Chapter 1

Introduction

Statistics is fundamentally concerned with the understanding of structure in data.
One of the effects of the information-technology era has been to make it much
easier to collect extensive datasets with minimal human intervention. Fortunately,
the same technological advances allow the users of statistics access to much more
powerful ‘calculators’ to manipulate and display data. This book is about the
modern developments in applied statistics that have been made possible by the
widespread availability of workstations with high-resolution graphics and ample
computational power. Workstations need software, and the S' system developed
at Bell Laboratories (Lucent Technologies, formerly AT&T) provides a very flex-
ible and powerful environment in which to implement new statistical ideas. Lu-
cent’s current implementation of S is exclusively licensed to the Insightful Cor-
porationz, which distributes an enhanced system called S-PLUS.

An Open Source system called R has emerged that provides an independent
implementation of the S language. It is similar enough that almost all the exam-
ples in this book can be run under R.

An S environment is an integrated suite of software facilities for data analysis
and graphical display. Among other things it offers

e an extensive and coherent collection of tools for statistics and data analysis,

e a language for expressing statistical models and tools for using linear and
non-linear statistical models,

e graphical facilities for data analysis and display either at a workstation or
as hardcopy,

e an effective object-oriented programming language that can easily be ex-
tended by the user community.

The term environment is intended to characterize it as a planned and coherent
system built around a language and a collection of low-level facilities, rather than
the ‘package’ model of an incremental accretion of very specific, high-level and

I'The name S arose long ago as a compromise name (Becker, 1994), in the spirit of the program-
ming language C (also from Bell Laboratories).

Zhttp://www.insightful.com

3http://www.r-project.org

2 Introduction

sometimes inflexible tools. Its great strength is that functions implementing new
statistical methods can be built on top of the low-level facilities.

Furthermore, most of the environment is open enough that users can explore
and, if they wish, change the design decisions made by the original implementors.
Suppose you do not like the output given by the regression facility (as we have
frequently felt about statistics packages). In S you can write your own summary
routine, and the system one can be used as a template from which to start. In
many cases sufficiently persistent users can find out the exact algorithm used by
listing the S functions invoked. As R is Open Source, all the details are open to
exploration.

Both S-PLUS and R can be used under Windows, many versions of UNIX and
under Linux; R also runs under MacOS (versions 8, 9 and X), FreeBSD and other
operating systems.

We have made extensive use of the ability to extend the environment to im-
plement (or re-implement) statistical ideas within S. All the S functions that are
used and our datasets are available in machine-readable form and come with all
versions of R and Windows versions of S-PLUS; see Appendix C for details of
what is available and how to install it if necessary.

System dependencies

We have tried as far as is practicable to make our descriptions independent of the
computing environment and the exact version of S-PLUS or R in use. We confine
attention to versions 6 and later of S-PLUS, and 1.5.0 or later of R.

Clearly some of the details must depend on the environment; we used S-PLUS
6.0 on Solaris to compute the examples, but have also tested them under S-PLUS
for Windows version 6.0 release 2, and using S-PLUS 6.0 on Linux. The out-
put will differ in small respects, for the Windows run-time system uses scientific
notation of the form 4.17e-005 rather than 4.17e-05.

Where timings are given they refer to S-PLUS 6.0 running under Linux on
one processor of a dual 1 GHz Pentium III PC.

One system dependency is the mouse buttons; we refer to buttons 1 and 2,
usually the left and right buttons on Windows but the left and middle buttons
on UNIX / Linux (or perhaps both together of two). Macintoshes only have one
mouse button.

Reference manuals

The basic S references are Becker, Chambers and Wilks (1988) for the basic
environment, Chambers and Hastie (1992) for the statistical modelling and first-
generation object-oriented programming and Chambers (1998); these should be
supplemented by checking the on-line help pages for changes and corrections as
S-PLUS and R have evolved considerably since these books were written. Our
aim is not to be comprehensive nor to replace these manuals, but rather to explore
much further the use of S to perform statistical analyses. Our companion book,
Venables and Ripley (2000), covers many more technical aspects.

