as follows: P(R∞ = ∞) ∈ {0, 1}. Moreover, this probability is 1 if and only
if 0 is recurrent.

The key to our analysis of recurrence turns out to be E[R∞] = 1 +∑∞
k=1 P(Sk = 0). In fact, we have the following result, due to G. Pólya, K.

L. Chung, and W. H. J. Fuchs, which appeared in Chung and Fuchs (1951)
in full generality; see (Pólya 1921; Chung and Ornstein 1962) for some
related results. Supplementary Exercise 9 contains a complete statement of
the above results: the so-called Chung–Fuchs theorem.

Theorem 1.4.1 (The Pólya Criterion) The point 0 is recurrent if and
only if

∑∞
k=1 P(Sk = 0) = ∞.

Informally, S will hit 0 infinitely often if it is expected to do so. For our
proof, we need the the following simple and powerful lemma, first found in
Paley and Zygmund (1932).

Lemma 1.4.1 (Paley–Zygmund Lemma) Suppose Z is an almost surely
nonnegative random variable. Then for all ε ∈ ]0, 1[,

P
(
Z ≥ εE[Z]

)
≥ (1 − ε)2

{E[Z]}2

E[Z2]
,

provided that all of the mentioned expectations exist.

Exercise 1.4.1 Prove the Paley–Zygmund lemma.
(Hint: Apply the Cauchy–Schwarz inequality to E[Z1l(Z≥εE[Z])].) �
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Exercise 1.4.2 If Z is a nonnegative random variable that is also in
L2(P), show that P(Z = 0) ≤ Var(Z)/

{
E[Z]
}2, where Var denotes the

variance. �

Exercise 1.4.3 Suppose E1,E2, . . . are measurable events such that∑
j P(Ej) = +∞. Prove that whenever

lim inf
n→∞

∑n
j=1

∑n
k=1 P(Ej ∩ Ek){∑n

j=1 P(Ej)
}2 < ∞,

then P(En infinitely often) > 0. This is from (Chung and Erdős 1952;
Kochen and Stone 1964).
(Hint: Consider the first two moments of Jn =

∑n
j=1 1lEj .) �

Proof of Theorem 1.4.1 We have already made the observation that
R∞ ≥ 1 and E[R∞−1] =

∑∞
k=1 P(Sk = 0). (Since R∞ = limnRn, a.s., this

is a consequence of the monotone convergence theorem of measure theory.)
Thus,

∑
k P(Sk = 0) < ∞ if and only if E[R∞ − 1] < ∞. Consequently,∑

k P(Sk < ∞) < ∞ certainly implies that R∞ < ∞, a.s.; that is to say
that 0 is not recurrent. Next, we suppose that

∑
k P(Sk = 0) = ∞. It is

clear that E[Rn − 1] =
∑n

k=1 P(Sk = 0) and that this sequence explodes as
n→ ∞. We now estimate E[(Rn − 1)2], viz.,

E
[
(Rn − 1)2

]
= E
[ n∑

k=1

1l(Sk=0)

]
+ 2E
[ ∑∑

1≤k<�≤n

1l(Sk=0)1l(S�=0)

]
= E[Rn − 1] + 2

∑∑
1≤k<�≤n

P(Sk = 0)P(S�−k = 0),

by the Markov property (Theorem 1.1.1). Relabeling the last summation
and possibly adding more nonnegative terms, we arrive at the estimate

E
[
(Rn − 1)2

]
≤ E[Rn − 1] + 2

(
E[Rn − 1]

)2
.

Since Rn − 1 ∈ N0, (Rn − 1 > 0) = (Rn ≥ 2). Applying Lemma 1.4.1 first,
and then the above estimate, in this order, we arrive at the following:

P(τ1 ≤ n) = P(Rn ≥ 2) ≥
(
E[Rn − 1]

)2
E[Rn − 1] + 2

(
E[Rn − 1]

)2 ,
where τ1 = inf

(
j ≥ 1 : Sj = 0

)
. Since limn E[Rn] = ∞, this implies that

P(τ1 < ∞) ≥ 1
2 . By Proposition 1.3.1, whenever P(τ < ∞) is positive, it

is, in fact, 1. This completes our proof. �

While it was meant to bring forth a powerful technique, our demonstra-
tion of Theorem 1.4.1 is not the fastest method for getting there, as we see
next.
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Exercise 1.4.4 Let N denote the total number of returns to zero. That
is, N =

∑∞
k=0 1l(Sk=0). Show that N is a geometric random variable with

mean p−1, where p = P(∃k ≥ 1 : Sk = 0). Use this to verify Pólya’s
criterion.
(Hint: Show that for all k ≥ 1, P(N ≥ k) = pP(N ≥ k − 1).) �

1.5 Transience

When a point x ∈ Zd is not recurrent for the Zd-valued random walk S,
we say that it is transient. It is easy to see that 0 ∈ Zd is transient if and
only if

lim
n→∞ P(Sk = 0 for some k ≥ n) = 0.

Thus, a natural measure for the strength of the transience of the origin is
the rate at which P(Sk = 0 for some k ≥ n) goes to 0 as n goes to infinity.
The following sheds much light on this rate.

Theorem 1.5.1 If the origin is transient for the Zd-valued random walk
S, the following holds for every integer n ≥ 1:

1
2
T ≤ P

(
Sk = 0 for some k ≥ n

)
≤ 8T ,

where

T =

∑∞
j=n P(Sj = 0)

1 +
∑∞

j=1 P(Sj = 0)
.

This theorem makes the point that as n → ∞, P(Sk = 0 for some k ≥ n)
goes to zero like a constant multiple of

∑
j≥n P(Sj = 0).

Remarks

1. This can be sharpened; see Supplementary Exercise 1.

2. Throughout this subsection we implicitly use the notation of Section
1.3 and Section 1.4.

3. It can be shown that P(τ1 = ∞) = {1 +
∑∞

k=1 P(Sk = 0)}−1; see
Supplementary Exercise 1. This is the probability of never hitting 0.

Proof By transience and by Theorem 1.4.1,
∑∞

j=1 P(Sj = 0) < ∞. For all
n ≥ 1, let

Z =
∞∑

j=n

1l(Sj=0) = R∞ −Rn−1,

where R0 = 1. Clearly, E[Z] =
∑∞

j=n P(Sj = 0), which we know is fi-
nite. Recall our proof of Theorem 1.4.1; the method used there to estimate
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E[(Rn − 1)2] can be used here to show that

E[Z2] ≤ 2
∞∑

�=n

P(S� = 0) ·
{

1 +
∞∑

j=1

P(Sj = 0)
}
. (1)

Since (Z > 0) ⊆ (Sk = 0 for some k ≥ n), we obtain the lower bound from
the Paley–Zygmund lemma (Lemma 1.4.1).

For the upper bound on the probability, define

Mk = E
[ ∞∑

j=n

1l(Sj=0)

∣∣Fk

]
, k ≥ n.

It is not hard to check that M = (Mk; k ≥ n) is a martingale. Moreover,
for all k ≥ n,

Mk ≥ E
[ ∞∑

j=k

1l(Sj=0)

∣∣Fk

]
·1l(Sk=0) =

{
1+

∞∑
j=1

P(Sj+k−Sk = 0 |Fk)
}
·1l(Sk=0).

We have used the monotone convergence theorem to write the conditional
expectation and the sum of the conditional probabilities. By the Markov
property (Corollary 1.1.1), Mk ≥ {1 +

∑∞
j=1 P(Sj = 0)} · 1l(Sk=0), almost

surely. Taking suprema over all k ≥ n and squaring, we obtain the following:

1l(Sk=0 for some k≥n) ≤
{
1 +

∞∑
j=1

P(Sj = 0)
}−2

· sup
k≥n

M2
k . (2)

By Doob’s strong (2, 2) inequality (Theorem 1.4.1, Chapter 1),

E
[

sup
k≥n

M2
k

]
≤ 4 sup

k≥n
E[M2

k ].

Therefore, by taking expectations in equation (2), we obtain

P(Sk = 0 for some k ≥ n) ≤ 4
{
1 +

∞∑
k=1

P(Sj = 0)
}−2

sup
k≥n

E[M2
k ].

Jensen’s inequality shows that for any k ≥ n, E[M2
k ] ≤ E[Z2]. Consequently,

equation (1) implies the result. �

1.6 Recurrence of Possible Points

We now return to the question of when a general point x ∈ Zd is recurrent.
To illustrate the potential complications, consider the following simple ex-
ample.
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Example Suppose d = 1 and the X1, X2, . . . are independent, identically
distributed random variables taking the values ±2 with probability 1

2 each.
Let S = (Sk; k ≥ 1) denote the random walk whose increments are
X1, X2, . . .; i.e., Sn = X1 + · · · + Xn, for all n ≥ 1. It should be abso-
lutely clear that the point x = 1 is not recurrent. In fact, odd values can
never be visited by S, and even values can. On the other hand, by the
central limit theorem, lim supn Sn = − lim infn Sn = +∞, almost surely. A
little thought reveals that for any even number x, there are infinitely many
n’s such that Sn = x. �

Exercise 1.6.1 Use the central limit theorem to show that, in the above
example, lim supn Sn = − lim infn Sn = +∞, a.s. �

In the previous example we constructed a random walk for which all
of the even numbers are recurrent, while the odd numbers can never be
reached. This property turns out to be typical. To explore this phenomenon
in greater depth, suppose S is a Zd-valued random walk. An x ∈ Zd is
possible if there exists an integer k ≥ 1 such that P(Sk = x) > 0. If x is
not possible, it is deemed impossible. Clearly, impossible points are not,
and can never be, visited. Therefore, any discussion of recurrence must be
reduced to the possible points. What do the possible points of a random
walk look like? Below is a prefatory result that will be elaborated upon in
the next section.

Lemma 1.6.1 The collection of all possible points of a Zd-valued random
walk is an additive semigroup of Zd.

Proof Suppose the random walk is denoted by S and x1, x2 ∈ Zd are
possible for S. By definition, there exist k1, k2 ∈ Zd such that pi = P(Ski =
xi) > 0 for i = 1, 2. Since P(Sk1+k2 − Sk1 = x2) = P(Sk2 = x2) = p2, by
the Markov property (Corollary 1.1.1),

P(Sk1+k2 = x2 + x1) ≥ P(Sk1 = x1, Sk1+k2 − Sk1 = x2) = p1p2 > 0.

This proves the lemma. �

The following is a very important exercise.

