
Chapter 11

Exploratory Multivariate Analysis

Multivariate analysis is concerned with datasets that have more than one response
variable for each observational or experimental unit. The datasets can be summa-
rized by data matrices X with n rows and p columns, the rows representing the
observations or cases, and the columns the variables. The matrix can be viewed
either way, depending on whether the main interest is in the relationships be-
tween the cases or between the variables. Note that for consistency we represent
the variables of a case by the row vector x.

The main division in multivariate methods is between those methods that as-
sume a given structure, for example, dividing the cases into groups, and those that
seek to discover structure from the evidence of the data matrix alone (nowadays
often called data mining, see for example Hand et al., 2001). Methods for known
structure are considered in Chapter 12.

In pattern-recognition terminology the distinction is between supervised and
unsupervised methods. One of our examples is the (in)famous iris data collected
by Anderson (1935) and given and analysed by Fisher (1936). This has 150 cases,
which are stated to be 50 of each of the three species Iris setosa, I. virginica and
I. versicolor. Each case has four measurements on the length and width of its
petals and sepals. A priori this seems a supervised problem, and the obvious
questions are to use measurements on a future case to classify it, and perhaps to
ask how the variables vary among the species. (In fact, Fisher used these data
to test a genetic hypothesis which placed I. versicolor as a hybrid two-thirds of
the way from I. setosa to I. virginica.) However, the classification of species is
uncertain, and similar data have been used to identify species by grouping the
cases. (Indeed, Wilson (1982) and McLachlan (1992, §6.9) consider whether the
iris data can be split into subspecies.)

Krzanowski (1988) and Mardia, Kent and Bibby (1979) are two general refer-
ences on multivariate analysis. For pattern recognition we follow Ripley (1996),
which also has a computationally-informed account of multivariate analysis.

Most of the emphasis in the literature and in this chapter is on continuous
measurements, but we do look briefly at multi-way discrete data in Section 11.4.

Colour can be used very effectively to differentiate groups in the plots of this
chapter, on screen if not on paper. The code given here uses both colours and
symbols, but you may prefer to use only one of these to differentiate groups. (The
colours used are chosen for use on a trellis device.)
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302 Exploratory Multivariate Analysis

In R library(mva) is needed for most of the material in this chapter.R

Running example: Leptograpsus variegatus crabs

Mahon (see Campbell and Mahon, 1974) recorded data on 200 specimens of Lep-
tograpsus variegatus crabs on the shore in Western Australia. This occurs in two
colour forms, blue and orange, and he collected 50 of each form of each sex and
made five physical measurements. These were the carapace (shell) length CL and
width CW, the size of the frontal lobe FL and rear width RW, and the body depth
BD. Part of the authors’ thesis was to establish that the two colour forms were
clearly differentiated morphologically, to support classification as two separate
species.

The data are physical measurements, so a sound initial strategy is to work on
log scale. This has been done throughout.

11.1 Visualization Methods

The simplest way to examine multivariate data is via a pairs or scatterplot matrix
plot, enhanced to show the groups as discussed in Section 4.5. Pairs plots are a
set of two-dimensional projections of a high-dimension point cloud.

However, pairs plots can easily miss interesting structure in the data that de-
pends on three or more of the variables, and genuinely multivariate methods ex-
plore the data in a less coordinate-dependent way. Many of the most effective
routes to explore multivariate data use dynamic graphics such as exploratory pro-
jection pursuit (for example, Huber, 1985; Friedman, 1987; Jones and Sibson,
1987 and Ripley, 1996) which chooses ‘interesting’ rotations of the point cloud.
These are available through interfaces to the package XGobi1 for machines run-
ning X11.2 A successor to XGobi, GGobi,3 is under development.

Many of the other visualization methods can be viewed as projection methods
for particular definitions of ‘interestingness’.

Principal component analysis

Principal component analysis (PCA) has a number of different interpretations.
The simplest is a projection method finding projections of maximal variability.
That is, it seeks linear combinations of the columns of X with maximal (or min-
imal) variance. Because the variance can be scaled by rescaling the combination,
we constrain the combinations to have unit length (which is true of projections).

Let S denote the covariance matrix of the data X, which is defined4 by

nS = (X − n−111TX)T (X − n−111T X) = (XT X − nxxT )

1http://www.research.att.com/areas/stat/xgobi/
2On UNIX and on Windows: a Windows port of XGobi is available at

http://www.stats.ox.ac.uk/pub/SWin.
3http://www.ggobi.org.
4A divisor of n − 1 is more conventional, but princomp calls cov.wt , which uses n.
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Figure 11.1: First two principal components for the log-transformed iris data.

where x = 1T X/n is the row vector of means of the variables. Then the sample
variance of a linear combination xa of a row vector x is aT Σa and this is
to be maximized (or minimized) subject to ‖a‖2 = aT a = 1. Since Σ is a
non-negative definite matrix, it has an eigendecomposition

Σ = CTΛC

where Λ is a diagonal matrix of (non-negative) eigenvalues in decreasing order.
Let b = Ca, which has the same length as a (since C is orthogonal). The
problem is then equivalent to maximizing bT Λb =

∑
λib

2
i subject to

∑
b2
i =

1. Clearly the variance is maximized by taking b to be the first unit vector, or
equivalently taking a to be the column eigenvector corresponding to the largest
eigenvalue of Σ. Taking subsequent eigenvectors gives combinations with as
large as possible variance that are uncorrelated with those that have been taken
earlier. The ith principal component is then the ith linear combination picked
by this procedure. (It is only determined up to a change of sign; you may get
different signs in different implementations of S.)

The first k principal components span a subspace containing the ‘best’ k-
dimensional view of the data. It has a maximal covariance matrix (both in trace
and determinant). It also best approximates the original points in the sense of
minimizing the sum of squared distances from the points to their projections. The
first few principal components are often useful to reveal structure in the data.
The principal components corresponding to the smallest eigenvalues are the most
nearly constant combinations of the variables, and can also be of interest.

Note that the principal components depend on the scaling of the original vari-
ables, and this will be undesirable except perhaps if (as in the iris data) they
are in comparable units. (Even in this case, correlations would often be used.)
Otherwise it is conventional to take the principal components of the correlation
matrix, implicitly rescaling all the variables to have unit sample variance.

The function princomp computes principal components. The argument cor
controls whether the covariance or correlation matrix is used (via rescaling the
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variables).