1.1 A Quick Overview of S 3

Graphical user interfaces (GUISs)

S-PLUS for Windows comes with a GUI shown in Figure B.1 on page 458. This
has menus and dialogs for many simple statistical and graphical operations, and
there is a Standard Edition that only provides the GUI interface. We do not
discuss that interface here as it does not provide enough power for our material.
For a detailed description see the system manuals or Krause and Olson (2000) or
Lam (2001).

The UNIX / Linux versions of S-PLUS 6 have a similar GUI written in Java,
obtained by starting with Splus -g: this too has menus and dialogs for many
simple statistical operations.

The Windows, Classic MacOS and GNOME versions of R have a much sim-
pler console.

Command line editing

All of these environments provide command-line editing using the arrow keys,
including recall of previous commands. However, it is not enabled by default in
S-PLUS on UNIX / Linux: see page 447.

1.1 A Quick Overview of S

Most things done in S are permanent; in particular, data, results and functions are
all stored in operating system files.* These are referred to as objects.

Variables can be used as scalars, matrices or arrays, and S provides extensive
matrix manipulation facilities. Furthermore, objects can be made up of collections
of such variables, allowing complex objects such as the result of a regression
calculation. This means that the result of a statistical procedure can be saved
for further analysis in a future session. Typically the calculation is separated
from the output of results, so one can perform a regression and then print various
summaries and compute residuals and leverage plots from the saved regression
object.

Technically S is a function language. Elementary commands consist of either
expressions or assignments. If an expression is given as a command, it is evalu-
ated, printed and the value is discarded. An assignment evaluates an expression
and passes the value to a variable but the result is not printed automatically. An
expression can be as simple as 2 + 3 or a complex function call. Assignments
are indicated by the assignment operator <-. For example,

>2+ 3

[1]1 5

> sqrt(3/4)/(1/3 - 2/pi~2)
[1] 6.6265

> library (MASS)

4These should not be manipulated directly, however. Also, R works with an in-memory workspace
containing copies of many of these objects.

4 Introduction

> data(chem) # needed in R only

> mean(chem)

(1] 4.2804

> m <- mean(chem); v <- var(chem)/length(chem)
> m/sqrt(v)

[1] 3.9585

Here > is the S prompt, and the [1] states that the answer is starting at the first
element of a vector.

More complex objects will have printed a short summary instead of full de-
tails. This is achieved by an object-oriented programming mechanism; complex
objects have classes assigned to them that determine how they are printed, sum-
marized and plotted. This process is taken further in S-PLUS in which all objects
have classes.

S can be extended by writing new functions, which then can be used in the
same way as built-in functions (and can even replace them). This is very easy; for
example, to define functions to compute the standard deviation® and the two-tailed
P value of a t statistic, we can write

std.dev <- function(x) sqrt(var(x))
t.test.p <- function(x, mu = 0) {

n <- length(x)

t <- sqrt(n) * (mean(x) - mu) / std.dev(x)

2 * (1 - pt(abs(t), n - 1)) # last value is returned
}

It would be useful to give both the ¢ statistic and its P value, and the most
common way of doing this is by returning a list; for example, we could use

t.stat <- function(x, mu = 0) {
n <- length(x)
t <- sqrt(n) * (mean(x) - mu) / std.dev(x)
list(t = t, p =2 * (1 - pt(abs(t), n - 1)))

}

z <- rnorm(300, 1, 2) # generate 300 N(1, 4) variables.
t.stat(z)

$t:

[1] 8.2906

$p:

[1] 3.9968e-15

unlist(t.stat(z, 1)) # test mu=1, compact result
t p
-0.56308 0.5738
The first call to t.stat prints the result as a list; the second tests the non-default
hypothesis ;¢ = 1 and using unlist prints the result as a numeric vector with
named components.
Linear statistical models can be specified by a version of the commonly used
notation of Wilkinson and Rogers (1973), so that

5S-PLUS and R have functions stdev and sd, respectively.