Exercise 1.6.2 Let S denote a random walk on Zd whose increment
process is X . We say that S is symmetric if X1 and −X1 have the same
distributions. Prove that whenever S is a symmetric random walk on Zd,
the set of its possible values forms an additive subgroup of Zd. In particular,
argue that the origin is always possible. �

Lemma 1.6.2 The collection of all recurrent points is an additive subgroup
of Zd. In particular, if there are any recurrent points, 0 is one of them.
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Proof We will show that whenever x and y are recurrent, so is x−y. Let τ
denote the first hitting time of y. That is, τ = inf(k ≥ 1 : Sk = y), where
inf ∅ = ∞. Thanks to the recurrence of y, τ is finite and Sτ = y, a.s.;
cf. Proposition 1.3.1. Consequently, the strong Markov property (Theorem
1.2.1) implies the following (why?):

P(Sk = x− y for infinitely many k ≥ 1)
= P(Sk+τ − Sτ = x− y for infinitely many k ≥ 1)
= P(Sk+τ = x for infinitely many k ≥ 1)
= P(Sk = x for infinitely many k ≥ 1),

which is equal to one, thanks to the recurrence of x, together with Propo-
sition 1.3.1. This completes our proof. �

Theorem 1.6.1 Suppose S is a Zd-valued random walk. If x ∈ Zd is pos-
sible and y ∈ Zd is recurrent, x−y is recurrent. In particular, the following
are equivalent:

(i) 0 is recurrent;

(ii) all possible points x are recurrent with probability one.

Note that the condition (ii) subsumes the assumption that x is possible
and that Theorem 1.6.1 extends Lemma 1.6.2.

Proof To begin, let us argue that the first assertion of the theorem implies
the equivalence of (i) and (ii). Suppose (ii) holds, first. Then, for any pos-
sible point x, 0 = x− x is recurrent, by the first assertion of the theorem,
thus proving (i). Conversely, if (i) holds, by the first assertion of the theo-
rem and by Lemma 1.6.2, for any possible point x, x = x− 0 is recurrent.
We have shown that (i) ⇔ (ii) and are left to verify that for all possible
points x and all recurrent points y, x− y is recurrent. Holding such x and
y fixed, define σ1 = inf(k ≥ 1 : Sk = y), σ2 = inf(k ≥ K0 + τ1 : Sk = y),
. . ., where K0 is a fixed constant that is to be chosen later on in this
proof. (For now, you can think of K0 = 1, in which case σj denotes the
jth time the random walk hits y.) In general, for all j ≥ 1, we define
σj+1 = inf(k ≥ K0 + σj : Sk = y), where inf ∅ = ∞, as usual. Since y is
recurrent, σj < ∞ for all j ≥ 1, with probability one. Now we define the
events E1,E2, . . . as

En =
(
Sk = x for some σn < k < σn+1

)
, n ≥ 1.

As k varies between σn and σn+1, the process Sk makes a loop, starting
from y and ending at y. This loop is called an excursion from y, and En

denotes the event that in the nth excursion from y, the random walk hits
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x at some point. Equivalently,

En =
(
Sk+σn − Sσn = x− y for some 1 ≤ k ≤ σn+1 − σn

)
.

You should check that as a consequence of the strong Markov property,
E1,E2, . . . are independent events and all have the same probability P(E1);
cf. Theorem 1.2.1. Now is the time to choose K0. Since x is possible, by
choosing K0 large enough, we can ensure that P(E1) > 0. (Why?) Thus,
by the Borel–Cantelli lemma, P(En infinitely often) = 1. In particular, x is
recurrent and, thanks to Lemma 1.6.2, so is x− y, as desired. �

1.7 Recurrence–Transience Dichotomy

Let S denote a Zd-valued random walk and P denote the collection of its
possible values. According to Theorem 1.6.1, either all x ∈ P are recurrent
or they are all transient. This is the recurrence–transience dichotomy.
The impossible values, of course, are never visited and have no effect on the
structure of the random walk. On the other hand, at least in the presence of
some recurrent values, all elements of P are recurrent and P is an additive
group (Lemma 1.6.2 and Theorem 1.6.1).

Thus, when P 
= ∅, we can view S as a Markov chain on the group
P . A little group theory will show that quite a bit more is true. Indeed,
recall that Zd is a free abelian group.1 Since all subgroups of free abelian
groups are free abelian,2 Lemma 1.6.1 shows that P is itself a free abelian
group. If k ∈ {1, . . . , d} denotes the rank of P , then P is isomorphic to Zk

(why an isomorphism and not just a homomorphism?). For us, this means
that there exists a k × k invertible matrix A such that AP = Zk. Since
Sn ∈ P , a.s. for all n ≥ 1, AS =

(
ASn; n ≥ 1

)
is a random walk on

Zk and all points in Zk are possible for this walk. Since A−1 exists, all
statements about the P -valued Markov chain S translate to statements for
the Zk-valued random walk AS, and vice versa. Thus, it is no essential loss
in generality to assume that S is itself a Zd-valued random walk for which
all points in Zd are possible.

1Let G be a class of groups. Consider some G ∈ G whose generator is the set g =
{xi; i ∈ I}. Recall that G is freely generated by g (within the class G) if for any group
G′ ∈ G that is generated by {yi; i ∈ I}, the map xi �→ yi extends to a homomorphism
(i.e., operation-preserving) G → G′. The cardinality of I is the rank of G, and G is free
within G. A free abelian group is a group that is free within the class of all abelian
groups. While general free groups do not have much rank structure in a “dimensional”
sense, free abelian groups do.

2This is an immediate consequence of the free abelian group theorem: Each subgroup
of a free abelian group is itself a free abelian group. (Why is it a consequence?) See
Kargapolov and Merzljakov (1979, Theorem 7.1.4, Chapter 3),
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Proposition 1.7.1 Suppose S is a Zd-valued random walk and let ϕ de-
note the characteristic function of the increments ϕ(ξ) = E[eiξ·X1 ], ξ ∈ Rd.
Then,

∞∑
k=1

P(Sk = 0) = (2π)−d lim
λ↑1

∫
[−π,π]d

Re
( ϕ(ξ)

1 − λϕ(ξ)

)
dξ.

Combining the above with Theorem 1.6.1, we conclude the following.

Corollary 1.7.1 Suppose S is a Zd-valued random walk for which
all points are possible. Let ϕ denote the characteristic function of
the increments of S. Then, all x ∈ Zd are transient, a.s., unless
limλ↑1

∫
[−π,π]d

Re{1 − λϕ(ξ)}−1 dξ < ∞, in which case all points are re-
current, a.s.

Bearing in mind the discussion in the beginning of this subsection, what
the above states is that for any random walk on Zd, either all possible
points are recurrent, or all possible points are transient (why?). In the lat-
ter case, we say that the random walk is recurrent and in the former case,
transient. It is important to point out that if S is a transient walk for
which all points are possible, then with probability one, limn→∞ |Sn| = ∞.
The converse also holds, as the following shows.

Exercise 1.7.1 S is transient if and only if |Sn| → ∞, a.s. �
Proof of Proposition 1.7.1 By the inversion theorem of Fourier analysis
on the torus (or by the inversion theorem for discrete random variables),
for all k ≥ 1, P(Sk = 0) = (2π)−d

∫
[−π,π]d

{ϕ(ξ)}k dξ. Thus, for all λ ∈ ]0, 1[,

∞∑
k=1

λkP(Sk = 0) = (2π)−dλ

∫
[−π,π]d

Re
( ϕ(ξ)

1 − λϕ(ξ)

)
dξ,

since the left-hand side is real-valued. (Check this calculation!) To finish,
simply let λ ↑ 1. �

In fact, the following (surprisingly) subtle fact holds:3

lim
λ↑1

∫
[−π,π]d

Re
( ϕ(ξ)

1 − λϕ(ξ)

)
dξ =
∫

[−π,π]d
Re
( ϕ(ξ)

1 − ϕ(ξ)

)
dξ.

We will not have need for this.

3Cf. Ornstein (1969) and Stone (1969). For a more complete result, see Port and
Stone (1971b, Theorem 16.2).
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2 Intersection Probabilities

A collection ofN (≥ 2) independent Zd-valued random walks S1, S2, . . . , SN

are said to intersect if there exists t ∈ NN such that S1
t(1)

= · · · = SN
t(N) .

If we think of Si
k as the position of particle i at time k, then S1, . . . , SN

intersect if and only if the particle trajectories cross at some point. It
should be recognized that such intersections are different from the colli-
sions of S1, . . . , SN . The latter happens when there exists k ∈ N such that
S1

k = S2
k = · · · = SN

k . In words, S1, . . . , SN intersect if the trajectories of
S1, . . . , SN intersect, while they collide if the particles S1

k, . . . , S
N
k collide

at some time k.
In light of the development in Section 1, collision problems are simpler

to analyze. For instance, two independent random walks S1 and S2 collide
infinitely often if and only if 0 is recurrent for the random walk k �→ S1

k−S2
k.

In this section we study the more intricate problem of intersections of
independent random walks.

Define the multiparameter ZdN -valued process S =
(
St; t ∈ NN

)
by

St = (S1
t(1) , . . . , S

N
t(N)), t ∈ NN .

This means that the first d coordinates of St match those of S1
t(1)

, the second
d coordinates of St are the coordinates of S2

t(2)
, and so on. It is apparent

that for any m ≥ 1 (finite or infinite) the ranges of S1, . . . , SN intersect m
times if and only if S hits the diagonal of ZNd m times. If we write any
x ∈ ZNd as x = (x1, . . . , xN ) with xi ∈ Zd, then the diagonal of ZNd is the
set diag(ZNd) = {x ∈ ZNd : x1 = · · · = xN}. In direct product notation,
we can write x ∈ ZNd as x = x1 ⊗ · · · ⊗ xN , where xi ∈ Zd. (For example,
(1, 2, 3, 4) = (1, 2) ⊗ (3, 4) = 1 ⊗ 2 ⊗ 3 ⊗ 4.) Since St = S1

t(1)
⊗ · · · ⊗ SN

t(N) ,
we sometimes write the stochastic process S as S = S1 ⊗ · · · ⊗ SN and
refer to S1, . . . , SN as the coordinate processes of S. To write things
more explicitly, consider N = 2. Then, S = S1 ⊗ S2 is a two-parameter
process defined by S(i,j) = (S1

i , S
2
j ), i, j ≥ 1. This means that the first d

coordinates of S(i,j) are the d coordinates of S1
i , and the next d coordinates

of S(i,j) are those of S2
j .