> # S: ir <- rbind(iris[,,1], iris[,,2], iris[,,3])
> # R: data(iris3); ir <- rbind(iris3[,,1], iris3[,,2], iris3[,,3])
> ir.species <- factor(c(rep("s", 50), rep("c", 50), rep("v", 50)))
> (ir.pca <- princomp(log(ir), cor = T))
Standard deviations:
Comp.1 Comp.2 Comp.3 Comp.4
1.7125 0.95238 0.3647 0.16568

....
> summary(ir.pca)
Importance of components:

Comp.1 Comp.2 Comp.3 Comp.4
Standard deviation 1.71246 0.95238 0.364703 0.1656840

Proportion of Variance 0.73313 0.22676 0.033252 0.0068628
Cumulative Proportion 0.73313 0.95989 0.993137 1.0000000

> plot(ir.pca)
> loadings(ir.pca)

Comp.1 Comp.2 Comp.3 Comp.4
Sepal L. 0.504 0.455 0.709 0.191
Sepal W. -0.302 0.889 -0.331
Petal L. 0.577 -0.219 -0.786
Petal W. 0.567 -0.583 0.580
> ir.pc <- predict(ir.pca)
> eqscplot(ir.pc[, 1:2], type = "n",

xlab = "first principal component",
ylab = "second principal component")

> text(ir.pc[, 1:2], labels = as.character(ir.species),
col = 3 + codes(ir.species))

In the terminology of this function, the loadings are columns giving the linear
combinations a for each principal component, and the scores are the data on the
principal components. The plot (not shown) is the screeplot, a barplot of the
variances of the principal components labelled by

∑j
i=1 λi/trace(Σ). The result

of loadings is rather deceptive, as small entries are suppressed in printing but
will be insignificant only if the correlation matrix is used, and that is not the
default. The predict method rotates to the principal components.

As well as a data matrix x, the function princomp can accept data via a
model formula with an empty left-hand side or as a variance or correlation matrix
specified by argument covlist, of the form output by cov.wt and cov.rob
(see page 336). Using the latter is one way to robustify principal component anal-
ysis. (S-PLUS has princompRob in library section robust, using covRob .)S+

Figure 11.1 shows the first two principal components for the iris data based
on the covariance matrix, revealing the group structure if it had not already been
known. A warning: principal component analysis will reveal the gross features
of the data, which may already be known, and is often best applied to residuals
after the known structure has been removed. As we discovered in Figure 4.13 on
page 96, animals come in varying sizes and two sexes!
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> lcrabs <- log(crabs[, 4:8])
> crabs.grp <- factor(c("B", "b", "O", "o")[rep(1:4, each = 50)])
> (lcrabs.pca <- princomp(lcrabs))
Standard deviations:
Comp.1 Comp.2 Comp.3 Comp.4 Comp.5
0.51664 0.074654 0.047914 0.024804 0.0090522

> loadings(lcrabs.pca)
Comp.1 Comp.2 Comp.3 Comp.4 Comp.5

FL 0.452 0.157 0.438 -0.752 0.114
RW 0.387 -0.911
CL 0.453 0.204 -0.371 -0.784
CW 0.440 -0.672 0.591
BD 0.497 0.315 0.458 0.652 0.136
> lcrabs.pc <- predict(lcrabs.pca)
> dimnames(lcrabs.pc) <- list(NULL, paste("PC", 1:5, sep = ""))

(As the data on log scale are very comparable, we did not rescale the variables
to unit variance.) The first principal component had by far the largest standard
deviation, with coefficients that show it to be a ‘size’ effect. A plot of the sec-
ond and third principal components shows an almost total separation into forms
(Figure 4.13 and 4.14 on pages 96 and 97) on the third PC, the second PC distin-
guishing sex. The coefficients of the third PC show that it is contrasting overall
size with FL and BD.

One ancillary use of principal component analysis is to sphere the data. Af-
ter transformation to principal components, the coordinates are uncorrelated, but
with different variances. Sphering the data amounts to rescaling each principal
component to have unit variance, so the variance matrix becomes the identity. If
the data were a sample from a multivariate normal distribution the point cloud
would look spherical, and many measures of ‘interestingness’ in exploratory pro-
jection pursuit look for features in sphered data. Borrowing a term from time
series, sphering is sometimes known as pre-whitening.

There are two books devoted solely to principal components, Jackson (1991)
and Jolliffe (1986), which we think overstates its value as a technique.

Exploratory projection pursuit

Using projection pursuit in XGobi or GGobi allows us to examine the data much
more thoroughly. Try one of

library(xgobi)
xgobi(lcrabs, colors = c("SkyBlue", "SlateBlue", "Orange",

"Red")[rep(1:4, each = 50)])
xgobi(lcrabs, glyphs = 12 + 5*rep(0:3, each = 50))

A result of optimizing by the ‘holes’ index is shown in Figure 11.2.

Distance methods

This is a class of methods based on representing the cases in a low-dimensional
Euclidean space so that their proximity reflects the similarity of their variables.
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FL

RW
CLCW

BD

Figure 11.2: Projection pursuit view of the crabs data. Males are coded as filled symbols,
females as open symbols, the blue colour form as squares and the orange form as circles.

We can think of ‘squeezing’ a high-dimensional point cloud into a small number
of dimensions (2, perhaps 3) whilst preserving as well as possible the inter-point
distances.

To do so we have to produce a measure of (dis)similarity. The function dist
uses one of four distance measures between the points in the p-dimensional space
of variables; the default is Euclidean distance. Distances are often called dissimi-
larities. Jardine and Sibson (1971) discuss several families of similarity and dis-
similarity measures. For categorical variables most dissimilarities are measures
of agreement. The simple matching coefficient is the proportion of categorical
variables on which the cases differ. The Jaccard coefficient applies to categorical
variables with a preferred level. It is the proportion of such variables with one
of the cases at the preferred level in which the cases differ. The binary method
of dist is of this family, being the Jaccard coefficient if all non-zero levels are
preferred. Applied to logical variables on two cases it gives the proportion of
variables in which only one is true among those that are true on at least one case.
The function daisy (in package cluster in R) provides a more general wayR

to compute dissimilarity matrices. The main extension is to variables that are
not on interval scale, for example, ordinal, log-ratio and asymmetric binary vari-
ables. There are many variants of these coefficients; Kaufman and Rousseeuw
(1990, §2.5) provide a readable summary and recommendations, and Cox and
Cox (2001, Chapter 2) provide a more comprehensive catalogue.

The most obvious of the distance methods is multidimensional scaling (MDS),
which seeks a configuration in R

d such that distances between the points best
match (in a sense to be defined) those of the distance matrix. We start with the
classical form of multidimensional scaling, which is also known as principal co-
ordinate analysis. For the iris data we can use:

ir.scal <- cmdscale(dist(ir), k = 2, eig = T)
ir.scal$points[, 2] <- -ir.scal$points[, 2]
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Kruskal’s MDS
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Figure 11.3: Distance-based representations of the iris data. The top left plot is by
multidimensional scaling, the top right by Sammon’s non-linear mapping, the bottom left
by Kruskal’s isotonic multidimensional scaling. Note that each is defined up to shifts,
rotations and reflections.

eqscplot(ir.scal$points, type = "n")
text(ir.scal$points, labels = as.character(ir.species),

col = 3 + codes(ir.species), cex = 0.8)

where care is taken to ensure correct scaling of the axes (see the top left plot
of Figure 11.3). Note that a configuration can be determined only up to transla-
tion, rotation and reflection, since Euclidean distance is invariant under the group
of rigid motions and reflections. (We chose to reflect this plot to match later
ones.) An idea of how good the fit is can be obtained by calculating a measure5

of ‘stress’:

> distp <- dist(ir)
> dist2 <- dist(ir.scal$points)
> sum((distp - dist2)^2)/sum(distp^2)
[1] 0.001747

which shows the fit is good. Using classical multidimensional scaling with a Eu-
clidean distance as here is equivalent to plotting the first k principal components
(without rescaling to correlations).