1.2 Using S 5

time ~ dist + climb
time ~ transplant/year + age + prior.surgery

refer to a regression of time on both dist and climb, and of time on year
within each transplant group and on age, with a different intercept for each type
of prior surgery. This notation has been extended in many ways, for example to
survival and tree models and to allow smooth non-linear terms.

1.2 Using S

How to initialize and start up your S environment is discussed in Appendix A.

Bailing out

One of the first things we like to know with a new program is how to get out
of trouble. S environments are generally very tolerant, and can be interrupted
by Ctrl-C.° (Use Esc on GUI versions under Windows.) This will interrupt the
current operation, back out gracefully (so, with rare exceptions, it is as if it had
not been started) and return to the prompt.

You can terminate your S session by typing

qO

at the command line or from Exit on the File menu in a GUI environment.

On-line help

There is a help facility that can be invoked from the command line. For example,
to get information on the function var the command is

> help(var)
A faster alternative (to type) is
> ?var

For a feature specified by special characters and in a few other cases (one is
"function"), the argument must be enclosed in double or single quotes, making
it an entity known in S as a character string. For example, two alternative ways
of getting help on the list component extraction function, [[, are

> help(" [[n)
> 7" [[n

Many S commands have additional help for name . object describing their result:
for example, 1m under S-PLUS has a help page for 1m.object.

Further help facilities for some versions of S-PLUS and R are discussed in
Appendix A. Many versions can have their manuals on-line in PDF format; look
under the Help menu in the Windows versions.

This means hold down the key marked Control or Ctrl and hit the second key.

6 Introduction

1.3 An Introductory Session

The best way to learn S is by using it. We invite readers to work through the
following familiarization session and see what happens. First-time users may not
yet understand every detail, but the best plan is to type what you see and observe

what happens as a result.

Consult Appendix A, and start your S environment.
The whole session takes most first-time users one to two hours at the appro-
priate leisurely pace. The left column gives commands; the right column gives

brief explanations and suggestions.

A few commands differ between environments, and these are prefixed by # R:
or# S:. Choose the appropriate one(s) and omit the prefix.

library (MASS)

7help

S: trellis.device()

A command to make our datasets avail-
able. Your local advisor can tell you the
correct form for your system.

Read the help page about how to use
help.

Start up a suitable device.

x <- rnorm(1000)
y <= rnorm(1000)

truehist(c(x,y+3), nbins=25)

7truehist
contour(dd <- kde2d(x,y))

image (dd)

Generate 1000 pairs of normal variates

Histogram of a mixture of normal dis-
tributions. Experiment with the number
of bins (25) and the shift (3) of the sec-
ond component.

Read about the optional arguments.
2D density plot.

Greyscale or pseudo-colour plot.

x <- seq(1, 20, 0.5)
x

w<-1+ x/2

y <= x + wxrnorm(x)

dum <- data.frame(x, y, w)
dum
rm(x, y, w)

fm <- Im(y ~ x, data = dum)
summary (fm)

Make z = (1,1.5,2,...,19.5,20) and
list it.
w will be used as a ‘weight’ vector and

to give the standard deviations of the er-
rors.

Make a data frame of three columns
named x, y and w, and look at it. Re-
move the original x, y and w.

Fit a simple linear regression of y on
x and look at the analysis.

1.3 An Introductory Session

fml <- 1lm(y ~ x, data = dum,
weight = 1/w"2)
summary (fm1)

R: library(modreg)

1rf <- loess(y ~ x, dum)

attach(dum)

plot(x, y)

lines(spline(x, fitted(1lrf)),
col = 2)

abline(0, 1, 1ty = 3, col = 3)

abline(fm, col = 4)

abline(fml, 1ty = 4, col = 5)

plot(fitted(fm), resid(fm),
xlab = "Fitted Values",
ylab = "Residuals")

qqnorm(resid(fm))
qqline(resid(fm))

Since we know the standard deviations,
we can do a weighted regression.