Henceforth, we will assume that all points are possible for S1, . . . , SN . See
Section 1.7 for a discussion of this assumption and how it can be essentially
made without loss of generality.

2.1 Intersections of Two Walks

Let S1 and S2 denote two independent random walks on Zd and let S =
S1 ⊗ S2 denote the associated 2-parameter process. We are interested in
knowing when S hits the diagonal of Z2d finitely often. In other words,
we ask, “when is

∑∞
j=n

∑∞
k=m 1l(S1

j =S2
k) finite for all choices of n,m ≥ 1?”

At the time of writing this book, this question seems unanswerable for
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completely general walks S1 and S2. However, we will give a comprehensive
answer when S1 and S2 are both symmetric, i.e., when S1

j (respectively
S2

j ) has the same distribution as −S1
j (respectively −S2

j ) for all j ≥ 1; cf.
Exercise 2.1.3 below for a further refinement.

According to the recurrence–transience dichotomy (Corollary 1.7.1 and
its proceeding discussion ), S1 is either recurrent or transient, a.s. First,
we address the easy case where S1 (or equivalently, S2) is recurrent.

Lemma 2.1.1 If either of S1 or S2 is recurrent, then with probability one,
there are infinitely many intersections.

Exercise 2.1.1 Prove Lemma 2.1.1. �
According to Lemma 2.1.1, in our study of the intersections of S1 and

S2 we can confine ourselves to the transient case.

Henceforth, S1 and S2 are symmetric walks, and S1
0 = S2

0 = 0.

Consider the function

Gλ(a, b) = E
[ ∞∑

j=0

∞∑
k=0

λj+k1l(S1
j +a=S2

k+b)

]
, λ ∈ ]0, 1[, a, b ∈ Zd. (1)

Theorem 2.1.1 Suppose S1 and S2 are symmetric, independent, transient
random walks in Zd. Then, the following are equivalent:

(i) limλ↑1Gλ(0, 0) = +∞;

(ii) P(
∑∞

j=1

∑∞
k=1 1l(S1

j =S2
k
) < ∞) > 0;

(iii) P(
∑∞

j=1

∑∞
k=1 1l(S1

j =S2
k) < ∞) = 1; and

(iv)
∑∞

j=1

∑∞
k=1 P(S1

j = S2
k) < ∞.

The following technical lemma lies at the heart of Theorem 2.1.1 and
seems to require symmetry.

Lemma 2.1.2 Let ϕ1 and ϕ2 denote the characteristic functions of the
increments of S1 and S2, respectively. Then, for all λ ∈ ]0, 1[,

sup
a,b∈Zd

Gλ(a, b) = Gλ(0, 0).

Proof By the inversion formula for characteristic functions,

P(S1
j + a = S2

k + b) = (2π)−d

∫
[−π,π]d

e−iξ·(b−a)E[eiξ·S1
j ] E[e−iξ·S2

k ] dξ

= (2π)−d

∫
[−π,π]d

e−iξ·(b−a){ϕ1(ξ)}j{ϕ2(−ξ)}k dξ

= (2π)−d

∫
[−π,π]d

e−iξ·(b−a){ϕ1(ξ)}j{ϕ2(ξ)}k dξ.
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In the last line, symmetry is used. Therefore,

Gλ(a, b) = (2π)−d

∫
[−π,π]d

e−iξ·(b−a) 1
1 − λϕ1(ξ)

1
1 − λϕ2(ξ)

dξ. (2)

On the other hand, −1 ≤ ϕ1(ξ), ϕ2(ξ) ≤ 1, which implies that {1 −
λϕ1(ξ)}−1 × {1 − λϕ2(ξ)}−1 is nonnegative. Since |e−iξ·(b−a)| ≤ 1, the
lemma follows. �

It may be helpful to note that the one-parameter version of this lemma
always holds:

Exercise 2.1.2 Suppose S is a random walk on Zd with S0 = 0, and
define for all λ ∈ ]0, 1[, Gλ(a) = E[

∑∞
k=0 λ

k1l(Sk=a)]. Prove that even if S is
not symmetric, Gλ(a) ≤ Gλ(0) for all a ∈ Zd and all λ ∈ ]0, 1[.
(Hint: Consider the first hitting time of a.) �
Proof of Theorem 2.1.1 It is clear that (iii) ⇒ (ii). Conversely, it is not
hard to check that (ii) ⇒ (iii), thanks to the Hewitt–Savage 0-1 law; cf.
Exercise 1.7.5, Chapter 1. Since (i) ⇔ (iv) ⇒ (iii) is clear, it remains to
prove that if (iv) fails, then so will (iii).

Define for all n ≥ 1,

Jλ =
∞∑

j=0

∞∑
k=0

λj+k1l(S1
j =S2

k).

Note that E[Jλ] = Gλ(0, 0); cf. equation (2).
Since (iv) is assumed to fail, limλ↑1 E[Jλ] = +∞. Our strategy, then, is

to show the existence of a nontrivial constant A1 such that

E[J2
λ] ≤ A1

(
E[Jλ]
)2
, λ ∈ ]0, 1[. (3)

Assuming this, we can finish our proof: Apply equation (3) and the Paley–
Zygmund lemma (Lemma 1.4.1) to see that

P
(

sup
λ∈ ]0,1[

Jλ = +∞
)
≥ lim

λ↑1
P
(
Jλ ≥ 1

2E[Jλ]
)
≥ A−1

1 ,

which is positive. Thus, it remains to verify equation (3).
We can write E[J2

λ] ≤ 2(T1 + T2), where

T1 =
∑∑

i≤i′

∑∑
j≤j′

λi+i′+j+j′P(S1
i = S2

j , S
1
i′ = S2

j′),

T2 =
∑∑

i≤i′

∑∑
j′≤j

λi+i′+j+j′P(S1
i = S2

j , S
1
i′ = S2

j′).
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(Why?) Next, we write T1 = T11 + T12 + T13, where

T11 =
∑∑

i<i′

∑∑
j<j′

λi+i′+j+j′P(S1
i = S2

j , S
1
i′ = S2

j′),

T12 =
∞∑

i=0

∑∑
j<j′

λ2i+j+j′ P(S1
i = S2

j = S2
j′),

T13 =
∞∑

j=0

∑∑
i<i′

λi+i′+2jP(S1
i = S2

j = S1
i′).

Similarly, we write T2 = T21 + T12 + T13, where

T21 =
∑∑

i<i′

∑∑
j′<j

λi+i′+j+j′P(S1
i = S2

j , S
1
i′ = S2

j′ ).

We now estimate the Tij ’s in turn.
By the Markov property,

T11 =
∑∑

i<i′

∑∑
j<j′

λi+i′+j+j′P(S1
i = S2

j )P(S1
i′−i = S2

j′−j)

=
∑∑

i<i′

∑∑
j<j′

λ2i+2j+(i′−i)+(j′−j)P(S1
i = S2

j )P(S1
i′−i = S2

j′−j)

≤
(
E[Jλ]
)2
.

On the other hand,

T12 ≤
∞∑

i=0

∑∑
j<j′

λi+j+j′P(S1
i = S2

j )P(S2
j′−j = 0) ≤ A2E[Jλ],

where A2 =
∑∞

i=0 P(S2
i = 0). Of course, since S2 is transient, A2 < +∞;

cf. Theorem 1.4.1. In similar fashion we obtain T13 ≤ A3E[Jλ], where A3 =∑∞
i=0 P(S1

i = 0) is finite as well. Since we have assumed (iv) of the theorem,
our job is complete, once we show that there exists a nontrivial constant
A4 such that for all n ≥ 1,

T21 ≤ A4

(
E[Jλ]
)2
. (4)

Indeed, from this, equation (3), and hence the theorem, follows.
We observe that T21 equals∑∑
i<i′

∑∑
j′<j

λi+i′+j+j′P
(
S1

i = S2
j′ + [S2

j − S2
j′ ] , S

1
i + [S1

i′ − S1
i ] = S2

j′
)

=
∑∑

i<i′

∑∑
j′<j

λi+i′+j+j′P
(
S1

i = S2
j′ + S̄2

j−j′ , S
1
i + S̄1

i′−i = S2
j′
)
,
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where (S̄1
u, S̄

2
v) is an independent copy of (S1

u, S
2
v) for any two integers

u, v ≥ 1. This is a consequence of the Markov property; cf. Corollary 1.1.1.
Consequently,

T21 =
∑∑

i<i′

∑∑
j′<j

λi+i′+j+j′P
(
S1

i = S2
j′ + S̄2

j−j′ , S̄
1
i′−i = S̄2

j−j′
)

≤
∞∑

i=0

∞∑
j=0

∞∑
u=0

∞∑
v=0

λi+j+u+vP
(
S1

i = S2
j + S̄2

v , S̄
1
u = −S̄2

v

)
=

∞∑
u=0

∞∑
v=0

λu+vE
[
Gλ(0, S̄2

v)1l(S̄1
u=−S̄2

v)

]
,

by independence and by equation (1). Thanks to Lemma 2.1.2,

T21 ≤ Gλ(0, 0)
∞∑

u=0

∞∑
v=0

λu+vP(S1
u = −S2

v)

= E[Jλ]
∞∑

u=0

∞∑
v=0

λu+vP(S1
u = −S2

v)

=
(
E[Jλ]
)2
.

To follow up, the first line follows from the fact that (S̄1
u, S̄

2
v) has the same

distribution as (S1
u, S

2
v). The second line is from the definition of Jλ, and

the third line follows from the symmetry hypothesis of the theorem. This
verifies equation (4) and completes our task. �

Exercise 2.1.3 A characteristic function ϕ, on Rd, is said to satisfy the
sector condition if there exists a constant A > 0 such that

|Imϕ(ξ)| ≤ A
{
1 + |Reϕ(ξ)|

}
, ξ ∈ Rd.

Suppose S1 and S2 are independent random walks on Zd, whose increments
have characteristic functions that satisfy the sector condition. Prove that
Theorem 2.1.1 remains valid in this setting. �

Theorem 2.1.1 states that, under the given conditions, the trajectories4

of S1 and S2 intersect infinitely many times if and only if
∑

j,k≥1 P(S1
j =

S2
k) = ∞. By a summability argument (see the described proof of Proposi-

tion 1.7.1), the latter can be written as follows.