Another form of multidimensional scaling is Sammon’s (1969) non-linear
mapping, which given a dissimilarity d on n points constructs a k-dimensional

5There are many such measures.
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configuration with distances d̃ to minimize a weighted ‘stress’

ESammon(d, d̃) =
1∑

i �=j dij

∑
i �=j

(dij − d̃ij)2

dij

by an iterative algorithm implemented in our function sammon. We have to drop
duplicate observations to make sense of E(d, d̃); running sammon will report
which observations are duplicates.6 Figure 11.4 was produced by

ir.sam <- sammon(dist(ir[-143,]))
eqscplot(ir.sam$points, type = "n")
text(ir.sam$points, labels = as.character(ir.species[-143]),

col = 3 + codes(ir.species), cex = 0.8)

Contrast this with the objective for classical MDS applied to a Euclidean config-
uration of points (but not in general), which minimizes

Eclassical(d, d̃) =
∑
i �=j

[
d2

ij − d̃2
ij

] / ∑
i �=j

d2
ij

The Sammon function puts much more stress on reproducing small distances ac-
curately, which is normally what is needed.

A more thoroughly non-metric version of multidimensional scaling goes back
to Kruskal and Shepard in the 1960s (see Cox and Cox, 2001 and Ripley, 1996).
The idea is to choose a configuration to minimize

STRESS2 =
∑
i �=j

[
θ(dij) − d̃ij

]2 / ∑
i �=j

d̃2
ij

over both the configuration of points and an increasing function θ. Now the loca-
tion, rotation, reflection and scale of the configuration are all indeterminate. This
is implemented in function isoMDS which we can use by

ir.iso <- isoMDS(dist(ir[-143,]))
eqscplot(ir.iso$points, type = "n")
text(ir.iso$points, labels = as.character(ir.species[-143]),

col = 3 + codes(ir.species), cex = 0.8)

The optimization task is difficult and this can be quite slow.
MDS plots of the crabs data tend to show just large and small crabs, so we

have to remove the dominant effect of size. We used the carapace area as a good
measure of size, and divided all measurements by the square root of the area. It is
also necessary to account for the sex differences, which we can do by analysing
each sex separately, or by subtracting the mean for each sex, which we did:

cr.scale <- 0.5 * log(crabs$CL * crabs$CW)
slcrabs <- lcrabs - cr.scale
cr.means <- matrix(0, 2, 5)

6In S we would use (1:150)[duplicated(ir)] .



11.1 Visualization Methods 309

-0.1 0.0 0.1 0.2

-0
.1

0
-0

.0
5

0.
0

0.
05

0.
10

0.
15

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B
B B

BB

BB

B B
B

B

B

B

B

B

B

B
B

b
bb

b
b

b

b
b

b

b

b

b b
b

b

b

b
bb

b

b

b

b

b b

b

b

b

b

b

b

b
b

bb

b

b

b

b
b

b
b

bb

b

b

bb

b

b

O

O

O

O
O

O

O
O

O

O

O

O

O

O O

O
O

O
O

O
O

O

O

O
O

O
O

O

O

O

O

O

O

O

O

O

O

O

O O

O
O

O

O OO O

O
O

O

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o
o

o

o
o

o
o

o

o

o

o

o
o

o

o

o

o

o

o
o

o o

o

o

o

o

o

o

o

o

o

o
o

o

o

Figure 11.4: Sammon mapping of crabs data adjusted for size and sex. Males are coded
as capitals, females as lower case, colours as the initial letter of blue or orange.
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Figure 11.5: Isotonic multidimensional scaling representation of the fgl data. The groups
are plotted by the initial letter, except F for window float glass, and N for window non-
float glass. Small dissimilarities correspond to small distances on the plot and conversely.

cr.means[1,] <- colMeans(slcrabs[crabs$sex == "F", ])
cr.means[2,] <- colMeans(slcrabs[crabs$sex == "M", ])
dslcrabs <- slcrabs - cr.means[as.numeric(crabs$sex), ]
lcrabs.sam <- sammon(dist(dslcrabs))
eqscplot(lcrabs.sam$points, type = "n", xlab = "", ylab = "")
text(lcrabs.sam$points, labels = as.character(crabs.grp))

The MDS representations can be quite different in examples such as our
dataset fgl that do not project well into a small number of dimensions; Fig-
ure 11.5 shows a non-metric MDS plot. (We omit one of an identical pair of
fragments.)

fgl.iso <- isoMDS(dist(as.matrix(fgl[-40, -10])))
eqscplot(fgl.iso$points, type = "n", xlab = "", ylab = "", axes = F)
# either
for(i in seq(along = levels(fgl$type))) {
set <- fgl$type[-40] == levels(fgl$type)[i]
points(fgl.iso$points[set,], pch = 18, cex = 0.6, col = 2 + i)}

# S: key(text = list(levels(fgl$type), col = 3:8))
# or
text(fgl.iso$points,
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labels = c("F", "N", "V", "C", "T", "H")[fgl$type[-40]],
cex = 0.6)

fgl.iso3 <- isoMDS(dist(as.matrix(fgl[-40, -10])), k = 3)
# S: brush(fgl.iso3$points)
fgl.col <- c("SkyBlue", "SlateBlue", "Orange", "Orchid",

"Green", "HotPink")[fgl$type]
xgobi(fgl.iso3$points, colors = fgl.col)

This dataset fits much better into three dimensions, but that poses a challenge of
viewing the results in some S environments. The optimization can be displayed
dynamically in XGvis, part of XGobi.

Self-organizing maps

All multidimensional scaling algorithms are slow, not least because they work
with all the distances between pairs of points and so scale at least as O(n2) and
often worse. Engineers have looked for methods to find maps from many more
than hundreds of points, of which the best known is ‘Self-Organizing Maps’ (Ko-
honen, 1995). Kohonen describes his own motivation as:

‘I just wanted an algorithm that would effectively map similar pat-
terns (pattern vectors close to each other in the input signal space)
onto contiguous locations in the output space.’ (p. VI)

which is the same aim as most variants of MDS. However, he interpreted ‘con-
tiguous’ via a rectangular or hexagonal 2-D lattice of representatives7 mj , with
representatives at nearby points on the grid that are more similar than those that
are widely separated. Data points are then assigned to the nearest representative
(in Euclidean distance). Since Euclidean distance is used, pre-scaling of the data
is important.

Kohonen’s SOM is a family of algorithms with no well-defined objective to be
optimized, and the results can be critically dependent on the initialization and the
values of the tuning constants used. Despite this high degree of arbitrariness, the
method scales well (it is at worst linear in n ) and often produces useful insights
in datasets whose size is way beyond MDS methods (for example, Roberts and
Tarassenko, 1995).