R only

Fit a smooth regression curve using a
modern regression function.

Make the columns in the data frame
visible as variables.

Make a standard scatterplot. To this
plot we will add the three regression
lines (or curves) as well as the known
true line.

First add in the local regression curve
using a spline interpolation between the
calculated points.

Add in the true regression line (inter-
cept 0, slope 1) with a different line
type and colour.

Add in the unweighted regression line.
abline() is able to extract the infor-
mation it needs from the fitted regres-
sion object.

Finally add in the weighted regression
line, in line type 4. This one should
be the most accurate estimate, but may
not be, of course. One such outcome is
shown in Figure 1.1.

You may be able to make a hardcopy
of the graphics window by selecting the
Print option from a menu.

A standard regression diagnostic plot to
check for heteroscedasticity, that is, for
unequal variances. The data are gener-
ated from a heteroscedastic process, so
can you see this from this plot?

A normal scores plot to check for skew-
ness, kurtosis and outliers. (Note that
the heteroscedasticity may show as ap-
parent non-normality.)

Introduction

Residuals
0 10 20

-10

resid(fm)
0 10 20

-10

5 -1 0 1
Fitted Values Quantiles of Standard Normal

10 15 20 -2 2

Figure 1.1: Four fits and two residual plots for the artificial heteroscedastic regression

data.

detach()
rm(fm, fml, 1rf, dum)

Remove the data frame from the search
path and clean up again.

We look next at a set of data on record times of Scottish hill races against

distance and total height climbed.

R: data(hills)
hills

S: splom(~ hills)
R: pairs(hills)

S: brush(hills)

Click on the Quit button in the
graphics window to continue.

attach(hills)

plot(dist, time)
identify(dist, time,
row.names (hills))

abline(1lm(time ~ dist))

R: library(lgs)
abline(lgs(time ~ dist),
1ty = 3, col = 4)

detach()

List the data.

Show a matrix of pairwise scatterplots
(Figure 1.2).

Try highlighting points and see how
they are linked in the scatterplots (Fig-
ure 1.3). Also try rotating the points in
3D.

Make columns available by name.

Use mouse button 1 to identify outlying
points, and button 2 to quit. Their row
numbers are returned. On a Macintosh
click outside the plot to quit.

Show least-squares regression line.

Fit a very resistant line. See Figure 1.4.

Clean up again.

We can explore further the effect of outliers on a linear regression by designing
our own examples interactively. Try this several times.

plot(c(0,1), c(0,1), type="n") Make our own dataset by clicking with

xy <- locator(type = "p")

button 1, then with button 2 (outside the
plot on a Macintosh) to finish.

1.3 An Introductory Session

climmb

time

5 5T T T
o o 200 150 200
o
o
k150
o ° time 100 4
o o
° oo ° @
00 o o
offo % Og0 50
0o
3] B0 50 100
o T T o
4000 6000
t 6000
I 00
o o
t 4000 climb 4000 +
g o °g
acd ° ° sl 0 8o o o
o)
oo o
o Bgo 8
] % 2000 4000 g@% o
| f
T T T o))
15 20 25
b 25
t 20 o o
°
. o o
s dist 15 1 o °
10 o © o 00 0
o 4 © o OO
oo
518 oy og'c
s % g °

persistent ‘

transient

no label ‘

label

Canpapple
Scolty
Traprain
Lollae
Lomonds
Cairn Table
Eilgion Twa
ALEFOEN
ok Hill)
glack %ﬂl
reag Bea:
Kildc%n Hiﬁ
down more

brushkize

dist

press Burton T to highliche, Burton 2 to downlight

Figure 1.3: Screendump of a brush plot of dataset hills (UNIX).

10

Introduction

200

150

time
100

*Knock Hill

50

Bens of Jura *

Two Breweries *

,‘,Séven Hills

airig Gh[uf'/

Moffat Chase

15 20 25
dist

Figure 1.4: Annotated plot of time versus distance for hills with regression line and

resistant line (dashed).

abline(Im(y ~ x, xy), col = 4)
abline(rlm(y ~ x, xy,

method = "MM"),

1ty = 3, col = 3)
abline(1lgs(y ~ x, xy),

lty = 2, col = 2)

rm(xy)

Fit least-squares, a robust regression
and a resistant regression line. Repeat
to try the effect of outliers, both verti-
cally and horizontally.