Proposition 2.1.1 We have
∞∑

j,k=1

P(S1
j = S2

k) = (2π)−d lim
λ↑1

∫
[−π,π]d

ϕ1(ξ)
1 − λϕ1(ξ)

ϕ2(ξ)
1 − λϕ2(ξ)

dξ.

4Throughout this book, the trajectories of a stochastic process (Xt; t ∈ T ) are the
realizations of the (random) function t �→ Xt, for any index set T .
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Exercise 2.1.4 Verify Proposition 2.1.1. �

2.2 An Estimate for Two Walks

Let S1 and S2 be two independent Zd-valued random walks. According
to Theorem 2.1.1, we can conclude that

∑
j,k≥1 P(S1

j = S2
k) < ∞ is a

necessary and sufficient condition for

lim
n,m→∞P(S1

j = S2
k for some (j, k)�(n,m)) = 0,

provided that the random walks are symmetric. We now explore the rate
at which the above probability tends to 0, under the extra condition that
there exists C0 such that whenever P(S1

i = S2
j ) > 0,

P(S1
i = S2

j + a) ≤ C0P(S1
i = S2

j ). (1)

This is a unimodality-type condition and is verified, for instance, when S1

and S2 are so-called simple random walks; cf. Section 3.

Theorem 2.2.1 Suppose S1 and S2 are two symmetric and independent
Zd-valued random walks that satisfy condition (1). If

∑
j,k≥1 P(S1

j = S2
k) <

∞, there exist nontrivial constants C1 and C2 such that for all n,m ≥ 1,

C1

∞∑
j=n

∞∑
k=m

P(S1
j = S2

k) ≤ P(S1
j = S2

k for some (j, k)�(n,m))

≤ C2

∞∑
j=n

∞∑
k=m

P(S1
j = S2

k).

Proof Define for all n,m ≥ 1,

Jn,m =
∞∑

j=n

∞∑
k=m

1l(S1
j =S2

k).

Arguing as we did in Theorem 2.1.1, we can show that there exist nontrivial
constants C3 and C4 such that for all n,m ≥ 1, E[J2

n,m] ≤ C3(E[Jn,m])2 +
C4E[Jn,m]; this uses (1), as well as symmetry. Since E[Jn,m] goes to zero as
n,m→ ∞, we can deduce the existence of a finite constant C1 such that

E[J2
n,m] ≤ E[Jn,m]

C1
. (2)

The details are delegated to Supplementary Exercise 6. By the Paley–
Zygmund lemma (Lemma 1.4.1),

P(Jn,m > 0) ≥ C1E[Jn,m],
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which is the desired probability lower bound.
To demonstrate the corresponding upper bound, for all n,m ≥ 1, let

Fn,m define the σ-field generated by ((S1
i , S

2
j ); 1 ≤ i ≤ n, 1 ≤ j ≤ m). By

Exercise 3.4.2 of Chapter 1, F = (Fn,m; n,m ≥ 1) is a commuting filtration
in the sense of Chapter 1. Fix (n,m) ∈ N2 and define

Mp,q = E(Jn,m |Fp,q), (p, q)�(n,m).

By the Markov property (Corollary 1.1.1),

Mp,q ≥
∞∑

i=p

∞∑
j=q

P(S1
i = S2

j |Fp,q)1l(S1
p=S2

q)

=
{ ∞∑

i=1

∞∑
j=1

P(S1
i+p − S1

p = S2
j+q − S2

q |Fp,q) + 1
}
1l(S1

p=S2
q)

=
{ ∞∑

i=1

∞∑
j=1

P(S1
i = S2

j ) + 1
}
1l(S1

p=S2
q)

=
√

16
C2C1

1l(S1
p=S2

q).

(This defines C2.) It is clear that M = (Mt; t ∈ N2) is a two-parameter
martingale with respect to the (commuting) filtration F. Thus, by Cairoli’s
strong (2, 2) inequality (Theorem 2.3.1 and Corollary 3.5.1 of Chapter 1),

P(S1
q = S2

q for some (p, q)�(n,m)) ≤ C2C1

16
E
[

sup
(p,q)�(n,m)

M2
p,q

]
≤ C2C1E[J2

n,m].

The probability upper bound follows from this and equation (1). �

2.3 Intersections of Several Walks

We are ready to consider the general problem of when and how often N
independent random walks in Zd intersect, when N ≥ 2 is an arbitrary
integer. This will be achieved by extending the two-parameter methods of
Section 2.1 to N parameters.

Let S1, . . . , SN denote N independent Zd-valued random walks. The fol-
lowing can be proved in complete analogy to Lemma 2.1.1.

Lemma 2.3.1 If any one of the coordinate processes is recurrent and if the
trajectories of the remaining N − 1 coordinate processes intersect infinitely
many times, then for all t ∈ NN ,

∑
s� t 1l(S1

s(1)=···=SN

s(N))
= ∞, almost

surely.
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Exercise 2.3.1 Prove Lemma 2.3.1. �
In particular, we need to consider only the case where all of the coordinate

processes are transient. By Theorem 1.4.1, this happens precisely when∑∞
k=1 P(Si

k = 0) < ∞, for all i = 1, . . . , N , a condition that we will assume
tacitly from now on.

Let S1
0 = · · · = SN

0 = 0 and define the N -variable version of equation (1)
of Section 2.2 as

Gλ(a1, . . . , aN )
= E
[ ∑

· · ·
∑

0≤i1,...,iN

λi1+···+iN 1l(S1
i1

+a1=S2
i2

+a2=···=SN
iN

+aN )

]
, (1)

where a1, . . . , aN ∈ Zd and λ ∈ ]0, 1[. One can prove the following.

Proposition 2.3.1 Suppose S1, . . . , SN are N symmetric and indepen-
dent Zd-valued random walks whose increments have characteristic func-
tions ϕ1, . . . , ϕN , respectively. Then, Gλ(a1, . . . , aN ) ≤ Gλ(0, . . . , 0) for all
a1, . . . , aN ∈ Zd. Moreover,

Gλ(0, . . . , 0) = (2π)−d(N−1)

∫
[−π,π]d(N−1)

F (ξ;λ) dξ,

where for all ξ ∈ [−π, π]d(N−1) and all λ ∈ ]0, 1[,

F (ξ;λ) =
1

1 − λϕ1
(
−
∑N−1

�=1 ξ(�)
) · N−1∏

j=2

1
1 − λϕj(ξ)

.

Exercise 2.3.2 Prove Proposition 2.3.1. �

Theorem 2.3.1 Suppose S1, . . . , SN are symmetric, independent, Zd-
valued, transient random walks. Then, the following are equivalent:

(i) With positive probability,
∑

t∈NN 1l(S1
t(1)

=···=SN

t(N))
<∞;

(ii) With probability one,
∑

t∈NN 1l(S1
t(1)

=···=SN

t(N) )
<∞; and

(iii)
∑

t∈NN P(S1
t(1)

= · · · = SN
t(N)) < ∞.

We provide only a sketch of the proof.

Sketch of Proof In light of the presented proof of Theorem 2.1.1, (iii) ⇒
(ii) ⇔ (i) follows readily; it remains to show that if (iii) fails, then so does
(ii).

For all n ≥ 1, define

Jλ =
∑

s∈NN
0

λs(1)+···+s(N)
1l(S1

s(1)=···=SN

s(N))
, λ ∈ ]0, 1[.



88 3. Random Walks

Our goal is to show that if (iii) fails, supλ∈ ]0,1[ Jλ = ∞, with positive
probability. It is this argument that we merely sketch. Since limλ↑1 E[Jλ] =
+∞, it suffices to exhibit a finite C1 such that E[J2

λ] ≤ C1(E[Jλ])2 for all
λ ∈ ]0, 1[. Once this is accomplished, the remainder of our argument follows
our proof of Theorem 2.1.1 quite closely.

Clearly,

E[J2
λ] =
∑∑
i1,i′1≥0

· · ·
∑∑
iN ,i′N≥0

λ
∑N

�=1(i�+i′�)P
(
S1

i1 = · · · = SN
iN
, S1

i′1
= · · · = SN

i′N

)
.

Let us consider the contribution to the above when i1 = i′1:
∞∑

i1=0

∑∑
i2,i′2≥0

· · ·
∑∑
iN ,i′N≥0

λ2i1+
∑N

�=2(i�+i′�)

×P
(
S1

i1 = S2
i2 = · · · = SN

iN
, S1

i1 = S2
i′2

= · · · = SN
i′N

)
≤ (N − 1)!

∞∑
i1=0

∑∑
0≤i2≤i′2

· · ·
∑∑
0≤iN≤i′N

λ
∑N

�=1 i�+
∑N

�=2(i
′
�−i�)

×P
(
S1

i1 = · · · = SN
iN

) N∏
�=2

P(S�
i′�−i�

= 0)

≤ C2E[Jλ],

for some finite constant C2 that is independent of λ ∈ [0, 1]. By symmetry,

E[J2
λ] ≤ C3E[Jλ] +

∑∑
0≤i1,i′1
i1 	=i′1

· · ·
∑∑
0≤iN ,i′N
iN 	=i′N

λ
∑N

�=1 i�+
∑N

�=2(i
′
�−i�)Q,

where Q = P(S1
i1 = · · · = SN

iN
, S1

i′1
= · · · = SN

i′N
). A little thought shows

that, over the range in question,

Q = P

S1
i1∧i′1

+ S̄1
i1−(i1∧i′1) = · · · = SN

iN∧i′N
+ S̄N

iN−(iN∧i′N )

and
S1

i1∧i′1
+ S̄1

i′1−(i′1∧i1) = · · · = SN
iN∧i′N

+ S̄N
i′N−(i′N∧iN )

 ,
where (S1

u(1) , . . . , S
N
u(N)) and (S̄1

u(1) , . . . , S̄
N
u(N)) are independent copies of

one another for each u ∈ NN . Solving, we get

Q ≤ P

S1
i1∧i′1

+ S̄1
i1−(i1∧i′1) = · · · = SN

iN∧i′N
+ S̄N

iN−(iN∧i′N )

and
|S̄1

|i′1−i1|| = · · · = |S̄N
|i′N−iN ||

 .
The rest of the proof follows from changing variables (j� = |i′� − i�|) and
follows the N = 2 argument very closely, except that we now use Proposi-
tion 2.3.1 in place of Lemma 2.1.2. �
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2.4 An Estimate for N Walks

We consider the problem of the previous subsection in the case where the
number of intersections is finite, almost surely. Under the hypotheses of
Theorem 2.3.1, this is to say that

∑
t∈NN P(S1

t(1)
= · · · = SN

t(N)) < ∞.
The question that we address now is, how large is P(S1

s(1) = · · · =
SN

s(N) for some s� t) when t ∈ NN is large, coordinatewise? When N = 2,
this was achieved in Theorem 2.2.1; the general case follows under the fol-
lowing unimodality analogue of equation (1) of Section 2.2: There exists a
finite constant C0 such that

sup
a1,...,aN∈Zd

P(S1
i1 + a1 = · · · = SN

iN
+ aN ) ≤ C0P(S1

i1 = · · · = SN
iN

), (1)

as long as the right-hand side is positive.