If all the data are available at once (as will be the case in S applications), the
preferred method is batch SOM (Kohonen, 1995, §3.14). For a single iteration,
assign all the data points to representatives, and then update all the representatives
by replacing each by the mean of all data points assigned to that representative or
one of its neighbours (possibly using a distance-weighted mean). The algorithm
proceeds iteratively, shrinking the neighbourhood radius to zero over a small num-
ber of iterations. Figure 11.6 shows the result of one run of the following code.

library(class)
gr <- somgrid(topo = "hexagonal")
crabs.som <- batchSOM(lcrabs, gr, c(4, 4, 2, 2, 1, 1, 1, 0, 0))
plot(crabs.som)

7Called ‘codes’ or a ‘codebook’ in some of the literature.
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Figure 11.6: Batch SOM applied to the crabs dataset. The left plot is a stars plot of
the representatives, and the right plot shows the assignments of the original points, coded
as in 11.4 and placed randomly within the circle. (Plots from R.)

bins <- as.numeric(knn1(crabs.som$code, lcrabs, 0:47))
plot(crabs.som$grid, type = "n")
symbols(crabs.som$grid$pts[, 1], crabs.som$grid$pts[, 2],

circles = rep(0.4, 48), inches = F, add = T)
text(crabs.som$grid$pts[bins, ] + rnorm(400, 0, 0.1),

as.character(crabs.grp))

batchSOM The initialization used is to select a random subset of the data points.
Different runs give different patterns but do generally show the gradation for small
to large animals shown in the left panel8 of Figure 11.6.

Traditional SOM uses an on-line algorithm, in which examples are presented
in turn until convergence, usually by sampling from the dataset. Whenever an
example x is presented, the closest representative mj is found. Then

mi ← mi + α[x− mi] for all neighbours i .

Both the constant α and the definition of ‘neighbour’ change with time. This can
be explored via function SOM , for example,

crabs.som2 <- SOM(lcrabs, gr); plot(crabs.som2)

See Murtagh and Hernández-Pajares (1995) for another statistical assessment.

Biplots

The biplot (Gabriel, 1971) is a method to represent both the cases and variables.
We suppose that X has been centred to remove column means. The biplot rep-
resents X by two sets of vectors of dimensions n and p producing a rank-2
approximation to X. The best (in the sense of least squares) such approxima-
tion is given by replacing Λ in the singular value decomposition of X by D, a
diagonal matrix setting λ3, . . . to zero, so

X ≈ X̃ = [u1 u2]
[

λ1 0
0 λ2

] [
vT

1

vT
2

]
= GHT

8In S-PLUS the stars plot will be drawn on a rectangular grid.
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Figure 11.7: Principal component biplot of the part of the state.x77 data. Distances
between states represent Mahalanobis distance, and inner products between variables rep-
resent correlations. (The arrows extend 80% of the way along the variable’s vector.)

where the diagonal scaling factors can be absorbed into G and H in a number
of ways. For example, we could take

G = na/2 [u1 u2]
[

λ1 0
0 λ2

]1−λ

, H = n−a/2 [v1 v2]
[

λ1 0
0 λ2

]λ

The biplot then consists of plotting the n + p two-dimensional vectors that form
the rows of G and H . The interpretation is based on inner products between
vectors from the two sets, which give the elements of X̃ . For λ = a = 0 this is
just a plot of the first two principal components and the projections of the variable
axes.

The most popular choice is λ = a = 1 (which Gabriel, 1971, calls the prin-
cipal component biplot). Then G contains the first two principal components
scaled to unit variance, so the Euclidean distances between the rows of G repre-
sent the Mahalanobis distances (page 334) between the observations and the inner
products between the rows of H represent the covariances between the (possibly
scaled) variables (Jolliffe, 1986, pp. 77–8); thus the lengths of the vectors repre-
sent the standard deviations.

Figure 11.7 shows a biplot with λ = 1, obtained by9

library(MASS, first = T) # enhanced biplot.princomp
# R: data(state)
state <- state.x77[, 2:7]; row.names(state) <- state.abb

9An enhanced version of biplot.princomp from MASS is used.
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biplot(princomp(state, cor = T), pc.biplot = T, cex = 0.7,
expand = 0.8)

We specified a rescaling of the original variables to unit variance. (There are
additional arguments scale , which specifies λ , and expand , which specifies a
scaling of the rows of H relative to the rows of G, both of which default to 1.)

Gower and Hand (1996) in a book-length discussion of biplots criticize con-
ventional plots such as Figure 11.7. In particular they point out that the axis scales
are not at all helpful. Notice the two sets of scales. That on the lower and left axes
refers to the values of the rows of G. The upper/right scale is for the values of the
rows of H which are shown as arrows.

Independent component analysis

Independent component analysis (ICA) was named by Comon (1994), and has
since become a ‘hot’ topic in data visualization; see the books Lee (1998);
Hyvärinen et al. (2001) and the expositions by Hyvärinen and Oja (2000) and
Hastie et al. (2001, §14.6).

ICA looks for rotations of sphered data that have approximately independent
coordinates. This will be true (in theory) for all rotations of samples from mul-
tivariate normal distributions, so ICA is of most interest for distributions that are
far from normal.

The original context for ICA was ‘unmixing’ of signals. Suppose there are
k � p independent sources in a data matrix S , and we observe the p linear
combinations X = SA with mixing matrix A . The ‘unmixing’ problem is
to recover S . Clearly there are identifiability problems: we cannot recover the
amplitudes or the labels of the signals, so we may as well suppose that the signals
have unit variances. Unmixing is often illustrated by the problem of listening to
just one speaker at a party. Note that this is a ‘no noise’ model: all the randomness
is assumed to come from the signals.

Suppose the data X have been sphered; by assumption S is sphered and
so X has variance AT A and we look for an orthogonal matrix A . Thus ICA
algorithms can be seen as exploratory projection pursuit in which the measure of
interestingness emphasises independence (not just uncorrelatedness), say as the
sum of the entropies of the projected coordinates. Like most projection pursuit
indices, approximations are used for speed, and that proposed by Hyvärinen and
Oja (2000) is implemented is the R package fastICA .10 We can illustrate this
for the crabs data, where the first and fourth signals shown in Figure 11.8 seem
to pick out the two colour forms and two sexes respectively.

library(fastICA)
nICA <- 4
crabs.ica <- fastICA(crabs[, 4:8], nICA)
Z <- crabs.ica$S
par(mfrow = c(2, nICA))
for(i in 1:nICA) boxplot(split(Z[, i], crabs.grp))

10By Jonathan Marchini. Also ported to S-PLUS.
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Figure 11.8: Boxplots of four ‘signals’ recovered by ICA from the crabs data.

There is a lot of arbitrariness in the use of ICA, in particular in choosing the
number of signals. We might have expected to need two here, when the results
are much less impressive.

Glyph representations

There is a wide range of ways to trigger multiple perceptions of a figure, and we
can use these to represent each of a moderately large number of rows of a data
matrix by an individual figure. Perhaps the best known of these are Chernoff’s
faces (Chernoff, 1973, implemented in the S-PLUS function faces ; there are
other versions by Bruckner, 1978 and Flury and Riedwyl, 1981) and the star plots
as implemented in the function stars (see Figure 11.6), but Wilkinson (1999,
Chapter 3) gives many more.

These glyph plots do depend on the ordering of variables and perhaps also
their scaling, and they do rely on properties of human visual perception. So they
have rightly been criticised as subject to manipulation, and one should be aware
of the possibility that the effect may differ by viewer.11 Nevertheless they can be
very effective as tools for private exploration.