Clean up again.

We now look at data from the 1879 experiment of Michelson to measure the
speed of light. There are five experiments (column Expt); each has 20 runs
(column Run) and Speed is the recorded speed of light, in km/sec, less 299 000.
(The currently accepted value on this scale is 734.5.)

R: data(michelson)
attach(michelson)

search()

plot (Expt, Speed,
main="Speed of Light Data",
xlab="Experiment No.")

fm <- aov(Speed ~ Run + Expt)
summary (fm)

Df Sum of Sq Mean Sq F Value
5965

Run 19 113344

Make the columns visible by name.

The search path is a sequence of places,
either directories or data frames, where
S-PLUS looks for objects required for
calculations.

Compare the five experiments with

simple boxplots. The result is shown
in Figure 1.5.

Analyse as a randomized block design,
with runs and experiments as factors.

Pr(F)
1.1053 0.36321

1.3 An Introductory Session 11

Speed of Light Data

1000

QOSpeed e
(I
[
T

790

1 2 3 4 5
Experiment No.

Figure 1.5: Boxplots for the speed of light data.

Expt 4 94514 23629 4.3781 0.00307

Residuals 76 410166 5397
fm0 <- update(fm, .~ . - Run) Fit the sub-model omitting the non-
anova(fm0, fm) sense factor, runs, and compare using

a formal analysis of variance.

Analysis of Variance Table
Response: Speed

Terms Resid. Df RSS Test Df Sum of Sq F Value Pr(F)

1 Expt 95 523510
2 Run + Expt 76 410166 +Run 19 113344 1.10563 0.36321
detach() Clean up before moving on.

rm(fm, fmO)

The S environment includes the equivalent of a comprehensive set of statis-
tical tables; one can work out P values or critical values for a wide range of
distributions (see Table 5.1 on page 108).

1 - pf(4.3781, 4, 76) P value from the ANOVA table above.
qf (0.95, 4, 76) corresponding 5% critical point.
qO Quit your S environment. R will ask

if you want to save the workspace: for
this session you probably do not.

12 Introduction

1.4 What Next?

We hope that you now have a flavour of S and are inspired to delve more deeply.
We suggest that you read Chapter 2, perhaps cursorily at first, and then Sec-
tions 3.1-7 and 4.1-3. Thereafter, tackle the statistical topics that are of inter-
est to you. Chapters 5 to 16 are fairly independent, and contain cross-references
where they do interact. Chapters 7 and 8 build on Chapter 6, especially its first
two sections.

Chapters 3 and 4 come early, because they are about S not about statistics, but
are most useful to advanced users who are trying to find out what the system is
really doing. On the other hand, those programming in the S language will need
the material in our companion volume on S programming, Venables and Ripley
(2000).

Note to R users

The S code in the following chapters is written to work with S-PLUS 6. The
changes needed to use it with R are small and are given in the scripts available
on-line in the scripts directory of the MASS package for R (which should be
part of every R installation).

Two issues arise frequently:

e Datasets need to be loaded explicitly into R, as in the

data(hills)
data(michelson)

lines in the introductory session. So if dataset foo appears to be missing,
make sure that you have run library(MASS) and then try data(foo).
We generally do not mention this unless something different has to be done
to get the data in R.

e Many of the packages are not attached by default, so R (currently) needs
far more use of the 1ibrary function.

Note too that R has a different random number stream and so results depending
on random partitions of the data may be quite different from those shown here.

2 Springer
http://www.springer.com/978-0-387-95457-8

Modern Applied Statistics with S
Venables, W.N.; Ripley, B.D.
2002, Xll, 498 p., Hardcover
ISBN: @78-0-387-095457-8