Theorem 2.4.1 Suppose S1, . . . , SN are independent Zd-valued random
walks and for all t ∈ NN , let ψ(t) = P(S1

t(1)
= · · · = SN

t(N)), and assume
that these walks satisfy condition (1) above. If

∑
t∈NN ψ(t) < ∞, there exist

finite constants C1 and C2 such that for all t ∈ NN ,

C1

∑
s� t

ψ(s) ≤ P(S1
s(1) = · · · = SN

s(N) for some s� t) ≤ C2

∑
s� t

ψ(s).

One can prove this by finding a suitable N -parameter modification of
the two-parameter argument used to prove Theorem 2.2.1.

Exercise 2.4.1 (Hard) Prove Theorem 2.4.1. �

3 The Simple Random Walk

Nearest-neighborhood random walks on Zd are random walks that can move
only to the nearest point in Zd. Indeed, let (e1, . . . , ed) denote the usual ba-
sis for Rd. That is, for all i, j ∈ {1, . . . , d}, e(i)j equals 1 if i = j, and it equals
0 otherwise. Consider a Zd-valued random walk S = (Sk; k ≥ 1) with in-
crements X1, X2, . . . . We say that S is a nearest-neighborhood random
walk if with probability one, X1 ∈ {±e1, . . . ,±ed}. Nearest-neighborhood
random walks form some of the most common models for the motion of a
randomly moving particle. An important member of this family of random
walks is the simple random walk. A random walk S is said to be simple if
it is truly unbiased in its motion. More precisely, S is a simple random
walk if P(X1 = e1) = P(X1 = −e1) = · · · = P(X1 = ed) = P(X1 = −ed) =
(2d)−1. In this section we put the general theory of Section 2 to test by
way of explicit calculations.

Let us recall that for all x ∈ Rk, |x| = max1≤�≤k |x(�)| and ‖x‖ =
{
∑k

�=1 |x(�)|2} 1
2 denote the �∞ and �2 norms of x, respectively.
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3.1 Recurrence

We now wish to study the recurrence properties of a simple random walk
S in Zd with increments X1, X2, . . . . The following elementary result is a
first step in this direction.

Lemma 3.1.1 All points are possible for a simple random walk.

Exercise 3.1.1 Prove Lemma 3.1.1. �
Thus, according to Corollary 1.7.1, S is either recurrent or transient. In

order to decide which is the case, we first need a technical lemma.

Lemma 3.1.2 The integral
∫
[0,1]d

‖ξ‖−β dξ is finite if and only if β < d.

Proof Recall that ‖ξ‖ = {
∑N

j=1(ξ
(j))2} 1

2 , while |ξ| = max1≤j≤N |ξ(j)|.
The traditional approach to this sort of problem is to estimate the integral
in polar coordinates; we will do this in probabilistic language. First, note
that |ξ| ≤ ‖ξ‖ ≤ d

1
2 |ξ|. Therefore,

∫
[0,1]d

‖ξ‖−β dξ < ∞ if and only if∫
[0,1]d

|ξ|−β dξ < ∞. Let U be a random variable that is uniformly picked
on [0, 1]d. The problem is to decide when E{|U |−β} is finite. On the other
hand, a direct calculation shows that

∑
n≥1 P(|U |−β ≥ n) =

∑
n≥1 n

−d/β,
which is finite iff d > β. �

Theorem 3.1.1 Let S denote the simple random walk in Zd. Then S is
recurrent if d ≤ 2; otherwise, S is transient.

Proof Let ϕ denote the characteristic function of X1. It is easy to check
that

ϕ(ξ) =
1
d

d∑
�=1

cos(ξ(�)), ξ ∈ Rd. (1)

Since ϕ(ξ) ≥ 0 (and is, of course, real) for all ξ ∈ [−1, 1]d, we can apply
the bounded and monotone convergence theorems to Proposition 1.7.1 to
see that ∞∑

n=1

P(Sn = 0) = (2π)−d

∫
[−π,π]d

ϕ(ξ)
1 − ϕ(ξ)

dξ.

(Why?) Equivalently, we apply symmetry to deduce

1 +
∞∑

n=1

P(Sn = 0) = π−d

∫
[0,π]d

(
1 − 1

d

d∑
�=1

cos(ξ(�))
)−1

dξ.

By Theorem 1.4.1, it suffices to show that the above integral is finite if and
only if d ≥ 3. Owing to Taylor’s theorem with remainder, for all y there
exists a λ between 0 and y such that

cos(y) = 1 − y2

2
+
λ4

12
.
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Hence, for all y ∈ [0, 1],

1 − y2

2
≤ cos(y) ≤ 1 − y2

(1
2
− 1

12

)
= 1 − 5

12
y2. (2)

This, in turn, implies the inequality

2d
∫

[0,1]d
‖ξ‖−2 dξ ≤

∫
[0,1]d

(
1−1

d

d∑
�=1

cos(ξ(�))
)−1

dξ ≤ 12d
5

∫
[0,1]d

‖ξ‖−2 dξ.

Since d is an integer, by Lemma 3.1.2,
∫
[0,1]d(1 − d−1

∑d
�=1 cos(ξ(�)))−1 dξ

is finite if and only if d ≥ 3. Our proof is concluded once we show that∫
K(1−d−1

∑d
�=1 cos(ξ(�)))−1 dξ < ∞, where K = [0, π]d\[0, 1]d. To observe

this, note that whenever ξ ∈ K, there is at least one � ∈ {1, . . . , N} such
that cos(ξ(�)) ≤ cos(1). For such ξ’s, we can conclude that

1 − d−1
d∑

�=1

cos(ξ(�)) ≥ d−1[1 − cos(1)].

Since cos(1) < 1,∫
K

(
1 − 1

d

d∑
�=1

cos
(
ξ(�)
))−1

dξ ≤ d

1 − cos(1)
Leb(K). (3)

Clearly, Leb(K) ≤ πd < ∞, which proves the result. �

Theorem 3.1.1 is deeply related to the following:

Exercise 3.1.2 (Hard) If S denotes the simple walk in Zd, then there
exists a finite constant C > 1 such that for all n ≥ 1,

C−1n− d
2 ≤ P(S2n = 0) ≤ sup

a∈Zd

P(S2n = a) ≤ Cn− d
2 .

(Hint: Use the inversion theorem for characteristic functions and write
P(S2n = 0) as (2π)−

d
2
∫
[−π,π]d E[eiξ·S2n ] dξ. Use the fact that S has i.i.d.

increments and expand this integral near ξ = 0. Alternatively, look at
Durrett (1991) under “local central limit theorem.”) �

Exercise 3.1.3 Use Exercise 3.1.2, together with Theorem 1.4.1, to
construct an alternative proof of Theorem 3.1.1. �

3.2 Intersections of Two Simple Walks

Given two independent Zd-valued simple random walks, when do their
trajectories intersect infinitely often? In other words, if the random walks
are denoted by S1 and S2, when can we conclude that

∑
j,k≥1 1l(S1

j =S2
k) =

+∞?
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Theorem 3.2.1 Suppose S1 and S2 are independent simple random walks
in Zd. With probability one, the trajectories of S1 and S2 intersect infinitely
often if and only if d ≤ 4.

Proof When d ≤ 2, S1 and S2 are recurrent; cf. Theorem 3.1.1. By Lemma
2.1.1, we can assume with no loss of generality that d ≥ 3, i.e., that S1 and
S2 are transient. Let ϕ denote the characteristic function of the increments
of S1 and/or S2, since they have the same distribution. By Corollary 1.7.1,
limλ↑1

∫
[−π,π]d{1 − λϕ(ξ)}−1 dξ < ∞. Since ϕ(ξ) ≥ 0 for all ξ ∈ [−1, 1]d,

the bounded and monotone convergence theorems together show us that∫
[−π,π]d

1
1 − ϕ(ξ)

dξ < ∞.

Once again applying the bounded and monotone convergence theorems,
this time via Proposition 2.1.1, we obtain the following:

(2π)d
∞∑

j,k=1

P(S1
j = S2

k) =
∫

[−π,π]d

[ϕ(ξ)]2

{1 − ϕ(ξ)}2
dξ

=
∫

[−π,π]d
{1 − ϕ(ξ)}−2 dξ

−
∫

[−π,π]d
{1 + ϕ(ξ)}{1 − ϕ(ξ)}−1 dξ.

The second integral is finite. In fact, it is positive and bounded above by
2
∫
[−π,π]d{1 − ϕ(ξ)}−1 dξ < +∞. Thanks to symmetry and by Theorem

2.1.1, it suffices to show that
∫
[0,π]d{1 − ϕ(ξ)}−2 dξ < ∞ if and only if

d ≥ 5.
Following the demonstration of Theorem 3.1.1, we split the integral in

two parts: where ξ ∈ [0, 1]d and where ξ ∈ K = [0, π]d \ [0, 1]d. As
in the derivation of equation (3) of Section 3.1,

∫
K{1 − ϕ(ξ)}−2 dξ ≤

d2πd{1 − cos(1)}−2, which is always finite. It remains to show that∫
[0,1]d

{1 − ϕ(ξ)}−2 dξ is finite if and only if d ≥ 5.
Using equation (2) of Section 3.1,

(2d)2
∫

[0,1]d
‖ξ‖−4 dξ ≤

∫
[0,1]d

{1 − ϕ(ξ)}−2 dξ ≤
(12d

5

)2 ∫
[0,1]d

‖ξ‖−4 dξ.

We obtain the result from Lemma 3.1.2. �

The next question that we address is, when do three or more independent
simple random walks intersect infinitely many times? When d ≥ 5, the
above theorem states that the answer is never, a.s. On the other hand,
when d ≤ 2, Theorem 3.1.1 implies that the random walks in question
are recurrent; Lemmas 2.1.1 and 2.3.1 together show that any number of
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such random walks will intersect infinitely many times, a.s. Thus, the only
dimensions of interest are d = 3 and d = 4. In the next two subsections we
will study these in detail.