As an example, a stars plot for the state.x77 dataset with variables in the
order showing up in the biplot of Figure 11.7 can be drawn by

# S: stars(state.x77[, c(7, 4, 6, 2, 5, 3)], byrow = T)
# R: stars(state.x77[, c(7, 4, 6, 2, 5, 3)], full = FALSE,

key.loc = c(10, 2))

Parallel coordinate plots

Parallel coordinates plots (Inselberg, 1984; Wegman, 1990) join the same points
across a set of parallel axes. We can show the state.x77 dataset in the order
showing up in the biplot of Figure 11.7 by

parcoord(state.x77[, c(7, 4, 6, 2, 5, 3)])

11Especially if colour is involved; it is amazingly common to overlook the prevalence of red–green
colour blindness.
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Figure 11.9: R version of stars plot of the state.x77 dataset.

Such plots are often too ‘busy’ without a means of interaction to identify obser-
vations, sign-change and reorder variables, brush groups and so on (as is possible
in XGobi and GGobi). As an example of a revealing parallel coordinate plot try

parcoord(log(ir)[, c(3, 4, 2, 1)], col = 1 + (0:149)%/%50)

on a device which can plot colour.

11.2 Cluster Analysis

Cluster analysis is concerned with discovering groupings among the cases of our
n by p matrix. A comprehensive general reference is Gordon (1999); Kaufman
and Rousseeuw (1990) give a good introduction and their methods are available
in S-PLUS and in package cluster for R. Clustering methods can be clustered
in many different ways; here is one.

• Agglomerative hierarchical methods (hclust , agnes , mclust).

– Produces a set of clusterings, usually one with k clusters for each k =
n, . . . , 2 , successively amalgamating groups.

– Main differences are in calculating group–group dissimilarities from point–
point dissimilarities.
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– Computationally easy.

• Optimal partitioning methods (kmeans , pam , clara , fanny).

– Produces a clustering for fixed K .

– Need an initial clustering.

– Lots of different criteria to optimize, some based on probability models.

– Can have distinct ‘outlier’ group(s).

• Divisive hierarchical methods (diana , mona).

– Produces a set of clusterings, usually one for each k = 2, . . . , K � n .

– Computationally nigh-impossible to find optimal divisions (Gordon, 1999,
p. 90).

– Most available methods are monothetic (split on one variable at each stage).

Do not assume that ‘clustering’ methods are the best way to discover interesting
groupings in the data; in our experience the visualization methods are often far
more effective. There are many different clustering methods, often giving differ-
ent answers, and so the danger of over-interpretation is high.

Many methods are based on a measure of the similarity or dissimilarity be-
tween cases, but some need the data matrix itself. A dissimilarity coefficient d is
symmetric ( d(A, B) = d(B, A) ), non-negative and d(A, A) is zero. A similarity
coefficient has the scale reversed. Dissimilarities may be metric

d(A, C) � d(A, B) + d(B, C)

or ultrametric
d(A, B) � max

(
d(A, C), d(B, C)

)
but need not be either. We have already seen several dissimilarities calculated by
dist and daisy.

Ultrametric dissimilarities have the appealing property that they can be rep-
resented by a dendrogram such as those shown in Figure 11.10, in which the
dissimilarity between two cases can be read from the height at which they join
a single group. Hierarchical clustering methods can be thought of as approxi-
mating a dissimilarity by an ultrametric dissimilarity. Jardine and Sibson (1971)
argue that one method, single-link clustering, uniquely has all the desirable prop-
erties of a clustering method. This measures distances between clusters by the
dissimilarity of the closest pair, and agglomerates by adding the shortest possi-
ble link (that is, joining the two closest clusters). Other authors disagree, and
Kaufman and Rousseeuw (1990, §5.2) give a different set of desirable properties
leading uniquely to their preferred method, which views the dissimilarity between
clusters as the average of the dissimilarities between members of those clusters.
Another popular method is complete-linkage, which views the dissimilarity be-
tween clusters as the maximum of the dissimilarities between members.

The function hclust implements these three choices, selected by its method
argument which takes values "compact" (the default, for complete-linkage,
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Figure 11.10: Dendrograms for the socio-economic data on Swiss provinces computed by
single-link clustering (top) and divisive clustering (bottom).

called "complete" in R), "average" and "connected" (for single-linkage,R

called "single" in R). Function agnes also has these (with the R names) and
others.

The S dataset12 swiss.x gives five measures of socio-economic data on
Swiss provinces about 1888, given by Mosteller and Tukey (1977, pp. 549–551).
The data are percentages, so Euclidean distance is a reasonable choice. We use
single-link clustering:

# S: h <- hclust(dist(swiss.x), method = "connected")
# R: data(swiss); swiss.x <- as.matrix(swiss[, -1])
# R: h <- hclust(dist(swiss.x), method = "single")
plclust(h)
cutree(h, 3)
# S: plclust( clorder(h, cutree(h, 3) ))

The hierarchy of clusters in a dendrogram is obtained by cutting it at different
heights. The first plot suggests three main clusters, and the remaining code re-
orders the dendrogram to display (see Figure 11.10) those clusters more clearly.
Note that there appear to be two main groups, with the point 45 well separated
from them.

Function diana performs divisive clustering, in which the clusters are repeat-
edly subdivided rather than joined, using the algorithm of Macnaughton-Smith
et al. (1964). Divisive clustering is an attractive option when a grouping into a
few large clusters is of interest. The lower panel of Figure 11.10 was produced by
pltree(diana(swiss.x)).

12In R the numbers are slightly different, and the provinces has been given names.
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Figure 11.11: The Swiss provinces data plotted on its first two principal components. The
labels are the groups assigned by K-means; the crosses denote the group means. Five
points are labelled with smaller symbols.

Partitioning methods

The K-means clustering algorithm (MacQueen, 1967; Hartigan, 1975; Hartigan
and Wong, 1979) chooses a pre-specified number of cluster centres to minimize
the within-class sum of squares from those centres. As such it is most appro-
priate to continuous variables, suitably scaled. The algorithm needs a starting
point, so we choose the means of the clusters identified by group-average cluster-
ing. The clusters are altered (cluster 3 contained just point 45), and are shown in
principal-component space in Figure 11.11. (Its standard deviations show that a
two-dimensional representation is reasonable.)

h <- hclust(dist(swiss.x), method = "average")
initial <- tapply(swiss.x, list(rep(cutree(h, 3),

ncol(swiss.x)), col(swiss.x)), mean)
dimnames(initial) <- list(NULL, dimnames(swiss.x)[[2]])
km <- kmeans(swiss.x, initial)
(swiss.pca <- princomp(swiss.x))
Standard deviations:
Comp.1 Comp.2 Comp.3 Comp.4 Comp.5
42.903 21.202 7.588 3.6879 2.7211
....

swiss.px <- predict(swiss.pca)
dimnames(km$centers)[[2]] <- dimnames(swiss.x)[[2]]
swiss.centers <- predict(swiss.pca, km$centers)
eqscplot(swiss.px[, 1:2], type = "n",

xlab = "first principal component",
ylab = "second principal component")

text(swiss.px[, 1:2], labels = km$cluster)
points(swiss.centers[,1:2], pch = 3, cex = 3)
identify(swiss.px[, 1:2], cex = 0.5)
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By definition, K-means clustering needs access to the data matrix and uses
Euclidean distance. We can apply a similar method using only dissimilarities if
we confine the cluster centres to the set of given examples. This is known as the
k-medoids criterion (of Vinod, 1969) implemented in pam and clara . Using
pam picks provinces 29, 8 and 28 as cluster centres.

> library(cluster) # needed in R only
> swiss.pam <- pam(swiss.px, 3)
> summary(swiss.pam)
Medoids:

Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5
[1,] -29.716 18.22162 1.4265 -1.3206 0.95201
[2,] 58.609 0.56211 2.2320 -4.1778 4.22828
[3,] -28.844 -19.54901 3.1506 2.3870 -2.46842
Clustering vector:
[1] 1 2 2 1 3 2 2 2 2 2 2 3 3 3 3 3 1 1 1 3 3 3 3 3 3 3 3 3

[29] 1 3 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1
....

> eqscplot(swiss.px[, 1:2], type = "n",
xlab = "first principal component",
ylab = "second principal component")

> text(swiss.px[,1:2], labels = swiss.pam$clustering)
> points(swiss.pam$medoid[,1:2], pch = 3, cex = 5)

The function fanny implements a ‘fuzzy’ version of the k-medoids criterion.
Rather than point i having a membership of just one cluster v, its membership is
partitioned among clusters as positive weights uiv summing to one. The criterion
then is

min
(uiv)

∑
v

∑
i,j u2

ivu2
jv dij

2
∑

i u2
iv

.

For our running example we find

> fanny(swiss.px, 3)
iterations objective

16 354.01
Membership coefficients:

[,1] [,2] [,3]
[1,] 0.725016 0.075485 0.199499
[2,] 0.189978 0.643928 0.166094
[3,] 0.191282 0.643596 0.165123

....
Closest hard clustering:
[1] 1 2 2 1 3 2 2 2 2 2 2 3 3 3 3 3 1 1 1 3 3 3 3 3 3 3 3 3

[29] 1 3 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1

The ‘hard’ clustering is formed by assigning each point to the cluster for which
its membership coefficient is highest.

Other partitioning methods are based on the idea that the data are independent
samples from a series of group populations, but the group labels have been lost, so
the data can be regarded as from a mixture distribution. The idea is then to find the
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Figure 11.12: Clusterings of the Swiss provinces data by pam with three clusters (with the
medoids marked by crosses), me with three clusters and emclust with up to nine clusters
(it chose nine).

mixture distribution, usually as a mixture of multivariate normals, and to assign
points to the component for which their posterior probability of membership is
highest.

S-PLUS has functions mclust, mclass and mreloc based on ‘maximum-S+

likelihood’ clustering in which the mixture parameters and the classification are
optimized simultaneously. Later work in the mclust library section13 uses
sounder methods in which the mixtures are fitted first. Nevertheless, fitting nor-
mal mixtures is a difficult problem, and the results obtained are often heavily
dependent on the initial configuration supplied.

K-means clustering can be seen as ‘maximum-likelihood’ clustering where
the clusters are assumed all to be spherically symmetric multivariate normals
with the same spread. The modelid argument to the mclust functions allows
a wider choice of normal mixture components, including "EI" (equal spherical)
"VI" (spherical, differing by component), "EEE" (same elliptical), "VEV" (same
shape elliptical, variable size and orientation) and "VVV" (arbitrary components).

Library section mclust provides hierarchical clustering via functions mhtree
and mhclass . Then for a given number k of clusters the fitted mixture can be
optimized by calling me (which here does not change the classification).

13Available at http://www.stat.washington.edu/fraley/mclust/ and for R from CRAN.
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library(mclust)
h <- mhtree(swiss.x, modelid = "VVV")
(mh <- as.vector(mhclass(h, 3)))
[1] 1 2 2 3 1 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

[29] 1 1 2 2 2 2 2 2 2 2 1 1 1 1 1 1 3 3 3
z <- me(swiss.x, modelid = "VVV", z = (ctoz(mh)+1/3)/2)
eqscplot(swiss.px[, 1:2], type = "n",

xlab = "first principal component",
ylab = "second principal component")

text(swiss.px[, 1:2], labels = max.col(z))

Function mstep can be used to extract the fitted components, and mixproj to
plot them, but unfortunately only on a pair of the original variables.

Function emclust automates the whole cluster process, including choosing
the number of clusters and between different modelid’s. One additional possi-
bility controlled by argument noise is to include a background ‘noise’ term, that
is a component that is a uniform Poisson process. It chooses lots of clusters (see
Figure 11.12).

> vals <- emclust(swiss.x) # all possible models, 0:9 clusters.
> sm <- summary(vals, swiss.x)
> eqscplot(swiss.px[, 1:2], type = "n",

xlab = "first principal component",
ylab = "second principal component")

> text(swiss.px[, 1:2], labels = sm$classification)

11.3 Factor Analysis

Principal component analysis looks for linear combinations of the data matrix
X that are uncorrelated and of high variance. Independent component analysis
seeks linear combinations that are independent. Factor analysis seeks linear com-
binations of the variables, called factors, that represent underlying fundamental
quantities of which the observed variables are expressions. The examples tend to
be controversial ones such as ‘intelligence’ and ‘social deprivation’, the idea be-
ing that a small number of factors might explain a large number of measurements
in an observational study. Such factors are to be inferred from the data.

We can think of both the factors of factor analysis and the signals of indepen-
dent component analysis as latent variables, unobserved variables on each exper-
imental unit that determine the patterns in the observations. The difference is that
it is not the factors that are assumed to be independent, but rather the observations
conditional on the factors.

The factor analysis model for a single common factor f is

x = µ + λf + u (11.1)

where λ is a vector known as the loadings and u is a vector of unique (or spe-
cific) factors for that observational unit. To help make the model identifiable, we
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assume that the factor f has mean zero and variance one, and that u has mean
zero and unknown diagonal covariance matrix Ψ . For k < p common factors
we have a vector f of common factors and a loadings matrix Λ , and

x = µ + Λf + u (11.2)

where the components of f have unit variance and are uncorrelated and f and u
are taken to be uncorrelated. Note that all the correlations amongst the variables
in x must be explained by the common factors; if we assume joint normality the
observed variables x will be conditionally independent given f .

Principal component analysis also seeks a linear subspace like Λf to explain
the data, but measures the lack of fit by the sum of squares of the ui . Since
factor analysis allows an arbitrary diagonal covariance matrix Ψ , its measure of
fit of the ui depends on the problem and should be independent of the units of
measurement of the observed variables. (Changing the units of measurement of
the observations does not change the common factors if the loadings and unique
factors are re-expressed in the new units.)

Equation (11.2) and the conditions on f express the covariance matrix Σ of
the data as

Σ = ΛΛT + Ψ (11.3)

Conversely, if (11.3) holds, there is a k -factor model of the form (11.2). Note that
the common factors GT f and loadings matrix ΛG give rise to the same model
for Σ , for any k×k orthogonal matrix G . Choosing an appropriate G is known
as choosing a rotation. All we can achieve statistically is to fit the space spanned
by the factors, so choosing a rotation is a way to choose an interpretable basis for
that space. Note that if

s = 1
2
p(p + 1) − [p(k + 1) − 1

2
k(k − 1)] = 1

2
(p − k)2 − 1

2
(p + k) < 0

we would expect an infinity of solutions to (11.3). This value is known as the
degrees of freedom, and comes from the number of elements in Σ minus the
number of parameters in Ψ and Λ (taking account of the rotational freedom in
Λ since only ΛΛT is determined). Thus it is usual to assume s � 0 ; for s = 0
there may be a unique solution, no solution or an infinity of solutions (Lawley and
Maxwell, 1971, pp. 10–11).