Exercise 3.2.1 Use Exercise 3.1.3 and Theorem 1.4.1 together to find
an alternative proof of Theorem 3.2.1. �

Exercise 3.2.2 Show that if S1 and S2 denote two independent simple
walks in Zd where d ≥ 5, there exists a finite constant C > 1 such that for
all n ≥ 1,

C−1n− 1
2 (d−4) ≤ P(S1

i = S2
j for some i, j ≥ n) ≤ Cn− 1

2 (d−4).

(Hint: Use Exercise 3.1.3 and Theorem 2.2.1.) �

3.3 Three Simple Walks

By Theorem 3.2.1 of the previous subsection, two independent Z4-valued
simple random walks will intersect infinitely many times. We now address
the problem for three such walks.

Theorem 3.3.1 Suppose S1, S2, and S3 are independent Zd-valued simple
random walks. The trajectories of S1, S2, and S3 will a.s. intersect infinitely
often if and only if d ≤ 3.

Our proof relies on two technical lemmas regarding the function Ed
β :

Rd → R+ that is defined as follows:

Ed
β(y) =

∫
ξ∈Rd:
‖ξ‖≤1

‖y − ξ‖−β‖ξ‖−β dξ, y ∈ Rd. (1)

Lemma 3.3.1 Suppose β < d < 2β. Then, there are two finite and positive
constants C1 and C2 that depend only on β and d such that for all y ∈ Rd

with ‖y‖ ≤ 1,
C1‖y‖d−2β ≤ Ed

β(y) ≤ C2‖y‖d−2β.

Proof Fix some y ∈ Rd with ‖y‖ ≤ 1. Evidently,

Ed
β(y) ≥

∫
‖ξ‖≤‖y‖

‖ξ − y‖−β · ‖ξ‖−β dξ.

Over the region of integration, ‖ξ − y‖ ≤ ‖ξ‖ + ‖y‖ ≤ 2‖y‖. Hence,

Ed
β(y) ≥ 2−β‖y‖−β

∫
‖ξ‖≤‖y‖

‖ξ‖−β dξ = 2d−β

∫
‖ζ‖≤1

‖ζ‖−βdζ · ‖y‖d−2β,
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which gives the desired lower bound with C1 = 2d−β
∫
‖ζ‖≤1 ‖ζ‖−βdζ. (By

Lemma 3.1.2, C1 is finite and positive.) Next, we proceed with the upper
bound. Write

Ed
β(y) = T1 + T2 + T3,

where

T1 =
∫
‖ξ−y‖≤ 1

2‖y‖
‖ξ‖≤1

‖ξ − y‖−β · ‖ξ‖−β dξ,

T2 =
∫
‖ξ−y‖> 1

2‖y‖
‖ξ‖≤2‖y‖∧1

‖ξ − y‖−β‖ξ‖−β dξ,

T3 =
∫
‖ξ−y‖> 1

2‖y‖
2‖y‖≤‖ξ‖≤1

‖ξ − y‖−β‖ξ‖−β dξ.

We estimate the above in order. When ‖ξ − y‖ ≤ 1
2‖y‖, by the triangle

inequality, ‖ξ‖ ≥ 1
2‖y‖. Thus,

T1 ≤ 2β‖y‖−β

∫
‖ζ‖≤ 1

2‖y‖
‖ζ‖−β dζ = 22β−d

∫
‖ζ‖≤1

‖ζ‖−β dζ ‖y‖d−2β.

By Supplementary Exercise 7,

T1 ≤ 22β−ddωd

d− β
‖y‖d−2β, (2)

where ωd denotes the d-dimensional Lebesgue measure of the ball {z ∈ Rd :
‖z‖ ≤ 1}. Similarly,

T2 ≤ 2β‖y‖−β

∫
‖ζ‖≤2‖y‖

‖ζ‖−βdζ = 2d

∫
‖ζ‖≤1

‖ζ‖−βdζ ‖y‖d−2β.

Another application of Supplementary Exercise 7 leads us to the bound

T2 ≤ 2ddωd

d− β
‖y‖d−2β. (3)

It remains to estimate T3. First, we note that if ‖ξ − y‖ ≥ 1
2‖y‖ and

‖ξ‖ ≥ 2‖y‖, then certainly ‖ξ − y‖ ≤ ‖ξ‖ + ‖y‖ ≤ 3
2‖ξ‖. Thus,

T3 ≤
(3

2

)β ∫
‖ξ−y‖≥ 1

2‖y‖
‖ξ − y‖−2β dξ

≤
(3

2

)β ∫
‖ζ‖> 1

2‖y‖
‖ζ‖−2βdζ

≤ 3β2−d‖y‖d−2β

∫
‖ζ‖>1

‖ζ‖−2β dζ.
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To finish, we are left to show that
∫
‖ζ‖>1 ‖ζ‖−2βdζ < ∞. This is easy to

do: Since d < 2β, by Supplementary Exercise 7,∫
‖ζ‖>1

‖ζ‖−2β dζ = dωd

∫ ∞

1

rd−1−2β dr =
dωd

2β − d
.

To summarize, we have shown that T3 ≤ 3β2−dωdd(2β − d)−1‖y‖d−2β.
Combining this with (3) and (4), we obtain Ed

β ≤ C2‖y‖d−2β with

C2 = dωd

{2d + 22β−d

d− β
+

3β2−d

2β − d

}
.

Since C2 is clearly finite and positive, this concludes our proof. �

Going over the above argument with some care, we can also decide what
happens when d = 2β.

Lemma 3.3.2 There exists a finite and positive constant C that depends
only on d such that for all y ∈ Rd with ‖y‖ ≤ 1, Ed

d
2
(y) ≤ C ln

(
4/‖y‖
)
.

Proof In the notation of our proof of Lemma 3.3.1, write Ed
d/2(y) = T1 +

T2 + T3. Since they still hold for d = 2β, equations (2) and (3) together
show that T1 + T2 ≤ C1 ≤ C1 ln(4/‖y‖), with C1 = (2d+1 + 2)ωd. Still
proceeding with our proof of Lemma 3.3.1 and using β = d

2 , we obtain,

T3 ≤
(3

2

) d
2
∫

2≥‖ξ‖≥ 1
2‖y‖

‖ξ‖−d dξ

= dωd

(3
2

) d
2
∫ 2

1
2‖y‖

r−1 dr

= dωd

(3
2

) d
2

ln
( 4
‖y‖

)
.

We have used Supplementary Exercise 7 once more and obtained the de-
sired result with C = C1 + (3

2 )
d
2 dωd. �

Exercise 3.3.1 Prove that Lemma 3.3.2 is sharp, up to a constant. That
is, prove that lim inf‖y‖→0+{ln(1/‖y‖)}−1Ed

β
2
(y) > 0. �

We are ready for the following.

Proof of Theorem 3.3.1 When d ≤ 2, the simple random walk is re-
current (Theorem 3.1.1). Thus, Lemmas 2.1.1 and 2.3.1 tell us that the
trajectories of S1, S2, and S3 intersect infinitely many times. (Why?) On
the other hand, if d ≥ 5, then by Theorem 3.2.1, the trajectories of S1 and
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S2 intersect only finitely many times. In particular, so do the trajectories
of S1, S2, and S3. Thus, it remains to focus our attention on d ∈ {3, 4}.

Let S = (2π)2d
∑∞

i,j,k=1 P
(
S1

i = S2
j = S3

k

)
. Thanks to Theorem 2.3.1, we

need to show that S < ∞ when d = 4 while S = ∞ when d = 3. In order
to do this, we begin with the identity

S = lim
λ↑1

∫
[−π,π]2d

ϕ(ξ1 + ξ2)
1 − λϕ(ξ1 + ξ2)

ϕ(ξ1)
1 − λϕ(ξ1)

ϕ(ξ2)
1 − λϕ(ξ2)

dξ1 dξ2.

(We have implicitly used the fact that ϕ is real-valued. Why?) While for
every ξ1, ξ2 ∈ [−1, 1]d, ϕ(ξ1), ϕ(ξ2) ≥ 0, it is not always true that ϕ(ξ1 +
ξ2) ≥ 0. To regain positivity, we split the above integral into two parts: Let
I1 denote the above integral taken over [− 1

2 ,
1
2 ]2d, and I2 the integral over

K = [−π, π]2d \ [− 1
2 ,

1
2 ]2d. We estimate I2 first. Since cosines are bounded

above by 1,

|I2| ≤ lim
λ↑1

∫
K

1
1 − λϕ(ξ1 + ξ2)

1
1 − λϕ(ξ1)

1
1 − λϕ(ξ2)

dξ1 dξ2.

Note that whenever ξ1, ξ2 ∈ K, then for all 1 ≤ � ≤ d,

(a) cos(ξ(�)1 + ξ
(�)
2 ) ≤ cos(1

2 ) < 1;

(b) cos(ξ(�)1 ) ≤ cos(1
2 ) < 1; and

(c) cos(ξ(�)2 ) ≤ cos(1
2 ) < 1.

Hence,
|I2| ≤ (2π)2d

{
1 − cos(1

2 )
}−3

<∞.

Thus, we need to show that |I1| is finite when d = 4 and is infinite when
d = 3. This is where positivity comes into play: If ξ1, ξ2 ∈ [− 1

2 ,
1
2 ]2d, then

ϕ(ξ1), ϕ(ξ2), and ϕ(ξ1 + ξ2) are all nonnegative. By the monotone conver-
gence theorem,

I1 =
∫

[− 1
2 , 1

2 ]2d

ϕ(ξ1 + ξ2)
1 − ϕ(ξ1 + ξ2)

ϕ(ξ1)
1 − ϕ(ξ1)

ϕ(ξ2)
1 − ϕ(ξ2)

dξ1 dξ2.

Moreover, if ξ ∈ [− 1
2 ,

1
2 ], then 0 < cos(1

2 ) ≤ cos(ξ) ≤ 1. We have arrived at
the bound {cos(1

2 )}3I ′1 ≤ I1 ≤ I ′1, where

I ′1 =
∫

[− 1
2 , 1

2 ]2d

(
1 − ϕ(ξ1 + ξ2)

)−1(1 − ϕ(ξ1)
)−1(1 − ϕ(ξ2)

)−2
dξ1 dξ2.