The variances of the original variables are decomposed into two parts, the
communality h2

i =
∑

j λ2
ij and uniqueness ψii which is thought of as the ‘noise’

variance.
Fitting the factor analysis model (11.2) is performed by the S function

factanal . The default method in S-PLUS (‘principal factor analysis’) datesS+

from the days of limited computational power, and is not intrinsically scale
invariant—it should not be used. The preferred method is to maximize the likeli-
hood over Λ and Ψ assuming multivariate normality of the factors (f , u) , which
depends only on the factor space and is scale-invariant. This likelihood can have
multiple local maxima; this possibility is often ignored but factanal compares
the fit found from several separate starting points. It is possible that the maxi-
mum likelihood solution will have some ψ̂ii = 0 , so the i th variable lies in the
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estimated factor space. Opinions differ as to what to do in this case (sometimes
known as a Heywood case), but often it indicates a lack of data or inadequacy of
the factor analysis model. (Bartholomew and Knott, 1999, Section 3.18, discuss
possible reasons and actions.)

It is hard to find examples in the literature for which a factor analysis model
fits well; many do not give a measure of fit, or have failed to optimize the likeli-
hood well enough and so failed to detect Heywood cases. We consider an exam-
ple from Smith and Stanley (1983) as quoted by Bartholomew and Knott (1999,
pp. 68–72).14 Six tests were give to 112 individuals, with covariance matrix

general picture blocks maze reading vocab
general 24.641 5.991 33.520 6.023 20.755 29.701
picture 5.991 6.700 18.137 1.782 4.936 7.204
blocks 33.520 18.137 149.831 19.424 31.430 50.753
maze 6.023 1.782 19.424 12.711 4.757 9.075

reading 20.755 4.936 31.430 4.757 52.604 66.762
vocab 29.701 7.204 50.753 9.075 66.762 135.292

The tests were of general intelligence, picture completion, block design, mazes,
reading comprehension and vocabulary. The S-PLUS default in factanal is a
single factor, but the fit is not good until we try two. The low uniqueness for
reading ability suggests that this is close to a Heywood case, but it definitely is
not one.

> S: ability.FA <- factanal(covlist = ability.cov, method = "mle")
> R: ability.FA <- factanal(covmat = ability.cov, factors = 1)
> ability.FA

....
The chi square statistic is 75.18 on 9 degrees of freedom.

....
> (ability.FA <- update(ability.FA, factors = 2))

....
The chi square statistic is 6.11 on 4 degrees of freedom.
The p-value is 0.191

....
> summary(ability.FA)
Uniquenesses:
general picture blocks maze reading vocab
0.45523 0.58933 0.21817 0.76942 0.052463 0.33358

Loadings:
Factor1 Factor2

general 0.501 0.542
picture 0.158 0.621
blocks 0.208 0.859
maze 0.110 0.467

reading 0.957 0.179
vocab 0.785 0.222

14Bartholomew & Knott give both covariance and correlation matrices, but these are inconsistent.
Neither is in the original paper.
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> round(loadings(ability.FA) %*% t(loadings(ability.FA)) +
diag(ability.FA$uniq), 3)

general picture blocks maze reading vocab
general 1.000 0.416 0.570 0.308 0.577 0.514
picture 0.416 1.000 0.567 0.308 0.262 0.262
blocks 0.570 0.567 1.000 0.425 0.353 0.355
maze 0.308 0.308 0.425 1.000 0.189 0.190
reading 0.577 0.262 0.353 0.189 1.000 0.791
vocab 0.514 0.262 0.355 0.190 0.791 1.000

Remember that the first variable is a composite measure; it seems that the first
factor reflects verbal ability, the second spatial reasoning. The main lack of fit is
that the correlation 0.193 between picture and maze is fitted as 0.308 .

Factor rotations

The usual aim of a rotation is to achieve ‘simple structure’, that is a pattern of
loadings that is easy to interpret with a few large and many small coefficients.

There are many criteria for selecting rotations of the factors and loadings ma-
trix; S-PLUS implements 12. There is an auxiliary function rotate that will ro-S+

tate the fitted Λ according to one of these criteria, which is called via the rotate
argument of factanal . The default varimax criterion is to maximize∑

i,j

(dij − d·j)2 where dij = λ2
ij/

∑
j λ2

ij (11.4)

and d·j is the mean of the dij . Thus the varimax criterion maximizes the sum
over factors of the variances of the (normalized) squared loadings. The normaliz-
ing factors are the communalities that are invariant under orthogonal rotations.

Following Bartholomew & Knott, we illustrate the oblimin criterion15

which minimizes the sum over all pairs of factors of the covariance between the
squared loadings for those factors.

> loadings(rotate(ability.FA, rotation = "oblimin"))
Factor1 Factor2

general 0.379 0.513
picture 0.640
blocks 0.887
maze 0.483

reading 0.946
vocab 0.757 0.137

Component/Factor Correlations:
Factor1 Factor2

Factor1 1.000 0.356
Factor2 0.356 1.000

15Not implemented in R at the time of writing.
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Figure 11.13: The loadings for the intelligence test data after varimax rotation, with the
axes for the oblimin rotation shown as arrows.

> par(pty = "s")
> L <- loadings(ability.FA)
> eqscplot(L, xlim = c(0,1), ylim = c(0,1))
> identify(L, dimnames(L)[[1]])
> oblirot <- rotate(loadings(ability.FA), rotation = "oblimin")
> naxes <- solve(oblirot$tmat)
> arrows(rep(0, 2), rep(0, 2), naxes[,1], naxes[,2])

11.4 Discrete Multivariate Analysis

Most work on visualization and most texts on multivariate analysis implicitly as-
sume continuous measurements. However, large-scale categorical datasets are
becoming much more prevalent, often collected through surveys or ‘CRM’ (cus-
tomer relationship management: that branch of data mining that collects informa-
tion on buying habits, for example on shopping baskets) or insurance question-
naires.

There are some useful tools available for exploring categorical data, but it is
often essential to use models to understand the data, most often log-linear models.
Indeed, ‘discrete multivariate analysis’ is the title of an early influential book on
log-linear models, Bishop et al. (1975).

Mosaic plots

There are a few ways to visualize low-dimensional contingency tables. Mo-
saic plots (Hartigan and Kleiner, 1981, 1984; Friendly, 1994; Emerson, 1998;
Friendly, 2000) divide the plotting surface recursively according to the propor-
tions of each factor in turn (so the order of the factors matters).

For an example, consider Fisher’s (1940) data on colours of eyes and hair of
people in Caithness, Scotland:
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fair red medium dark black
blue 326 38 241 110 3
light 688 116 584 188 4

medium 343 84 909 412 26
dark 98 48 403 681 85

in our dataset caith. Figure 11.14 shows mosaic plots for these data and for the
housing data we used in Section 7.3, computed by

caith1 <- as.matrix(caith)
names(dimnames(caith1)) <- c("eyes", "hair")
mosaicplot(caith1, color = T)
# use xtabs in R
House <- crosstabs(Freq ~ Type + Infl + Cont + Sat, housing)
mosaicplot(House, color = T)

Correspondence analysis

Correspondence analysis is applied to two-way tables of counts.
Suppose we have an r × c table N of counts. Correspondence analysis

seeks ‘scores’ f and g for the rows and columns which are maximally corre-
lated. Clearly the maximum correlation is one, attained by constant scores, so
we seek the largest non-trivial solution. Let R and C be matrices of the group
indicators of the rows and columns, so RT C = N . Consider the singular value
decomposition of their correlation matrix

Xij =
nij/n − (ni·/n)(n·j/n)√

(ni·/n)(n·j/n)
=

nij − n ri cj

n
√

ri cj

where ri = ni·/n and cj = n·j/n are the proportions in each row and column.
Let Dr and Dc be the diagonal matrices of r and c. Correspondence analysis
corresponds to selecting the first singular value and left and right singular vectors
of Xij and rescaling by D

−1/2
r and D

−1/2
c , respectively. This is done by our

function corresp :

> corresp(caith)
First canonical correlation(s): 0.44637

eyes scores:
blue light medium dark

-0.89679 -0.98732 0.075306 1.5743

hair scores:
fair red medium dark black

-1.2187 -0.52258 -0.094147 1.3189 2.4518

Can we make use of the subsequent singular values? In what Gower and Hand
(1996) call ‘classical CA’ we consider A = D

−1/2
r UΛ and B = D

−1/2
c V Λ.

Then the first columns of A and B are what we have termed the row and column
scores scaled by ρ , the first canonical correlation. More generally, we can see
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Figure 11.14: Mosaic plots for (top) Fisher’s data on people from Caithness and (bottom)
Copenhagen housing satisfaction data.
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Figure 11.15: Three variants of correspondenceanalysis plots from Fisher’s data on people
in Caithness: (left) ‘symmetric”, (middle) ‘row asymmetric’ and (right) ‘column asymmet-
ric’.

distances between the rows of A as approximating the distances between the row
profiles (rows rescaled to unit sum) of the table N , and analogously for the rows
of B and the column profiles.

Classical CA plots the first two columns of A and B on the same figure.
This is a form of a biplot and is obtained with our software by plotting a cor-
respondence analysis object with nf � 2 or as the default for the method
biplot.correspondence. This is sometimes known as a ‘symmetric’ plot.
Other authors (for example, Greenacre, 1992) advocate ‘asymmetric’ plots. The
asymmetric plot for the rows is a plot of the first two columns of A with the col-
umn labels plotted at the first two columns of Γ = D

−1/2
c V ; the corresponding

plot for the columns has columns plotted at B and row labels at Φ = D
−1/2
r U .

The most direct interpretation for the row plot is that

A = D−1
r NΓ

so A is a plot of the row profiles (the rows normalized to sum to one) as convex
combinations of the column vertices given by Γ.

By default corresp only retains one-dimensional row and column scores;
then plot.corresp plots these scores and indicates the size of the entries in the
table by the area of circles. The two-dimensional forms of the plot are shown in
Figure 11.15 for Fisher’s data on people from Caithness. These were produced by

# R: library(mva)
caith2 <- caith
dimnames(caith2)[[2]] <- c("F", "R", "M", "D", "B")
par(mfcol = c(1, 3))
plot(corresp(caith2, nf = 2)); title("symmetric")
plot(corresp(caith2, nf = 2), type = "rows"); title("rows")
plot(corresp(caith2, nf = 2), type = "col"); title("columns")

Note that the symmetric plot (left) has the row points from the asymmetric row
plot (middle) and the column points from the asymmetric column plot (right)
superimposed on the same plot (but with different scales).
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Figure 11.16: Multiple correspondence analysis plot of dataset farms on 20 farms on the
Dutch island of Terschelling. Numbers represent the farms and labels levels of moisture
(M1, M2, M4 and M5), grassland usage (U1, U2 and U3), manure usage (C0 to C4) and type
of grassland management (SF: standard, BF: biological, HF: hobby farming, NM: nature
conservation). Levels C0 and NM are coincident (on the extreme left), as are the pairs of
farms 3 & 4 and 19 & 20.

Multiple correspondence analysis

Multiple correspondence analysis (MCA) is (confusingly!) a method for visu-
alizing the joint properties of p � 2 categorical variables that does not reduce
to correspondence analysis (CA) for p = 2 , although the methods are closely
related (see, for example, Gower and Hand, 1996, §10.2).

Suppose we have n observations on the p factors with � total levels. Con-
sider G , the n× � indicator matrix whose rows give the levels of each factor for
each observation. Then all the row sums are p . MCA is often (Greenacre, 1992)
defined as CA applied to the table G , that is the singular-value decomposition of
D

−1/2
r (G/

∑
ij gij)D

−1/2
c = UΛV T . Note that Dr = pI since all the row sums

are p , and
∑

ij gij = np , so this amounts to the SVD of p−1/2GD
−1/2
c /pn .16

An alternative point of view is that MCA is a principal components analysis
of the data matrix X = G(pDc)−1/2 ; with PCA it is usual to centre the data, but
it transpires that the largest singular value is one and the corresponding singular
vectors account for the means of the variables. A simple plot for MCA is to plot
the first two principal components of X (which correspond to the second and
third singular vectors of X ). This is a form of biplot, but it will not be appropriate
to add axes for the columns of X as the possible values are only {0, 1} , but it is
usual to add the positions of 1 on each of these axes, and label these by the factor

16Gower and Hand (1996) omit the divisor pn .
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level. (The ‘axis’ points are plotted at the appropriate row of (pDc)−1/2V .) The
point plotted for each observation is the vector sum of the ‘axis’ points for the
levels taken of each of the factors. Gower and Hand seem to prefer (e.g., their
Figure 4.2) to rescale the plotted points by p , so they are plotted at the centroid
of their levels. This is exactly the asymmetric row plot of the CA of G , apart
from an overall scale factor of p

√
n .

We can apply this to the example of Gower and Hand (1996, p. 75) by

farms.mca <- mca(farms, abbrev = T) # Use levels as names
plot(farms.mca, cex = rep(0.7, 2), axes = F)

shown in Figure 11.16
Sometimes it is desired to add rows or factors to an MCA plot. Adding rows is

easy; the observations are placed at the centroid of the ‘axis’ points for levels that
are observed. Adding factors (so-called supplementary variables) is less obvious.
The ‘axis’ points are plotted at the rows of (pDc)−1/2V . Since UΛV T = X =
G(pDc)−1/2 , V = (pDc)−1/2GT UΛ−1 and

(pDc)−1/2V = (pDc)−1GTUΛ−1

This tells us that the ‘axis’ points can be found by taking the appropriate column
of G , scaling to total 1/p and then taking inner products with the second and
third columns of UΛ−1 . This procedure can be applied to supplementary vari-
ables and so provides a way to add them to the plot. The predict method for
class "mca" allows rows or supplementary variables to be added to an MCA plot.
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