Since I ′1 ≥ 0, we want to show that I ′1 is finite if d = 4 but is infinite if
d = 3. By equations (1) and (2) of Section 3.1, (2d)3I ′′1 ≤ I ′1 ≤ (12d

5 )3I ′′1 ,
where

I ′′1 =
∫

[− 1
2 , 1

2 ]2d

‖ξ1 + ξ2‖−2‖ξ1‖−2‖ξ2‖−2 dξ1 dξ2.
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Our goal now is to show that I ′′1 is finite if d = 4 and is infinite if d = 3.
By Fubini’s theorem and symmetry,

I ′′1 =
∫

[− 1
2 , 1

2 ]2d

‖ξ1 − ξ2‖−2‖ξ1‖−2‖ξ2‖−2 dξ1 dξ2

≤
∫

[− 1
2 , 1

2 ]2d

Ed
2 (ξ1)‖ξ1‖−2 dξ1.

If d = 4, by Lemma 3.3.2 there exists a finite and positive constant C1 such
that

I ′′1 ≤ C1

∫
[−1,1]4

ln
( 4
‖ξ‖

)
‖ξ‖−2 dξ.

Since ln(4/‖ξ‖) ≤ 4/‖ξ‖ for all ξ ∈ R4 with ‖ξ‖ ≤ 1,

I ′′1 ≤ C1

∫
[−1,1]d

‖ξ‖−3 dξ,

which is finite, thanks to Lemma 3.1.2. If d = 3, by Lemma 3.3.2 there
exists a finite positive constant C2 such that

I ′′1 ≥ C2

∫
[− 1

2 , 1
2 ]3

‖ξ‖−3 dξ.

Since d = 3, Lemma 3.1.2 shows us that I ′′1 = ∞. This concludes our proof.
�

3.4 Several Simple Walks

Throughout, let us fix an integer N ≥ 4 and consider N independent simple
walks, S1, . . . , SN , all taking values in Zd. If d ≤ 2, such random walks are
recurrent (Theorem 3.1.1). By Lemma 2.1.1, when d ≤ 2, the trajectories
of S1, . . . , SN intersect infinitely often, a.s. Next, suppose d ≥ 4. In this
case, the trajectories of S1, S2, and S3 intersect finitely often, a.s. (Theorem
3.3.1). Therefore, the same holds for S1, . . . , SN . The only case that remains
to be analyzed is d = 3.

Theorem 3.4.1 The trajectories of four or more independent simple walks
in Z3 will almost surely intersect at most finitely many times.

Our proof is an imitation of those in the previous sections but requires
one more technical lemma.

Lemma 3.4.1 For all y ∈ R3 define

F (y) =
∫

ξ∈R3:
‖ξ‖≤1

‖ξ − y‖−1‖ξ‖−2 dξ.

Then, for all y ∈ R3 with ‖y‖ ≤ 1, F (y) ≤ 20π ln(4/‖y‖).
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Proof We follow closely the arguments used in the given proofs of Lemmas
3.3.1 and 3.3.2. Write F (y) = T1 + T2 + T3, where

T1 =
∫
‖ξ−y‖≤ 1

2‖y‖
‖ξ‖≤1

‖ξ − y‖−1‖ξ‖−2 dξ,

T2 =
∫
‖ξ−y‖> 1

2‖y‖
‖ξ‖≤2‖y‖∧1

‖ξ − y‖−1‖ξ‖−2 dξ,

T3 =
∫
‖ξ−y‖> 1

2‖y‖
2‖y‖≤‖ξ‖≤1

‖ξ − y‖−1‖ξ‖−2 dξ.

We estimate each as in the demonstrations of Lemmas 3.3.1 and 3.3.2. To
estimate T1, use ‖ξ − y‖ ≥ ‖y‖/2 to obtain

T1 ≤ 4‖y‖−2

∫
‖ξ−y‖≤ 1

2‖y‖
‖ξ − y‖−1 dξ‖ =

∫
‖r‖≤1

‖r‖−1dr.

By Supplementary Exercise 7, T1 ≤ 2π ≤ 2π ln(4/‖y‖). We have used the
elementary fact that ω3 = 4π

3 . Likewise,

T2 = 2‖y‖−1

∫
‖ξ‖≤2‖y‖

‖ξ‖−2 dξ = 4
∫
‖ξ‖≤1

‖ξ‖−2 dξ = 8π.

Since 8π ≤ 8π ln(4/‖y‖), it remains to show that T3 ≤ 9π ln(4/‖y‖). Use
‖ξ − y‖ ≤ 3‖ξ‖ to obtain

T3 ≤ 9
4

∫
1≥‖ξ−y‖≥ 1

2‖y‖
‖ξ − y‖−3 dξ ≤ 9

4

∫
2≥‖ζ‖≥ 1

2‖y‖
‖ζ‖−3dζ.

By Exercise 3.4.1 below this equals 9π ln(4/‖y‖), as desired. �

Exercise 3.4.1 For any ε ∈ ]0, 2[, compute
∫
2≥‖ζ‖≥ε

‖ζ‖−3 dζ. �

Exercise 3.4.2 Show that Lemma 3.4.1 is sharp, up to a constant. That
is, lim inf‖y‖→0+ F (y)/ ln(1/‖y‖) > 0. �

We are ready to prove the theorem.

Proof of Theorem 3.4.1 It suffices to consider only N = 4 and to show
that ∞∑

i,j,k,�=0

P(S1
i = S2

j = S3
k = S4

� ) < ∞,

where S1
0 = S2

0 = S3
0 = S4

0 = 0. However, symmetry and Proposition 2.3.1
together show that this is the same as showing that

lim
λ↑1

∫
[−π,π]9

ϕ(ξ1 + ξ2 + ξ3)
1 − λϕ(ξ1 + ξ2 + ξ3)

3∏
j=1

ϕ(ξj)
1 − λϕ(ξj)

dξ1 dξ2 dξ3 <∞.
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We split the above integral into two parts. Let I1 be the integral over
[− 1

3 ,
1
3 ]9 and I2 the integral over K = [−π, π]9 \ [− 1

3 ,
1
3 ]9. The same argu-

ment used to prove Theorem 3.3.1 goes through unhindered to show that

|I2| ≤ (2π)9
[
1 − cos(1

3 )
]−4

< ∞.

It suffices to show that I1 is finite. When ξi ∈ [− 1
3 ,

1
3 ]3 (i = 1, 2, 3), ϕ(ξi)

is positive (i = 1, 2, 3). Moreover, so is ϕ(ξ1 + ξ2 + ξ3). By the monotone
convergence theorem,

I1 =
∫

[− 1
3 , 1

3 ]9

ϕ(ξ1 + ξ2 + ξ3)
1 − ϕ(ξ1 + ξ2 + ξ3)

3∏
j=1

ϕ(ξj)
1 − ϕ(ξj)

dξ1 dξ2 dξ3

≤
∫ ∫ ∫

‖ξ1‖,‖ξ2‖,‖ξ3‖≤1

(
1 − ϕ(ξ1 + ξ2 + ξ3)

)−1
3∏

�=1

(
1 − ϕ(ξ�)

)−1
dξ1 dξ2 dξ3.

Employing equations (1) and (2) of Section 3.1, we deduce that I1 ≤ (36
5 )4J ,

where

J =
∫ ∫ ∫

‖ξ1‖,‖ξ2‖,‖ξ3‖≤1

‖ξ1 + ξ2 + ξ3‖−2‖ξ1‖−2‖ξ2‖−2‖ξ3‖−2 dξ1 dξ2 dξ3.

We propose to show that J <∞. Using symmetry and the definition of Ed
β

(equation (1) of Section 3.3),

J ≤
∫ ∫

‖ξ1‖,‖ξ2‖≤1

E3
2 (ξ1 + ξ2)‖ξ1‖−2‖ξ2‖−2 dξ1 dξ2.

Lemma 3.3.1 can be applied with d = 3 and β = 2 to show us the existence
of a positive and finite constant C such that J ≤ C

∫
‖ξ‖≤1

F (ξ)‖ξ‖−2 dξ.

By Supplementary Exercise 7, and by Lemma 3.4.1 above,

J ≤ 20πC
∫
‖ξ‖≤1

ln
( 4
‖ξ‖

)
‖ξ‖−2 dξ,

which is finite, by Supplementary Exercise 7. �

4 Supplementary Exercises

1. Show that the inequalities of Theorem 1.5.1 can be sharpened to the following:
P(Sk = 0 for some k ≥ n) = Qn{1 +Q1}−1, where Qn =

∑∞
n=1 P(Sj = 0).
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2. Refine an aspect of Exercise 3.1.2 by showing that when S denotes the simple

walk on Zd, limn→∞(2n)
d
2 P(S2n = 0) = (2π)−

d
2 .

This is a part of the local central limit theorem. You should compare this to
the classical central limit theorem of A. de Moivre and P.-S. Laplace by looking
at the density function of a mean-zero Gaussian random variable with the same
variance as S2n.

3. Let S denote a transient random walk on Zd with S0 = 0 and define Tx to
be the first time S hits x. That is, Tx = inf(k ≥ 0 : Sk = x). In the notation of
Section 1.4, show that E[RTx ] =

∑∞
k=0{P(Sk = 0) − P(Sk = −x)}.

(Hint: By transience, R∞ < ∞, a.s. Now we can write R∞ =
∑Tx−1

k=0 1l(Sk=0) +∑∞
k=Tx

1l(Sk=0) and use the strong Markov property.)

4. Show that for any random walk S on Zd and for all integers n, k ≥ 1, E[Rk
n] ≤

k!{E[Rn]}k. In particular, obtain the large deviation bound

P
( Rn

E[Rn]
≥ λ
)
≤ 1

1 − δ
e−δλ, λ > 0,

where δ is an arbitrary number strictly between 0 and 1.

5. (Mixing) Much of the theory for independent random variables goes through
with fewer hypotheses than independence. We explore one such possibility in this
exercise.

A sequence of random variables ξ1, ξ2, . . . is said to be ϕ-mixing if

sup
i≥1

sup
E∈F[i+n,∞[

F∈F[1,i]

∣∣∣P(E |F ) − P(E)
∣∣∣ ≤ ϕ(n),

where FA is the σ-field generated by {ξi; i ∈ A}, and limn→∞ ϕ(n) = 0. Note
that if the ξi’s are independent, then they are ϕ-mixing for any ϕ that vanishes
at infinity.

(i) Prove that the tail σ-field T = ∩nF[n,∞[ is trivial.

(ii) Show that whenever
∑

n ϕ(n) < +∞,

P(ξn = 0 infinitely often) =

{
0, if

∑∞
n=1 P(ξn = 0) < +∞,

1, if
∑∞

n=1 P(ξn = 0) = +∞.

6. Verify equation (1) of Section 2.3.

7. Suppose U is chosen uniformly at random from Dm = {ξ ∈ Rm : ‖ξ‖ ≤ 1}.
(i) Show that the density function of ‖U‖ at x ∈ [0, 1] is mxm−1.

(ii) Use the previous part to prove the following integration-by-parts formula:
For all integrable functions f : [0, 1] → [0, 1],∫

Dm

f(‖u‖) du = mωm ·
∫ 1

0

sm−1f(s) ds,

where ωm denotes Lebesgue’s (m-dimensional) measure of Dm.
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(iii) Show that

ωm =


mπ

m
2

(m/2)!
if m is even,

2
1
2 (m+1)π

1
2 (m−1)

1 · 3 · 5 · · · (m− 2)
, if m is odd and m > 1.

8. (Hard) Let S denote the simple walk on Z2 and let S0 = 0.

(i) When d = 1, use Supplementary Exercise 2 to deduce that with probability
one,

lim
n→∞

1

lnn

n∑
k=1

1l(Sk=0)

k
1
2

=
1

2
√

2π
.

(ii) Prove that when d = 2,

lim
n→∞

1

ln lnn

n∑
k=2

1l(Sk=0)

ln k
=

1

4π
.

This is due to Erdős and Taylor (1960a, 1960b).
(Hint: For part (i), start by proving that the expected value of the limit theorem
holds. Then, prove that the variance of the given sum is bounded by C lnn, for
some finite constant C > 0. Use the Borel–Cantelli lemma to obtain the a.s.
convergence along the subsequence nk = exp(k2). To conclude part (i), estimate
the sum for nk ≤ n ≤ nk+1 by the end values of n. Part (ii) is proved similarly, but
the variance estimate is now given by a bound of C ln lnn, and the subsequence

should be changed to nk = exp(ek2
).)

9. (Hard) Suppose X1,X2, . . . denote i.i.d. random variables that take their
values in Rd and define the corresponding random walk Sn =

∑n
j=1Xj (n ≥ 1).

We say that 0 is recurrent if for all ε > 0, P(|Sn| < ε infinitely often) > 0.

(i) Verify that when P(X1 ∈ Zd) = 1, our two notions of recurrence are one and
the same.

(ii) Show that 0 is recurrent if and only if for all ε > 0, P(|Sn| <
ε infinitely often) = 1.

(iii) Define S0 = 0 and prove that for all n ≥ 1 and all ε > 0,

n∑
j=0

P(|Sj | ≤ 2ε) ≤ 16d
n∑

j=0

P(|Sj | ≤ ε).

(iv) Show that the following are all equivalent:

(a) 0 is recurrent;

(b) for some ε > 0,
∑∞

j=1 P(|Sj | ≤ ε) = +∞;

(c) for all ε > 0,
∑∞

j=1 P(|Sj | ≤ ε) = +∞.

(Hint: For part (iii), cover [−2ε, 2ε]d with 16d cubes of side 1
2
ε and apply the

Markov property.)



102 3. Random Walks

10. Given a transient random walk S on Zd with S0 = 0, define for each a ∈ Zd,
u(a) = E[

∑∞
k=0 1l(Sk+a=0)].

(i) Check that u(0) = E[R∞] and show that u(a) is finite for all a ∈ Zd.

(ii) Show that m �→ u(Sm) is a supermartingale.
(Hint: Apply Lemma 1.1.1 to f(x) = 1l{0}(x).)

11. (Hard) Let S denote the simple walk on Zd.

(i) In the case d ≥ 3, prove that there are finite positive constants C1 < C2 such
that for all n ≥ 1,

C1n
− 1

2 (d−2) ≤ P(Si = 0 for some i ≥ n) ≤ C2n
− 1

2 (d−2).

(ii) Let d = 2 and suppose c1, c2, . . . is a nondecreasing sequence such that
limn→∞ cn = +∞ and lim supn→∞ cn/n < ∞. Show that when d = 2,
there exist finite positive constants C1 < C2 such that for all n ≥ 1,

C1
cn

n ln cn
≤ P(Si = 0 for some n ≤ i ≤ n+ cn) ≤ C2

cn
n ln cn

.

(Hint: For the lower bound, consider the first two moments of
∑n+cn

j=n 1l(Sj=0).

For the upper bound, estimate the conditional expectation of
∑n+2cn

j=n 1l(Sj=0),
given Fm, where m is between n and n+ cn.)

In different forms and to various extents, this can be found in Benjamini et al.
(1995), Erdős and Taylor (1960a, 1960b), Lawler (1991), and Révész (1990).

12. Let τ1, τ2, . . . denote the first, second, . . . hitting times of 0 by a Zd-valued
random walk S. The goal of this exercise is an exact computation of the distri-
bution of τ1.

(i) Show that for all λ > 0 and for all integers n ≥ 1, E[e−λτn ] = (E[e−λτ1 ])n.

(ii) Let S0 = τ0 = 0 and for all λ > 0, define Vλ =
∑∞

k=0 e
−λk1l(Sk=0). Show

that Vλ =
∑∞

n=0 e
−λτn and conclude the following identity for the Laplace

transform of τ1: E[e−λτ1 ] = 1 − {∑∞
k=0 e

−λkP(Sk = 0)}−1.

(iii) Show that when S is the simple walk on Zd,

lim
λ→0+

λ
1
2

∞∑
k=0

e−λkP(Sk = 0) =
√

2

when d = 1, and when d = 2,

lim
λ→0+

1

ln( 1
λ
)

∞∑
k=0

e−λkP(Sk = 0) =
1

2π
.

(Hint: Consider the distribution function F (k) =
∑

j≤k P(Sj = 0). Apply
the Tauberian theorem Theorem 2.1.1, Appendix B, together with Supple-
mentary Exercise 2.)

Such results are a part of the folklore of random walks; for instance, read Chung
and Hunt (1949) with care. In the above forms, they can be found in Khoshnevisan
(1994), where you can also find further applications to measure the zero set of
random walks.
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13. (Continued from Supplementary Exercise 12)

(i) Let S denote the simple walk on Zd. In the notation of Supplementary
Exercise 12, show that when d = 1, τn/n

2 converges in distribution to a
nonnegative random variable τ∞ whose Laplace transform is E[e−ζτ∞ ] =
exp(−√

ζ).
(Hint: Use the convergence theorem for Laplace transforms (cf. Theorem
1.2.1, Appendix B). The random variable τ∞ is the so-called stable random
variable of index 1

2
and will reappear later in Section 3.2, Chapter 10.)

(ii) Conclude that when d = 1, Rn/
√
n converges in distribution to the absolute

value of a standard Gaussian random variable.
(Hint: Since τ is the inverse function to R, roughly speaking, P(Rn ≥
λ
√
n) = P(τλ

√
n ≤ n). You need to make this work by a series of inequali-

ties.)

14. (Hard) Suppose S1 and S2 are two independent simple walks on Z4.
Consider a nondecreasing sequence c1, c2, . . . such that limn→∞ cn = +∞ and
lim supn→∞ cn/n < ∞. Show the existence of two positive finite constants
C1 < C2 such that for all n ≥ 1,

C1

( cn
n

)2
· 1

ln cn
≤ P(S1

i = S2
j for some n ≤ i, j ≤ n+ cn) ≤ C2

( cn
n

)2
· 1

ln cn
.

(You should first study Supplementary Exercise 11.)

5 Notes on Chapter 3

Section 1 The references (Ornstein 1969; Spitzer 1964; Révész 1990; Revuz
1984) are excellent resources for the fine and general structure of one-parameter
random walks, Markov chains, and their connections to ergodic theory and po-
tential theory.

The argument of Section 1.7 that reduces attention to the set of possible points
is quite old, but often goes unmentioned when d > 1, perhaps to avoid discussions
relating to free abelian groups.

Much of the material of this section, and, in fact, chapter, can be extended
to random walks on locally compact abelian groups. A comprehensive account
of the potential-theoretic aspects of this can be found in Port and Stone (1971a,
1971b).

The basic message of the investigations of recurrence for random walks is that
a point is recurrent for the walk if and only if the walk is expected to hit that
point infinitely often. The number of times the random walk hits a given point is
the so-called local time at that point. There are limit theorems associated with
such local times; they can be viewed as refinements of the notion of recurrence,
among other things; see Bass and Khoshnevisan (1993b, 1993c, 1995), Borodin
(1986, 1988), Csáki and Révész (1983), Csörgő and Révész (1984, 1985, 1986),
Kesten and Spitzer (1979), Jacod (1998), Khoshnevisan (1992, 1993), Knight
(1981), Perkins (1982), and Révész (1981).
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Section 2 In the probability literature, the study of the intersections of random
walk trajectories goes back at least to Dvoretzky and Erdős (1951), as well as
Erdős and Taylor (1960b, 1960a), and Dvoretzky et al. (1950, 1954, 1958, 1957).
Related results, together with references to the physics literature, can be found
in (Madras and Slade 1993; Lawler 1991).

In this section we essentially showed that the intersections are recurrent if and
only if the walks are expected to intersect infinitely many times, at least as long
as all of the intervening walks are symmetric. At this time it is not known whether
Theorem 2.3.1 holds without any symmetry, or sector-type, hypotheses.

Further analysis of the number of intersections of random walks leads to a
so-called intersection local time that is the main subject of Le Gall et al. (1989),
Le Gall and Rosen (1991), Lawler (1991), Rosen (1993), and Stoll (1987, 1989).
Some very general results can be found in (Bass and Khoshnevisan 1992a; Dynkin
1988).

Many of the quantitative results of this section are new.

Section 3 The results of this section are all classical and can be found in the pre-
60’s references cited under Section 2 above. For further refinements, see Lawler
(1991). Many of the presented proofs in this section are new. Further related
works, but in a genuine multiparameter context, can be found in Etemadi (1977).

A variant of Exercise 3.2.1 can be found in Lawler (1991, Theorem 3.3.2).

Section 4 A variant of Supplementary Exercise 14 can be found in Lawler (1991,
Theorem 3.3.2).

Supplementary Exercise 5 seems to be new. However, much is known about
sums of mixing random variables. A good starting place for this is Billingsley
(1995).
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